tema 1 (4 del libro): la célula · factorización de polinomios. 7.1.-factorización de...

15
Tema 3: Polinomios 1 TEMA 3: Polinomios

Upload: vanminh

Post on 22-Sep-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: TEMA 1 (4 del libro): La célula · Factorización de polinomios. 7.1.-Factorización de polinomios. 7.2.-Simplificación de fracciones algebraicas. 1.- POLINOMIOS. VALOR NUMÉRICO

Tema 3: Polinomios 1

TEMA 3:

Polinomios

Page 2: TEMA 1 (4 del libro): La célula · Factorización de polinomios. 7.1.-Factorización de polinomios. 7.2.-Simplificación de fracciones algebraicas. 1.- POLINOMIOS. VALOR NUMÉRICO

Tema 3: Polinomios 2

ESQUEMA DE LA UNIDAD

1.- Polinomios. Valor numérico.

1.1.- Polinomios.

1.2.- Valor numérico de un polinomio.

2.- Suma y resta de polinomios.

3.- Multiplicación de polinomios.

3.1.- Producto de polinomios.

3.2.- Factor común.

4.- División de polinomios.

5.- Regla de Ruffini. Teoremas del resto y del factor.

5.1.- Regla de Ruffini.

5.2.- Teorema del resto.

5.3.- Teorema del factor.

6.- Identidades notables. Potencia de un polinomio.

6.1.- Cuadrado de una suma o diferencia.

6.2.- Producto de una suma por una diferencia.

6.3.- Obtención de una identidad notable.

6.3.1.- Expresión de un binomio como una suma por una diferencia.

6.3.2.- Expresión de un trinomio como el cuadrado de una suma o una diferencia.

6.4.- Potencia de polinomios.

7.- Factorización de polinomios.

7.1.- Factorización de polinomios.

7.2.- Simplificación de fracciones algebraicas.

1.- POLINOMIOS. VALOR NUMÉRICO

1.1.- Polinomios

Un polinomio es una expresión formada por la suma o resta de dos o más monomios. Ejemplos:

4253 34 xxxxP , xyxyyxyxP 323 23),( .

Los elementos de un polinomio son:

Grado: el grado de un polinomio es el mayor de los grados de sus monomios.

Coeficientes: son los números que tiene delante cada monomio.

Término independiente: es el monomio de grado cero; es decir, el número que no va

acompañado de ninguna letra.

Page 3: TEMA 1 (4 del libro): La célula · Factorización de polinomios. 7.1.-Factorización de polinomios. 7.2.-Simplificación de fracciones algebraicas. 1.- POLINOMIOS. VALOR NUMÉRICO

Tema 3: Polinomios 3

Ejemplo: 2634)( 235 xxxxxP

Grado: 5

Coeficientes: 4, -3, 1, 6, 2

Término independiente: -2

Polinomio completo: es aquel polinomio en el que aparecen todos los términos de grado

inferior al grado del polinomio. Cuando no es completo se dice que es incompleto. Ejemplos:

56325)( 2345 xxxxxxP es un polinomio completo. 1635)( 235 xxxxxP es

un polinomio incompleto, ya que falta el término “x4”.

Polinomio ordenado: es aquel polinomio cuyos términos están ordenados de mayor a

menor grado. Ejemplo: xxxxxP 635)( 235

1.2.- Valor numérico de un polinomio

El valor numérico de un polinomio en un punto dado es el número que resulta al sustituir la letra

o las letras que aparecen en el polinomio por los valores que nos digan y operar.

Ejemplo:

a) Calcula el valor numérico del polinomio 4253 34 xxxxP para 1x .

412151314121513142533434 PPxxxxP

42531P 41 P

b) Calcula el valor numérico del polinomio 4253 34 xxxxP para 2x .

