instituto superior de profesorado nº4 “Ángel...

134
INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO” PROFESORADO DE MATEMÁTICA CURSO PROPEDÉUTICO Página 1 Reconquista | Santa Fe | Argentina

Upload: vuonghuong

Post on 08-Oct-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 1

Reconquista | Santa Fe | Argentina

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 2

A los ingresantes 2015

del Instituto Superior de Profesorado N°4 “Ángel Cárcano”:

Quienes integramos la Comunidad educativa de éste Instituto, queremos darte una

cálida bienvenida e invitarte a ser parte de nuestra vida institucional, para compartir juntos

expectativas, aprendizajes y proyectos.

Sabemos que iniciarte en el nivel superior, significa para vos un desafío, en tanto te

demandará nuevos niveles de autonomía y responsabilidad. Pero también es un desafío para

nosotros, porque la incorporación de nuevos grupos, siempre demanda una adecuación de la

propuesta formativa que permita atender a sus necesidades e inquietudes.

Es nuestro compromiso –y nuestro deseo- acompañarte en el proceso de transitar los

caminos hacia un pensamiento más crítico, hacia una conciencia de ciudadano activo, y a la

vez a una sólida formación académica que te permita desempeñarte con solvencia y

satisfacción en un futuro profesional y personal pleno.

Para dar inicio a este camino, realizaremos los encuentros propedéuticos que tienen

como finalidad:

* Ayudarte en tu inserción en el nivel.

* Ofrecerte un espacio donde repensar cuestiones en relación con la elección

vocacional.

* Actualizar algunos conocimientos básicos preparatorios para la carrera elegida.

Deseamos que superes con éxito esta primera instancia de formación superior, para lo

cual te animamos a realizar todo el esfuerzo posible que te permita logarlo.

Equipo Directivo I.S.P. N°4 “Ángel Cárcano”

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 3

FORMACION ORIENTADA:

MATERIAL ELABORADO POR LAS PROFESORAS:

AQUINO, ELIZABETH

BIANCHI, NADIA

CERNADAS, VERÓNICA.

COLABORARON LOS PROFESORES:

CARBONEL, MIRIAM.

FONTANA, CLAUDIA.

GREGORET, GRASIELA.

IBARRA, ALEJANDRA.

RAFFIN, PATRICIA.

RIVAS, GRACIELA.

VILLAMAYOR, ROBERTO.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 4

Introducción

En este curso Propedéutico se propone el análisis y estudio de tres módulos:

a) Módulo de la Formación Orientada, donde proponemos recuperar una serie de temas de

Matemática aprendidos en la escuela Media a fin de favorecer una mejor articulación e

inserción con las primeras materias de la carrera.

b) Módulo Orientación Educativa a cargo del Servicio de Orientación Educativa (SOE), donde

pretendemos generar las condiciones para un mejor posicionamiento del estudiante del

Profesorado de Matemática frente al inicio de la carrera.

c) Módulo Mundo Contemporáneo a desarrollarse durante cuatro encuentros durante el 1er

cuatrimestre en días y horarios a confirmar. Este módulo busca entregar al estudiante una

mirada global de los problemas que afectan a nuestro mundo en la actualidad a través de

una revisión de los principales conflictos, problemas y debates que atraviesa la sociedad

contemporánea.

Iniciar estudios terciarios constituye un reto para todos aquellos que cuenten con ésta grata

oportunidad. Por ello este propedéutico está destinado a los aspirantes a ingresar a la carrera de

Profesorado de Matemática y tiene como propósito brindar herramientas para superar las

dificultades propias de la iniciación a estudios superiores y evitar los problemas de deserción en

los primeros años de la carrera; se pretende además, ayudarlos a situarse delante del compromiso

que la docencia implica, como asimismo, conocer el Diseño Curricular correspondiente a la

carrera. Por tanto, constituye una instancia de ambientación, nivelación y bienvenida a la cultura

académica.

Objetivos

Se espera que los aspirantes logren:

Afianzar su decisión profesional.

Resolver problemas utilizando los conocimientos desarrollados en cada unidad didáctica

del cuadernillo de propedéutico.

Utilizar adecuadamente los distintos lenguajes de la matemática.

Afianzar conceptos matemáticos para facilitar la apropiación de nuevos contenidos.

Metodología de estudio

Al momento de la inscripción, el aspirante podrá disponer del presente material de trabajo.

Recomendamos que estudien todos los tópicos que se desarrollan y realicen las actividades

que se proponen, promoviendo la integración permanente entre teoría y práctica.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 5

En marzo, el aspirante deberá asistir a un curso propedéutico, en el que podrá efectuar todas

las consultas que considere necesarias para facilitar su aprendizaje, relacionarse con sus

compañeros y realizar las actividades que proponga el profesor. Asimismo, el docente desarrollará

los contenidos que considere pertinentes y necesarios para que los alumnos se encuentren en

condiciones de rendir el examen correspondiente.

Diseño Curricular:

ESTRUCTURA CURRICULAR

El currículo de la formación docente inicial se construye a partir de los contenidos básicos

comunes establecidos por el Consejo Federal de Cultura y Educación, los cuales organizan los

contenidos en tres campos:

Además, el diseño introduce un Trayecto de Práctica compuesta por Talleres, que atraviesa

los tres campos e integra los enfoques teóricos disciplinares, pedagógicos, psicosociales y

didácticos, en un proceso de reflexión, que va desde las prácticas educativas concretas (áulicas e

institucionales) a las formulaciones teóricas, y de éstas nuevamente a la práctica.

PLAN DE ESTUDIOS

Primer año

ASIGNATURAS HORAS DE CURSADO (semanales)

Pedagogía 4 hs

Teoría del Currículum y Didáctica 5 hs

Psicología Educativa 5 hs

Matemática General 5 hs

Geometría Euclidiana 6 hs

Informática y Programación 4 hs

Espacio de definición Institucional (E.D.I.) 2 hs

Trayecto de Práctica: Taller de Docencia I 3 hs

Segundo año

ASIGNATURAS HORAS DE CURSADO (semanales)

Política e Historia Educativa Argentina 5 hs (primer cuatrimestre)

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 6

Organización y Gestión Institucional 5 hs (segundo cuatrimestre)

Psicología y Cultura del Alumno 5 hs

Álgebra Lineal y Geometría Analítica 6 hs

Cálculo en una variable 6 hs

Matemática Discreta y Teoría de Número 6 hs

Espacio de Definición Institucional (E.D.I.) 3 hs

Trayecto de Práctica: Taller de Docencia II 3 hs

Tercer año

ASIGNATURAS HORAS DE CURSADO (semanales)

Filosofía 3 hs

Tópicos de Geometría 5 hs

Física 5 hs

Estadística y Probabilidad 4 hs

Cálculo en varias variables 6 hs

Didáctica Específica 4 hs

Espacio de Definición Institucional (E.D.I.) 2 hs

Trayecto de Práctica: Taller de Docencia III 3 hs

Cuarto año

ASIGNATURAS HORAS DE CURSADO

(semanales)

Ética Profesional 3 hs

Taller Integrador de resolución de problemas 4 hs

Epistemología e Historia de la Matemática 5 hs

Ecuaciones Diferenciales y Aplicación de las

Matemáticas

6 hs

Espacio curricular Opcional I: Modelos Matemáticos 6 hs

Espacio curricular Opcional I: Investigación Educativa 6 hs

Trayecto de Práctica: Seminario de Integración y

Síntesis

2 hs

Trayecto de Práctica: Taller de Docencia IV 6 hs

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 7

RÉGIMEN DE CORRELATIVIDADES

Es importante que el alumno conozca el régimen de correlatividades que aquí se exhibe y

que lo tenga presente durante el cursado de toda la carrera.

Artículo 60 del reglamento orgánico: Para cursar con carácter de regular las materias en los años

superiores al primero, el alumno deberá tener regularizadas las materias correlativas

correspondientes y aprobadas las correlativas del año anterior al inmediato anterior. (Con carácter

regular se entiende modalidad presencial y semipresencial).

Para Cursar Debe tener Regularizadas Debe tener Aprobadas

Cálculo en una variable - Matemática Básica

- Geometría Euclidiana

Matemática Discreta y Teoría

de Número

- Matemática Básica

- Informática y Programación

Álgebra Lineal y Geometría

Analítica

- Geometría Euclidiana

- Matemática Básica

Tópicos de Geometría - Álgebra Lineal y Geometría

Analítica

- Matemática Discreta y

Teoría de Número

- Matemática Básica

- Geometría Euclidiana

- Informática y Programación

Física - Cálculo en una variable - Matemática Básica

- Geometría Euclidiana

Estadística y Probabilidad - Cálculo en una variable

- Matemática Discreta

- Matemática Básica

- Geometría Euclidiana

- Informática y Programación

Cálculo en varias variables - Álgebra Lineal y Geometría

Analítica

- Cálculo en una variable

- Matemática Básica

- Geometría Euclidiana

Ecuaciones Diferenciales - Física

- Cálculo en varias variables

- Álgebra Lineal y Geometría

Analítica

- Cálculo en una variable

Taller Integrador de

resolución de problemas

- Física

- Cálculo en varias variables

- Estadística y Probabilidad

- Álgebra Lineal y Geometría

Analítica

- Cálculo en una variable

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 8

- Tópicos de Geometría - Matemática Discreta

ECO I y ECO II - Tópicos de Geometría

- Estadística y Probabilidad

-Cálculo en varias variables

- Física

- Álgebra Lineal y Geometría

Analítica

- Cálculo en una variable

- Matemática Discreta

Epistemología e Historia de la

Matemática

- Tópicos de Geometría

-Estadística y Probabilidad

-Cálculo en varias variables

- Física

- Álgebra Lineal y Geometría

Analítica

- Cálculo en una variable

- Matemática Discreta

Política e Historia Educativa

Argentina

- Pedagogía

Organización y Gestión

Institucional

- Pedagogía

Psicología y Cultura del

Alumno

- Psicología Educativa

Didáctica Específica - Pedagogía

- Teoría del Currículum y

Didáctica

Ética Profesional - Filosofía

Para rendir una materia, cualquiera fuese la modalidad de cursado, es condición tener aprobadas las

correlativas detalladas en el cuadro anterior.

Con respecto al Trayecto de Práctica:

La aprobación de cada uno de los talleres que componen este trayecto, es condición para

cursar el siguiente.

Para cursar el Taller de Docencia III es condición tener aprobado el primer año completo, y

regularizadas las materias de cursado regular (presencial y semipresencial) de segundo

año.

Para cursar el Seminario de Integración y síntesis, es condición haber aprobado los talleres

de docencia I, II, y III.

Para cursar el Taller de Docencia IV, es condición tener regularizadas las materias de

cursado regular (presencial y semipresencial) de tercer año, y tener aprobados los

siguientes espacios curriculares: Pedagogía, Teoría del Currículo y didáctica, Psicología

Educativa, Política e Historia Educativa Argentina, Organización y Gestión Institucional,

Psicología y Cultura del Alumno, Didáctica Específica, Espacios curriculares del campo de

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 9

formación orientada de primer y segundo año (materias específicas), Talleres y ECOs de

tercer año.

Para cursado, regularización y acreditación de los respectivos espacios curriculares, los

Institutos Superiores admiten tres categorías de alumnos: a) Libres, b) Regulares con

cursado presencia y c) Regulares con cursad semi – presencial. Para cada una de las

categorías se encuentran determinadas condiciones de regularización, evaluación y

promoción que se detallan en el Anexo I de la cartilla. Se adjunta modalidades de cursado.

MATEMATICA

La matemática, como ciencia, surgió con el fin de resolver cálculos en el comercio, medir la

Tierra y predecir acontecimientos astronómicos. Estas tres necesidades pueden ser relacionadas

en cierta forma a la subdivisión amplia de la matemática en el estudio de la estructura, el espacio y

el cambio.

Las matemáticas egipcias y babilónicas fueron ampliamente desarrolladas por los griegos,

donde se refinaron los métodos (especialmente la introducción del rigor matemático en las

demostraciones) y se ampliaron los contenidos propios de esta ciencia. Muchos textos griegos y

árabes fueron traducidos al latín, lo que llevó a un posterior desarrollo de las matemáticas en la

Edad Media. A los Árabes se les debe la creación del sistema numérico decimal que utilizamos en

la actualidad.

Desde tiempos ancestrales hasta la Edad Media, los progresos de esta ciencia fueron

seguidos por períodos de estancamiento. Pero desde el renacimiento italiano, en el siglo XVI, los

nuevos desarrollos matemáticos, interactuando con descubrimientos científicos contemporáneos,

fueron creciendo exponencialmente hasta el día de hoy.

En la actualidad, la ciencia matemática se caracteriza por el hecho de que prácticamente

todas las ramas del conocimiento humano necesitan utilizar las herramientas de la misma.

La matemática se relaciona no solo con la Física, la Química, la Ingeniería, la Economía,

sino también con otras áreas del conocimiento, tales como la Medicina, la Biología y la Sociología,

y con actividades tan diversas como el deporte y el arte.

Por otra parte, la matemática no solo provee herramientas para resolver problemas, sino

que estos conducen muchas veces a la creación de nuevos conocimientos, que originan a su vez

nuevas teorías.

Estas observaciones permiten comprobar que la Matemática es una ciencia viva, en

continuo crecimiento, y que se relaciona con las demás ciencias a través de un mutuo

enriquecimiento.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 10

Los números Reales y sus propiedades

En matemáticas, los números reales incluyen tanto a los números racionales (como: 31,

37/22, 25,4) como a los números irracionales aquellos que no se pueden expresar de manera

fraccionaria y tienen infinitas cifras decimales no periódicas, tales como: 2, . Números reales

son aquellos que poseen una expresión decimal. Pueden ser descriptos de varias formas,

aparentemente simples, pero estas carecen del rigor necesario para los propósitos formales de

matemáticas.

Durante los siglos XVI y XVII el cálculo avanzó mucho aunque carecía de una base

rigurosa, puesto que en el momento no se consideraba necesario el formalismo de la actualidad,

usando expresiones como «pequeño», «límite», «se acerca» sin una definición precisa. Esto llevó

finalmente a una serie de paradojas y problemas lógicos que hicieron evidente la necesidad de

crear una base rigurosa a la nueva matemática, la cual incluyó definiciones formales y rigurosas

(aunque ciertamente técnicas) del concepto de número real.

El conjunto formado por los números racionales e irracionales es el conjunto de los

números reales, se designa por .

Con los números reales podemos realizar todas las operaciones, excepto la potencia

de base real y exponente real.

OBJETIVOS:

1. Dominar las grafías, la lectura y el concepto abstracto de los números.

2. Utilizar los números como herramienta para calcular, medir e interpretar correctamente

relaciones matemáticas en distintas situaciones, de forma razonada.

3. Aplicar las propiedades del sistema numérico real y sus subconjuntos para la resolución de

cualquier situación problemática que se presente.

La recta real

A todo número real le corresponde un punto de la recta y a todo punto de la recta un

número real.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 11

Representación de los números reales

Los números reales pueden ser representados en la recta con tanta aproximación como

queramos, pero hay casos en los que se los puede representar geométricamente utilizando regla y

compás.

A veces se utilizará un subconjunto, o parte, de los números reales en una descripción. Por

ejemplo:

El conjunto N de los números naturales:

Con los números naturales se cuentan los elementos de un conjunto (número cardinal). O

bien se expresa la posición u orden que ocupa un elemento en un conjunto (ordinal).

El conjunto de los números naturales está formado por:

N= {1, 2, 3, 4, 5, 6, 7, 8, 9,...}

Para tener en cuenta:

La suma y el producto de dos números naturales es otro número natural.

La diferencia de dos números naturales no siempre es un número natural, sólo ocurre cuando el

minuendo es mayor que sustraendo.

5 − 3

3 − 5

El cociente de dos números naturales no siempre es un número natural, sólo ocurre cuando el

dividendo es múltiplo del divisor.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 12

6 : 2

2 : 6

El conjunto Z de los números enteros:

Los números enteros son del tipo:

= {...−5, −4, −3, −2, −1, 0, 1, 2, 3, 4, 5 ...}

Para tener en cuenta:

Permiten expresar: el saldo de cuotas, la temperatura (bajo y sobre cero), velocidades, alturas

(sobre y debajo del nivel del mar), etc.

La suma, la diferencia y el producto de dos números enteros es otro número entero.

El cociente de dos números enteros no siempre es un número entero, sólo ocurre cuando el

dividendo es múltiplo del divisor.

6 : 2

(-10):(+2)

2 : 6

El conjunto Q de los números racionales:

Se llama número racional a todo número que puede representarse como el cociente de dos

enteros, con denominador distinto de cero.

Para tener en cuenta:

Los números decimales (decimal exacto, periódico puro y periódico mixto) son números

racionales; pero los otros números decimales ilimitados no.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 13

La adición, la sustracción y la multiplicación de dos números racionales es otro número

racional.

Representación decimal de números racionales:

Todo número racional admite una representación decimal, que es la que se obtiene al

dividir el numerador con el denominador, por ejemplo 1/2 tiene como expresión decimal

0.5, 3405/25=136.2 y 1/3= 0.33333.......

Esto puede dar lugar a dos tipos de expresiones decimales, las exactas y las periódicas.

Éstas últimas pueden a su vez dividirse en periódicas puras o periódicas mixtas.

Expresión decimal exacta, es aquélla que tiene una cantidad finita de decimales. Por

ejemplo: 0.5, 1.348 ó 367.2982345

Éstas expresiones surgen de números racionales cuyo denominador (en la expresión

irreducible) sólo contiene los factores 2 y 5. Por ejemplo 1349/1000, 40/25, ...

Ejemplo: Transformar de decimal a fracción:

10

77,0

100

17575,1

Expresión decimal periódica es aquélla que tiene infinitas de cifras decimales, pero de

modo que un grupo finito de ellas se repite infinitamente, de forma periódica, por ejemplo

0.333333....., 125.67777777....... ó 3.2567256725672567......

Surgen de fracciones cuyo denominador contiene factores distintos de 2 y 5, por ejemplo,

1/3=0.33333.....

La parte que no se repite se denomina ante - período y la que se repite, período.

Periódica pura es aquélla que no tiene ante - período.

Periódica mixta es aquélla que sí tiene ante - período.

Expresiones decimales periódicas Puras Expresiones decimales periódicas mixtas

El período aparece inmediatamente

después de la coma.

0,2= 0,22222….. =9

2

1,34= 1,343434…= 99

1134 =

99

133

El período no aparece inmediatamente

después de la coma, sino que seguido de

ella hay una parte que no se repite llamada

no periódica.

0,32 = 0,3222222… = 90

232 =

90

30

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 14

1,1253= 1,125353..=9900

11211253=

9900

11131

El conjunto I de los números irracionales:

Son aquellos que no terminan ni se repiten en su forma decimal, no se pueden expresar

como razón o cociente de dos enteros. Ejemplos: 5 , 3 12 , 4

3, etc.

Representación Gráfica:

Hay métodos geométricos que permiten representar algunos números irracionales en la

recta numérica.

Para representar se debe tener en cuenta que, =1,414...,es decir, 1< < 2

Se observa el cuadrado del dibujo, se aplica el teorema de Pitágoras para hallar su

diagonal y se obtiene:

Con la ayuda de un compás se puede representar exactamente en la recta numérica.

Se sabe que es un número irracional, por lo tanto, el punto P de la recta no puede estar

ocupado por ningún otro número irracional.

En esta recta se representa los números irracionales y -

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 15

Otra forma de representar un número Irracional es utilizando otros recursos geométricos.

Por ejemplo: Representación de 7

Sobre la recta numérica se construye una semicircunferencia de centro 3,5 (la mitad de 7)

que pasa por los puntos de abscisas 0 y 7.

0 1 2 3 4 5 6 7

Luego se levanta un segmento perpendicular a la recta numérica, con uno de sus extremos

en el punto de abscisa 1 y el otro en la semicircunsferencia.

3,5

Se traza el segmento OA . Este segmento mide 7

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 16

Conjunto de los números reales:

Propiedades de los números reales:

Si a, b y c son números reales entonces:

Propiedad Operación Definición Que dice Ejemplo

Conmutativa Adición

Multiplicación

a+b = b+a

ab = ba

El orden al sumar o

multiplicar reales no

afecta el resultado.

2+8 = 8+2

5(-3) = ( -3)5

Asociativa Adición

Multiplicación

a+(b+c)=(a+b)+c

a(bc) = (ab)c

Puedes hacer diferentes

asociaciones al sumar o

multiplicar reales y no se

afecta el resultado.

7+(6+1)=(7+6)+1

-2(4x7)= (-2x4)7

Identidad Adición

Multiplicación

a + 0 = a

0 + a = a

a x 1 = a

1 x a = a

Todo real sumado a 0 se

queda igual; el 0 es la

identidad aditiva.

Todo real multiplicado por

1 se queda igual; el 1 es

la identidad multiplicativa.

-11 + 0 = -11

17 x 1 = 17

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 17

Inversos Adición

Multiplicación

a + ( -a) = 0

La suma de opuestos es

cero.

El producto de recíprocos

es 1.

15+ (-15) = 0

Distributiva Suma respecto

a la

Multiplicación

a(b+c) = ab + ac El factor se distribuye a

cada sumando.

2(x+8) =

2(x) + 2(8)

Otras propiedades:

Propiedad de los opuestos Que dice Ejemplo

-( -a ) = a El opuesto del opuesto es el

mismo número.

- ( - 9 ) = 9

(-a)( b)= a (-b)= -(ab) El producto de reales con

signos diferentes es

negativo.

( -15) (2) = 15( - 2) = -

(15 x 2)

= - 30

( - a)( -b) = ab El producto de reales con

signos iguales es positivo.

( -34) ( - 8) = 34 x 8

-1 ( a ) = - a El producto entre un real y -

1 es el opuesto del número

real.

-1 ( 7.6 ) = - 7.6

Propiedades del cero

Propiedad del cero Que dice Ejemplo

a x 0 = 0 Todo real multiplicado por 0 es

0.

16 x 0 = 0

a x b = 0 entonces

a = 0 ó b = 0

Si un producto es 0 entonces al

menos uno de sus factores es

igual a 0.

(a+b)(a-b) = 0 entonces

a + b = 0 ó a – b = 0

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 18

a) Ejemplo: ¿A qué subconjunto de los números reales pertenece cada uno de los siguientes

números?

a) 5 b) 3

2 c) 7 d) -14

Solución

a) 5 es número natural, entero, racional y real.

b) 3

2 es número racional y real.

c) 7 es número irracional y real.

d) -14 es número entero, racional y real.

