cinemática en 1 dimension

42

Upload: luis-enrique-donaire

Post on 17-Jan-2016

235 views

Category:

Documents


0 download

DESCRIPTION

Física Elemental 1

TRANSCRIPT

Page 1: cinemática en 1 dimension
Page 2: cinemática en 1 dimension
Page 3: cinemática en 1 dimension

El estudio de la física se desarrolló subdividiéndola en diversas ramas, cada una de las cuales agruparon fenómenos relacionados con el sentido por el cual se percibían. Así surgieron:

La mecánica, que estudia los fenómenos relacionados con el movimiento de los cuerpos.

La termodinámica, que estudia los fenómenos térmicos.

La óptica, que estudia los fenómenos relacionados con la luz.

El electromagnetismo, que estudia los fenómenos relacionados con la electricidad y el magnetismo.

El movimiento ondulatorio, que estudia los fenómenos relacionados con la propagación de las ondas.

La física moderna, que estudia los fenómenos físicos desarrollados desde inicios del siglo XX.

Page 4: cinemática en 1 dimension

La cinemática es la parte de la mecánica que analiza el movimiento y lo representa en términos de relaciones fundamentales. En este estudio no se toman en cuenta las causas que lo generan, sino el movimiento en sí mismo.

Una partícula es un cuerpo cuyas dimensiones son despreciables en relación con las magnitudes de las distancias analizadas.

Geométricamente, una partícula asocia la idea de un punto, por lo que generalmente se le denomina punto material o masa puntual.

Un sistema de referencia es un cuerpo (partícula) que, junto a un sistema de coordenadas, permite determinar la ubicación (posición) de otro cuerpo, en un instante dado.

x

y

Page 5: cinemática en 1 dimension

Para definir la posición A que ocupa una partícula en movimiento en un cierto instante t, con respecto a un sistema de referencia, se grafica el vector rA, que une el origen del sistema de referencia con el punto A, vector que se lo conoce como el vector posición.

x

y

Trayectoria de la partícula

rA

rB

Dr

A

B

El camino que describe una partícula para ir de una posición a otra se conoce con el nombre de trayectoria.

El desplazamiento es la variación que experimenta el vector posición.

AB rrr

Se define el desplazamiento como la distancia en línea recta entre dos puntos, junto con la dirección del punto de partida a la posición final.

A la longitud total de la trayectoria recorrida por un cuerpo (partícula) al moverse de un lugar a otro se la conoce con el nombre de distancia.

repaso

Page 6: cinemática en 1 dimension

Se dice que un cuerpo (partícula) está en movimiento cuando su posición cambia con respecto a un sistema de referencia.

¿Qué es el movimiento?

Los conceptos de reposo y movimiento son relativos.

Si la posición permanece constante, se dice que la partícula está en reposo.

Page 7: cinemática en 1 dimension

La distancia es una magnitud escalar y el desplazamiento una magnitud vectorial

Page 8: cinemática en 1 dimension
Page 9: cinemática en 1 dimension

El vector velocidad media de una partícula durante el intervalo de tiempo t se define como la razón entre el vector desplazamiento y el intervalo de tiempo.

La velocidad media es un vector paralelo al vector x.x

En el Sistema Internacional de Unidades (SI), la unidad de medida de la velocidad media es el metro sobre segundo (m/s).

La velocidad nos dice qué tan rápidamente se está moviendo algo y en qué dirección se está moviendo.

t

x

v

v

Page 10: cinemática en 1 dimension

La rapidez media es un escalar que relaciona la distancia d recorrida por un cuerpo (partícula) y el intervalo de tiempo empleado en hacerlo.

La unidad de medida de la rapidez media en el SI también es el metro sobre segundo (m/s).

12 tt

d

t

ds

Page 11: cinemática en 1 dimension

A pesar de que la velocidad media y la rapidez media tienen la misma unidad de medida, son conceptos completamente diferentes.