4222523242533434 PxxxxP

4440482422851632 PP 802 P

2.- SUMA Y RESTA DE POLINOMIOS

Ejemplo: Dados 1246)( 23 xxxxP y 5353)( 23 xxxxQ , calcular:

a) )()( xQxP

)()( xQxP 53531246 2323 xxxxxx

53531246 2323 xxxxxx 443 23 xxx

b) )()( xQxP

)()( xQxP 53531246 2323 xxxxxx

53531246 2323 xxxxxx 6599 23 xxx

Page 4: TEMA 1 (4 del libro): La célula · Factorización de polinomios. 7.1.-Factorización de polinomios. 7.2.-Simplificación de fracciones algebraicas. 1.- POLINOMIOS. VALOR NUMÉRICO

Tema 3: Polinomios 4

Ejemplo: Dados xyxyyxyxP 323 23),( y xyyxyxQ 22),( 23 , calcular:

a) ),(),( yxQyxP

),(),( yxQyxP xyyxxyxyyx 2223 23323 xyyxxyxyyx 2223 23323

23323 22 yxxyxyyx

b) ),(),( yxQyxP

),(),( yxQyxP xyyxxyxyyx 2223 23323 xyyxxyxyyx 2223 23323

23323 2325 yxxyxyyx

3.- MULTIPLICACIONES DE POLINOMIOS

3.1.- Producto de polinomios

Ejemplo: Dados 14)( 3 xxxR y 1)( 2 xxS , calcular )()( xSxR

)()( xSxR 114 23 xxx 11114 2223 xxxxx

144 2335 xxxxx 154 235 xxxx

3.2.- Factor común

Sacar factor común consiste en extraer de cada uno de los monomios que forman un polinomio,

los términos comunes a todos ellos.

Recordatorio:

a) Cuando un término sale entero como factor común, dentro del paréntesis se pone un "1".

b) El signo no es conveniente sacarlo como factor común.

Ejemplo: saca factor común

a) 234 3129 xxx 23242 3323 xxx 1433 22 xxx

b) 522473 24315 bababa 5232473 32353 bababa 32522 853 baabba

4.- DIVISIÓN DE POLINOMIOS

Observaciones:

a) Elementos de una división:

b) Para que se pueda hacer una división entre polinomios, el grado del dividendo tiene que ser

mayor o igual que el grado del divisor.

Page 5: TEMA 1 (4 del libro): La célula · Factorización de polinomios. 7.1.-Factorización de polinomios. 7.2.-Simplificación de fracciones algebraicas. 1.- POLINOMIOS. VALOR NUMÉRICO

Tema 3: Polinomios 5

642 2 xx

0

c) La división de polinomios termina cuando el grado del resto es menor que el grado del

divisor.

d) En toda división, tanto en la de números como en la de polinomios, se cumple lo siguiente:

DIVIDENDO = COCIENTE ∙ DIVISOR + RESTO

Ejemplo: Dados 6)( 3 xxxP y 32)( 2 xxxQ , calcular )(:)( xQxP

60 23 xxx 322 xx

Teniendo en cuenta la observación d), podemos escribir entonces lo siguiente:

)()()()( xRxQxCxP → 03226 23 xxxxx

5.- REGLA DE RUFFINI. TEOREMA DEL RESTO Y DEL FACTOR

5.1.- Regla de Ruffini

Es un método que se utiliza, entre otras cosas, para dividir polinomios cuando el divisor es de la

forma ax , siendo " a " un número.

Ejemplo: halla el cociente y el resto de la siguiente división utilizando el método de Ruffini

1:37235 234 xxxxx

Recordar que en toda división se puede escribir que DIVIDENDO = COCIENTE ∙ DIVISOR + RESTO,

así en este caso tendremos que

01342537235 23234 xxxxxxxx

5.2.- Teorema del resto

Enunciado: “El resto de la división de un polinomio )(xP entre ax es igual al valor

numérico del polinomio para ax ”.

Con otras palabras: para calcular el resto de la división de un polinomio )(xP entre ax

(que son las divisiones que pueden hacerse por el método de Ruffini) sin hacer la división, hay que

sustituir en la “x” del polinomio )(xP el número “ a ”.