Ejercicios:

1) Clasificar cada número como miembro de uno o más de los subconjuntos numéricos:

a) -15 b) 72 c) 51 d) 4

3 e)

2

16 f) 0,01 g) 0 h)2π

2) Indicar con una cruz a cuál o cuáles de los siguientes conjuntos pertenece cada número:

-15 0,17 0 16/2

/2

/3 02 - 10

N

Z

Q

I

R

3) Hacer una lista o describir los elementos de los siguientes conjuntos:

a. El conjunto de los números naturales menores que 7.

b. El conjunto de los números enteros mayores que 10.

c. El conjunto de los números enteros comprendidos entre 7 y 13.

d. El conjunto de los números reales comprendidos entre 2 y 8.

e. El conjunto de los números naturales menores que 1.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 19

4) Decir si las siguientes afirmaciones son verdaderas o falsas. Si es falsa presentar un

contraejemplo para justificar la respuesta.

a. El conjunto de los números naturales es cerrado con respecto a la sustracción.

b. El conjunto de los números enteros es cerrado con respecto a la división.

c. El conjunto de los números racionales contiene el inverso aditivo d e cada uno de

sus elementos.

d. El producto de dos números reales es un número real.

e. El cociente de dos números reales cualesquiera es otro número real.

5) Identifica la propiedad:

a. 5 (4 x 1.2) = (5 x 4) 1.2

b. 14 + (-14) = 0

c. 3 (8 + 11) = 3 (8) + 3 (11)

d. ( 5 + 7 ) 9 = 9 (7 + 5)

6) Aplica la propiedad indicada:

a. 5(x + 8); (conmutativa de adición)

b. (3 x 6) 2; (asociativa de multiplicación)

c. (9 + 11) + 0; (identidad aditiva)

d. 12(x + y); (distributiva)

e. 9(6 + 4); (conmutativa de multiplicación)

f. (x + y) + z; (asociativa de adición)

7) ¿Son ciertas las siguientes afirmaciones?

a. Fracciones equivalentes representan el mismo número racional.

b. a/b=c/d, es lo mismo decir ad=bc.

c. La inversa de una fracción mayor que 0 no puede ser menor que 0.

d.

8) Hallar la fracción inversa de la fracción inversa de 3/7.

9) ¿Es irracional la raíz cuadrada de cualquier entero impar?

10) Decidir si es cierto ésta afirmación: a<0 a²>0

11) Marcar en la recta numérica: 4, -4/3, -2,75, 5 , 7 , 2

Exponentes y Radicales

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 20

1) .... xxxxxn

El producto de xxx se abrevia 3x . En general, para un entero positivo n ,

nx es la

abreviatura del producto de n factores, cada uno de los cuales es x . La letra n en nx se

denomina exponente y a x se le llama base. Específicamente, si n es un entero positivo

tenemos:

n factores

2) xxxxx

xn

n

...

11

n factores

OBJETIVOS:

1. Entender y hacer uso correcto de la terminología algebraica.

2. Efectuar correctamente la simplificación expresión de fracciones algebraicas.

3. Simplificar correctamente expresiones radicales dadas aplicando las leyes de los

radicales.

4. Racionalizar denominadores de expresiones algebraicas dadas.

A continuación se presentan las leyes básicas de los exponentes y los radicales:

1) nmnm xxx

2) 10 x si x ≠0

3) n

n

xx

1

4) n

nx

x

1

5) mn

nm

n

m

xx

x

x

1

6) mnnm xx )(

7) nnn yxxy )(

8) n

nn

y

x

y

x

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 21

9)

nn

n

y

y

x

10) nn xx 1

11) n

n

n

xxx

111

1

12) nnn xyyx

13) nn

n

y

x

y

x

14) mnm n xx

15) mnn mnm

xxx

16) xx mm )(

Ejemplos:

a. 148686 xxxx

b. 24333

1 5

5

c. 10

d. 22222

332

332

32

3 1646464)64( aaaaa

e. Racionalización de denominador:

1. 5

52

5

52

5

5

5

2

5

21

21

21

21

2. x

x

x

x

xxxx 3

32

3

3

3

2

3

2

3

2

3

26 5

61

65

61

65

65

61

65

616 566 5

f. Escribir expresiones equivalentes que tengan exponentes positivos:

2

23

2

32

x

zy

z

yx

g. Simplifique:

x

y

x

y

yx

yx 2

23

57

53

72

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 22

h. Simplifique:

3233 33 323 3323 46 yyxyyxyyxyx

Ejercicios:

Simplificar:

1. 23x

2. 23

32 aa

3.

2

42

xy

yx

4.

43

32

yx

yx

5.

712

109

4

12

yx

yx

6.

22

3

2

3

23

b

a

b

a

7.

223

322

yx

yx

8.

62

128

2

8

yx

yx

9.

10

12

3

3

ba

ba

10. 104160

11. 3 3 512

12. 3232

13.

4/14/3

625

256

81

16

14. 35

20

x

x

Ecuaciones y resolución de problemas

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 23

Una proposición como 533 xx es un ejemplo de un ecuación lineal, porque la

variable x sólo aparece elevada a la primera potencia. También se dice que es una ecuación

condicional; es válida para ciertos valores de la variable x , pero no para otros. Por ejemplo es

verdadera cuando 2x , pero es falsa para 1x . Por otro lado, una ecuación como

6323 xx se llama identidad porque es verdadera o válida para todos los números reales

x .

Resolver una ecuación quiere decir determinar los números reales x para los cuales la

ecuación dada es verdadera. A lo que se determina se le llama soluciones o raíces de la

ecuación dada.

OBJETIVOS:

1. Reconocer ecuaciones de primer grado.

2. Resolver ecuaciones de primer grado con una incógnita, usando las propiedades de la

igualdad.

3. Plantear y resolver problemas que se expresen como una ecuación de primer grado con

una incógnita.

Ejemplo: 533 xx el primer paso es eliminar los paréntesis aplicando la propiedad distributiva

593 xx

)9(5)9(93 xx sumar -9 a cada lado de la ecuación

43 xx

)(4)(3 xxxx Sumar - x a cada lado de la ecuación.

42 x

42

1)2(

2

1x multiplicar cada lado por ½

2x

Se demuestra que 2x es la solución comprobándola en la ecuación original. ¿Es cierto que

5)2(323 ? En la solución anterior emplearon las dos propiedades básicas de la igualdad.

Ejercitación:

Propiedad de igualdad en la suma

Para todos los números reales ba, y c , si ba , entonces cbca

Propiedad de igualdad en la multiplicación

Para todos los números reales ba, y c , si ba , entonces bcac

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 24

Resuelva cada una de las siguientes ecuaciones lineales x .

Ejemplo 1) La fórmula que relaciona los grados Fahrenheit y los grados Celsius es CF

9

1605.

Despeje F en términos de C.

Solución: Trate de explicar cada uno de los siguientes pasos.

C

F

9

1605

16095

1

CF

325

9 CF

Se explorará ahora la solución de problemas que se expresan en palabras, al traducir el

enunciado de un problema en español al lenguaje matemático adecuado, y desarrollar una

ecuación que se pueda resolver.

En el problema siguiente, se sugiere reglas importantes para desarrollar la destreza del

razonamiento crítico. Estudie con cuidado la solución, y también las soluciones de los ejemplos

que siguen.

Ejemplo 2) La longitud de un rectángulo es 1 cm menos que el doble de su ancho. El perímetro es

28 centímetros. Determine las dimensiones del rectángulo.

1. Vuelva a leer el problema y trate de imaginar la situación que se describe. Tome nota de

toda la información que se da en el problema.

La longitud es uno menos que el doble del ancho. El perímetro es 28.

CF 91605

16095 CF

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 25

2. Identifique que es lo que se pide contestar. Introduzca una variable adecuada, que

normalmente representa la cantidad que se debe determinar. Cuando sea apropiado, haga

una figura.

Represente el ancho con .

Entonces, representa la longitud.

3. Con la información disponible, forme una ecuación donde intervenga la variable.

El perímetro es la distancia que se recorre alrededor del rectángulo. Esto proporciona la

información necesaria para escribir una ecuación.

281212 wwww

4. Resuelva la ecuación.

281212 wwww

2826 w

306 w

5w

5. Regrese al problema original para ver si la respuesta obtenida tiene sentido. ¿Parece ser

una solución razonable? ¿Quedó contestado lo que preguntaba el problema?

El problema original preguntaba las dos dimensiones. Si el ancho, , es 5 cm, entonces la

longitud, , debe ser 9 cm.

6. Compruebe la solución por sustitución directa de la respuesta en el enunciado original del

problema.

Como comprobación, vemos que la longitud del rectángulo, 9 cm, es 1 cm menos que el

doble del ancho, 5 cm, tal como lo dice el problema. También, el perímetro es 28 cm.

7. Por último, describa la solución en término de las unidades correctas.

Las dimensiones son 5 cm por 9 cm.

Reglas para resolver problemas:

Lea el problema. Haga una lista de la información disponible.

¿Qué es lo que se debe determinar? Introduzca una variable y defina

lo que representa. Trace una figura o use una tabla se es necesario.

Formule una ecuación.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 26

Ejercitación:

Despeje la variable indicada en cada fórmula.

1. Perímetro de un rectángulo 2. Área de un trapecio

1b

w h

l

wlP 22 2b

Despeje l . 212

1bbhA

Despeje h .

3. Área superficial de una caja rectangular 4. Volumen de un cilindro

r

h

w h

l

whlhlwA 222 hrV 2

Resuelva la ecuación.

¿Parece razonable la respuesta? ¿Ha contestado usted

la pregunta que aparece en el problema?

Compruebe su respuesta con la ecuación en el problema original.

Describa la solución del problema.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 27

Despeje h . Despeje h .

5. La fórmula que relaciona los grados Fahrenheit con los grados Celsius es 325

9 CF .

Despeje a C en términos de F . Calcule C si 77F .

6. Despeje b de ba

abc

2.

7. Despeje R de hRhV 33

1 2 .

8. Determine un número tal que dos tercios de él, incrementados en 1 sea igual a 13.

9. Determine las dimensiones de un rectángulo cuyo perímetro es 56 cm, si la longitud es 4

cm mayor que el ancho.

10. Una malla de alambre se colocará alrededor de un terreno rectangular de modo que el área

cercada sea de 800 2m y el largo del terreno sea el doble de su ancho. ¿Cuánto m de

malla se utilizarán?

11. El perímetro de un rectángulo es de 200 m y su largo es tres veces el ancho. Determine las

dimensiones del rectángulo.

Inecuaciones y sus gráficas

Si a y b son números reales se dice que “a es menor que” b y se representa a < b o b > a.

Similarmente, se dice que “a es mayor que b” y se representa a > b cuando b < a. La relación a

b significa que a b ó a = b; y a b significa que a > b ó a = b.

Se observa que un número es positivo si y sólo si es mayor que 0, y negativo si y sólo sí es

menor que 0.

Los axiomas se llaman de orden porque si se considera la relación menor o igual con base

en la definición anterior se obtiene una relación que cumple las condiciones de relación de orden.

Incluso es un orden total.

De manera análoga como se vio después de los primeros seis axiomas, de aquí se pueden

desprender todas las propiedades de las desigualdades y de orden de los números reales. Se

resumen las principales en el siguiente teorema.

OBJETIVOS:

1. Identificar correctamente desigualdades lineales.

2. Encontrar el conjunto solución de una desigualdad de primer grado con una incógnita.

3. Representar el conjunto solución de una desigualdad en la Recta Numérica.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 28

4. Plantear y resolver problemas que se expresen como una desigualdad lineal con una

incógnita.

Propiedades básicas de desigualdades.

Ejemplo 1) Determine el conjunto de soluciones de 1273 xx .

Solución: Aplicar dos veces la propiedad aditiva.

1273 xx

)7(12)7(73 xx

823 xx

)2(82)2(3 xxxx

8x

El conjunto de soluciones consiste de todos los números reales que son menores que, o iguales a

8 , esto es, 8/ xx

Cuando se aplica la propiedad aditiva, se producen desigualdades equivalentes. Esto es, la

nueva desigualdad tiene el mismo conjunto de soluciones que la original. Se verá lo que sucede

cuando se multiplica cada lado de una desigualdad por (o entre) el mismo número (propiedad

multiplicativa).

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 29

Ejemplo 2) Resuelva la desigualdad 10235 x .

Solución: Multiplicar por5

1 cada lado.

)10(5

1235

5

1 x propiedad multiplicativa.

223 x

Sumar -3 a cada lado

)3(2)3(23 x Propiedad aditiva

12 x

Multiplicar por 2

1 a cada lado.

)1(2

1)2(

2

1 x propiedad multiplicativa.

2

1x

El conjunto de soluciones es

2

1/ xx

Intervalos, gráficas y desigualdades.

Sean a y b números reales y a < b, entonces:

Un intervalo abierto se denota por (a, b) y significa bxa , x un número real. Su

representación gráfica es de la forma:

Un intervalo cerrado se denota por [a, b] y significa bxa , x un número real. Su

representación gráfica es de la forma:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 30

Un intervalo semi-abierto o semi-cerrado se denota por (a,b] ó [a,b) y significa a bxa ó

bxa , x un número real. Su representación gráfica es de la forma:

Un intervalo infinitamente positivo se denota por ),( a ó ),[ a y significa ax ó ax ,

x un número real. Su representación gráfica es de la forma:

Un intervalo infinitamente negativo se denota por ),( a ó ],( a y significa ax ó

ax , x un número real. Su representación gráfica es de la forma:

El conjunto de números reales se denota por ),( .

Ejemplo 1

El intervalo abierto ( 2, 7 ) representa el conjunto de todos los números reales entre 2 y 7

PERO 2 y 7 no están incluidos. Este intervalo se puede representar usando la notación de una

desigualdad como 2 < x < 7 y gráficamente como:

Ejemplo 2

El intervalo cerrado [ -1, 3 ] representa el conjunto de todos los números reales entre -1 y 3,

inclusive. Este intervalo se puede representar usando la notación de una desigualdad como

31 x y gráficamente como:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 31

Ejemplo 3

El intervalo infinito ),2[ representa el conjunto de todos los números reales mayores o

iguales a -2. Este intervalo se puede representar usando la notación de una desigualdad como

2x y gráficamente como:

Ejercitación:

Usando la notación de conjunto; escribir los siguientes intervalos que están representados en la

recta real:

Usando la notación de intervalos; escribir los siguientes intervalos que están en lenguaje de conjunto:

1)

2)

3)

4)

5)

6)

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 32

Resolver las siguientes inecuaciones indicadas:

a)

b)

c)

d)

e)

f)

g)

Resuelve los siguientes problemas:

1. Juan gana mensualmente $1300 y tiene un gasto fijo de $400. ¿Entre que valores puede

variar su gasto diario si no quiere excederse cada día de lo que puede gastar?

2. Para obtener una calificación B en álgebra, un estudiante debe pasar un examen con

promedio mínimo de 86%, pero menos que 90%. Si las calificaciones en sus tres primeros

exámenes fueron 85, 86 y 93%, ¿qué calificaciones en su cuarta prueba le garantizarán un

B?

3. Si x satisface 7/4<x<9/4. ¿Cuáles son los valores posibles de y si y=4x-8? (Sugerencia:

aplique las propiedades de suma y multiplicación para desigualdades a la desigualdad

citada, para obtener 4x-8 en la parte central.)

4. Juan tiene menos de $90 para repartidos entre sus dos hijos, Ana y Rodolfo. Si a Rodolfo le

da el doble que a Ana, ¿cuáles son las máximas cantidades que puede recibir cada uno?

5. Durante cierto periodo, la temperatura en grados Celsius (C) varió entre 25 y 30o. ¿Cuál fue

el intervalo en grados Fahrenheit (F) para este periodo si 325

9 CF ?

Factorización de polinomios

Si dos o más expresiones se multiplican entre sí son llamadas factores del producto. Si c=

a.b, entonces ambas, a y b, son factores del producto c. El proceso por el cual una expresión se

escribe como el producto de sus factores es llamado factorización.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 33

OBJETIVOS:

1. Reconocer los casos de factorización: factor común, diferencia de cuadrados, trinomio

cuadrado perfecto, trinomio de segundo grado, factorización por regla de Ruffini.

2. Aplicar los casos de factorización de acuerdo con las características del polinomio.

En toda factorización, buscamos transformar el polinomio en producto de factores primos.

Podemos reconocer algunos casos típicos:

Factor Común

Este caso se emplea para factorizar una expresión en la cual todos los términos tienen

algún factor en común (puede ser un número, una letra, o la combinación de ambos). Ejemplo:

Sacar factor común es el proceso inverso a la propiedad distributiva. Así, la propiedad distributiva

dice: .

Pues bien, si se pide factorizar la expresión , basta aplicar la recìproca de la propiedad

distributiva y decir que .

Cuando soliciten sacar factor común o simplemente factorizar y hay coeficientes con factores

comunes, se saca el máximo común divisor de dichos coeficientes.

Por ejemplo:

Al factorizar la expresión , se tiene:

donde es el máximo común divisor de , y .

Para comprobar si la factorización se ha hecho correctamente, basta efectuar la multiplicación,

aplicando la propiedad distributiva de la parte derecha de la igualdad, y se debe obtener la parte

izquierda de la misma.

Otro ejemplo: factorizar se obtiene

El factor común es . Se debe prestar atención cuando se extrae un término completo de factor

común, porque como sucede en el ejemplo dentro del paréntesis hay que escribir un 1.

Al verificar, queda:

Otro ejemplo:

x2.(x+1) + x.(x+1)2

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 34

Observamos que ambos términos tienen factor común x y (x+1), por lo tanto, la factorización queda:

x2.(x+1) + x.(x+1)2= x.(x+1).(x+x+1) = x(x+1)(2x+1)

Ejercicios resueltos:

1)

Observamos que el factor común es 3, por lo tanto se puede sacar ese factor y se tiene:

)

2) En el polinomio

el factor común es y se tiene :

3) En el polinomio

, sacando factor común se tiene:

Ejercicios para resolver:

Factorizar las siguientes expresiones:

1)

2)

3)

4)

5)

6)

7)

8)

9) 4(a-1)3 + x(a-1)=

Diferencia de cuadrados

Un binomio es una diferencia de cuadrados si los términos que lo componen tienen

diferentes signos y ambos son cuadrados exactos. Se factoriza:

Procedimiento para factorizar:

1) Se extrae la raíz cuadrada de los cuadrados perfectos.

2) Se forma un producto de la suma de las raíces multiplicada por la diferencia de ellas.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 35

Ejercicios resueltos:

1) Factorizar

La raíz cuadrada de: es

La raíz cuadrada de: es

Luego

2) Factorizar ,

Para expresarlo como una diferencia de cuadrados se debe invertir el orden de los sumandos:

La raíz cuadrada de: es

La raíz cuadrada de: es

Luego

3) Factorizar

La raíz cuadrada de: es

La raíz cuadrada de: es

Luego:

4) Factorizar

La raíz cuadrada de: es

La raíz cuadrada de: es

Luego

5) Factorizar

La raíz cuadrada de: es y la raíz cuadrada de es

Luego

6) Factorizar

La raíz cuadrada de

es

La raíz cuadrada de

es

Luego

Ejercicios para resolver:

Factorizar las siguientes diferencias de cuadrado:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 36

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

Algunos conceptos

¿Por qué se llama "Diferencia de Cuadrados"?

Diferencia" se le dice a la resta. Entonces, "Diferencia de Cuadrados" hace referencia a una "Resta

de cuadrados". Más precisamente a una resta de dos cuadrados. Es decir, "dos cuadrados que

están restándose".

¿Cómo me doy cuenta de que puedo aplicar este Caso en un polinomio?

1) El polinomio tiene que tener 2 términos.

2) Los términos tienen que estar restándose. Por ejemplo: . Pero también pueden estar al

revés, por ejemplo: . Ya que es lo mismo que . Es decir que se debe observar que

haya un término positivo y otro negativo, no importa el orden.

3) Los dos términos tienen que ser "cuadrados”. Las posibilidades a la hora de identificar un

"cuadrado":

a. Los números enteros que tienen raíz cuadrada exacta. Por ejemplo: 4, 9, 16, 1, 25, 36, 64, 100,

etc. En particular, recordar que el número 1 es un cuadrado.

b. Las letras elevadas a un exponente par. Por ejemplo: x2, x4, x6, x8, x10, etc.

c. Las fracciones cuyo numerador y denominador son ambos "cuadrados". Por ejemplo: 4/9, 25/64,

1/4, 49/100, etc.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 37

d. Términos que tengan varias letras y todas ellas sean potencias "pares" (exponente = 2, 4, 6, 8,

etc.). O sea, que cada letra sea " un cuadrado" como en el punto b. Por ejemplo: a2b2, x4y2, a6y8,

a10b4c2, x8y12, etc.

e. Términos que tengan un número y una o más letras, siempre que el número tenga raíz exacta y

las letras sean potencias pares (como en los puntos a y b, por ejemplo: 9x2, 100a4b6, 25x8y2,

64a6x12y2, etc. El número puede ser una fracción, y debe ser cuadrado por supuesto (ver punto c)).

Por ejemplo: 1/9 x4, 9/25 y2b8, etc.

¿Por qué ( es igual a ?

es igual a , si aplicamos la Propiedad Distributiva.

Pero los términos y son iguales, porque en la multiplicación se puede cambiar el orden

(Propiedad Conmutativa). Recordar que ab es lo mismo que " por ", es una multiplicación. Si

esos términos son iguales, y tienen el signo opuesto (uno el "más"; el otro, el "menos"), se pueden

cancelar ("tachar"). Porque la suma de dos términos opuestos da cero (Ley de los opuestos), y

sumar "cero" no modifica nada ya que el cero es el elemento neutro de la suma.

Luego de cancelar, queda .

Con un ejemplo donde haya números, quizás se pueda apreciar mejor el tema de los dos términos

opuestos que se cancelan:

Trinomio cuadrado perfecto

Se llama trinomio cuadrado perfecto (TCP) al trinomio tal que dos de sus términos son

cuadrados perfectos y el otro término es el doble producto de las bases de esos cuadrados.

Un trinomio cuadrado perfecto es el desarrollo de un cuadrado de binomio tal que:

Regla para conocer si un trinomio es cuadrado perfecto.

1) Un trinomio ordenado con relación a una letra.

2) Es cuadrado perfecto cuando el primer y tercer término son cuadrados perfectos.

3) El segundo término es el doble producto de sus raíces cuadradas.

Procedimiento para factorizar

1) Se extrae la raíz cuadrada del primer y tercer término; en el ejemplo a y b.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 38

2) Se forma un producto de dos factores binomios con la suma de estas raíces; entonces

(a + b)(a + b).

3) Este producto es la expresión factorizada (a + b)2.

Por ejemplo:

xx 2 39

xx .3.26

Otro ejemplo:

Se eligen convenientemente los signos de las raíces para formar el binomio:

xx 2

; 24 ; xxx 42)..(2)2.(.2

Como se observa, en el trinomio cuadrado perfecto los términos cuadrados son siempre positivos,

en cambio el término del doble producto puede ser negativo; en este caso debe ser negativo uno

de los términos del binomio cuyo cuadrado es el trinomio dado.

