ultrasonido de tobillo anatomía

60
Ultrasonido de tobillo Dres. Héctor Domínguez Hernández y Victor Hugo Cruz Residentes Imagenología, Diagnóstica y Terapéutica

Upload: imagenologia-diagnostica-y-terapeutica-hraepy

Post on 14-Apr-2017

636 views

Category:

Health & Medicine


16 download

TRANSCRIPT

Page 1: Ultrasonido de tobillo anatomía

Ultrasonido de tobilloDres. Héctor Domínguez Hernández y Victor Hugo Cruz

Residentes Imagenología, Diagnóstica y Terapéutica

Page 2: Ultrasonido de tobillo anatomía

Introducción• La articulación del tobillo es la articulación que con

más frecuencia sufre lesión y el compartimiento lateral es el que más se daña.

• US con un rango de frecuencia de 10 a 18MHz.

• Los huesos deben ser usados como punto de referencia.

• El rayo debe de encontrarse lo mas perpendicular posible a la estructura para analizar para evitar el defecto de anisotropía.

Page 3: Ultrasonido de tobillo anatomía

longitudinal or transverse imaging, respectively, to avoid anisotropy and to ensure that the ultra-sound beam is perpendicular to the tendon fibers. Anisotropy is a pitfall that occurs when the ul-trasound beam is oriented oblique to the tendon fibers, resulting in an artifactually hypoechoic tendon that may mimic tendinopathy on US im-ages (Fig 4) (12). However, anisotropy can be used advantageously at US to distinguish a ten-don from an adjacent nonanisotropic structure such as a nerve (13).

US provides the imaging physician with the invaluable ability to confer with the patient at the time of study. US also allows the injection of diagnostic or therapeutic steroids and platelet-rich plasma into the site of pain. The injectate highlights tendon anatomy and disease by better outlining the tendon margins with fluid (Fig 5) and emphasizing linear clefts and tears within the tendon.

Figures 2, 3. (2) Longitudinal US images of normal and torn AT tendons. (a) The fibrillar structure of a normal hy-perechoic AT tendon (arrowheads) is shown near the medial cuneiform insertion site. (b) A torn AT tendon manifests with a tendon gap (*), thickening and retraction of the proximal tendon stump (white arrows), and a distal, fleck-like, hyperechoic focus (black arrow), findings compatible with avulsion fracture of the medial cuneiform. (3) Normal US appearance of the EDL tendon and its relationship to the extensor retinaculum. Longitudinal (a) and axial (b) images show the normal hyperechoic EDL tendon (white arrow) at the level of the talus. The extensor retinaculum (black ar-rows) appears as a thin curvilinear band of hypoechoic tissue superficial to the EDL tendon.

Figure 4. Axial dual-mode US images of the AT tendon with the transducer held in a true perpendicular position relative to the tendon fibers (left) and at an oblique angle relative to the tendon fibers (right). Note the artifactual hypoechogenicity of the tendon fibers when imaged at an oblique angle, a US artifact known as anisotropy that can be used to distinguish a tendon from an adja-cent nonanisotropic structure.

SIN ANISOTROPÍA CON ANISOTROPÍA

Page 4: Ultrasonido de tobillo anatomía

Recordatorio antes de empezar.

Page 5: Ultrasonido de tobillo anatomía

• Paso 1

¿Que te paso? ¿Como te paso? ¿Hace cuanto tiempo? ¿Tienes dificultad para caminar? ¿ El dolor es con la marcha o cuando apoyas el pie? ¿Hay algún lugar donde se acentúe el dolor?.

Page 6: Ultrasonido de tobillo anatomía

• Paso 2

Posición. El paciente puede estar sentado con la rodilla flexionada 45º.

The systematic scanning technique described below is only theoretical, considering the fact that the examination of the ankle is, for the most, focused to one (or a few) aspect(s) only of the joint based on clinical findings.