Page 12: cinemática en 1 dimension

Un deportista trota de un extremo al otro de una pista recta de 300 m en 2.50 min y luego trota de regreso al punto de partida en 3.30 min. a) ¿Qué velocidad media tuvo el deportista al trotar al final de la pista?

b) ¿Cuál fue su velocidad media al regresar al punto de partida?

c) ¿Cuál fue su velocidad media en el trote total?

d) Calcule la rapidez media del trotador en cada caso anterior.

Page 13: cinemática en 1 dimension

La magnitud de la velocidad media SIEMPRE es menor o igual que la rapidez media

Page 14: cinemática en 1 dimension

La velocidad instantánea describe qué tan rápidamente y en qué dirección se está moviendo algo en un instante dado.

La velocidad instantánea es igual a la pendiente de una recta tangente en un gráfico x vs. t.

Page 15: cinemática en 1 dimension
Page 16: cinemática en 1 dimension

A la magnitud de la velocidad instantánea se la conoce como rapidez.

Page 17: cinemática en 1 dimension

¿Qué mide el velocímetro de un auto?

Page 18: cinemática en 1 dimension

¿Cuál de los dos autos tiene mayor velocidad?

Page 19: cinemática en 1 dimension

La velocidad instantánea v permanece constante. Necesariamente la velocidad media es también constante e igual a v.

tvxx 0

Page 20: cinemática en 1 dimension

Dos vehículos se encuentran en las posiciones mostradas. Determine cuánto tiempo transcurre desde el instante mostrado hasta que el vehículo A alcanza al vehículo B.

A B

100 m

20 m/s 15 m/s

tvxx 0

0

AB

x

t0 = 0

txA 200txB 15100

BA xx

tt 1510020

st 20

Page 21: cinemática en 1 dimension

Dos vehículos se encuentran en las posiciones mostradas. Determine cuánto tiempo transcurre desde el instante mostrado hasta que el vehículo A se encuentra con el vehículo B.

tvxx 0

0 x

t0 = 0

txA 200txB 15100

BA xx

tt 1510020

st 85.2

Page 22: cinemática en 1 dimension

La aceleración media de una partícula es la razón de cambio de la velocidad instantánea, Dv, y el tiempo que tardó en efectuarse ese cambio, Dt.

0ttt

0vvva

En el SI la unidad de medida de la aceleración es el metro sobre segundo sobre segundo (m/s/s = m/s2).

La aceleración media es un vector paralelo al vector v.

La aceleración se define como la tasa de cambio de la velocidad en el tiempo.

La aceleración instantánea es la aceleración que tiene una partícula en un instante específico durante su movimiento.

Page 23: cinemática en 1 dimension

La aceleración de una partícula puede ocurrir de varias maneras:

(a) La magnitud del vector velocidad (la rapidez) cambia con el tiempo, pero no su dirección.

(b) La dirección del vector velocidad cambia con el tiempo, pero su magnitud permanece constante.

(c) Tanto la magnitud como la dirección del vector velocidad cambian con el tiempo.

Page 24: cinemática en 1 dimension

¿Una aceleración negativa necesariamente implica que el objeto en movimiento está desacelerando, o que su rapidez está disminuyendo?

Page 25: cinemática en 1 dimension
Page 26: cinemática en 1 dimension

La aceleración instantánea a permanece constante. Necesariamente

la aceleración media es también constante e igual a a.

tavv 0

221

00 tatvxx

xavv 220

2

Page 27: cinemática en 1 dimension

Es muy conveniente representar gráficamente movimientos con aceleración constante graficando la velocidad instantánea contra el tiempo.

Page 28: cinemática en 1 dimension
Page 29: cinemática en 1 dimension

a

t

v

t

x

t

Una partícula se encuentra en reposo cuando su posición con respecto a un sistema de referencia permanece constante.

Page 30: cinemática en 1 dimension

vtxx

ctev

a

0

0 a

tpartícula en equilibrio

v

t

x

t

Page 31: cinemática en 1 dimension

La velocidad de la partícula en el instante t es igual a la pendiente del gráfico x vs. t en dicho instante.

x

t

1

2

3

v1 > 0

v2 < 0

v3 = 0

Si el gráfico x vs. t es una recta, la velocidad es la misma en todos los puntos.