Ejercicios resueltos:

1) Factorizar

La raíz cuadrada de: es

La raíz cuadrada de: es

El doble producto de las raíces: es

Luego

2) Factorizar

La raíz cuadrada de: es

La raíz cuadrada de: es

El doble producto de las raíces: es

Luego

3) Factorizar

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 39

La raíz cuadrada de: es

La raíz cuadrada de: es

El doble producto de las raíces: es

Luego

Un trinomio cuadrático general de la forma es un TCP si se cumple que el

discriminante es cero, es decir, que la cantidad es siempre igual a .

Ejercicios para resolver:

Factorizar las siguientes expresiones:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

Trinomio de segundo grado

Para descomponer en factores el trinomio de segundo grado , se iguala

a cero y se resuelve la ecuación de segundo grado. Si las soluciones de la ecuación son y , el

polinomio factorizado será:

Por ejemplo:

Entonces:

Ejercicios para resolver

1)

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 40

2)

3)

4)

5)

6)

7)

8)

9)

Factorizar un polinomio de grado mayor a dos

Factorizar consiste en descomponer un polinomio como producto de otros más simples.

Cuando un polinomio no se puede escribir como producto de otros más simples se dice que es

irreducible.

Para factorizar un polinomio se hallan sus raíces, si es una raíz de , entonces

, así se ha descompuesto como producto de dos polinomios, reiterando el

proceso, ahora con y se sigue hasta encontrar un polinomio irreducible.

Para cualquier polinomio que tenga raíces enteras se puede aplicar la regla de Ruffini:

Decir que un polinomio tiene raíces enteras es encontrar valores enteros de x que al sustituirlos

en el polinomio su valor numérico es cero.

Si un polinomio de, por ejemplo, cuarto grado tiene cuatro raíces

enteras, y se factoriza así:

Pero ¿cómo se obtienen las raíces?. Por la regla de Ruffini.

Ejemplo:

Factorizar

Es un polinomio completo y ordenado en potencias decrecientes de . Se aplica la regla de Ruffini,

probando los divisores del término independiente, en este caso de 12. O sea que se prueba con 1,-

1, 2, -2, 3, -3, 4, -4, 6, -6, 12 y –12

Probemos con 1:

Se copian los coeficientes del polinomio:

1 -4 -1 16 -12

Y se escribe en una segunda línea el número uno

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 41

1 -4 -1 16 -12

1

El primer coeficiente se copia abajo en una tercera línea

1 -4 -1 16 -12

1

1

Se multiplica ese coeficiente, uno (1), por el número que estamos probando, en este caso también

uno (1), o sea uno por uno = uno (1). Este uno se escribe debajo del siguiente coeficiente, o sea

del –4

1 -4 -1 16 -12

1 1

1

Se suma –4+1=-3

1 -4 -1 16 -12

1 1

1 -3

Se multiplica –3 por 1=-3 y se escribe debajo del siguiente coeficiente, -1

1 -4 -1 16 -12

1 1 -3

1 -3

Se suma –3-1=-4 y así sucesivamente

1 -4 -1 16 -12

1 1 -3 -4 12

1 -3 -4 12 0

Como se ve, la última suma es cero. Eso quiere decir que 1 es una raíz del polinomio y que

sirve para factorizarlo. Si el resultado de la suma hubiera sido distinto de cero habría que seguir

realizando el procedimiento con los demás divisores de 12.

Los coeficientes que han quedado en la última fila, son los coeficientes del cociente de

dividir el polinomio P por (x-1), y la última suma es el resto de dicha división. Si se escribe la

relación fundamental de una división entera se obtiene:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 42

Dividendo= Divisor x Cociente + Resto

De hecho se ha factorizado el polinomio, pero al segundo factor de tercer grado hay que intentar

factorizarlo aplicando nuevamente la regla de Ruffini. Empleando sucesivas veces esta regla

queda:

1 -4 -1 16 -12

1 1 -3 -4 12

1 -3 -4 12 0

2 2 -2 -12

1 -1 -6 0

-2 -2 6

1 -3 0

Como las raíces son, 1, 2 y –2 y el último cociente es x-3

La factorización final es:

Si en las sucesivas pruebas no se halla ningún resto cero, quiere decir que el polinomio no puede

factorizarse dentro de los números reales.

Otro Ejemplo:

Factoriza el polinomio

Usar la regla de Ruffini, los números que podrían ser raíces son los divisores de , es decir,

.

El polinomio esta ordenado pero es incompleto (no posee término con ), para factorizar con la

Regla de Ruffini, se debe completar el polinomio reemplazando el término faltante por cero.

Se prueba hasta encontrar un valor cuyo resto es 0. Repetir el proceso con los coeficientes del

polinomio cociente hasta que no se pueda efectuar más el procedimiento debido a que se encontró un

polinomio irreducible.

En el ejemplo, en un momento determinado, no se han encontrado raíces enteras de 2x2 +3, por

lo que ese polinomio es irreducible.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 43

La factorización queda:

EN RESUMEN

Muchas veces se pueden combinar estos cinco métodos. Según como sea el polinomio hay

métodos que se pueden aplicar y otros que no. Se aconseja que se intenten aplicar los cinco

métodos sucesivamente, sobre todo, si se puede sacar factor común se hace en primer lugar, y si

luego en uno de los factores se puede aplicar otro método, se lo hace.

El siguiente cuadro permite comparar los casos de factorización estudiados:

Casos de

factorización

Características del

polinomio

Procedimiento para factorizar

Factor Común En cada término se repite

un número, una letra o

una combinación de

ambos.

- Encontrar el factor común.

- Dividir cada término por el factor común.

- El resultado de la división de cada término

se suma dentro del paréntesis. Ej:

Diferencia de

Cuadrados

Posee dos términos que

son cuadrados perfectos.

Uno de los términos es

negativo y el otro positivo.

Es divisible por la suma y

la diferencia de las bases

- Comprobar que sea una diferencia de

cuadrados.

- Hallar las bases (raíces cuadradas) de los

términos.

- Escribir la factorización como

Trinomio Posee tres términos. Dos - Identificar los términos que son cuadrados

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 44

Cuadrado

Perfecto

términos son cuadrados

perfectos.

El tercer término es el

doble producto de las

bases de los cuadrados

perfectos.

perfectos y hallar sus bases.

- Verficar que el tercer término cumpla la

propiedad.

-Escribir la factorización como cuadrado de

un binomio:

Trinomio de

Segundo Grado

Posee tres términos:

cuadrático ( ), lineal

( ) e independiente ( ).

- Igualar el trinomio a cero:

- Resolver la ecuación de segundo grado:

- Si las soluciones de la ecuación son y

, el polinomio factorizado será:

Regla de Ruffini El grado del polinomio es

mayor a dos.

- Ordenar el polinomio en potencias

decrecientes de .

- Completar el polinomio.

- Hallar los divisores del término

independiente.

- Aplicar la regla de Rufini con los divisores

como en los ejemplos desarrollados.

- Escribir la factorización como, por ej. :

Donde y son raíces del

polinomio.

Ejercicios resueltos:

Factorizar los siguientes polinomios

1)

Se puede aplicar el primer método, o sea sacar factor común

El segundo factor, o sea el paréntesis, es un trinomio de segundo grado y cuadrado perfecto. Se

puede factorizar como TCP:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 45

2)

Primero se extrae factor común:

Al paréntesis puede aplicarse el segundo método (diferencia de cuadrados) obteniendo:

Y aún más, al segundo paréntesis se aplica el segundo método:

El polinomio de segundo grado que queda en el tercer paréntesis no puede factorizarse. Se utiliza

el cuarto método para comprobar que no es factorizable:

que no tiene solución real.

3)

Sólo puede aplicarse el quinto método, o sea Ruffini:

1 -12 41 -30

1 1 -11 30

1 -11 30 0

5 5 -30

1 -6 0

Entonces .

4)

Primero sacar factor común

Igualar a cero el paréntesis y resolver la ecuación de segundo grado:

que origina dos soluciones, -3 y –2, por tanto la factorización completa es:

Ejercicios para resolver:

Factorizar los siguientes polinomios aplicando los casos de factoreo que considere pertinentes:

1)

2)

3)

4)

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 46

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

)2()1( 22 xxx

Función

La matemática como ciencia, en su rama aplicada, se dedica al estudio y resolución de

problemas concretos. Por tal motivo, surge la necesidad de considerar situaciones en las que

magnitudes variables estén relacionadas entre sí, sabiendo que los valores que toma una de ellas

dependen y están ligados a los valores de las demás.

El concepto de función es unificador en la matemática, ya que aparece en todas sus ramas

relacionando variables: entre conjunto de puntos, conjuntos numéricos, sucesos y probabilidades.

Las funciones constituyen una poderosa herramienta para analizar, estudiar y predecir el

comportamiento de fenómenos naturales, sociales, económicos, etc. Representan modelos

matemáticos que responden al problema estudiado y su estudio constituye uno de los sustentos

de la matemática actual.

Las funciones lineales permiten describir procesos de crecimiento y decrecimiento

uniforme. Las funciones cuadráticas son herramientas útiles para estudiar algunos procesos que

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 47

no son lineales ni proporcionales ya que facilitan la modelización de fenómenos que pueden

representarse mediante fórmulas con exponentes naturales de la variable.

Análisis de funciones

OBJETIVOS:

1. Interpretar datos representados gráficamente.

2. Reconocer y describir características globales de las funciones.

3. Tener un sentido crítico ante informaciones gráficas o numéricas sobre los fenómenos

representados.

Sistema de coordenadas rectangulares: está formado por dos rectas numéricas que se

intersecan entre sí formando un ángulo de 90º. Al punto de intersección de ambas rectas se le

asigna el origen del sistema.

Para identificar un punto del plano se utilizan sus coordenadas cartesianas, que se anotan en

forma de par ordenado:

Definición de función:

Muchas de las relaciones involucran a dos variables, de manera tal que el valor de una de ellas

depende del valor de la otra. Por ejemplo; si consideramos la relación entre el área de un círculo y

su radio, expresada por la ecuación A = . r 2; donde el valor de A depende del radio elegido.

Llamamos r a la variable independiente y A a la variable dependiente.

A la relación donde a cada valor de la variable independiente x le corresponde uno y sólo un valor

de la variable dependiente se denomina FUNCIÓN.

El conjunto formado por todos los valores de la variable independiente, se denomina DOMINIO.

El conjunto formado por todos los valores de la variable dependiente se denomina IMAGEN O

RANGO. De esta manera:

“Una función es una correspondencia entre dos conjuntos, el dominio y el rango, tal que, para cada

valor del dominio corresponde exactamente un valor del rango” (pág. 86 Sobel).

es la coordenada de la

abscisa. Representa el desplazamiento

sobre el eje horizontal (eje de las

abscisas) respecto del origen.

es la coordenada de la ordenada.

Indica el desplazamiento sobre el eje

vertical (eje de las ordenadas) respecto

del origen.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 48

Notación de función:

Las funciones se designan con letras minúsculas f, g, h, t, etc. La expresión y = f(x) se lee “f de x”,

significa que la variable y es la imagen de la variable x mediante la función f.

Definición de variable dependiente y variable independiente:

- “Una variable que representa los números de entrada para una función se denomina variable

independiente. Una variable que representa a los números de salida se denomina variable

dependiente, ya que su valor depende del valor de la variable independiente. Decimos que la

variable dependiente es una función de la variable independiente”. (pág. 88 Haeussler)

Una función puede expresarse mediante una gráfica, una tabla de valores o una fórmula.

Prueba de la vertical para identificar funciones:

Si al trazar una recta vertical, ésta corta al gráfico en más de un punto, significa que un valor de

abscisa se relaciona con más de un valor de la ordenada, en este caso, decimos que la relación no

representa una función.

Noción de tablas, fórmulas y gráficos. Dominio. Imagen. Crecimiento. Decrecimiento.

Máximos. Mínimos:

a)

-15

-10

-5

0

5

10

15

-6 -4 -2 0 2 4 6

-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6

y = 2*x+ cos(2*x)

Es una función

y2 – x2 =10

No es una función

-15

-10

-5

0

5

10

15

-6 -4 -2 0 2 4 6

-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6

-15

-10

-5

0

5

10

15

-6 -4 -2 0 2 4 6

-8

-6

-4

-2

0

2

4

6

8

-6 -4 -2 0 2 4 6

y = 2*x+ cos(2*x)

Es una función

y2 – x2 =10

No es una función

Una función puede

estar definida por:

Una tabla de

valores que

muestre la

relación entre

los valores de la

variable.

Un procedimiento de

cálculo, que permita

hallar los valores de la

variable dependiente y,

a partir de los valores

de la variable

independiente x. Este

procedimiento se

resume,

frecuentemente, en una

Un gráfico en un

sistema de

coordenadas

cartesianas, que

permite “ver” cómo

varían x e y. La

información

proveniente de un

conjunto de datos

numéricos

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 49

a) El Dominio de la función es el conjunto de valores que puede tomar la variable

independiente x. Lo simbolizaremos Dom.

b) La Imagen de la función es el correspondiente conjunto de valores que puede tomar la

variable dependiente. Lo simbolizaremos Im.

c) Decimos que una función es creciente si, al aumentar la variable independiente, también

aumenta la variable dependiente. Al observar la gráfica de una función, de izquierda a

derecha, ésta resulta ascendente.

d) Decimos que una función es decreciente si, al aumentar la variable independiente,

disminuye la variable dependiente. Al leer la gráfica de una función, de izquierda a derecha,

ésta es descendente.

e) Los intervalos de crecimiento y decrecimiento de una función determinan máximos y

mínimos. En un determinado valor x, se alcanza un máximo local si su ordenada es mayor

que la de sus puntos próximos, tanto a la derecha como a la izquierda de x.

En x se alcanza un máximo absoluto si su ordenada es la mayor de las ordenadas de todos

los puntos del dominio.

f) En un determinado valor de x se alcanza un mínimo local si su ordenada es menor que la

de sus puntos próximos, tanto a la derecha como a la izquierda de x.

En x se alcanza un mínimo absoluto si su ordenada es la menor de las ordenadas de todos

los puntos del dominio.

En este curso introductorio trabajaremos con funciones cuyos dominios e imágenes son

conjuntos de números reales. Este tipo de funciones se denominan FUNCIONES DE UNA

VARIABLE REAL.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 50

Actividad resuelta:

Desde las 9 de la mañana se registró la longitud de la sombra de un poste vertical y se

confeccionó la siguiente tabla de valores:

Tiempo

9:00

9:30

10:00

10:30

11:00

11:30

12:00

12:30

13:00

14:00

Longitud

de la

sombra

L

21m

19m

15´5m

13m

11m

9m

8m

7m

6m

7m

La hora del día y la longitud de la sombra son magnitudes que están relacionadas. A cada

hora del día le corresponde una única longitud de sombra. Por lo tanto, la longitud de la sombra

es función de la hora del día.

Al representar los pares de valores recogidos en la tabla, en un sistema de ejes de

coordenadas se obtiene la siguiente gráfica:

El dominio de la función son los números reales del intervalo [9; 14], es decir: Dom f: [9; 14]

La imagen de la función corresponde al intervalo [6; 21].

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 51

Como se observa en la gráfica, la longitud de la sombra disminuye o decrece hasta las 13 horas y

comienza a aumentar o crecer a partir de dicha hora. Se dice que la función es decreciente desde

t = 9 hasta t = 13, es decir en el intervalo [9; 13) y creciente a partir de t = 13, en el intervalo

[13;∞).

La mínima longitud de sombra (6 m.) se alcanza a las 13 horas. En ese punto, (13,6), la función

presenta un mínimo.

Actividades para resolver

Actividad 3: Decide razonadamente si las siguientes correspondencias son funciones o no. En las

que sí lo sean, indica cuál representa la variable independiente y cuál la dependiente.

a) A todo número natural se le hace corresponder su siguiente.

b) A todo número natural se le asignan sus divisores.

c) A cada día del año se le asigna la cantidad de nacimientos.

d) A todo número se le asigna su raíz cuadrada.

e) A cada fase de la luna le corresponde la fecha en la que se da dicha fase.

Actividad 4: ¡Cuidado con los medicamentos!... En las instrucciones de un medicamento, que hay

que administrar a un diabético, se establece que la dosis del mismo, expresada en mg, está en

función del peso del paciente según la gráfica:

Actividad 1: a) en una hoja cuadriculada dibuja un sistema de ejes cartesianos y

gráfica los siguientes puntos: A= (-3,0) B= (0,0) C= (-2,2).

b) Responde: ¿Qué figura se forma si unes los puntos con rectas?

Actividad 2:

a) ¿Cuáles de las siguientes gráficas representan funciones? ¿Por qué?

b) De las que representan funciones ¿Cuáles son crecientes? ¿Cuáles son

decreciente

s?

4

2

3

2

2

2

1

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 52

Observa que a una persona de 50 Kg le corresponde una dosis de 20 mg. Diremos que 20 es la

imagen de 50 y escribiremos 50 Kg→20 mg.

a. ¿Cuál es la imagen de 75?, es decir, ¿qué dosis hay que suministrar a una persona de 75Kg?

b. ¿Se puede administrar a bebés?¿Y a personas obesas?

c. ¿Qué peso tenía una persona a la que suministraron 40 mg?

d. ¿Para qué peso la dosis es máxima?

Actividad 5: Después de bañarse en su casa, Ana dibuja un esbozo de la gráfica que muestra lo

que ocurre con el volumen de agua de su baño en función del tiempo transcurrido.

a. Si ambos grifos (caliente y frío) se abrieron al principio, ¿qué puede haber ocurrido en A?

b. Cuando el baño se está vaciando, Ana pone el pie en el agujero del desagüe. ¿Qué parte de la

gráfica muestra esto?

c. ¿Cuándo aumenta el volumen del agua? ¿Cuándo disminuye?

d. ¿Cuándo se alcanza el volumen máximo de agua? ¿Y el mínimo?

Actividad 6: Cristina está enferma y tiene fiebre. Su madre le ha tomado la temperatura cada

hora. La tabla de valores permite realizar la gráfica con cada par de coordenadas de cada punto,

por accidente algunos datos de la tabla fueron borrados... ¿la puedes completar?

Variable x

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 53

(hora) 12 14 18

Variable y

(temperatura)

37 °C

38ºC

38ºC

38ºC

Actividad 7: Se juegan 8 partidos de futbol durante el invierno. La tabla muestra la asistencia de

público a cada partido, observa la gráfica correspondiente y responde:

Aclaración: Decimos que una variable es discreta si sus valores pertenecen al conjunto de los

números enteros positivos incluido el cero.

Responde:

a) Analizar las variables involucradas.

b) Analizar el dominio e imagen.

c) ¿Cuál fue la temperatura máxima que

tuvo Cristina? ¿A qué hora ocurrió?

d) ¿Cuál fue la temperatura mínima que

tuvo Cristina? ¿A qué hora ocurrió?

e) ¿Durante que intervalos de tiempo

aumentó su temperatura? ¿Cómo te

das cuenta?

f) ¿Durante que intervalos de tiempo

disminuyó su temperatura?

Partido 1 2 3 4 5 6 7 8

Asistentes 2800 2000 2600 2300 1500 600 1400 900

a) ¿Cuál es el dominio de la función?

¿Cuál es la imagen?

b) ¿Tiene sentido unir los puntos en la

gráfica? ¿Por qué?

b) ¿Tendría sentido usar el gráfico para

estimar cuánta gente va al partido

número 3 y 1/2?

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 54

Una variable es continua si sus valores pertenecen al conjunto de los números reales.

Actividad 8: La siguiente gráfica nos muestra el nivel de ruido que se produce en un cruce de

grandes avenidas de una ciudad:

Función Lineal

OBJETIVOS:

1. Reconocer la forma simplificada de la ecuación de la recta y sus parámetros.

2. Graficar e interpretar los datos modelizados por una función lineal.

Definiendo a la función lineal:

Una función de la forma y = m.x + b es una función lineal o polinómica de 1º grado; donde m y b

son dos números reales cualesquiera, x es la variable independiente e y la variable dependiente.

El dominio natural de una función lineal es el conjunto de los números Reales y su gráfica es una

recta. Un punto pertenece a la recta de ecuación , si y solo si sus

coordenadas verifican .

En una recta se distingue dos parámetros importantes: uno de dirección (la pendiente: m) y

otro de posición (ordenada al origen: b).

Pendiente de una recta:

Calculemos la variación de la variable dependiente por cada unidad de la variable independiente

en la función lineal f(x) = m.x + b. Para ello, consideramos dos puntos que pertenecen a la recta:

y

.

a) ¿Cuál es el dominio de

la función? ¿Cuál es la

imagen?

b) ¿Cuándo crece el nivel

de ruido? ¿Cuándo

decrece?

c) c) Indica los instantes

de tiempo en los

cuales la intensidad del

ruido es máxima o

mínima.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 55

Calculemos la variación de la variable dependiente por cada unidad de la variable independiente

en la función de primer grado.

Considerando la ecuación y los puntos y que verifican

y , obtenemos la pendiente de la recta:

)

El cociente obtenido es independiente de los puntos que tomamos. Gráficamente, indica la

cantidad de unidades que se desplaza la coordenada (hacia arriba o hacia abajo) por cada

unidad que se desplaza la coordenada a la derecha.

Ordenada al origen: La recta de la ecuación corta al eje en el punto , porque

para resulta , siendo la ordenada al origen.

Gráfica de la función lineal a partir de la ordenada y la pendiente:

Para graficar

, se ubica el punto de coordenadas como indica la ordenada al

origen, y a partir del movimiento de la pendiente se marca otro punto. Luego deben unirse los dos

puntos y, la recta que determinan es la que corresponde a la ecuación:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 56

Análisis del signo de pendiente.

Función creciente Función decreciente Función constante

Actividades resueltas:

1) Deduzca la ecuación de la recta, que pase por el punto dado y tenga la pendiente indicada:

y

La ecuación de la recta tiene la forma , se reemplaza en la misma las coordenadas del

punto y la pendiente.

Luego despejar b para hallar la ordenada al origen:

Por último, reemplazar en , la pendiente y la ordenada al origen , y se obtiene la

ecuación de la recta buscada: .

2) Obtenga la ecuación de la recta a partir de los puntos que le pertenecen; y

.

Reemplazamos las coordenadas de los puntos y en:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 57

Luego al sustituir y las coordenadas de uno de los puntos en , se obtiene la

ordenada al origen:

Considerando las coordenadas de los puntos y tenemos:

.

Así, y la ecuación de la recta es , o sea .

3) El ritmo cardiaco r (en latidos por minuto) de un gato es función lineal de su temperatura

corporal t (expresada en grados Celsius). En condiciones de laboratorio un gato con 37ºC

tiene un ritmo cardíaco de 200 y su ritmo es 150, si la temperatura es de 32ºC.

a) Halle la expresión matemática de la función.