2xxxx 32 23

642 2 xx

Page 6: TEMA 1 (4 del libro): La célula · Factorización de polinomios. 7.1.-Factorización de polinomios. 7.2.-Simplificación de fracciones algebraicas. 1.- POLINOMIOS. VALOR NUMÉRICO

Tema 3: Polinomios 6

Ejemplo: calcula, sin hacer la división, el resto de las siguientes divisiones de polinomios

a) 2:532 23 xxx

Llamamos 532)( 23 xxxP . Por el teorema del resto, el resto de la división 2:)( xxP

es )2(P :

512165438252322)2(23

P 23

b) 1:324 3 xxx

Llamamos 324)( 3 xxxP . Por el teorema del resto, el resto de la división 1:)( xxP es

)1(P :

3243121431214)1( 3P 3

Observaciones:

1. Al número que sale al sustituir la "x" de un polinomio por un número se le llama "valor

numérico del polinomio en númerox ".

2. Un número " a " se dice que es raíz de un polinomio )(xP si el valor numérico de ese

polinomio en ax vale cero.

5.3.- Teorema del factor

Enunciado: “Un polinomio, )(xP , tiene como factor ax si el valor numérico de dicho

polinomio para el valor ax es cero; es decir, si ax es una raíz del polinomio )(xP .

Ejemplo: comprueba si 2x es un factor de 863)( 24 xxxxP .

8121216)2(8124316)2(826232)2(24

PPP

0)2( P , luego efectivamente 2x es un factor de )(xP .

6.- IDENTIDADES NOTABLES. POTENCIA DE UN POLINOMIO

6.1.- Cuadrado de una suma o diferencia

abbaba 2222

Ejemplo: resuelve las siguientes identidades notables

a) xxxxxx 3423434 222222 324 24916 xxx

b) xxxxxx 3423434 222222 324 24916 xxx

Page 7: TEMA 1 (4 del libro): La célula · Factorización de polinomios. 7.1.-Factorización de polinomios. 7.2.-Simplificación de fracciones algebraicas. 1.- POLINOMIOS. VALOR NUMÉRICO

Tema 3: Polinomios 7

c) xxxxxx 3423434 222222 324 24916 xxx

d) xxxxxx 3423434 222222 324 24916 xxx

6.2.- Producto de una suma por una diferencia

22 bababa

Ejemplo: resuelve las siguientes identidades notables

a) 22222 343434 xxxxxx

24 916 xx

b) 22222 888 xxxxxx

24 64xx

c) 22555 969696 xxx 8136 10 x

d) 24234343 323232 xxxxxx

86 94 xx

6.3.- Obtención de una identidad notable

Se trata de expresar un binomio (polinomio de dos términos) o un trinomio (polinomio de tres

términos) como una suma por una diferencia o como el cuadrado de una suma o diferencia.

6.3.1.- Expresión de un binomio como una suma por una diferencia

1. Hay que comprobar que el binomio representa una identidad notable. Para ello basta

observar que entre los dos términos del binomio hay una resta.

2. Escribir cada término como un cuadrado.

3. Las bases de los cuadrados anteriores son los elementos de la identidad notable.

Ejemplo: expresa como una identidad notable los siguientes binomios

a) 24 425 xx xxxx 2525 22 (resta)

25x x2

Al número se le saca raíz cuadrada ( 52525 ) y al exponente de la "x" se le divide entre 2

(22/44 xxx )

42/88 399 xxx

b) 86 949 xx 4343 3737 xxxx

32/66 74949 xxx

Page 8: TEMA 1 (4 del libro): La célula · Factorización de polinomios. 7.1.-Factorización de polinomios. 7.2.-Simplificación de fracciones algebraicas. 1.- POLINOMIOS. VALOR NUMÉRICO

Tema 3: Polinomios 8

c) 164 2x 4242 xx

d) 42 416 xx 22 2424 xxxx

6.3.2.- Expresión de un trinomio como el cuadrado de una suma o una diferencia

1. Buscar en el trinomio los dos términos en los que la variable estén elevados al número más

grande y al número más pequeño. Comprobar que esos términos tienen el mismo signo y

que se pueden escribir como un cuadrado.