Page 32: cinemática en 1 dimension

v

t

La aceleración de la partícula en el instante t es igual a la pendiente del gráfico v vs. t en dicho instante.

1

2

3

a1 > 0

a2 < 0

a3 = 0

Si el gráfico v vs. t es una recta, la aceleración es la misma en todos los puntos.

Page 33: cinemática en 1 dimension

El área bajo el gráfico v vs. t es igual al desplazamiento efectuado por la partícula.

v

t

A1

A2

A1 > 0

A2 < 0

entodesplazamiAA 21

21 AA distancia

Page 34: cinemática en 1 dimension

El área bajo el gráfico a vs. t es igual a la variación de la velocidad que ha sufrido la partícula.

a

t

A1

A2

A1 > 0

A2 < 0

Page 35: cinemática en 1 dimension

El movimiento de una partícula en línea recta se representa en el gráfico x vs. t adjunto. Determine la velocidad media y la rapidez media de la partícula durante todo el recorrido.

x (m)

t (s)20

1518

30

-5

-15-18

Dx = 15 m – 18 m = – 3 m

20

3v

v = –0.15 m/s

distancia = 12 m + 48 m + 13 m + 10 m + 30 m = 113 m

20

113s sms /65.5

Page 36: cinemática en 1 dimension

El movimiento de una partícula en línea recta se representa en el gráfico v vs. t adjunto. Determine el desplazamiento de la partícula durante todo el recorrido. ¿Qué distancia recorrió en total?. ¿Cuál fue la aceleración durante los primeros 10 segundos?. Determine la aceleración media de la partícula durante todo el recorrido.

v (m/s)

t (s)10

1520

20

-15

mAs 10022010

mAI 752

)15(10

Dx = 100 m + (-75 m) = 25 m

distancia = 100 m + 75 m = 175 m

2/2010

200sma

2/1020

200sma

Page 37: cinemática en 1 dimension

El movimiento de una partícula en línea recta se representa en el gráfico a vs. t adjunto. Si la partícula empezó su movimiento con una velocidad de – 10 m/s, determine su velocidad a los 10 s.

a (m/s2)

t (s)10

20smv /100

22010

Dv = v10 – v0

v10 = Dv + v0

v10 = 100 m/s + (-10 m/s)

v10 = 90 m/s

Page 38: cinemática en 1 dimension

v = 0 v = 0

CAÍDA LIBRE

Cualquier objeto que cae libremente experimenta una aceleración constante dirigida hacia el centro de la Tierra. Esto es cierto, independientemente del movimiento inicial del objeto.

tgvv 0

221

00 tgtvyy

ygvv 220

2

Page 39: cinemática en 1 dimension

Un objeto es lanzado verticalmente hacia arriba. ¿Cuál es su velocidad y su aceleración al llegar al punto más alto?

Page 40: cinemática en 1 dimension

80 m

v0 = 10 m/s

t = 3.14 s

v = 40.8 m/s

Una piedra es lanzada hacia abajo con una rapidez de 10 m/s desde lo alto de un edificio de 80 m.

221

221

00

t)8.9(t)10(800

gttvyy

t)8.9(10v

gtvv 0

a) ¿Cuánto tiempo tarda en llegar al suelo?

b) ¿Cuál es la velocidad con la que llega al suelo?

Page 41: cinemática en 1 dimension

80 m

v0 = 10 m/s

t = 5.18 s

v = 40.8 m/s

Repetir el problema anterior si la piedra es lanzada hacia arriba con una rapidez de 10 m/s

221

221

00

t)8.9(t10800

gttvyy

t)8.9(10v

gtvv 0

Page 42: cinemática en 1 dimension

Un niño parado en un puente lanza una piedra verticalmente hacia abajo con una velocidad inicial de 14.7 m/s, hacia el río que pasa por abajo. Si la piedra choca con el agua 2.00 s después, ¿a qué altura está el puente sobre el agua?

h

v0 = 14.7 m/s

221

221

00

)2)(8.9()2)(7.14(0

h

gttvyy

h = 49.0 m