La expresión matemática de la función es la ecuación de la recta. Para encontrarla se

tienen en cuanta los siguientes pasos:

1) Identificar las variables.

Variable independiente: temperatura corporal .

Variable dependiente: ritmo cardiaco .

2) Con los datos que brinda el problema se obtiene información sobre la recta.

En este problema se identifican dos puntos de la recta que modelizan la situación:

“un gato con 37ºC tiene un ritmo cardíaco de 200” y “su ritmo

es 150 si la temperatura es de 32ºC”

3) Con las coordenadas de los puntos se obtiene la pendiente de la recta:

Al reemplazar la pendiente y las coordenadas de un punto en la ecuación de la recta

se obtiene la ordenada al origen:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 58

Por último, se reemplazas y en yse obtiene la expresión matemática de la

función:

b) ¿A qué temperatura corporal su ritmo cardíaco es 100?

Para encontrar a que temperatura corporal del gato su ritmo cardiaco es 100, se utiliza la

expresión hallada en el inciso anterior , y se sustituye y se obtiene la

temperatura :

c) Represente todo gráficamente.

Actividades para resolver

1) Las ballenas azules miden al nacer aproximadamente 2,25 m y pesan 3 toneladas. Estas

ballenas jóvenes son amamantadas durante 7meses y cuando se destetan miden 5 metros

y pesan 23 toneladas.

a) Exprese el peso como función lineal de la edad.

b) Grafique en un sistema de ejes coordenados.

c) ¿Cuál es el aumento diario de peso? (considere un mes equivalente a 30 días).

d) Exprese la longitud como función lineal de la edad. ¿Cuánto aumenta la longitud cada

día?

2) Completa la siguiente tabla.

Gráfica Ordenada al

origen

Pendiente Fórmula

simplificada

¿Crece o

decrece?

r [latidos por minuto]

t [temperatura corporal]

Rta: cuando la

temperatura corporal del

gato es de 27 ºC, su ritmo

cardíaco es de 100 latidos

por minuto.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 59

5

2/3

y= -2/3 x +1

0

1

y= -1/2 x - 2

3) El peso aproximado de la masa muscular del ser humano es función lineal del peso total.

a) Determine la ecuación de la función sabiendo que una persona que pesa 90 Kg. Tiene

aproximadamente 36 Kg. De masa muscular (tener en cuenta que si el peso total es 0

Kg., el de la masa muscular es 0 Kg.).

b) Obtenga el peso aproximado de masa muscular de una persona que pesa 70 Kg.

c) Obtenga el peso de una persona cuya masa muscular es de 45 Kg.

4) Un balde vacío tiene la capacidad de 20 litros y pesa 2 kg. Se vuelca en el mismo un líquido

que pesa 1.5 kg el litro.

a) Utilizando una tabla de valores, grafique e indique cuál es el dominio y la imagen de la

función.

b) Si la gráfica obtenida corresponde a una función de 1º grado, halle la fórmula que

permite calcular el peso total del balde en función de la capacidad del balde.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 60

5) La cantidad de calor h (en joules) que se necesita para convertir 1 gramo de agua en vapor

es función lineal de la temperatura t (en ºC) de la atmósfera.

A 10ºC, esta conversión necesita 2480 joules, y cada aumento de temperatura de 15ºC

disminuye en 40 joules el calor necesario. Obtenga la expresión matemática que describa

esta situación.

6) La altura de niños entre las edades de 6 a 10 años puede modelarse por medio de una

función lineal. La altura de un niño cambia 6 cm por cada año. Si mide 1,30 cm a la edad de

8 años:

a) Graficar la función.

b) ¿Cuál es el dominio? ¿Y la imagen?

c) Determine la función que describa la altura de este niño a la edad de t años.

7) Deduzca la ecuación de la recta, que pase por el punto dado y tenga la pendiente indicada:

a) (3,4); m=2 b) (-2,3); m=

c) (8,0); m=

d) (0,0); m=5 e) (-3,5); m=-2 f) (2,1); m=1

g)

h)

8) En las víboras hembras Lampropeltis polizona, se sabe que la longitud total varía

linealmente respecto de la longitud de la cola. A partir de los siguientes datos

experimentales:

x: longitud de la cola y: longitud total

60 mm 450 mm

140 mm 1050 mm

a) Graficar el segmento de recta que representa la situación.

b) Obtener la ecuación de la recta que representa la longitud total en función de la longitud

de la cola.

c) Si la longitud máxima de la serpiente de esta especie es 1500 mm, ¿cuál es la longitud

máxima de su cola?

9) Los biólogos han descubierto que el número de chirridos que los grillos de cierta especie

emiten por minuto está relacionado con la temperatura. La relación es una función lineal. A

68ºF los grillos chirrían 124 veces por minuto aproximadamente, mientras que a 80ºF, lo

hacen más o menos 172 veces por minuto. Obtenga la función que relaciona el número de

chirridos c por minuto con la temperatura Fahrenheit t.

10) En una experiencia realizada en invernaderos se determinó que el porcentaje de semillas

germinadas depende de la temperatura ambiental. Para una variedad de semillas de

tomates el 40% germina a 12ºC, mientras que a 15ºC germina el 70% de las mismas. Si el

porcentaje de semillas germinadas p es función lineal de la temperatura t.

a) Obtenga la expresión matemática que relaciona p y t.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 61

b) Calcule el porcentaje de germinación a 10ºC.

c) Halle la temperatura necesaria para obtener un 90% de semillas germinadas.

d) Represente todo gráficamente.

11) El crecimiento en gramos por día de un pollito varía con la cantidad de antibiótico a (mg.

/día) que se le da, según una función lineal.

a) Encuentre la ecuación que relacione la tasa de crecimiento r (g./día) con la cantidad de

antibiótico a (mg./día) si un pollito que recibe 5 mg./día de antibiótico tiene un

crecimiento de 50 g./día mientras que uno que recibe 10 mg./día tiene un crecimiento

de 60 g./día.

b) Encuentre la tasa de crecimiento para un pollito que no recibe antibiótico.

12) La longitud de una varilla metálica es de 108,75 cm a 25ºC y de 109,08 cm a 36ºC. si esta

situación se describe adecuadamente por una función lineal, encuentre la ley que define la

longitud de la varilla en función de la temperatura.

13) Teniendo en cuenta los datos que brindan las gráficas hallar la ecuación de la recta dada.

14) Encuentre la ecuación de la recta que pase por los dos puntos dados.

a) (-2,1); (-1,2) c) (0,0); (3,2)

b) (3,2); (5,-1) d) (2,0); (0,2)

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 62

Sistemas de ecuaciones lineales

El álgebra posibilita el trabajo combinado de números y letras favoreciendo así la aparición de

variables, ecuaciones y funciones. Aprender con modelos lineales permite que se analicen y

comparen diferentes fenómenos reales del campo de la física, la economía, las ciencias naturales,

la geometría, entre otros. A partir de dichos fenómenos, es posible determinar valores para los

cuales procesos distintos producen iguales resultados. Estos procesos se representan

matemáticamente a través de ecuaciones que determinan sistemas.

En definitiva, los sistemas de ecuaciones surgen de situaciones problemáticas que es

necesario interpretar y traducir de un lenguaje coloquial a un lenguaje matemático. Se forman al

agrupar dos o más ecuaciones, para las cuales se desea hallar una solución común.

OBJETIVOS:

1. Reconocer las características de un sistema de ecuaciones lineales con dos incógnitas.

2. Identificar tipos de sistemas de ecuaciones lineales según la cantidad de ecuaciones y de

incógnitas.

3. Representar gráficamente la solución del sistema de ecuaciones.

4. Interpretar gráfica y analíticamente la solución del sistema de ecuaciones.

5. Clasificar, a partir de las soluciones, los sistemas de ecuaciones lineales.

6. Utilizar métodos algebraicos para hallar la solución del sistema de ecuaciones.

Sistemas de ecuaciones lineales con dos incógnitas

Se trabajará con sistemas de ecuaciones que poseen dos ecuaciones de primer grado con dos

incógnitas.

Una vez identificado el tipo de sistema se lo debe resolver, eso significa que hay que hallar su

solución encontrando el valor de las incógnitas.

Para ello, existen métodos o procedimientos de resolución.

Ejemplo:

Es un sistema de dos ecuaciones con dos incógnitas porque:

relaciona dos ecuaciones.

cada ecuación posee dos incógnitas que son x e y

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 63

Resolución sistemas de ecuaciones lineales con dos incógnitas

Para resolver un sistema de ecuaciones, se puede utilizar cualquiera de los siguientes

métodos:

Método gráfico.

Método de sustitución.

Método de igualación.

Método de reducción por sumas o restas.

Método de determinantes.

Método gráfico: como su nombre lo indica, consiste en hallar la solución del sistema graficando

cada ecuación en un mismo eje cartesiano. El gráfico del sistema anterior es:

Como se observa en el gráfico, las rectas se cortan en un punto. Ese punto es la solución del

sistema de ecuaciones pero, en matemática, los gráficos sólo sirven para ubicarse, para tener una

imagen de lo que se hace y no proporcionan una respuesta acertada ya que se puede tener

errores al graficarlo.

Por eso, es muy importante acompañar la gráfica del sistema de ecuaciones con la resolución

analítica a fin de hallar la solución correcta del sistema. Para ello, se cuenta con cuatro métodos

que se desarrollan a continuación.

Método de sustitución: consiste en despejar de una de las dos ecuaciones una incógnita y

sustituirla en la otra.

Ejemplo: En una juguetería en donde se venden bicicletas y triciclos se cuentan sesenta ruedas.

Si la cantidad de rodados es 25. ¿Cuántas bicicletas y triciclos hay?

cantidad de bicicletas

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 64

: cantidad de triciclos

El método de resolución consiste en los siguientes pasos:

1) Se elige una ecuación del sistema y se despeja una de las dos incógnitas.

Esta nueva ecuación es equivalente a la anterior.

2) La expresión obtenida en el paso anterior se sustituye por la variable correspondiente en la otra

ecuación.

es el valor de

Queda planteada ahora una nueva ecuación con una sola variable. Se resuelve esta ecuación

y se obtiene el valor de dicha incógnita.

3) Una vez encontrado el valor de , se procede a hallar el valor de para ello se utiliza la

ecuación obtenida en el paso 1 y se reemplaza:

Si las dos rectas se grafican en el sistema de ejes cartesianos, el punto de intersección de las

dos recta corresponde a las coordenadas (15 ; 10) que es la solución del sistema de ecuaciones.

Considerando nuevamente el problema, se concluye que en la bicicletería hay 15 bicicletas y

10 triciclos. Esta es la respuesta al problema planteado.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 65

La solución hallada puede verificarse reemplazando las incógnitas de las dos ecuaciones por

los valores encontrados, obteniéndose las igualdades:

Ejercicios:

1) Resolver los siguientes sistemas de ecuaciones utilizando el método de sustitución. Graficar.

2) Suponga que usted está en un hotel sólo por dos días. Los dos días toma allí su desayuno. El

primer día consume dos medialunas y un sándwich. Al salir paga cuatro pesos. Al día siguiente

consume tres medialunas y dos sándwiches. Al salir, paga siete pesos. ¿Cuánto vale cada

medialuna? ¿Y cada sándwich?

Método de igualación: consiste en despejar de las dos ecuaciones la misma incógnita e

igualarlas.

Ejemplo: El perímetro de un rectángulo es 60 cm. Su longitud es el doble del ancho más tres

centímetros. Calcule las dimensiones del rectángulo.

x: medida de la longitud del rectángulo

y: medida del ancho del rectángulo

Se realiza el esquema de la situación para interpretar los datos del problema:

El método de resolución sigue los siguientes pasos:

1) Despejar de cada una de las ecuaciones que conforman el sistema la misma variable.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 66

2) Se igualan las expresiones obtenidas en el paso 1, lo que permite resolver una ecuación con

una incógnita.

4) Se reemplaza el valor obtenido en el paso 2 en cualquiera de las dos ecuaciones del

primer paso para obtener el valor de la otra incógnita.

El par (21;9) es la solución al sistema de ecuaciones. Además, relacionando la solución con

el problema, se puede decir que la longitud del rectángulo es 21 cm, y el ancho mide 9 cm.

Ejercicios:

1) Resolver los siguientes sistemas de ecuaciones utilizando el método de igualación.

2) En una alcancía hay 32 monedas de $0,25 y $0,05. Si en total hay $5, ¿cuántas monedas de

cada valor hay en la alcancía?

Método de reducción por sumas o restas: consiste en multiplicar una o, si es necesario, las

dos ecuaciones por un número distinto de cero para igualar los coeficientes de una de las

incógnitas y luego, se suman o restan las ecuaciones para eliminar dicha incógnita y poder

despejar la otra.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 67

Ejemplo: La suma entre el doble de un número y el triple de otro es 9, y la diferencia entre el

cuádruple del primero y el segundo es 11. Calcular cuáles son esos números.

primer número

: segundo número

Los pasos a seguir son los siguientes:

1) Reemplazar una de las ecuaciones del sistema por otra equivalente, elegida de modo que los

coeficientes de alguna de las variables, en ambas ecuaciones, resulten iguales en valor

absoluto. Para el ejemplo, se multiplica la primera ecuación por 2. De ello resulta:

2) La ecuación transformada y la otra se suman o restan, según convenga, y se obtiene una sola

ecuación con una sola variable que, despejándola, se obtiene su valor.

Para el sistema que se tiene de ejemplo, se restarán ambas ecuaciones:

4x - y = 11

7 y = 7

3) Para hallar el valor de x se procede de igual manera que los pasos anteriores o bien, se

sustituye el valor de la incógnita encontrado en una de las ecuaciones y se calcula el que falta.

El par (3;1) es solución del sistema de ecuaciones, es decir, que el primer número es 3 y el

segundo 1.

Ejercicios:

1) Resolver los siguientes sistemas de ecuaciones utilizando el método de reducción.

x = 3

y = 1

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 68

2) Dos números cuya diferencia es nueve cumplen además que la suma entre el duplo del primero

y el triple del segundo es veinticuatro. ¿Cuáles son esos números?

Método de determinantes: el concepto de determinante fue introducido para estudiar el número

de soluciones de los sistemas lineales de ecuaciones. Consiste en calcular directamente el valor

de cada incógnita aplicando un algoritmo sencillo utilizando solamente los coeficientes de las

incógnitas ordenados de una manera determinada.

Antes de aplicar el algoritmo, se debe escribir las ecuaciones del sistema en la forma general,

es decir:

Siendo a, b, c, d, e y f números reales.

Posteriormente debe escribirse los determinantes que son arreglos como:

= ad - cb

Entonces, se puede hallar el valor de las incógnitas utilizando las siguientes fórmulas:

Ejemplo: en una función de cine organizada por el club del barrio, se cobró $ 5 la entrada para

adultos y $3 para los menores. Los organizadores saben que recaudaron $ 516 y que asistieron a

la función 140 personas. ¿Cuántos adultos y cuántos menores vieron la película?

= cantidad de personas adultos

= cantidad de personas menores

a b

c d

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 69

Los pasos para resolver el sistema son:

1) Escribir el sistema de ecuaciones en forma general es decir, queda de la misma manera en que

está planteado el ejemplo.

2) Utilizar las fórmulas citadas anteriormente y calcular el valor de cada una de las incógnitas.

La solución del sistema es el par: (48;92)

Respuesta: vieron la película 48 adultos y 92 menores.

Ejercicios:

1) Resolver los siguientes sistemas de ecuaciones utilizando el método de determinantes.

2) Dos de los ángulos de un cuadrilátero miden 70º y 80º, respectivamente. La diferencia entre las

amplitudes de los otros dos es 18º. Hallar la amplitud de cada uno de los ángulos desconocidos.

Nota: recordar que la suma de los ángulos interiores de un cuadrilátero es 360º.

Clasificación de los sistemas de ecuaciones lineales con dos incógnitas

Todo sistema de ecuaciones se puede graficar en un plano cartesiano, y cada ecuación

representa una recta en dicho plano. Los sistemas se clasifican según la cantidad de soluciones

que tengan, esto significa que guardan una estrecha relación con su representación gráfica.

Las soluciones, pueden hallarse de manera algebraica y representarse gráficamente. Las

mismas pueden ser:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 70

Ejemplo 1

La solución del sistema es S ={(4;7)}. Puede entonces concluirse que dicho sistema posee

una solución única ya que las rectas se intersecan en un punto determinado. El sistema es

compatible determinado.

Se puede observar que, si dos rectas se intersecan en un punto, las pendientes de sus

ecuaciones son distintas.

Ejemplo 2:

La solución del sistema es S = {(x;y) є R2 / y = ¼ x – ½ }.

Al despejar de las dos ecuaciones la incógnita y, se observa que se obtiene la misma recta. Si

se las grafica, las mismas coinciden por lo tanto, este sistema tiene:

Infinitas soluciones.

Las rectas son coincidentes.

Entonces el sistema es compatible indeterminado.

Se puede observar que, si dos rectas son coincidentes, la pendiente y la ordenada al origen de

sus ecuaciones son iguales.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 71

Ejemplo 3:

Se observa que la solución algebraica da como

resultado una inconsistencia porque cero no es

igual a cinco negativo. Entonces, la solución del

sistema se escribe: S = { }, que significa conjunto

vacío. Este sistema:

No tiene solución.

Las rectas son paralelas.

Recibe el nombre de sistema incompatible.

Se puede observar que, si dos rectas son paralelas, la pendiente es la misma en cada

ecuación y la ordenada al origen de sus ecuaciones son distintas.

Ejercicios:

1) Resolver los siguientes sistemas de ecuaciones y clasificarlos según su solución.

2) Determine el valor de k para que el sistema sea compatible

indeterminado.

3) Dado el sistema . Analice los valores de k para que sea:

a) compatible determinado

b) compatible indeterminado. Ejemplifique gráficamente cada caso.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 72

Actividades integradoras

1) A cada una de las siguientes oraciones clasificarla como verdadera o falsa. Justificar la

respuesta.

a) Un sistema de ecuaciones posee una e infinitas soluciones a la vez.

b) Un sistema de ecuaciones lineales de 2x2 se grafica en un sistema de ejes cartesianos

tridimensional.

c) Cuando el sistema de ecuaciones es incompatible significa que las rectas que lo forman

no se intersecan en ningún punto.

d) Dos rectas con igual pendiente forman un sistema.

e) La solución de un sistema de ecuaciones lineales se obtiene de manera exacta

aplicando el método gráfico.

f) Al resolver un sistema de ecuaciones lineales con el método de sustitución se obtiene

la solución S1 y, si se resuelve el mismo sistema aplicando el método de reducción se

obtiene la solución S2, considerando que S1 ≠ S2.

2) Dos amigos fueron a visitar una granja en la que había gallinas y conejos. Al salir, uno de ellos

preguntó al otro: - ¿Cuántas gallinas y conejos había? Sabiendo que en total había 72 ojos y

122 patas.

3) Al comenzar los estudios de Bachillerato se les hace un test a los estudiantes con 30

preguntas sobre Matemáticas. Por cada pregunta contestada correctamente se le dan 5 puntos

y por cada respuesta incorrecta o no contestada se le quitan 2 puntos. Un alumno obtuvo en

total 94 puntos. ¿Cuántas preguntas respondió correctamente?

4) En un puesto de verduras se han vendido 2 Kg de naranjas y 5 Kg de patatas por 835 ptas. y 4

Kg de naranjas y 2 Kg de patatas por 1.285 ptas. Calcula el precio de los kilogramos de

naranja y patata.

5) ABC es un triángulo. Las ecuaciones de las rectas que forman sus lados son:

AB: AC: BC:

Hallar las coordenadas de los vértices del triángulo. Graficar.

6) El perímetro de un triángulo isósceles es 18cm. cada uno de los lados iguales es tres unidades

mayor que la base. ¿Cuánto mide cada lado?

7) Si se sabe que las igualdades y , se cumple cuando e

. ¿Qué números son y ?

8) Un rectángulo mide 40 m2 de área y 26 metros de perímetro. Calcula sus dimensiones.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 73

9) El largo de un rectángulo supera al ancho en un 30% y el perímetro es 44 cm. ¿Cuáles son las

dimensiones del rectángulo?

10) Compré un cuaderno y un lápiz por $4. Si dos lápices y dos cuadernos del mismo tipo cuestan

$8, ¿cuál es el precio de cada artículo?

11) Un platero tiene dos aleaciones, una con 35% de plata y otra con 60%. ¿Cuánto de cada una

se debe fundir y combinar para obtener 100 gramos de una aleación que contenga 50% de

plata?

12) Un agricultor mendocino prepara la tierra para sembrar repollo y ajo. Para cada parcela

destinada a repollo emplea 60kg de superfosfato triple y 150kg de urea. Para una parcela

destinada a ajo emplea 100kg de superfosfato triple y 180kg de urea. Este agricultor dispone

de 1000kg de superfosfato triple y 2220kg de urea. ¿Cuántas parcelas de cada plantación

puede preparar para emplear todo el superfosfato triple y la urea?

13) Dos tanques A y B contienen una cierta cantidad de agua y se están llenando a través de

distintas mangueras. El tanque A tiene una cantidad inicial de 400 litros y el caudal de agua

que recibe es de 20 l/s, el tanque B tiene una cantidad inicial de 200 litros y recibe 90 l/s. Hallar

si existe el momento en el cual ambos tanques contienen igual volumen de agua.

14) Completar el siguiente cuadro:

Cantidad de soluciones Tipo de sistema

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 74

Función Cuadrática

OBJETIVOS:

1. Conocer los elementos básicos de una función cuadrática. 2. Identificar los distintos tipos de parábolas.

Actividades de introducción:

1) Si en un cuadrado aumentamos en unidades dos lados paralelos obtenemos un

rectángulo. Calcula el área del rectángulo en función del lado del cuadrado.

2) Una mujer tiene un estanque rectangular de . Quiere hacer un camino

alrededor del estanque como muestra el siguiente dibujo:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 75

a) La anchura del camino ha de ser constante en todo el contorno. Llama a la anchura

constante del camino. ¿Cuál será el área del camino?

b) Calcula los valores de cuando x es y . Escribe los valores en una tabla.

c) Dibuja un par de ejes y dibuja los puntos .

d) Si el área del camino ha de ser de , utiliza la gráfica y averigua el ancho del

camino.

e) ¿Para qué valor de es ?

Una función y=f(x) es una función cuadrática si y solo si f(x) puede escribirse en la forma

cxbxaxf ..)( 2, donde a, b y c son constantes y 0a . La gráfica de una función cuadrática

se denomina parábola.

Ejemplos:

Una función de la forma:

Con y pertenecientes a los reales y , es una función cuadrática. En la ecuación

cuadrática sus términos se llaman:

Si la ecuación tiene todos los términos se dice ecuación completa, si le falta el término lineal y/o

independiente se dice que es incompleta.