2. Comprobar que el doble producto de las bases de los cuadrados anteriores coincide con el

otro término del trinomio que no se ha utilizado hasta ahora.

3. De cumplirse los puntos anteriores, se puede afirmar que el trinomio corresponde a una

identidad notable, en concreto al cuadrado de una suma o de una diferencia en función del

signo que tenga el término del trinomio que se ha utilizado en el punto anterior.

Ejemplo: expresa como una identidad notable los siguientes trinomios

a) 654 6416 xxx Tienen el mismo signo

(los dos términos son positivos)

22x 238x 32 82 xx516x que es el otro término del trinomio

Los dos términos se pueden escribir

como un cuadrado

Después de comprobar que se cumplen las condiciones para que este trinomio sea una

identidad notable podemos escribir dicha identidad:

654 6416 xxx 232 8xx

b) 234 44 xxx 222 xx

c) xx 414 2 22 12 x

d) 648 44 xxx 234 22 xx

6.4.- Potencia de polinomios

La potencia de un polinomio se efectúa igual que la potencia de números, multiplicando el

polinomio por sí mismo tantas veces como indique el exponente.

Ejemplo: calcula 3)(xP siendo 34)( xxP

3434334434343434)(33

xxxxxxxxxP

Page 9: TEMA 1 (4 del libro): La célula · Factorización de polinomios. 7.1.-Factorización de polinomios. 7.2.-Simplificación de fracciones algebraicas. 1.- POLINOMIOS. VALOR NUMÉRICO

Tema 3: Polinomios 9

349342434163492416349121216 222 xxxxxxxxxxxx

273672964864 223 xxxxx 2710814464 23 xxx

7.- FACTORIZACIÓN DE POLINOMIOS

7.1.- Factorización de polinomios

Descomponer un polinomio en factores consiste en escribirlo como producto de otros

polinomios.

Pasos para factorizar un polinomio:

1. Sacar factor común (si es que se puede).

2. Buscar, utilizando el método de Ruffini, las raíces del polinomio que queda entre paréntesis

(si es que se ha sacado factor común) o del polinomio entero (si no se ha sacado factor común).

Las posibles raíces son los divisores del término independiente del polinomio,

3. Repetir el método de Ruffini hasta que se cumpla una de las siguientes condiciones:

- Si después de probar con todas las posibles raíces del polinomio no haya ninguna (es

decir, con ninguno de los divisores del término independiente sale en el método de

Ruffini como resto cero).

- Que queden solamente dos términos.

4. Escribir la descomposición o factorización del polinomio.

Observaciones:

a) Descomponer o factorizar un polinomio de grado 1 es lo mismo que sacar factor común (si

es que se puede, en caso de que no se pueda sacar factor común, la factorización sería el

mismo polinomio).

Ejemplo: descomponer en factores los siguientes polinomios

155x 35 x

67x 67 x

b) Muchas veces los binomios y trinomios no se pueden descomponer en factores utilizando el

método de Ruffini porque son identidades notables.

Ejemplo: descomponer en factores los siguientes polinomios

144 2 xx Primero lo intentamos por Ruffini. Posibles raíces del polinomio: 1

4 -4 1 4 -4 1

1 4 0 -1 -4 16

4 0 1 (No sale cero) 4 -16 17 (No sale cero)

Page 10: TEMA 1 (4 del libro): La célula · Factorización de polinomios. 7.1.-Factorización de polinomios. 7.2.-Simplificación de fracciones algebraicas. 1.- POLINOMIOS. VALOR NUMÉRICO

Tema 3: Polinomios 10

El método de Ruffini, por tanto, no nos permite en este caso factorizar el polinomio, por lo tanto

quedan dos opciones: o se trata de una identidad notable, o no admite factorización. Después de

realizar las comprobaciones se observa que el trinomio que tenemos que factorizar es una

identidad notable, por lo tanto la factorización del mismo será esta:

144 2 xx 212 x

14 2 x Lo intentamos por Ruffini. Posibles raíces del polinomio: 1

4 0 -1 4 0 -1

1 4 0 -1 -4 4

4 0 -1 (No sale cero) 4 -4 3 (No sale cero)