Una de las aplicaciones de la función cuadrática, es la altura que alcanza un objeto después

de transcurridos segundos, cuando es lanzado verticalmente hacia arriba con una rapidez inicial

v0:

Término Lineal Término Cuadrático Término Independiente

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 76

Si la velocidad inicial es 10 m/s y la aceleración es , entonces la altura es:

Al graficar esta función dándo algunos valores para t, se obtiene:

La intersección con el eje de las abscisas (eje horizontal) se obtiene reemplazando en la

función:

ó

Interpretando físicamente lo anterior, se afirma que a los y segundos la altura del objeto es

cero, es decir, está en el suelo.

Por otro lado, se puede observar en el gráfico en segundo se encuentra la máxima altura,

y si reemplazamos en la función, se obtiene . Este punto

donde se alcanza el valor máximo de la función se denomina vértice de la parábola.

Analicemos a continuación, las características o elementos del gráfico de una función

cuadrática.

Intersección con el eje X:

Las raíces (o ceros) de la función cuadrática son aquellos valores de para los cuales la

expresión vale , es decir los valores de tales que . Gráficamente corresponden a las

abscisas de los puntos donde la parábola corta al eje X. Se puede ver a continuación que existen

parábolas que cortan al eje X en:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 77

Para poder calcular las raíces de cualquier función cuadrática calculamos , o sea:

Pero para resolver se observa que no podemos aplicar las propiedades de las

ecuaciones, ésta tiene la particularidad de poseer un término de segundo grado, otro de primer

grado y un término constante. Entonces, para resolverla se puede hacer uso de la fórmula

resolvente:

Partimos de la ecuación:

:

02

.2

.

:

0

:

0)(

0

22

2

2

2

2

xdespejando

a

bac

a

bx

a

bxa

cuadradoscompleto

cxa

bxa

comúnfactordeasacamos

cbxax

cbxax

Ningún punto.

Dos raíces complejas.

Dos puntos.

Dos raíces reales distintas.

Un punto.

Una raíz real.

Cálculos Auxiliares:

2

2

22

4

44

4

4

a

acb

a

a

acb

a

ca

b

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 78

a

acbbx

a

acb

a

bx

a

acb

a

bx

a

acb

a

bx

a

ca

ba

a

bx

2

4

2

4

2

4

4

2

4

4

2

4.

2

2

2

2

2

2

22

2

2

2

Al resultado de calcular se lo llama discriminante de la ecuación, esta operación

presenta distintas posibilidades:

Si hay dos soluciones posibles.

Si el resultado de la raíz será 0, con lo cual la ecuación tiene una sola

solución real.

Si la raíz no puede resolverse, con lo cual la ecuación no tendrá

solución real.

Entonces, si la ecuación esta completa ya se sabe como calcular las raíces (con la fórmula):

Por ejemplo, dada la función cuadrática , se hace y se calculan

las raíces utilizando la fórmula resolvente porque resulta una ecuación cuadrática completa:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 79

Si la ecuación es incompleta solo basta despejar la variable x de la ecuación:

Primer caso (falta término independiente): , al factorizar la expresión se tiene

, y las raíces son y .

Por ejemplo, dada la función y = 4x2 - 3x, se iguala a cero: 4x2 - 3x=0, se extrae factor común y

se tiene , una raíz es y la otra .

Segundo caso (falta término lineal): , al despejar de la ecuación se tiene que

las raíces son

y

.

Por ejemplo, dada la función , se iguala a cero: , se despeja y se

tiene , entonces y .

Intersección con el eje Y:

Sea la función cuadrática: , cuando la parábola intercepta al eje Y , y si

se reemplaza este valor en la ecuación, se obtiene:

Por lo tanto la intersección entre la parábola y el eje Y es el punto

Concavidad.

Si , la parábola se abre hacia arriba, se dice que es cóncava hacia arriba:

Si , la parábola se abre hacia abajo, se dice que es cóncava hacia abajo:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 80

Las ramas o brazos de la parábola son cada una de las curvas en que divide a la parábola el eje

de simetría. No tienen ningún tramo recto y se alejan indefinidamente de ambos ejes.

Eje de Simetría: La parábola presenta simetría respecto a una cierta recta vertical. Es decir, si

conocemos las raíces 21 xyx , el eje de simetría pasará por el punto medio entre éstas, o sea

Por ejemplo, dada la ecuación de la parábola , sus raíces son 1 y -3, calculamos el

eje de simetría:

El vértice de la parábola está ubicado sobre la recta de simetría, de modo que su coordenada ,

que notaremos vale:

Conocida la coordenada de un punto, su correspondiente coordenada se calcula

reemplazando el valor de en la expresión de la función.

Si la parábola no tiene raíces el vértice se puede calcular utilizando los coeficientes de la función

de la siguiente manera:

En el vértice se calcula el máximo (o el mínimo) valor de la función de acuerdo a que la parábola

tenga sus ramas para abajo o para arriba.

Si , en la ordenada del vértice se encuentra el mínimo de la función:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 81

Si , en la ordenada del vértice se encuentra el máximo de la función:

Por ejemplo, siguiendo con la ecuación , sabemos que la abscisa del vértice

coincide con el eje de simetría que ya calculamos , para hallar la ordenada del vértice ,

reemplazamos en la ecuación , y obtenemos

.

Influencia de los parámetros en la gráfica de las funciones cuadráticas

Influencia del parámetro a: parábolas del tipo ( , )

Un resultado importante: la forma de una parábola depende única y exclusivamente del coeficiente

a de , es decir, cualquier parábola del tipo tiene la misma forma que la

parábola .

Por ejemplo: La parábola tiene la misma forma que ; encajan

perfectamente una encima de la otra como puedes comprobar si dibujas las dos parábolas.

Las parábolas de ecuación

tienen por vértice el punto .

Cuanto mayor sea a (en valor absoluto), más cerrada será la parábola. Las ramas van hacia arriba si

o hacia abajo si .

Cuando más grande sea , más

cerrada es la parábola.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 82

Al someter la parábola a una traslación de vector , que son las

coordenadas de su vértice, obtenemos la parábola .

Traslación de la gráfica de la función cuadrática

La gráfica de la función cuadrática: ( , y ) es:

Se observa a continuación, cómo es afectada la gráfica cuando se suma o resta una constante a la

variable independiente ( ) o a la variable dependiente ( ).

Influencia del parámetro c:

i. Gráfico de : El gráfico de esta función se traslada una unidad hacia arriba.

ii. Gráfico de : El gráfico de la parábola se traslada una unidad hacia abajo

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 83

Influencia del parámetro b:

iii. Gráfico de : El gráfico de la parábola se traslada una unidad hacia la derecha.

iv. Gráfico de : El gráfico de la parábola se traslada una unidad hacia la izquierda.

Graficar la función:

Solución:

Ejercicios resueltos:

1) Representa gráficamente la función cuadrática:

Resolución:

Primero, se halla el vértice de la parábola

El eje de simetría de la parábola coincide con la abscisa del vértice. Es la recta .

Segundo, se calcula los puntos de corte con el eje X (las raíces). Para esto se iguala la ecuación a

cero, y se utiliza la formula resolvente:

Según lo visto anteriormente, el gráfico

corresponde a una traslación de la gráfica de la parábola , un lugar a la derecha y

dos unidades hacia arriba.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 84

1;3;2

24

2

1216421

xxx

Las raíces son y , y los puntos de corte con el eje X son y .

Tercero, se calcula los puntos de corte con el eje Y, para esto se calcula el valor de cuando

, es decir:

, entonces el punto es

Por último, con los datos obtenidos se realiza la gráfica:

2) Representa gráficamente la función cuadrática:

Resolución:

Primero, se halla el vértice de la parábola

El eje de simetría de la parábola coincide con la abscisa del vértice. Es la recta .

Segundo, se calculan los puntos de corte con el eje X (las raíces). Para esto se iguala

la ecuación a cero y se utiliza la formula resolvente:

Coincide con el vértice:

Tercero, se calculan los puntos de corte con el eje Y, para esto se calcula el valor de cuando

, es decir:

, entonces el punto es (0, 1)

Por último, con los datos obtenidos se realiza la gráfica:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 85

3) Representa gráficamente la función cuadrática:

Resolución:

Primero, se halla el vértice de la parábola

El eje de simetría de la parábola coincide con la abscisa del vértice. Es la recta

.

Segundo, se calculan los puntos de corte con el eje X (las raíces). Para esto se iguala la ecuación

a cero y en la formula resolvente se observa que el discriminante es negativo

, por lo tanto, las raíces de la ecuación son complejas y no hay intersección con el eje

X.

Tercero, se calculan los puntos de corte con el eje Y, para esto se calcula el valor de cuando

, es decir:

, entonces el punto es .

Por último, con los datos obtenidos se realiza la gráfica:

4) Halla la ecuación de la parábola que pasa por los puntos: , y .

Como es un punto de la parábola ha de cumplir su ecuación, es decir:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 86

De la misma manera, ha de cumplir:

Y ha de cumplir:

.

Se obtiene el sistema de tres ecuaciones con tres incógnitas:

Para resolverlo, se puede utilizar este método general:

Cambia el signo a alguna ecuación (por ejemplo a la 2ª) y súmala a las otras dos.

Se obtiene así un sistema 2 x 2: cuyas solucione es , y

Sustituyendo estos valores en cualquier ecuación del sistema inicial, se obtiene .

La parábola buscada es .

Actividades para resolver

1) Halla el vértice, la ecuación del eje de simetría, las raíces, el punto de intersección

con el eje Y, y grafique las siguientes parábolas:

a)

b)

c)

d)

e)

f )

2) Indica, sin dibujarlas, en cuantos puntos cortan al eje de abscisas las siguientes

parábolas:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 87

a)

b)

c)

d)

3) Una función cuadrática tiene una expresión de la forma y pasa

por el punto . Calcular el valor de .

4) Se sabe que la función cuadrática de ecuación pasa por los

puntos , y . Calcula , y .

5) Una parábola tiene su vértice en el punto y pasa por el punto . Halla su

ecuación.

6) Partiendo de la gráfica de la función , representa:

a)

b)

c)

d)

e)

f )

7) Dibuja una parábola y = ax2 + bx + c para cada caso según sea el signo de a, b y c:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 88

8) Determina el signo de los coeficientes de las siguientes parábolas:

Resolución del caso :

porque la parábola tiene sus

ramas hacia abajo.

La coordenada del vértice es

negativa, es de decir

; luego

, o lo que es lo mismo,

.

El único corte con el eje Y es el punto . Observando la gráfica, si prologamos las ramas,

.

Estudia los otros casos.

Problemas resueltos

1) El director de un teatro estima que si cobra $ 30 por localidad, podría contar con 500

espectadores y que cada bajada de $ 1 le supondría 100 personas más.

a) Calcula los ingresos obtenidos en función del número de bajadas del precio.

Observa la tabla:

Pesos descuento

Precio

Nº espectadores

Ingresos

Los ingresos obtenidos son

, siendo el nº de euros de

descuento, en el precio de la entrada.

b) Calcula el número real de descuentos de $ que garanticen un máximo de ingresos.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 89

es una parábola. Su forma es ∩ (por ser ) con lo cual

el máximo beneficio teórico se alcanza en el vértice.

La primera coordenada del vértice es: .

Sería mejor rebajar $ 12,5, en cuyo caso los ingresos serían de $ 30625.

2) La cantidad de un producto agrícola que será demandada a un precio (en pesos) está

dada por

a) ¿A qué precio serán demandados 24 productos?

Para averiguar el precio debemos resolver

Para que sean demandados 24 productos el precio debe ser $4 o bien de $1.

b) ¿Qué cantidad será demandada si el precio es de $ 2,75?

La cantidad demandada será , o sea, .

Si el precio es de $ 2,75 se demandarán aproximadamente 26 productos.

Problemas para resolver

1) Un hortelano posee 50 m de valla para cercar una parcela rectangular de terreno adosada

a un muro. ¿Qué área máxima puede cercar de esta manera?

2) Se lanza un proyectil hacia arriba. La altura alcanzada “y” (en Km) y los kilómetros

recorridos “x” están relacionados por la ecuación . Calcular la máxima altura

alcanzada por el proyectil.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 90

3) Un delfín toma impulso y salta por encima de la superficie del mar siguiendo la ecuación

donde y es la distancia al fondo del mar (en metros) y x el tiempo

empleado en segundos.

a. Calcular cuándo sale a la superficie y cuándo vuelve a sumergirse sabiendo que la profundidad

del lugar es de 20 metros.

b. ¿A qué profundidad inicia el ascenso?

4) En un laboratorio se analizó el aumento promedio del peso de pollitos alimentados con un

alimento que contenía 15% de proteína. La proteína consistió en yemas de huevo y harina de

maíz. Al variar el porcentaje de harina de maíz en la mezcla de proteínas, el grupo de

investigadores estimó que el aumento promedio en peso (en gramos) de un pollito durante un

cierto período fue de

, siendo .

a. Halle el aumento máximo de peso.

b. Calcule que porcentaje de maíz produce dicho aumento máximo.

5) Una empresa estima que meses después de colocar un producto nuevo en el mercado,

millones de hogares lo estarán utilizando.

Surge que

, 0 .

a. Calcule el número máximo de casas en las que se empleará dicho producto.

b. Determine cuantos meses han transcurrido desde la introducción del producto para ese número

máximo de casas.

6) La altura (medida en metros) de una pelota lanzada verticalmente hacia arriba desde el

suelo, esta dada por: donde es el tiempo transcurrido en segundos.

a. ¿De qué tipo de función se trata? ¿Cuál es su representación gráfica?

b. ¿Cuántos segundos han transcurrido cuando la pelota alcanza su altura máxima?

c. ¿Cuál es esa altura? ¿Qué representa esto en la gráfica de la función?

d. ¿Cuántos son los segundos que demora en alcanzar una altura de ?

e. ¿Cuántos segundos han de transcurrir hasta que vuelva a tocar el piso?

f. Represente todo gráficamente.

7) Se sabe que el costo de manufactura en dólares por hacer mochilas en un día esta dado

por .

a. ¿De qué tipo de función se trata? ¿Cuál es su representación gráfica?

b. Representa gráficamente la función costo.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 91

c. ¿Cuál es el costo mínimo y cuántas mochilas se producen al día?

d. ¿Cuesta más hacer 4 mochilas o hacer 7?

e. ¿Cuántas mochilas pueden hacerse por 50 pesos?

8) Si una planta recibe una luz de intensidad , la razón de fotosíntesis medida en unidades

adecuadas, se encontró experimentalmente que esta dada por para .

a. Indique de que tipo de función se trata y represéntela gráficamente.

b. Indique para qué intensidad se da la razón de fotosíntesis máxima.

9) El libro de los records de Guinness informa que los perros pastores alemanes pueden

efectuar saltos verticales de más de 10 pies al escalar muros. Si la distancia en pies, a los

segundos es , determine durante cuántos segundos está el perro a más

de 9 pies del piso.

Sistemas de ecuaciones no lineales

Un sistema de ecuaciones es no lineal, cuando al menos una de sus ecuaciones no

es de pr imer grado .

Ejemplo:

La resolución de estos sistemas se suele hacer por el método de sust i tuc ión , para ello

seguiremos los siguientes pasos:

1º Se despeja una incógnita en una de las ecuaciones, preferentemente en la de primer grado.

2º Se sustituye el valor de la incógnita despejada en la otra ecuación.

3º Se resuelve la ecuación resultante.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 92

4º Cada uno de los valores obtenidos se sustituye en la otra ecuación, se obtienen así los valores

correspondientes de la otra incógnita.

Actividades integradoras

1) Resolver los siguientes sistemas de ecuaciones no lineales

a) b) c)

2) Una librería mayorista ha comprobado que la ganancia en miles de pesos por “x cientos” de

cajas de lápices está dada por la función , la ganancia por “x cientos” de cajas

de cuadernos está dada por

a) Calcular el número de cajas de ambos útiles para que se obtenga la misma ganancia.

b) ¿Cuándo comienza a dar pérdida la venta de lápices?. ¿Y los cuadernos?

c) Graficar la situación.

3) Hallar las edades de dos alumnos sabiendo que la suma de sus edades es 30 años y que su

producto es 224.

4) Se ha vallado una finca de forma rectangular empleándose 4 Hm de alambre. Si la superficie de

la finca es 7500 m2, ¿cuáles son sus dimensiones?

5) Marcar con una cruz la gráfica que corresponde a la representación del sistema.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 93

6) Dadas las ecuaciones de las curvas hallar k Є R, de modo que

las curvas tengan:

a) un punto en común.

b) Dos puntos en común.

c) Ningún punto en común.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 94

BIBLIOGRAFÍA:

Álvarez Cristina y otros. Matemática 9. Editorial Cúspide. España 2004.

Aragón Mariana y otros. Matemática 8. Editorial Estrada. Brasil, 2004.

Barallobres Gustavo y Sassano Mirian. Matemática 4. Editorial Aique. Buenos Aires, 1994.

Berio Adriana y otros. Matemática 1 Activa. Editorial Puerto de Palos. Buenos Aires 2001.

Camuyrano María Beatriz y otros. Matemática I. Editorial Estrada. Buenos Aires 2005.

Carione, Noemí y otros. Matemática 3. Editorial Santillana. Buenos Aires. 1995.

Engler Adriana y otros. Funciones. Editorial Ediciones UNL. Santa Fe, 2008

Etchegoyen Susana N. y otros. Matemática 1. Editorial Kapeluz. Buenos Aires, 2005.

Haeussler, Ernest F. y Paul, Jr. Richard S. Matemática para administración y economía.

Editorial Prentice Hall. México 2003.

Itzcovich, Horacio y otros. Matemática 1 Polimodal. Editorial Tinta Fresca. Buenos Aires.

2007.

Martínez Miguel y Rodríguez Margarita. Matemática. Editorial Mc Graw Hill. Chile, 2004.

Max. Sobel. Norbert Lerner. Algebra. Editorial Prentice Hall. México.

Zapico, Irene y otros. Matemática. Serie Perspectiva. Editorial Santillana. Buenos Aires.

2006

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 95

Anexo I

De las Modalidades de Cursado:

2) Para cursar las materias de la carrera de Profesorado de Tercer Ciclo de Educación

General Básica y de la Educación Polimodal en Matemáticas los Institutos Superiores

admitirán tres categorías de alumnos: a) libres; b) regulares con cursado presencial; c)

regulares con cursado semi – presencial. Para cada una de estas categorías se determinan

las siguientes condiciones de regularización, evaluación y promoción:

2.1) LIBRE: realiza los aprendizajes correspondientes al desarrollo de una materia sin

asistencia a clase. Si bien conserva el derecho de asistir a clases en calidad de oyente, no

realiza trabajos prácticos ni exámenes parciales. La aprobación de la materia

correspondiente será por exámenes ante tribunal, con ajuste a la bibliografía indicada

previamente en el proyecto curricular de la cátedra.

2.2) REGULAR CON CURSADO PRESENCIAL: regulariza el cursado de las materias

mediante el cumplimiento del 75% de asistencia a clases y la aprobación del 70% de los

trabajos prácticos previstos en el proyecto curricular de la cátedra. La aprobación será con

examen final ante tribunal.

2.3) REGULAR CON CURSDO SEMI – PRESENCIAL: regulariza el cursado de las

materias mediante el cumplimiento del 40 % de asistencia y la aprobación del 100% de los

trabajos prácticos previstos en el proyecto curricular de la cátedra. La aprobación será con

examen final ante tribunal.

Fuente: Diseño Curricular del Profesorado de Matemática.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 96

PROFESORADO EN MATEMATICA

Dcto Nº 696/01

Materia Carga

horaria

Modalidad

de cursad Profesor Firma

PRIMER AÑO

1 PEDAGOGIA 4 L-SP- P BIERI, Diana

2 TEORIA DEL CURICULO Y DIDACTICA 5 L-SP- P DEL CASTILLO, Isabel

3 PSICOLOGÌA EDUCATIVA 5 L-SP- P DELLAROSA, Alejandra

4 MATEMÁTICA GENERAL 5 L-SP- P GREGORET, Grasiela (Barga Pedro)

5 GEOMETRÍA EUCLIDIANA 6 L-SP- P IBARRA, Alejandra

6 INFORMÁTICA Y PROGRAMACIÓN 4 SP- P RUFANACHT, Silvina

7 ESP DE DEFINICIÓN INSTITUCIONAL I (Taller de Resolución de Problemas)

2 P GREGORET, Grasiela (Valeria Pereson)

8 TRAY DE PRÁCTICA: TALLER DE DOCENCIA I

3 P IBARRA, Alejandra

SEGUNDO AÑO

1 POL E HISTORIA EDUC ARG (1 C) 5 L-SP-P VESCONI, Mariella

2 ORG GESTION INSTITUC (2 C) 5 L-SP-P VESCONI, Mariella

3 PSICOLOGÍA Y CULTURA DEL ALUMNO 5 SP-P RAMUA, Beatriz

4 ALGEBRA LINEAL Y GEOM ANALÍTICA 6 SP-P VILLAMAYOR, Roberto

5 CALCULO EN UNA VARIABLE 6 SP-P PETROLI, Daniel

6 MAT DISCRETA Y TEORÍA DEL NUMERO 6 SP-P VILLAMAYOR, Roberto

7 ESP DE DEFINICIÓN INSTITUCIONAL II (Taller de Resolución de Problemas)

3 P CARBONEL, Mirian

8 TRAY DE PRÁCTICA: TALLER DOCENCIA II 3 P VICENTÍN, Silvina

TERCER AÑO

1 FILOSOFÍA 3 L-SP-P BIERI, Diana

2 TOPICOS DE GEOMETRÍA 5 SP-P VICENTÍN, Silvina

3 FISICA 5 SP-P PETROLI, Daniel

4 ESTADISTICA Y PROBABILIDAD 4 SP-P FONTANA, Claudia

5 CALCULO EN VARIAS VARIABLES 6 SP-P VILLAMAYOR, Roberto

6 DIDACTICA ESPECÍFICA 4 SP-P RAFFÍN, Patricia

7 ESPACIO DE DEF INSTITUCIONAL III (Taller de Resolución de Problemas)

2 P RIBAS, Graciela

8 TRAY DE PRACTICA: TALLER DOCENCIA III

3 P VICENTÍN, Silvina-DEL CASTILLO, I SCHLATTER , Ivana

CUARTO AÑO

1 ETICA PROFESIONAL 3 L-SP-P VESCONI, Mariella

2 ECUACIONES DIFERENCIALES Y APLICACIONES DE LAS MATEMATICAS

6 L-SP-P RIBAS, Graciela

3 TALLER INTEGRADOR DE RESOLUCION DE PROBLEMAS

4 P GREGORET, Grasiela (Osvaldo Alvarez)

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 97

4 EPISTEMOLOGÍA E HISTORIA DE LAS MATEMÁTICAS

5 SP-P RAFFÍN, Patricia

5 ESPACIO CURRICULAR OPCIONAL 6 P VICENTIN,S(6)-ALBARRACIN (2+1en disp)-MARTINEZ,C (4 hs. inst)

6 TRAY DE PRÁCTICA: SEMINARIO DE INTEGRACION Y SINTESIS

2 SP-P IBARRA, Alejandra-ALBARRACÍN, Graciela

7 TRAY DE PRACTICA: TALLER DE DOCENCIA IV

6 P IBARRA, Alejandra-MORZÁN, Alejandra

Régimen de Promoción Directa

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 98

Respuestas

Los números Reales y sus propiedades.

Página 17:

1- a) Z, Q y R b) N,Z,Q y R c) I y R d) Q y R e) N, Z, Q y R f) Q y R

g) Z, Q y R h) I y R

2-

N X X

Z X X X X

Q X X X X X X

I X

R X X X X X X X

3- a)

b)

c)

d)

e)

4- a) Falso. Ejemplo: y no es un número natural.

b) Falso. Ejemplo: y no es un número entero.

c) Verdadero.

d) Verdadero.

e) Falso. La división por cero no está definida en ningún conjunto numérico.

5- a) Propiedad asociativa. b) Propiedad inverso aditivo.

c) Propiedad distributiva. d) Propiedad conmutativa de la adición y de la multiplicación.

6- a) b)

c) d)

e) f)

7- a) Verdadera. b) Verdadera. c) Verdadera.

8-

9- Falso. .

10- Verdadera. Por la tercera propiedad de los opuestos.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 99

Exponentes y Radicales.

Página 20:

1)

2) 3) 4)

5)

6)

7) 8)

9)

10)

11) 12) 13)

14)

Ecuaciones y resolución de problemas.

Página 22

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)

12) 13) 14) 15) 16) 17) 18)

Página 25

1)

2)

3)

4)

5)

6)

7)

8) 9) 10) 11)

Inecuaciones y sus gráficas.

Página 30:

1) 2) 3)

4) 5) 6)

1) 2) 3)

4) 5) 6)

a) b)

c) d)

e) f) g) h)

i) j)

k)

l)

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 100

ll)

Página 31:

1. 2. 3. 4. Ana puede

recibir como máximo $30 y Rodolfo $60.

5.

Sistemas de ecuaciones lineales.

Página 64:

1) a) b)

c)

2) Cada medialuna costó $1 y cada sándwich costó $2.

Página 65:

1) a)

b) c)

2) En la alcancía hay 17 monedas de $0,25 y 15 monedas de $0,05.

Página 67:

1) a)

b) c)

2) Los números son

.

Página 68:

1) a)

b) c) , el sistema es incompatible.

2) La amplitud de cada uno de los ángulos interiores desconocidos del cuadrilátero son 144° y

96°.

Página 70:

1) a) Compatible indeterminado. b) Incompatible. c) Compatible determinado.

2)

3) a) b)

Página 71:

1)

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 101

a) Falso, porque un sistema de ecuación puede tener una, ninguna o infinitas soluciones, y

estas categorías son mutuamente excluyentes, esto significa que se cumple solo una

de ellas.

b) Falso, porque un sistema de ecuaciones 2x2 posee dos ecuaciones con dos incógnitas,

esto último significa se graficaran dos variables por lo tanto la gráfica se hará en un

sistema de ejes cartesianos bidimensional.

c) Verdadero, si el sistema de ecuaciones resulta incompatible, las rectas de las

ecuaciones son paralelas.

d) Verdadero, ese sistema puede ser incompatible o compatible determinado.

e) Falso, las soluciones exactas están garantizadas solo si se resuelve el sistema por un

método analítico.

f) Falso, la solución de un sistema de ecuación es única, y por lo tanto al aplicar distintos

métodos analíticos de resolución se debe obtener el mismo resultado.

2) En la granja había 25 conejos y 11 gallinas.

3) El alumno respondió correctamente 22 preguntas.

4) El kilogramo de naranja vale 297,1875 ptas. y el Kilogramo de patatas vale 48,125 ptas.

5) , ,

6) Los lados iguales del triángulo isósceles miden 7 cm. y la base mide 4 cm.

7)

8) Las dimensiones del rectángulo son 5 metros de ancho y 8 metros de largo.

9) Las dimensiones del rectángulo son 220/23 cm. de ancho y 286/23 cm. de largo.

10) Existen infinitas soluciones.

11) El platero debe fundir 40 gramos de la primera aleación y 60 gramos de la segunda para

obtener 100 gramos de una aleación que contenga 50% de plata.

12) El agricultor puede preparar para sembrar 10 hectáreas de repollo y 4 hectáreas de ajo

para emplear todo el superfosfato triple y la urea.

13) Aproximadamente a los 2,857 segundos ambos tanques contienen igual volumen de agua,

y este volumen es de 457,14 litros de agua.

14)

Cantidad de soluciones Tipo de sistema

Cero Incompatible

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 102

Una Compatible Determinado

Infinitas Compatible Indeterminado

Función Cuadrática.

Página 85:

1)

a)

b)

c)

d)

e)

f)

2)

a) b) c) d)

3)

4)

5)

8) Caso 2: . Caso 3:

Página 88:

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 103

1) El área máxima que puede cercar el hortelano es 312,5 m2.

2) La altura máxima alcanzada por el proyectil es de 4 Km.

3)

a) Según la ecuación que modeliza la trayectoria del delfín, este sale a la superficie a los 2

segundos y se sumerge a los 4 segundos.

b) A los 8 metros de profundidad el delfín inicia el ascenso.

4)

a) El aumento de peso máximo fue de 70 gramos.

b) El porcentaje de maíz que produce dicho aumento máximo es el 50%.

5)

a) 40 millones es el número máximo de casas en las que se emplearan el

producto.

b) Transcurrieron 6 meses desde la introducción del producto hasta obtener el número

máximo de casas.

6)

a) Es una ecuación cuadrática, cuya representación gráfica es una parábola.

b) Han transcurrido 5,5 segundos, cuando la pelota alcanza su altura máxima.

c) La altura máxima alcanzada por la pelota es de 151,25 metros, y representa el vértice

de la parábola que es el punto máximo de la función.

d) La pelota alcanza la altura de 50 metros en dos momentos distintos: 1 segundo y 10

segundos.

e) Para que la pelota vuelva a tocar el piso deben trascurrir 11 segundos.

7)

a) Se trata de una función cuadrática cuya representación gráfica es una parábola.

c) El costo mínimo es de 14 dólares al producir 6 mochilas por día.

d) Hacer 4 mochilas cuesta 18 dólares y hacer 7 cuesta 15 dólares.

e) Por $50 pueden hacerse 12 mochilas.

8)

a) Se trata de una función cuadrática.

b) Para una intensidad de luz 3, se da la razón de fotosíntesis máxima.

9) El perro está durante ½ segundo a más de 9 pies del piso.

Sistemas de ecuaciones no lineales.

Página 92:

1)

a) (3,7) y (-1,-1)

b) (4,3) y (-4,-3)

c) (0,35;-1,28) y (5,65;9,32)

2)

a) El número de cajas de ambos útiles para que se obtenga la misma ganancia es de 100

o 400 cajas.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 104

b) Cuando se producen más de 800 cajas de lápices comienza a dar pérdida la venta de

lápices, y cuando se producen menos de 200 cajas de cuadernos da pérdida la venta

de cuadernos.

3) Las edades son 14 y 16 años.

4) Las dimensiones del rectángulo son 50 metros de ancho por 150 metros de largo.

5) La última gráfica es la representación del sistema.

6)

a)

b)

c)

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 105

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 106

Módulo Elaborado por el SERVICIO DE ORIENTACIÓN EDUCATIVA

2015

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 107

CARTA DE PRESENTACIÓN

“Pero había convertido la pasión en arma y se entregaba a la investigación

con la tenacidad, la continuidad y la profundidad que se deriva de la pasión”.

S. Freud

Iniciar el cursado de una carrera, requiere aprender un oficio: el oficio de estudiar, como

también requiere de la entrega y el deseo de conocer y aprender sobre lo que se eligió y los enigmas que se

le plantean a cada uno respecto de eso por conocer. Es al mismo tiempo iniciar una nueva etapa en la vida,

seguramente con ilusiones, proyectos y visión de futuro, es también en algunos casos, el afianzarse como

sujetos separados del grupo familiar, con todo lo que eso implica en independencia y en adquisición de un

lugar propio, que se da en el pasaje de la adolescencia a la adultez. Y lo doloroso y al mismo tiempo

desafiante que esto puede ser. En el caso del estudiante adulto, es, probablemente tomarse el tiempo de

llevar a cabo algo que tal vez en otro momento no se pudo concretar. El camino por recorrer no está libre de

obstáculos y constituye un verdadero desafío superarlos.

Un estudiante de nivel superior es un profesional del estudio y del aprendizaje permanente.

Pensar con claridad, argumentar, organizar ideas es importante pero, un estudiante superior debe además:

intercambiar ideas, integrar grupos de trabajo, aceptar opiniones, juzgar críticamente situaciones,

comprometerse, leer e interpretar a diferentes autores de una manera crítica que permita posicionarse con

fundamentos. Todo esto no se logra pasivamente, sino a través de una participación activa en el estudio, en

la vida académica de la institución, que comienza ya desde el ingreso a una carrera.

Este Módulo contiene textos y actividades que te ayudarán a desarrollar el oficio de estudiar

que, desde ahora, ocupará un espacio central en tu vida. Fue desarrollada por las profesionales del Servicio

de Orientación Educativa (S.O.E.).

Confiamos en que te resulte de utilidad .En tu casa, y como actividades previas al inicio de los

encuentros, es importante que completes únicamente las actividades no presenciales, antes de iniciar el

Curso Propedéutico 2015. Las presenciales las trabajaremos en el transcurso del propedéutico.

Teresa Mitchell, Maria Laura Chapero y Claudia Rufanacht, te damos la bienvenida al Instituto

y apostamos, a que esta nueva experiencia educativa: libertad, creatividad, esfuerzos, solidaridad, emoción,

amistad, no solo sean palabras, sino reales oportunidades de empezar a ser como quisiéramos ser.

Reconquista, diciembre de 2014-

EL SERVICIO DE ORIENTACIÓN EDUCATIVA (SOE)

te ofrece

Orientación Vocacional y Educacional

para aclarar dudas y afianzar tu decisión, formas de estudio, dificultades en exámenes, exposiciones orales, conflictos

que afecten tus aprendizajes o con compañeros

Lunes, Martes y Miércoles de 17:00 a 19:00 hs.

Viernes de 17 a 18hs.

En planta alta frente a sección alumnos.

Prof. Cs. Educac. M Laura Chapero

Psicopedagoga Teresa Mitchell

Psicóloga Claudia Rufanacht

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 108

ESTUDIAR EN EL NIVEL SUPERIOR

¿Alumnos o Estudiantes?

Nos gustaría compartir con ustedes esta diferenciación que a simple vista parecería ser lo

mismo: La palabra alumno viene directamente de “alumnus” que es un niño o un criado, persona

criada por otra. Estudiante, en cambio, es una palabra poco usual que conlleva otras significaciones:

viene del verbo Studio que significa dedicarse, trabajar con empeño en, buscar con afán, desear,

aspirar…es decir que el estudiante es el que desea, busca, trabaja con empeño.

El acto de aprender de un alumno siempre supone que haya otro que enseña; la enseñanza y el

aprendizaje se dan en un campo que se crea entre profesor y alumno,

El sujeto (alumno) es influido por el Otro (profesor), en la búsqueda de un saber más elaborado, es

así que junto con el deseo de saber está la relación transferencial con el otro (algún profesor en

especial).Por lo antes dicho, generalmente, hay mas facilidad para aprender una materia cuando

gusta el profesor.

Freud afirma que ésta transferencia puede impulsar al alumno, aumentando su deseo de saber o

bloquearlo e inhibirlo.

Es así que el profesor, transmite conocimientos, pero, también, y sobre todo, su propio deseo

de saber anclado en sus búsquedas, sus preguntas, sus críticas, análisis, conflictos, sobre los temas

planteados, y en esto, el alumno queda, convocado, impulsado a realizar su propia búsqueda, sus

preguntas, sus análisis, su acto de aprender

Creemos que el aula debe recuperar a los estudiantes y para eso debe reemplazar la lógica de la

transmisión por la lógica de la investigación y del estudio.

Estudiar es un proceso complejo que compromete a toda la persona a fin de alcanzar objetivos

de aprendizaje mediante el empleo racional de todas sus habilidades y procesos guiados por el

propio deseo de saber.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 109

En muchas Instituciones de Educación Superior se está trabajando en lo que se llama la

“alfabetización académica” Esta propuesta parte del supuesto que leer y escribir en el nivel

superior de la educación requiere competencias específicas. Más aún, que cada campo disciplinar

tiene particularidades, códigos, estructuras que deben ser aprendidas por los estudiantes en contacto

con los expertos en ese campo. Es por eso, que en el módulo I, específico para tu carrera, podrás

encontrar trabajos que te ayudarán a ingresar a ese mundo particular que será tu especialidad.

La actividad mental del alumno juega un papel mediador en la construcción del

conocimiento en el contexto escolar. El conocimiento construido por el alumnado no es pura

repetición o reproducción del elaborado disciplinar, sino que es una reconstrucción de forma

personal, un uso y elaboración específicos según las características de cada alumna o alumno, los

esquemas de conocimiento de que dispone, el contexto social, las experiencias educativas

anteriores, las vivencias personales, los hábitos adquiridos, las actitudes frente al aprendizaje. (...)

Si bien ésta parece una tarea cognitiva individual – las interpretaciones son personales,

diferentes de una a otra persona -, las construcciones y reconstrucciones se llevan a cabo por

influencia de los demás, con ojos, prismáticos o gafas prestadas o, lo que es lo mismo, con

perspectivas, ideas, teorías y formas de ver que nos proporcionan los demás, los expertos o las

personas que ejercen influencia sobre nosotros. La pretensión de la escuela es, precisamente,

ejercer este tipo de influencia para acercar el conocimiento elaborado por el alumnado al

conocimiento científico.

Jorba, Jaume et al, editores (2000), “Hablar y escribir para aprender. Uso de la lengua en situación de

enseñanza-aprendizaje desde las áreas curriculares” España, Editorial Síntesis, pág. 19.

Nos interesa compartir las principales dificultades y fortalezas detectadas en los estudiantes

de primer año de las distintas carreras que se cursan en el Instituto.

Conviene explicitar lo antes dicho para que ustedes, estudiantes ingresantes al nivel

educativo superior, cuenten con esta información propia de la institución a la que comienzan a

asistir, para realizar comparaciones entre lo que vivenciaron sus compañeros del año anterior y las

situaciones que ustedes viven o proyectan vivir. De éste modo pueden estar advertidos o tener más

herramientas para sortear más fácilmente sus propios obstáculos en la carrera, apoyándose también

en los servicios de acompañamiento y contención que brinda el profesorado (Profesores

Orientadores, SOE).

Las DIFICULTADES más significativas son:

Temor a no aprobar el propedéutico

No tener tiempo disponible ya que algunos tienen que conciliar trabajo-estudio

Falta de organización en el tiempo de estudio

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 110

Dificultades para interpretar un texto y elaborar conclusiones personales.

Poca motivación para encarar el estudio en algunas asignaturas.

No hay constancia ni perseverancia en los emprendimientos exigidos por los estudios.

Temor a las exposiciones orales

Dificultades para el trabajo grupal coordinado adecuadamente y con participación activa de

todos los integrantes.

Entre las FORTALEZAS podemos mencionar:

Buenos vínculos con profesores

Trabajo grupal que favorece un grupo de clase contenedor.

Creación de lazos de compañerismo y amistad entre los alumnos.

Pertenencia y participación en la institución.

Accesibilidad al estudio por la gratuidad del Instituto.

Mayores posibilidades de acceder a distintas becas.

ACTIVIDAD 1 PRESENCIAL:

Del listado de dificultades y fortalezas detectadas en los estudiantes del Instituto del Profesorado N°

4, ¿reconoces algunas que podría presentarse en tu caso? ¿Cuáles? ¿Identificas otras que no estén

enunciadas? ¿Cuáles?

Te proponemos la lectura de los párrafos recuadrado anteriormente del libro “Hablar y escribir

para aprender” de Jaume Jorba para que expreses el contenido con tus propias palabras.

¿Cómo estudiar en el nivel superior?

Seguramente te estarás preguntando cómo estudiar en ésta nueva etapa, ya que al comenzar el

nivel terciario éste exige a la mayoría de los estudiantes mejorar las propias estrategias referidas a la

organización del tiempo, la habilidad para tomar notas, la búsqueda y selección de la información,

mejorar la atención y concentración.

Si bien el mejor modo de empezar a estudiar es diseñar tu propia estrategia de estudio

conociéndote y aprendiendo a lo largo de la carrera, el servicio de orientación educativa te

sugiere:

1. Lee el material asignado por el docente de cátedra antes de ir a clase.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 111

2. Cuando leas, haz una lista de preguntas sobre ese material y luego respóndelas. Anota tus

dudas y consúltalas.

3. Busca las palabras que desconozcas y escribe las definiciones en tus apuntes o arma un

glosario con ellas.

4. Trata de asistir a clases, toma apuntes.

5. En clase pregunta cuando no entiendes.

6. Familiarízate con los recursos disponibles en biblioteca o internet que puedan ser útiles.

7. La planificación en el estudio supone determinar

La totalidad de los materiales que debo estudiar: antes de comenzar tengo que reunir todo el

material que necesito: programa de la materia, libros, apuntes personales, fotocopias de la

cátedra, etc.

La organización y distribución del tiempo: utiliza un calendario donde registrar todas tus

actividades de horario regular, fechas asignadas para los trabajos prácticos, parciales, finales.

Incluye tiempo para actividades sociales, deportivas, descanso, otros. Es importante

establecer un horario fijo para el estudio para lograr un hábito, conviene descansar 10

minutos después de una hora de estudio la mente rendirá mejor.

El lugar de estudio: lo ideal es estudiar en un lugar ordenado, con buena luz, y disponiendo

de un asiento y mesa con todos los elementos necesarios. La concentración aumenta si se

estudia en un lugar preparado para tal fin.

El compañero de estudios: si te resulta útil estudiar con otro, debes acordar con él la

planificación del estudio. Decidir juntos tiempos destinados al mismo, lugar y las fases del

estudio que llevarán a cabo juntos, y por separado.

Algunas preguntas orientativas

Te sugerimos algunas preguntas orientativas para que puedas conocerte en tus fortalezas y

debilidades en esta tarea de Estudiante.

Sólo tienes que contestar a lo que haces habitualmente, para sacar tus propias conclusiones

reflexionando sobre tus aspectos positivos y los que tienes que superar, la respuesta correcta son los

sí. Contesta SÍ o NO

Estrategias Motivacionales:

Siento agrado hacia las materias que estudio.

SÍ NO

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 112

Cuando me pongo a estudiar suelo concentrarme en el estudio.

Cuando tengo preocupaciones o problemas que me impiden estudiar,

suelo intentar relacionarlos con ideas agradables que me ayuden a

estudiar.

Suelo plantearme la utilidad de lo que voy a estudiar ¿Qué importancia

tiene? ¿Para qué me sirve? ¿qué utilidad tiene?

Cuando no tengo ganas de estudiar, para animarme, suelo comenzar por

lo más fácil o atractivo.

Suelo cambiar de actividad para mantener el interés por lo que estudio.

Estrategias Cognitivas:

Cuando voy a estudiar intento hacerme preguntas sobre lo que voy a leer.

Para recordar lo que estudio suelo hacer como una guía, divido el tema en

partes.

Suelo extraer las ideas más importantes del tema que estudio.

Cuando estudio un tema procuro ampliarlo, consultando en otros libros o

medios.

Cuando estudio un tema, suelo analizar lo que dice, poniéndome en un papel

crítico y evaluador.

Cuando estudio, relaciono el tema con otros que ya sé, buscando semejanzas

o diferencias.

Estrategias Metacognitivas

Antes de ponerme a estudiar, suelo considerar qué actividades o tiempo

me supone el estudio.

Acostumbro a dividir el estudio o trabajo por partes para que me resulte

más fácil.

Suelo ser previsor, calculando el tiempo del que dispongo para

distribuirlo de forma realista.

Cuando termino de estudiar tengo la costumbre de hacer una revisión de

todo para ver si tengo algunos puntos débiles.

Los apuntes

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 113

Tomar apuntes, nos sirve para recordar todo aquello que leemos o escuchamos en clases. Requiere

como todas las técnicas mucha práctica y un entrenamiento.

Es necesario estar muy concentrado en clases para saber escribir en nuestros apuntes sólo lo básico

de todo aquello que está diciendo el profesor, además nos ayuda a prestar más atención.

Todas las clases, requieren de algunas anotaciones de los puntos fundamentales que en ellas se

han tratado. Los apuntes deben estar muy bien estructurados, de tal manera que una simple ojeada

pueda captar la unidad y la totalidad de lo que en ellos se expone. Esto, de ninguna manera, significa

estudiar de los apuntes. Sólo cumplen la función de organizador, guía de los aspectos relevantes de

la materia, etc. Para estudiar contás con la bibliografía.

Más Sugerencias:

- Captar la lógica de todo lo que es está exponiendo.

- Comparar todo lo que escuchamos con los conocimientos previos que sobre la materia

tenemos.

- Buscarle una utilidad personal a todas esas explicaciones.

- Anotar las ideas principales, las secundarias y los ejemplos que nos facilitarán la

comprensión posterior.

- El propósito de tomar apuntes no es transcribir una clase o copiar un texto, sino hacer una

versión lo más abreviada posible, utilizando frases telegráficas y abreviaturas.

- Ordena con fechas o enumerando los apuntes de cada materia.

- Algunas abreviaturas que podemos utilizar Igual = Más + Menos - Por x

Que q Porque xq Mayor > Menor < Siglo S Mujer M Hombre H

Mente ( se utiliza para todos los adverbios que terminan en mente, ej: fácil_ )

ORGANIZACIÓN DEL TIEMPO DE ESTUDIO

La organización del propio tiempo es una de las responsabilidades propias de la educación

superior que no siempre se ha ejercitado previamente.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 114

Una buena distribución del tiempo disponible, tanto para el cursado y el estudio de las distintas

materias, como para llevar a cabo otras actividades (trabajo, deportes, recreación, etc.) puede hacer

posible un régimen de vida equilibrada, en el que cada actividad ocupe el tiempo necesario.

El tiempo previsible para distintas tareas está en estrecha relación con:

Características personales (relacionadas con el estudio como por ejemplo capacidad

de concentración, velocidad de lectura, tiempo de aprendizaje, modalidad de

atención, etc.)

Cantidad y tipo de obligaciones contraídas (trabajo, deportes, actividades sociales o

políticas, etc.).

Conocer las posibilidades de rendimiento personal en relación a las actividades y obligaciones

contraídas, es un punto de partida necesario para reflexionar sobre este tema y tomar

determinaciones sobre el uso del propio tiempo.