Por Ruffini no se puede factorizar. ¿Es una identidad notable? La respuesta es que sí (se trata de

un binomio cuyos términos están restando. La factorización será por tanto:

14 2x 1212 xx

Ejemplo: factoriza los siguientes polinomios

a) 863)( 23 xxxxP

1. Factor común: en este caso no se puede sacar factor común.

3. Buscar las raíces del polinomio utilizando Ruffini: posibles raíces 8,4,2,1

(recordar que las posibles raíces son los divisores del término independiente)

1 3 -6 -8

1x -1 -1 -2 8

1 2 -8 0 Posibles raíces 8,4,2,1

2x 2 2 8

1 4 0 Paramos porque solo quedan dos números (el 1 y el 4)

4x

3. Escribir la factorización: 421)( xxxxP

b) xxxxxxP 18911)( 2345

1. Factor común:

1891118911)( 2342345 xxxxxxxxxxxP

Page 11: TEMA 1 (4 del libro): La célula · Factorización de polinomios. 7.1.-Factorización de polinomios. 7.2.-Simplificación de fracciones algebraicas. 1.- POLINOMIOS. VALOR NUMÉRICO

Tema 3: Polinomios 11

2. Buscar las raíces del polinomio que queda en el paréntesis utilizando Ruffini: posibles

raíces 18,9,6,3,2,1 (recordar que las posibles raíces son los divisores del

término independiente)

1 1 -11 -9 18

1x 1 1 2 -9 -18

1 2 -9 -18 0 Posibles raíces: las mismas

2x -2 -2 0 18

1 0 -9 0 Posibles raíces: 9,3,1

3x 3 3 9

1 3 0 Paramos porque solo quedan dos números (el 1 y el 3)

3x

3. Escribir la factorización: 3321)( xxxxxxP

c) 485)( 23 xxxxP

1. Factor común: en este caso no se puede sacar factor común.

2. Buscar las raíces del polinomio utilizando Ruffini: posibles raíces 4,2,1

(recordar que las posibles raíces son los divisores del término independiente).

1 -5 8 -4

1x 1 1 -4 4

1 -4 4 0 Posibles raíces 4,2,1

2x 2 2 -4

1 -2 0 Paramos porque solo quedan dos números (el 1 y el -2)

2x

3. Escribir la factorización: 221)( xxxxP 221 xx

d) 1)( 23 xxxxP

1. Factor común: en este caso no se puede sacar factor común.

2. Buscar las raíces del polinomio utilizando Ruffini: posibles raíces 1 (recordar que las

posibles raíces son los divisores del término independiente).

Page 12: TEMA 1 (4 del libro): La célula · Factorización de polinomios. 7.1.-Factorización de polinomios. 7.2.-Simplificación de fracciones algebraicas. 1.- POLINOMIOS. VALOR NUMÉRICO

Tema 3: Polinomios 12

1 -1 1 -1

1x 1 1 0 1

1 0 1 0 Posibles raíces 1

12 x

Paramos aunque quedan tres números porque el polinomio no tiene más raíces; es decir, al probar el método

de Ruffini con el 1 y el -1 no sale de resto cero.

3. Escribir la factorización: 11)( 2 xxxP

7.2.- Simplificación de fracciones algebraicas

Una fracción algebraica es una fracción en la que al menos en el denominador hay un

polinomio. Para simplificarlas hay que descomponer en factores por separado el numerador y el

denominador, y después “tachar” los términos comunes.