Para esto te puede resultar útil realizar el siguiente ejercicio:

Anotar durante una semana, cómo se ha utilizado el tiempo al finalizar cada día. Para

dimensionar realmente qué lugar ocupa el tiempo de estudio, se recomienda anotar

que se ha estudiado solamente cuando se lo ha hecho “en serio” y no “soñando

despierto” o interrumpiendo por distintos motivos.

Al finalizar la semana, sumar las horas destinadas a cada actividad.

Es posible que te sorprenda ver la cantidad de tiempo no aprovechado.

Elaborar un horario personal (que puede ser diario, semanal o mensual) donde se distribuyen

todas las actividades, puede ser muy útil sobre todo en la etapa de organización de la vida de

estudiante superior.

Preparar el horario, llevar la agenda con los compromisos, fechas de entrega de trabajos

prácticos, exámenes parciales y finales, distribuir en un cronograma el tiempo de preparación de

cada materia son actividades personales que contribuyen a la autorregulación del estudio.

Al organizarlos es importante ser:

Exigente, para aprovechar el tiempo al máximo, sin dejar tiempos “muertos” entre

actividades, proponiendo un uso racional de las horas del día.

Realista, para no proponerse más de lo que resulta humanamente posible,

considerando las necesidades de descanso, alimentación, distracción, tiempo para ver

amigos, etc.

Sólo de esa manera será posible mantener el ritmo de trabajo durante todo el año. La

importancia de mantener un ritmo de trabajo y estudio homogéneo durante todo el año reside en que

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 115

es el único camino para preparar las materias durante el año, y no dejarlas libradas a lo que se pueda

hacer a último momento.

El alumno que llega a la época de examen con la materia ya preparada, sólo necesitará

repasar para fijar contenidos e integrar lo aprendido.

ACTIVIDAD 2 PRESENCIAL:

Organiza, tentativamente tu futuro horario semanal, previendo el tiempo de asistencia a clases,

el tiempo de actividades habituales y el tiempo que dedicarás al estudio

MIEDO A LOS EXÁMENES…

Es importante que a la hora de rendir los exámenes te organices con los tiempos y fechas

establecidas por el Calendario Académico de modo tal que las materias que elijas rendir no se

superpongan y tengan cada una el tiempo necesario para su preparación.

En situaciones de exámenes el hecho de que tengas miedo o ansiedad, trastornos digestivos,

en la alimentación, en el sueño, etc. está dentro de lo que a cualquier persona le pasa en vivencias

similares.

El desafío de enfrentarte a un examen pone en juego tu autoestima, por lo cual requiere de la

mayor concentración que puedas disponer para ese momento. Por lo tanto, cierto grado de tensión es

positivo ya que sirve para mantener activas las facultades intelectuales, físicas y emocionales,

además de mejorar el rendimiento.

El problema es cuando la tensión se convierte en ansiedad abrumadora y la persona se deja

aplastar por la presencia de algo que lo controla y que no puede reducir.

Un círculo vicioso se establece, la persona se predispone a tener miedo al examen,

concentrándose en el miedo, perdiendo sus facultades intelectuales para enfrentar la prueba que le

espera.

Ante el miedo: o se pelea o se huye. La tendencia que la mayoría de las personas muestran es

la de tratar de inhibir la ansiedad, diciéndose "no la siento" y "no me importa", lo que prácticamente

la aumenta. La maniobra más efectiva es la opuesta, decirse que SÍ, QUE UNO SE SIENTE

ANSIOSO, y que A PESAR DE ELLO, rendirá, que desea de todos modos sentir la ansiedad que el

examen le acarrea. Ver el problema, y hacer algo con él. También puede favorecer compartir con

otros lo que le pasa En caso de que esta dificultad persista, que sea muy significativa y te “anule” no

dejes de consultar a tu Docente Orientador o al Servicio de Orientación Educativa para realizar un

trabajo más pertinente.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 116

¿Qué hacer en el momento del examen?

Lo más importante es no permitir que la ansiedad, por evitarla, se intensifique. Hay que

sentirla y aún esforzarse a hacerlo. Eso la elimina.

Es bueno leer en forma pausada las preguntas e instrucciones proporcionadas y para

responder conviene empezar por las cuestiones menos complicadas, para lograr la sensación de que

"SE PUEDE" con eso. No hay que caer en la trampa de apresurarse si hay compañeros que terminan

antes la prueba. Entonces no hay que evitar la ansiedad ya que ésta va a disminuir a medida que se

respondas las preguntas y/o consignas.

Si bien algunas ideas generales te pueden servir, cada situación es singular, por lo que, si es

necesario, podes mantener entrevistas con el equipo SOE para trabajar específicamente lo que a vos

te pasa.

“Cada uno es siempre responsable de lo que ha hecho de el, aún si no puede hacer mas que asumir esa responsabilidad, creo que un hombre puede siempre hacer algo de lo que se ha hecho de el. Esta es la definición que yo daría hoy de libertad, ese pequeño movimiento que hace de un ser social, totalmente condicionado, una persona que no restituye la totalidad de lo que ha recibido de su condicionamiento, cuando hace de Genet un poeta cuando había sido rigurosamente condicionado para ser un ladrón”

Jean Paul Sartre

UN ESPACIO PARA RE-PENSAR LA ELECCIÓN VOCACIONAL

“Antaño, bajo lo cómico de sus memorables aventuras, Félix el gato era representado a

así… el corre a toda velocidad. De repente se da cuenta y los espectadores junto, con él, que le

falta el suelo: hace un instante dejó el borde del acantilado que recorría. Hasta el momento en que

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 117

se da cuenta, entonces cae al vacío…la caída solo es el aspecto secundario de una constatación: la

desaparición del suelo por el que creíamos caminar y pensar…”

Michel de Certau “Historia del Psicoanálisis”

Bauman nos advierte que estar en las encrucijadas es un modo de existir en la sociedad

humana. Y afirma: “el futuro difiere del pasado precisamente en que deja amplio espacio para la

elección y la acción humanas. Sin elección no hay futuro, incluso cuando lo que se elige es no

elegir, y se opta por ir a la deriva. Sin acción tampoco hay futuro, aún cuando la acción siga las

pautas habituales y no admita la posibilidad de ser diferente de lo que es. Es por esa razón que el

futuro es siempre un “no todavía” incierto

Y de final abierto”.

Elegir una carrera, elegir estudiar o trabajar, es un decisión que se impone a algunos, cuando

están terminando la secundaria y están transitando el pasaje de la adolescencia a la adultez. Con lo

difícil que eso es, ya que es el momento en que debe producirse una operación necesaria y dolorosa

al mismo tiempo que implica el desasirse de la autoridad de los padres, separarse de ellos para poder

formar la propia identidad, el proyecto de vida propio.

Esto trae dudas, conflictos, miedos y riesgos, los propios de elegir, jugarse por algo, decidir y

hacerse cargo de eso que se decide.

En otros casos, son personas adultas las que por diferentes motivos, (postergaciones, otras

decisiones previas, etc.) deciden abocarse a estudiar.

Todos con el desafío de lo nuevo y apostando al futuro.

Poder elegir, no en función de lo que los padres esperan, o lo que el otro quiere de mi, esto

que a veces se dice “estudio tal cosa porque mi mamá dice que es lindo o que voy a tener trabajo”,

sino en función de lo que yo quiero y decido, de lo que me gusta, de lo que considero posible para

mi, implica una separación, una diferenciación del otro, que conlleva una caída. Operación tan

dolorosa como necesaria, que posibilita hacer propia una elección y afrontar sus consecuencias.

Sigmund Freud plantea en el texto “El malestar en la cultura” (1929), que “…la actividad

profesional brinda una satisfacción particular cuando ha sido elegida libremente…”. Esta idea de

libertad esta en relación, por un lado, a la satisfacción que produce el realizar una actividad

(estudio o trabajo), en la que confluyen “utilidad y ganancia de placer”. Pero, por otro lado, no se

puede pensar que la libertad en la elección es total y absoluta porque siempre está determinada por

distintos aspectos (historia familiar, cuestiones económicas, momento socio-político, intereses y

deseos de la persona, etc.), que coaccionan al sujeto a elegir en una dirección u otra, hay una

coacción que exige una resolución, pero que no orienta unívocamente la dirección, hay que optar y

responsabilizarse de eso.

Juan Ritvo plantea que “elegir es un salto a lo indeterminado”.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 118

Para sostener la dimensión de éste salto, para que puedas darte el espacio para reflexionar y

pensar ¿Qué es esto de ser docente? ¿Es estudiar docencia lo que elijo?. Tiempo del no todavía, que

planteábamos al comienzo, del final abierto de tu futuro, estamos como SOE, y está también la

orientación de los docentes orientadores, para trabajar junto con vos, sobre las preguntas que se te

arman en tu apuesta al futuro.

ACTIVIDAD 3: NO PRESENCIAL

Para ayudarte a pensar cómo tus experiencias y aprendizajes fueron construyendo tu historia y

aportando elementos para la elección, te proponemos que narres cómo decidiste tu carrera. Extensión

aproximada dos páginas.

Si jugamos a que te ubiques como el gato Félix, ¿cuáles te parece que son las cuestiones que

constituían el piso de tus pensamientos y sentimientos y qué se modifican en este momento de tu vida?

¿Cómo o con qué construirías el nuevo piso con el cuál sostenerte?

Selecciona del siguiente texto de Fernando Gasalla, Los jóvenes entre la oferta y la carrera

con(tra) uno mismo, 5 ideas que te parecieron relevantes para compartir con tus compañeros.

Los jóvenes entre la oferta y la carrera con(tra) uno mismo.

Fernando Gasalla, Licenciado en Psicología. Encargado del Departamento de Orientación Vocacional y Apoyo Pedagógico de la Universidad Nacional de General Sarmiento (UNGS).

Parece mentira que en la sociedad del consumo y los consumidores haya personas a las que

les cueste tanto optar o decidir. Pero el primer problema para el estudiante radica allí. No se trata de

ser un consumidor, sino de darse espacio como persona para elegir dentro de un proceso en el que se

desarrolla la propia identidad.

Nunca como antes la oferta académica en el Nivel Terciario y Universitario fue tan

apabullante y variada. A su vez, gran cantidad de casas de estudios, públicas y privadas, muestran

un abanico de posibilidades que van desde las carreras tradicionales (léase Abogacía, Medicina,

Arquitectura, Ingeniería, Filosofía, –sepan disculpar las omisiones-) a carreras “nuevas” o poco

conocidas (algunas muy rentables), que surgen por necesidad del campo de la producción y servicios

cada vez más tecnologizado, específico y, paradójicamente, complejo.

En contraposición, los jóvenes, porque de ellos hablo y no tanto de las carreras, tienen la

sensación de que hoy más que nunca la sociedad dejó de ser ese terreno confiable y maleable donde

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 119

echar raíces y crecer, teniendo que elegir, pero en lo mucho y variado suelen ver poco y escaso. Se

les suman las incertidumbres propias de la edad, la baja autoestima y la pobre estimulación del

contexto en general. Como se escuchaba decir en el Mayo del 68’, los jóvenes lo quieren todo y lo

quieren ya, pero no saben qué es lo que quieren ni cómo lograrlo; aunque, a diferencia de aquella

generación, las actuales se nos presentan mucho menos comprometidas e ilustradas.

En primer lugar, todo joven que deba tomar decisiones conviene que sepa “parar la pelota” y

ordenar los jugadores antes de salir a la cancha, esto es, planificar y organizar la búsqueda de

carrera: no es cuestión de correr ansiosamente para cualquier lado.

Elegir carrera implica reflexión y tratar de pensar, no sólo sentir la crisis y la angustia propias del

cambio de etapa; para esto uno necesita un cierto tiempo y tranquilidad. No hay test que pueda dar

una respuesta rápida, no hay consejo que sirva como palabra mágica y además nadie se ha muerto

por tener que elegir una carrera, aunque esto sea importante y se enmarque en un proyecto de vida a

mediano plazo: No sirve el dramatismo.

Más allá del acierto en la elección, las Universidades o Terciarios y Tecnicaturas todos los años

abren sus puertas y esto hace que se puede cambiar o volver a elegir si es necesario: la decisión o

elección de carrera no es un compromiso para siempre o del que no haya retorno.

Una vez más tranquilos y confiando un poco en la propia capacidad (al fin y al cabo no es tan

“fácil” terminar el Secundario o el Polimodal por más devaluados que estén), es importante

averiguar e informarse, más allá de la charla con amigos o de las pocas carreras o roles de

trabajo/profesión que se conozcan. Una aproximación la dan las guías de carreras, cada vez más

completas, claras y de fácil acceso.

A su vez, las Universidades tienen páginas WEB que en una primera instancia se pueden consultar o

asistir a charlas de presentación de carreras que se realizan en las mismas. Es muy valioso pisar los

lugares y conocer las instituciones en concreto, nada mejor para poder elegir que la experiencia

directa y el analizar las impresiones que surgen.

Los colegios suelen tener talleres, gabinetes o profesores preocupados donde el joven puede

preguntar y encontrar algunas referencias de mucha utilidad. El padre del miedo es el

desconocimiento y, la información, como primera etapa, es muy importante. Cada estudiante tiene

una experiencia de estudio y aprendizaje, más o menos lograda y es bueno que recurra a la misma.

En general uno reconoce habilidades o cualidades que posee (nosotros las llamamos competencias,

es decir ser competentes en algo) lo que permite circunscribir la elección de lo general a un campo

de profesiones bastante definido hasta jerarquizar opciones. Así hay algunos a los que les gustan los

números a otros las letras o la administración o construir, etc. De allí también conviene partir al

averiguar carreras específicas.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 120

Si las dudas son muchas se pueden consultar asesores u orientadores, incluso las

Universidades suelen tener sus departamentos para eso. Es importante que el joven reflexione sobre

qué presiones pueden entorpecerle la posibilidad de una decisión personal. Por ejemplo: presiones

familiares, modelos de profesión que pueden marcar su historia personal, condición social y

preconceptos. En esta línea de trabajo se inscribe la conflictiva relación con el mercado laboral. Los

jóvenes se encuentran de golpe con el mundo adulto de la producción y se instala la premura de

conseguir ingresos y autovalerse ya que no es posible, por lo menos para los más, el depender por

largo tiempo de la economía familiar y el apoyo económico de los padres.

Habría dos formas de pensar la decisión: una principista y otra usando cierta forma de

pragmatismo, es decir, por un lado qué quiero, me haría feliz o me realizaría y, por el otro, qué

debería o me permitiría subsistir o autovalerme. Estas dos posibilidades no tienen por qué ser

excluyentes, aunque muchos jóvenes suelen pensar que lo son y que no se pueden llegar a

compatibilizar. El estudiar una carrera es un proyecto de mediano plazo (puede llevar de dos a diez

años y requiere, ante todo, constancia). El futuro estudiante, cuando sabe esto se descorazona y suele

pensar que así nunca va a tener el tan ansiado trabajo que en su vida práctica necesita. Sin embargo

esto es erróneo, primero porque nada le impide al estudiante encarar una búsqueda laboral; se le

puede atrasar la carrera, eso sí, pero la carrera no le impide hacer un currículum e intentar su

inserción social en el mercado. Ser estudiante es una razón social de valor al momento de la

búsqueda laboral. Incluso por edad, para los puestos a los que puede postularse, tener el título le

haría sobre cualificar, por lo que ser estudiante deja al joven en una buena posición para trabajos

intermedios en grados de responsabilidad, cualificación y remuneración (aunque conseguir trabajo

hoy es difícil, es en esta franja donde puede haber más puestos).

Es importante definir qué le gustaría a uno o en qué se sentiría cómodo y capaz pero también

definir carreras que en un nivel práctico permitan incluirse en el mercado y entonces poder generar

los propios recursos económicos. Tener en cuenta la presión: lo que se debe, lo prosaico y práctico

de generar recursos propios: lo que se puede y lo más importante en la decisión: lo que se quiere o lo

que podría a uno darle un sentido de realización personal. Es decir, tener ambiciones pero con los

pies en el suelo. Una vez que se han investigado posibilidades de carreras afines con nuestras

preferencias, conviene definir una terna de carreras, averiguar dónde se dictan, teniendo en cuenta

calidad de la institución, prestigio, calidad de sus docentes, sin dejar de lado aspectos prácticos

como ser: Tipos de ingreso (hay universidades con examen de ingreso, sin examen, con ciclos de

formación o aprestamiento de un año como el Ciclo Básico Común de la U.B.A. ,seminarios de

preingreso, etc.), medios de transporte, documentación a presentar y, de optar por instituciones

privadas averiguar por las cuotas o aranceles. Es importante recodar que las universidades, tanto

públicas como privadas, implementan planes de becas, acerca de los cuales uno se puede asesorar.

Encontrar una carrera no es fácil pero tampoco algo imposible. Hoy hablamos más de elegir -

lo cual implica una búsqueda organizada y racional- que de vocación -como un llamado natural y

predeterminado del espíritu- De esta manera la elección de carrera se construye y hasta se hace cada

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 121

año que se cursa, es decir, se renueva, se resignifica. Al no ser un “llamado” no tenemos la

posibilidad de la carrera perfecta para el estudiante perfecto, donde carrera, deseos y aspiraciones

encajen perfectamente. Una carrera tiene un promedio de entre treinta y seis y cuarenta materias y

no todas serán del agrado del estudiante. Analizar programas sirve, pero teniendo cierta tolerancia a

la frustración porque no todo lo que se va a cursar será del propio agrado. La carrera en la vida de un

estudiante es un medio y no un fin, es importante contar con apoyo y, si es necesario, con

asesoramiento, pero no se trata de buscar las respuestas fuera de uno mismo, así como tampoco se

trata de estudiar para insertarse en el mercado y en el mundo adulto solamente, sino también, si es

necesario, transformarlo. Por eso el estudiante no debe hacer su elección vocacional con criterio

cortoplacista, sino tener una visión del tiempo y objetivos más prolongados.

Una Universidad o cualquier casa de estudios no es un producto en una góndola y la

búsqueda de carrera es la búsqueda del propio desarrollo intelectual, es un acto de compromiso y

superación personal y por eso necesita que el futuro estudiante haga su búsqueda en forma

responsable.

Por último, el joven debe decidir y hacer una experiencia en el estudio mismo, es un proceso

de ensayo y error que es muy íntimo y necesario para consolidar la elección.

Ser joven en estos tiempos no es fácil (tampoco lo es ser adulto), para muchos jóvenes la elección

vocacional implica una crisis personal que los afecta profundamente. Dicha crisis se enmarca en las

mismas incertidumbres que el mundo adulto les presenta. No se trata ni de culpables o víctimas sino

de madurar aunque al principio cueste y sea difícil. La elección de carrera implica también un

tiempo para esto y, como la vida, muchas veces presenta imponderables pero también satisfacciones.

Conociendo más sobre la carrera elegida

Cursar una carrera ocupa un tiempo limitado. Ejercer una profesión ocupa el mayor tiempo de

la vida. Por eso es importante conocer para qué tipo de trabajo, para qué profesión te estás

preparando. Podría ser que no te guste alguna de las materias que tengas que cursar pero no puede

dejar de “apasionarte” la profesión que podrás ejercer cuando te recibas. Generalmente se dice “soy

docente”, “soy médico”, “soy profesora” y no “trabajo como docente” o “trabajo de médico”.

La profesión pasa a formar parte de la propia identidad. Se agrega como un atributo a la propia

personalidad. Los demás esperan determinadas cosas de nosotros cuando nos presentamos con

nuestra profesión.

La profesión es un medio para ganarse la vida pero además, su ejercicio debe gustar, gratificar,

hacernos crecer como personas.

Es importante lo que uno quiere ser y hacer para uno mismo. Pero también es importante lo que

uno quiere ser y hacer para la sociedad.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 122

ACTIVIDAD 4: NO PRESENCIAL

Como una manera de acercarte más a la carrera elegida te proponemos que: 1º analices el

plan de estudio y luego, 2º realices una entrevistas a un referente egresado de la carrera utilizando la

Guía para Entrevista o bien, a un estudiante avanzado de la carrera. (Si podés hace las dos

entrevistas).

La entrevista

La entrevista es un diálogo entre dos o más personas. La mayoría de las normas para

hacer un diálogo ameno e interesante valen también para hacer una buena entrevista. Entrevistar es

comunicarse, es hablar y, sobre todo, dejar hablar. Es interesarse en la opinión del otro. Un buen

entrevistador es también un buen comunicador: sabe hablar bien y sabe escuchar mejor.

Para hacer una buena entrevista hay que atender a tres momentos:

1.- Antes de la entrevista (PRE-ENTREVISTA):

Es importante tener claro el motivo y el tema de la entrevista. Eso ayuda a orientar las

preguntas y no “irse por las ramas”. No es necesario tener escritas las preguntas pero sí tenerlas

presentes en la memoria. Si se va a grabar, tener preparado el grabador, si se va a tomar notas,

tener lápices o biromes de repuesto y papel suficiente. Hay que acordar con la persona a entrevistar

el momento, el lugar y el tiempo estimado de entrevista para poder luego hacerla con tranquilidad.

2.- Durante la entrevista (ENTREVISTA PROPIAMENTE DICHA):

Es el momento del diálogo. El entrevistador debe crear un clima de confianza con el

entrevistado para que éste se exprese con libertad. Si la persona es desconocida, es importante

presentarse. Se pueden hacer algunas preguntas de cortesía para aflojar la tensión e inmediatamente

después explicar para qué es la entrevista. Si se va a grabar hay que pedir la conformidad del

entrevistado. Algo así como: “¿No le molesta que grabe?” mientras se prende el grabador. Si se

toman notas y el entrevistado habla demasiado rápido uno puede pedirle una pausa cuando no

alcanzó a registrar algún dato importante. Aún con grabador, lo más importante hay que anotarlo.

Es importante evitar las preguntas cerradas, que se responden con “si” o “no”, y si resultan

necesarias para algún dato puntual, ir intercalando preguntas abiertas para que la persona no sienta

que está ante un “interrogatorio”. Hay que escuchar atentamente al entrevistado para evitar

repeticiones o hacer preguntas que ya fueron respondidas. Las preguntas preparadas por el

entrevistador pueden servir como un bastón para apoyar algunos momentos del diálogo. Pero si la

entrevista fluye no hay que preocuparse por el orden previsto. No hay que olvidar las preguntas

fundamentales y buscar el momento oportuno para formularlas. Las preguntas deben ser precisas y

breves, evitando “inducir” determinadas repuestas. Es importante respetar los tiempos del

entrevistado. No todos piensan y hablan con la misma rapidez. La mayor habilidad consiste en

descubrir en cada respuesta algo que dé pie para la pregunta siguiente, manteniendo el “hilo” de la

entrevista y evitando que decaiga el interés del entrevistado.

Al despedirse, agradecer el tiempo y la disposición a conceder la entrevista.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 123

3.- Después de la entrevista (POST-ENTREVISTA) Es el momento de desgravar o

transcribir las notas. No hay que dejar pasar mucho tiempo porque así la memoria ayuda en esta

tarea que si bien es ardua, es fundamental. El informe de entrevista es el documento que da cuenta

de todo lo que sucedió en la misma y debe reflejar fielmente lo que dijo el entrevistado. Los

comentarios u opiniones del entrevistador acerca de la misma entrevista o de alguno de los temas

tratados debe colocarse, entre paréntesis o en forma diferenciada, intercalados en la entrevista o al

final.

Guía para la entrevista a Profesionales

(Cada vez que hagas una pregunta sobre la profesión o sobre la carrera menciona concretamente la

carrera y la profesión que elegiste.)

1.- ¿Cuántos años hace que Usted se recibió?

2.- ¿En cuántos años cursó la carrera?

3.- ¿Comenzó a trabajar en la profesión enseguida después de egresar?

4.- Considera Usted que los egresados tienen un buen campo de acción profesional en la

actualidad?

5.- ¿Se superpone con los campos profesionales de otras carreras?

6.- ¿Qué puede decirnos de sus compañeros de promoción? ¿También están trabajando?

7.- ¿Puede contarnos como se desarrolla un día de su actividad profesional?

8.- ¿Qué puede informarnos acerca de los progresos actuales de su profesión? ¿Es difícil

mantenerse actualizado?

9.- ¿Se ha especializado en algún campo específico? ¿A través de cursos o en la práctica?

10.- ¿Cuáles son las satisfacciones y sinsabores que le trajo la profesión?

11.- ¿Qué condiciones son necesarias para el ejercicio de esta profesión?

12.- ¿Qué le aconsejaría a alguien que comienza a estudiar esta carrera?

13.- ¿Considera que la formación recibida lo preparó para el ejercicio profesional? ¿En qué

sentido?

14.- Si tuviera que volver a elegir una carrera, ¿elegiría la misma? ¿Por qué?

15.- ¿Cómo se sintió durante esta entrevista?

Guía para la entrevista a estudiantes

1- ¿En qué año de la carrera estás?

2- ¿Cuánto tiempo hace que empezaste?

3- ¿Por qué elegiste esta carrera?

4- ¿Estás conforme, era lo que esperabas?

5- ¿Cómo son los horarios de clase?

6- ¿Se necesitan muchas horas de estudio o de trabajo personal o en equipo además de

las clases?

7- ¿Cuáles son los requisitos para poder rendir una materia?

8- ¿Cuáles consideras son las materias más importantes?¿Por qué?

9- ¿El profesorado te ayuda a superar las dificultades que puedas tener para avanzar

en la carrera?

10- ¿Se puede trabajar y estudiar al mismo tiempo?

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 124

LO GRUPAL Y LOS GRUPOS EN EL APRENDIZAJE

La importancia del grupo

Desde el primer día en que ingreses al instituto, vas a vivenciar que la mayoría de los trabajos

que se soliciten, e incluso las actividades áulicas, se realizan en forma grupal. Ahora bien, ¿qué es

esto de trabajar o estudiar en grupo?

El trabajo en grupo o en equipo es un proceso colectivo en el cual diversas personas se reúnen

en un tiempo y espacio permanentes, para que cada uno aporte su experiencia, conocimientos y

habilidades personales en función de un objetivo o tarea en común. Para cumplir con el objetivo de

aprender en grupo no es necesario que existan lazos afectivos previos, ya que lo que se prioriza es la

TAREA a realizar. Lo importante es la apertura para conformar grupos nuevos, diferentes grupos

incluyendo a quienes no conozcas.

Generalmente hay un momento de PRE-tarea, donde se hablan de diversos temas que no están o

si, en relación al tema que los convoca, para, luego, ponerse a trabajar en función de los objetivos

propuestos.

Es importante pensar que hay sentimientos de unión e identificación entre los integrantes de un

grupo, que sostienen al mismo, y también hay, generalmente alguien que toma más el lugar de líder

o coordinador.

Hay distintos roles en un grupo, algunos toman roles más pasivos, otros en lugar de colaborar

o actuar positivamente boicotean el trabajo, otros son los encargados de decir lo que está

subyaciendo en la mayoría, etc.

Si logras conformar un grupo de pertenencia, por lazos afectivos y también de estudio, es

importante pensar, y ojala esto te sirva a lo largo de tu carrera, que es sano que los roles no queden

cristalizados o estereotipados, que vayan ocupando cada rol diferentes personas. Por ejemplo, que

no sea siempre el mismo el que coordine las actividades o que no sean siempre los mismos los que

hagan y otros queden en un lugar pasivo, etc. De éste modo, podrán elaborarse (poner en palabras)

los conflictos o situaciones de malestar o queja, y cada uno tener una posición activa respecto de sus

aprendizajes. El cual se dará sostenido en un vínculo que se da con el otro y a partir del otro.

Aprendizaje social que es uno de los pilares del Instituto.

ACTIVIDAD 5: PRESENCIAL

DINÁMICA GRUPAL a elección de tu Docente Orientador

Objetivo de la dinámica:

-Vivenciar la importancia del aporte colectivo y la capacidad de organización de cada grupo.

Actividad: Reflexionar sobre lo realizado, el logro del objetivo de la dinámica, la utilidad en

otras ocasiones: ¿qué aprendimos?

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 125

Articulación con el marco teórico.

A continuación mencionamos algunos aportes que nos realiza Enrique Pichon- Rivière en sus

trabajos “El proceso grupal, del psicoanálisis a la psicología social”.

- El sujeto se constituye en función de una relación dialéctica que se da entre la estructura

social –en cuya cotidianeidad está inmerso- y su fantasía inconsciente -asentada en sus

necesidades. Es un sujeto de necesidades que sólo se satisfacen socialmente en las relaciones

y los vínculos que lo determinan. Es un sujeto relacionado, un sujeto producido en la praxis

que se da en sus grupos de pertenencia. Es el emergente de una compleja trama de relaciones

y vínculos sociales.

- En relación al aparato psíquico Pichon Rivière destaca la existencia de un mundo interno

compuesto como un escenario en donde se reconstruye la realidad externa a través de la

internalización de objetos y vínculos. La noción de vínculo es definida “como una estructura

compleja, que incluye un sujeto, un objeto, su mutua interrelación con procesos de

comunicación y aprendizaje”.

- El aprendizaje fue investigado por Pichon Rivière en situaciones grupales .Define al grupo

como un “conjunto restringido de personas ligadas entre sí por constantes de tiempo y

espacio y articuladas por su mutua representación interna, que se propone en forma explícita

o implícita una tarea que constituye su finalidad”.

- La tarea es aquello en función de lo cual el grupo se constituye ubicándose frente a un

problema o tema, estructurando las líneas de su accionar para su apropiación intelectual. El

trabajo grupal que se desarrolla implica tres momentos:

- PRE-TAREA aparece en el grupo la resistencia al cambio, que es vivido como peligroso y

se ponen en juego defensas….

- TAREA se establece una mejor comunicación y el objeto de conocimiento puede ser

abordado paralelamente con la elaboración de las ansiedades que obstaculizaban la función

operativa del grupo.

- PROYECTO surge cuando los miembros del grupo han superado los conflictos, las

contradicciones y el enfrentamiento dilemático con el objeto de conocimiento. Pueden

entonces concretar objetivos, un plan y orientar la acción cognoscitiva en forma cooperativa.

En el desarrollo de la tarea la dinámica del grupo se estructura en base a un interjuego de ROLES,

que emergen en las distintas situaciones. El PORTAVOZ es el que denuncia, en un momento dado,

las fantasías, ansiedades y necesidades que se están movilizando en el grupo, hecho posible por la

articulación de su historia personal con el proceso grupal que se da en el aquí y ahora, El CHIVO

EMISARIO es el que se hace depositario de lo negativo y atemorizante que vive el grupo y sufre la

segregación. El LÍDER se hace depositario de lo positivo y orienta hacia el progreso del trabajo

sobre la tarea. El SABOTEADOR en oposición, lidera la resistencia al cambio.

El COORDINADOR ayuda a pensar y a resolver las discusiones frontales o dilemáticas.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 126

- Cuando el grupo supera sus contradicciones y se cohesiona, puede luchar contra la ansiedad

que genera la posibilidad del cambio,

- Pichon Rivière identifica los procesos de enseñar y aprender como una experiencia continua

de aprendizaje en espiral, posible en una situación grupal en donde, los integrantes, a partir

de su interacción, se descubren, aprenden y se enseñan. Enseñar y aprender constituyen una

unidad no se los puede disociar. Implican una praxis con retroalimentación continua a partir

de la experiencia dentro de un proceso…que concluye con la aprehensión del objeto de

conocimiento, con lo cual el sujeto modifica al objeto y se modifica a si mismo.

ACTIVIDAD 6: NO PRESENCIAL

Consulta otros datos del autor Enrique Pichon-Rivière, biografía, publicaciones,

etc a través de los sitios de la web, visitando las páginas Ministerio de Educación,

Monitor.

EL INSTITUTO DE LA A A LA Z El S.O.E. te ofrece un glosario con términos comunes que identifican al nivel superior y al nuestra

institución.

A

Acta de examen: documento administrativo donde se registran las notas de los estudiantes.

B

Becas: beneficio económico que ayuda a los estudiantes a iniciar o completar tus estudios. Te

encontrarás con diferentes tipos de becas. Responsable: Prof. Rosana Franzoi.

Biblioteca: El Instituto cuenta con su propia Biblioteca (7.000 volúmenes: libros, revistas, videos,

dvd) y sala de lectura. Podes asociarte pagando una cuota de $3 mensuales. Esto les da derecho al

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 127

préstamo domiciliario de ejemplares por 72 horas. Funciona en el horario de 18 a 23 horas. Las

Bibliotecarias son Nora Vecchietti y María Isabel Grothe.

C

Cantina: kiosco ubicado en el patio del Instituto donde podrás proveerte de comestible, agua

caliente, golosinas, etc.

“Capilla”: se denomina al momento previo de rendir un examen oral.

Cartelera: Es la pizarra expuesta en el hall de entrada del Instituto, y de los anexos donde

encontraras información sobre la inasistencia de docentes, mesas de exámenes e invitaciones a

actividades académico-culturales.

Centro de Estudiantes: Organización compuesta por estudiantes elegidos por sus compañeros para

canalizar inquietudes, defender y representar los derechos de los estudiantes.

Centro Multimedial ubicada en calle Sarmiento 866, con 58 PC y otros recursos tecnológicos, a

cargo de:

Por la mañana: Prof. Silvina Rufanacht Tarde: Jorge Ramírez. Noche: Silvina Micheloud

Consejo Académico: es un órgano colegiado que actúa como consejo consultivo interno y está

integrado por el director, los regentes, los jefes de sección y coordinadores de departamentos, el

secretario y dos representantes de los estudiantes.

Correlativas: hace referencia a las articulaciones entre materias y a la sucesión de unas con otras.

Este sistema es importante conocerlo porque condiciona el cursado y la aprobación de las materias.

Cursado (tipos de): Existen tres tipos de Cursado: Presencial, Semi presencial y Libre. El primero

requiere del 75% de asistencia, aprobación de trabajos prácticos y parciales. El Semipresencial

exige un 40% de asistencia, aprobación de prácticos y parciales. Y, el cursado como Libre (muy

pocas materias ofrecen esta posibilidad) no requiere del cursado, solo en su examen final serán

evaluado todos los contenidos del programa, de manera escrita y luego, oral.

D

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 128

Docente Orientador: es un profesor que te acompaña durante el primer año de tu carrera. Promueve

la integración del grupo, el conocimiento de la institución, y te brinda estrategias de aprendizaje en

el nivel superior.

E

Equipo de Conducción: Está conformado por el Rector: Prof. Daniel Mendoza, y los Regentes:

Prof. María Luz Niclis, Prof. Patricia Petean y Prof. Isabel Castillo.

Examen: instancias de evaluación de los contenidos de la materia, puede ser parcial (evaluación de

una parte de la materia, y su aprobación permite rendir el examen final) o final (engloba todos los

contenidos del programa)

F

Fotocopiadora: Tenés la posibilidad de realizar las copias de los materiales bibliográficos de las

materias, anillados y realizar impresiones. Funciona en horario de clase y la encontrás en el primer

piso del Instituto

H

Horario de Cursado: los horarios del Instituto son de 18,05 hasta las 23hs. Los módulos son de 80

minutos. Y, se organizan de distinta manera según la carga horaria de la materia y según las

carreras. El Profesorado de Educación Física tiene clases por la mañana.

I

Inasistencia Justificada: son las inasistencias que el estudiante demuestra, con un certificado

(médico, por ejemplo) que no fueron intencionales.

Internet: Las nuevas tecnologías de la información y la comunicación han impactado fuertemente

en los estudios superiores posibilitando el acceso a sistemas de educación a distancia y a la consulta

a distintos centros documentales y de información digitalizada. Existen en la actualidad un número

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 129

enorme de sitios y páginas a las que se puede acceder para recabar información. Los buscadores

facilitan el acceso a través de la utilización de palabras claves que orientan las búsquedas

Instituto Superior de Profesorado Nº4 “Ángel Cárcano”: es el Instituto de Formación Docente

(IFD) más antiguo del norte santafesino. Depende de la Dirección Provincial de Educación Superior,

Perfeccionamiento Docente, Programación y Desarrollo Curricular del Ministerio de Educación y

Cultura de la Provincia de Santa Fe. Creado en 1962, recibe como mandato fundacional formar los

recursos humanos para el sistema educativo de nivel medio. Posteriormente incorpora la formación

para los niveles primario e inicial y carreras técnicas. Actualmente se cursan doce carreras docentes

y una carrera técnica en Reconquista. Dependen del ISP N°4 dos anexos descentralizados en las

ciudades de Calchaquí y Las Toscas.

J

Jefes de Sección: Son los Profesores elegidos por sus compañeros docentes y representan a cada

carrera del Instituto.

L

Laboratorio: Salón instalado específicamente para la realización de ensayos, experimentos,

observaciones, mediciones, etc. y que cuenta con los recursos, instrumentos y elementos didácticos

para tal fin. Ayudante Técnico en Laboratorio, Prof. Fabiana Píccoli (y administración y préstamos

de los recursos tecnológicos).

Libreta: documento donde podrás ir registrando las notas de cada materia.

Llamado: es un período de examen. Un turno de examen puede tener más de un llamado.

M

Matrícula: es un número de inscripción al Instituto.

Mesas de Examen: se define así a las instancias de evaluación final, compuesta por un Tribunal

docente: profesor que dicta la materia (presidente del tribunal) y dos docentes más (vocales del

tribunal)

N

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 130

Nivel Superior: es el nivel del sistema educativo argentino que continúa al secundario.

Notas: son las calificaciones que acreditan o no los saberes evaluados: No Aprobado (1), Aprobado

(2), Bueno (3), Distinguido (4) y Sobresaliente (5).

P

PAG WEB ISP – www.ispn4-santafe.edu.ar se puede consultar información institucional el

diseño curricular de cada carrera, enlaces, información para docentes y alumnos.

Porteros/as: corresponde al personal de mantenimiento y limpieza del Instituto. Los vas a encontrar

en planta baja (cocina).

Programas de las materias: es la planificación de cada materia, allí encontrarás cada unidad con

sus temas, la modalidad de cursado propuesto, los criterios de evaluación, la bibliografía, etc. Es el

contrato pedagógico entre el Docente y el estudiante. Te organiza el estudio y los exámenes.

R

Recursar: volver a cursar una materia por no haber aprobado las evaluaciones parciales.

Recuperatorio: es el examen que permite volver a rendir uno de los dos parciales.

Regularizar: El estudiante que cumple con los requerimientos definidos por el docente de la

materia, ha regularizado la misma. Es decir, que puede presentarse a rendir el examen final. Dicha

regularidad es válida por un año y medio. No aprobada la materia en este tiempo, debe recursar la

misma.

S

Sala de Informática: esta sala de computación se encuentra en el primer piso. Allí se dictan algunas

materias, pero también contás con horarios para hacer uso de las máquinas. Esta coordinada por el

Prof. Antonio Pohorilo.

Sección Alumnos Está ubicado en el primer piso del Instituto. Dependencia que se ocupa de los

trámites relacionados con la documentación pertinente a los estudiantes como inscripciones a

diferentes tipos de cursado, exámenes, gestión de libretas, presentación de documentación .Allí

tendrás toda la información que incumbe a los estudiantes. Cada carrera tiene un administrativo a

quien debes realizar las consultas pertinentes.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 131

Secretaría: está ubicada a la entrada del Instituto. Contarás con información referida al personal

docente.

Sedes: el Instituto del Profesorado funciona en cuatro sedes: Instituto del Profesorado (casa central,

calle Alvear y Ludueña), Escuela Pizzurno (ubicado en calle 9 de Julio 315) Escuela 1354 ubicada

en Lovatto y Chacabuco y las instalaciones del Club Platense.

Servicio de Orientación Educativa: este espacio se encuentra en el primer piso, enfrente a la

Sección de Alumnos. En los horarios expuestos podrás contar con la atención de profesionales para

atender situaciones particulares de aprendizaje, emocionales y de orientación vocacional. Los

horarios de atención son: lunes, martes y miércoles de 17 a 19h, y viernes de 17 a 18h. Las

responsables son: Pscop Teresa Michet, Psic Claudia Rufanach, y Prof Maria Laura Chapero.

S.U.M.: Salón de Usos Múltiples. Está ubicado en calle Sarmiento 866, allí se encuentra un salón

que permite realizar actividades de tipo extra escolar, talleres y reuniones.

BIBLIOGRAFÍA

Albert, Manuel Esteban (2002), Consideraciones sobre los procesos de comprender y aprender.

Una perspectiva psicológica para el análisis del entorno de la Educación a distancia,, Mimeo,

España, Universidad de Murcia.

Baraldi Clemencia, Aprender:la aventura de soportar el equívoco.

Cabrera, García, Betancor y otros, Estructura factorial y fiabilidad de un cuestionario de

estrategias de aprendizaje en universitarios CEA-U, Adaptación, Universidad de La Laguna,

España.

Candelero Rosana, Díaz Norberto, Orientación vocacional: una práctica sostenida en las

personas del psicoanálisis.

Freud, Sigmund, El interés pedagógico,Tomo XIII Ed. Amorrortu.

Freud, Sigmund ,El malestar de la cultura, Tomo III

Jorba, Jaume et al, editores (2000), Hablar y escribir para aprender. Uso de la lengua en

situación de enseñanza-aprendizaje desde las áreas curriculares, España, Editorial Síntesis.

Larocca Felix, Ansiedad y anticipación a los exámenes.

Ballesteros mora, Juan Antonio (1998) Acción Tutorial y Orientación Educativa, 5ªedición,

Madrid, Editorial Narcea.

Moreira Elena, Cómo estudiar, Longseller.

López Gil, José Ignacio (1993), La entrevista, Manual de capacitación Nº1, Quito, ALER.

Pere Arnaiz, Sofía (1998), La tutoría, organización y tareas, 4ª edición, Barcelona, Editorial

Grao.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 132

Rascovan, Sergio, comp., (1998), Orientación Vocacional. Aportes para la formación de

orientadores, Buenos Aires-México, Ediciones Novedades Educativas.

Rascovan, Sergio,Las elecciones vocacionales de los jóvenes escolarizados. Proyectos,

expectativas y obstáculos (comp.), Noveduc, Bs As 2010.

Rivière Enrique, El proceso grupal, del psicoanálisis a la psicología social, Ediciones Nueva

Visión, Bs As, agosto 2007.

Sánchez Sánchez, Serafín, coord., (1997), La tutoría en los centros de Educación Secundaria,

Madrid, Editorial Escuela Española.

Servicio de Orientación Educativa (1994), Aprendiendo a estudiar, 5 módulos de

autoinstrucción, Reconquista, Santa Fe, Instituto Superior de Profesorado Nº4.

Teixera de Souza, Rafaelle, Malestar en la escuela una lectura psicoanalítica-Campo Freudiano

de Río de Janeiro.

Universidad Nacional de Córdoba (2002), documento de trabaio interno.

Universidad Nacional del Litoral (1995), Curso Común Preparatorio- Orientación Vocacional,

Santa Fe, U.N.L.

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 133

ÍNDICE

Página.

Palabras de Bienvenida…………………………………………………………………………………………

Introducción………………………………………………………………………………………………………….

Diseño Curricular…………………………………………………………………………………………………..

Régimen de correlatividades…………………………………………………………………………………

Matemática……………………………………………………………………………………………………………

Los Números Reales y sus propiedades…………………………………………………………………

La Recta Real………………………………………………………………………………………………………….

Exponentes y Radicales………………………………………………………………………………………….

Ecuaciones y Resolución de Problemas………………………………………………………………….

Inecuaciones y sus gráficas…………………………………………………………………………………….

Propiedades básicas de desigualdades…………………………………………………………………..

Intervalos, gráficas y desigualdades……………………………………………………………………….

Factorización de polinomios…………………………………………………………………………………..

Función…………………………………………………………………………………………………………………..

Análisis de funciones………………………………………………………………………………………………

Definición de función……………………………………………………………………………………………..

Notación de función……………………………………………………………………………………………….

Noción de tablas, fórmulas y gráficos. Análisis de funciones………………………………….

Función lineal…………………………………………………………………………………………………………

Pendiente de una recta………………………………………………………………………………………….

Ordenada al origen…………………………………………………………………………………………………

Gráfica de la función lineal a partir de la ordenada y la pendiente………………………..

Análisis del signo de la pendiente…………………………………………………………………………..

Sistemas de ecuaciones lineales……………………………………………………………………………..

Resolución de sistemas de ecuaciones lineales con dos incógnitas…………………………

Método de sustitución……………………………………………………………………………………………

Método de igualación…………………………………………………………………………………………….

Método de reducción por suma y resta………………………………………………………………….

Método de determinantes…………………………………………………………………………………….

Clasificación de los sistemas de ecuaciones lineales con dos incógnitas………………..

Función cuadrática…………………………………………………………………………………………………

Análisis del comportamiento de la función de segundo grado……………………………….

Sistemas de ecuaciones no lineales………………………………………………………………………..

Bibliografía……………………………………………………………………………………………………………..

Anexo I: Modalidades de cursado………………………………………………………………………….

Respuestas a las actividades…………………………………………………………………………………..

Módulo: Formación Orientada……………………………………………………………………………….

1

3

4

6

8

9

9

18

21

26

26

28

31

45

46

46

47

47

53

53

54

54

54

61

62

62

64

65

67

68

73

80

90

93

94

i a vi

101

INSTITUTO SUPERIOR DE PROFESORADO Nº 4 “ÁNGEL CÁRCANO”

PROFESORADO DE MATEMÁTICA – CURSO PROPEDÉUTICO

Página 134