Ejemplo: simplifica las siguientes fracciones algebraicas

a) xxx

xx

23

223

2

- Factorizamos el numerador: 22 xx

1 1 -2

1x 1 1 2 Así: 22 xx 21 xx

1 2 0

2x

- Factorizamos el denominador: 2323 223 xxxxxx

1 3 2

1x -1 -1 -2 Así: 22 xx 21 xxx

1 2 0

2x

- Sustituimos en la fracción el numerador y el denominador por sus factorizaciones y

simplificamos:

Page 13: TEMA 1 (4 del libro): La célula · Factorización de polinomios. 7.1.-Factorización de polinomios. 7.2.-Simplificación de fracciones algebraicas. 1.- POLINOMIOS. VALOR NUMÉRICO

Tema 3: Polinomios 13

21

21

23

223

2

xxx

xx

xxx

xx 1

1

xx

x

b) 30114

6723

3

xxx

xx

- Factorizamos el numerador: 673 xx

1 0 -7 -6

1x -1 -1 1 6

1 -1 -6 0

2x -2 -2 6

1 -3 0

3x

Así 673 xx 321 xxx

- Factorizamos el denominador: 30114 23 xxx

1 4 -11 -30

2x -2 -2 -4 30

1 2 -15 0

5x -5 -5 15

1 -3 0

3x

Así 30114 23 xxx 352 xxx

- Sustituimos en la fracción el numerador y el denominador por sus factorizaciones y

simplificamos:

352

321

30114

6723

3

xxx

xxx

xxx

xx 5

1

x

x

Page 14: TEMA 1 (4 del libro): La célula · Factorización de polinomios. 7.1.-Factorización de polinomios. 7.2.-Simplificación de fracciones algebraicas. 1.- POLINOMIOS. VALOR NUMÉRICO

Tema 3: Polinomios 14

c) 9

962

2

x

xx

- Factorizamos el numerador: 962 xx

Podemos comprobar que el trinomio que hay en el numerador es el desarrollo de una

identidad notable, por lo que podemos escribir lo siguiente:

22 396 xxx

PERO hacerlo así directamente requiere que, una vez escrita la identidad notable, haya que

comprobar que los polinomios que quedan entre paréntesis no se pueden descomponer más,

lo cual sucede en este caso, ya que queda un polinomio de primer grado y sabemos que

factorizar este tipo de polinomios equivale a sacar factor común, cosa que no se puede

hacer en este caso, por lo que ya estaría terminada la factorización.

Así 962 xx 23x

- Factorizamos el denominador: 92 x

Al igual que antes, podemos comprobar que este binomio es el desarrollo de una identidad

notable, por lo que podemos escribir lo siguiente:

3392 xxx

De la misma manera debemos comprobar que los polinomios que quedan entre los

paréntesis ya no pueden descomponerse más, cosa que sucede.

Así 92x 33 xx

- Sustituimos en la fracción el numerador y el denominador por sus factorizaciones y

simplificamos:

33

3

9

962

2

2

xx

x

x

xx 3

3

x

x

Ejercicio: factorizar el siguiente polinomio 164 x

Una opción sería utilizar el método de Ruffini para descomponer o factorizar el polinomio,

pero si nos damos cuenta este binomio es el desarrollo de una identidad notable, así:

4416 224 xxx

Pero al hacer la factorización a través de las identidades notables, como se ha comentado

anteriormente, no basta escribir la expresión de la identidad notable, sino que hay que comprobar

si los polinomios que quedan en los paréntesis se pueden seguir factorizando o no. En nuestro caso

hay dos paréntesis:

Page 15: TEMA 1 (4 del libro): La célula · Factorización de polinomios. 7.1.-Factorización de polinomios. 7.2.-Simplificación de fracciones algebraicas. 1.- POLINOMIOS. VALOR NUMÉRICO

Tema 3: Polinomios 15

42 x → En este paréntesis ha quedado un polinomio que no se puede factorizar (comprobarlo

cada uno por Ruffini).

42 x → Sin embargo, el polinomio de este paréntesis sí puede descomponerse más, vuelve a ser

el desarrollo de una identidad notable, por lo que podemos escribirlo así: 2242 xxx

Nuevamente habría que comprobar si estos nuevos paréntesis contienen polinomios que se

pueden seguir factorizando, en cuyo caso habría que continuar (no es nuestro caso, pues ya quedan

polinomios de primer grado a los que no se les puede sacar factor común).

Por lo tanto, la factorización es: 164x 2242 xxx

FIN DEL TEMA