Note

1Patient seated on the examination bed with the knee flexed 45° so that the plantar surface of the foot lies flat on the table. Alternatively, the patient may lie supine with the foot free to allow manipulation by the examiner during scanning. Place the transducer in the axial plane and sweep it up and down over the dorsum of the ankle to examinethe tibialis anterior, extensor hallucis longus and extensor digitorum longus. These tendons must be examined in their full length starting from the myotendinous junction. Look at the tibialis anterior artery and the adjacent deep peroneal nerve.

Legend: a, anterior tibial ar-tery; edl, extensor digitorum longus tendon; ehl, exten-sor hallucis longus tendon; ta, tibialis anterior tendon; void arrows, distal tibialis anterior tendon; v, anterior tibial vein; void arrowheads, superior extensor retinacu-lum; white arrowhead, deep peroneal nerve

1

Ankle

Be sure to examine the superior extensor retinaculum and the insertion of the tibialis ante-rior tendon, which lies distally and medially. Follow the tibialis anterior tendon up to reach its insertion onto the first cuneiform.

Cuneiform1

ta edlehl

Talus

ehl

av

!"#$%&'%(!")*$+(,-.,/012(.,/31/0

Page 7: Ultrasonido de tobillo anatomía

• La articulación del tobillo “Hindfoot” esta estabilizada por dos sistemas de ligamentos (el ligamento colateral lateral (LCL) y el complejo ligamentario colateral medial) y dos sistemas accesorios (ligamentos anteriores y posteriores).

Page 8: Ultrasonido de tobillo anatomía

• La evaluación del tobillo se realiza por compartimientos.

• ANTERIOR.

• LATERAL.

• MEDIAL.

• POSTERIOR.

Page 9: Ultrasonido de tobillo anatomía

• COMPARTIMIENTO ANTERIOR Compartimiento Extensor ( Tibial Anterior, (TOM) Extensor del Hallux (HARRY), Extensor de los Dígitos (DICK)).

Retinaculo extensor superior e inferior.

Sindesmosis anterior.

Ligamento Talo-Navicular.

Receso Anterior.

Arteria Pedia.

Nervios Peronéo Superficial.

2048 November-December 2013 radiographics.rsna.org

Injury to the ankle extensor compartment is relatively uncommon, in part because the straight course of the extensor tendons compared with that of other tendons in the ankle protects them from biomechanical stress (4). Injuries to the ankle extensor compartment often are overlooked because of a low index of clinical suspicion and relatively benign findings at physical examination. Radiologists may neglect to assess the ankle ex-tensor compartment because of the rarity of inju-ries to this area and the prevalence of the “magic angle” phenomenon, which artifactually elevates the magnetic resonance (MR) imaging signal of the extensor tendons where they curve around the ankle. The frequent occurrence of this signal artifact may result in false-positive findings and erroneous dismissal of real findings of disease (5).

Ultrasonography (US) is a noninvasive, operator-dependent imaging modality useful for diagnosis of injuries to the ankle extensor com-partment (6,7). The superficial location of the ankle extensor compartment allows easy depic-tion at US. US is an easily accessible, cost-effec-tive method for dynamic evaluation of the ankle extensor structures and can be performed at the patient’s bedside.

MR imaging is a noninvasive, operator-in-dependent modality that allows cross-sectional anatomic evaluation of the ankle extensor com-

Figure 1. Normal anatomy of the ankle extensor com-partment. (a) Frontal draw-ing of the foot and ankle shows the AT, EHL, and EDL tendons. The deep pe-roneal nerve ( ) and its medial and lateral

branches are shown descending deep to the trans-versely oriented superior extensor retinaculum

and Y-shaped inferior extensor retinaculum

. (b) Axial T1-weighted MR image shows the normal relationships of the AT, EHL, and EDL tendons as well as the superior extensor retinac-ulum and the DPN (*) within the neurovascular bundle.

partment. MR imaging has become a mainstay in the diagnosis and workup of ankle extensor compartment injuries (8,9) that allows radiolo-gists to gauge the extent of injury, identify culprit cofactors of disease predisposition, and provide valuable preoperative information in cases that require surgical repair (10,11).

This article discusses the normal anatomy and pathologic conditions of the ankle extensor compartment. US and MR imaging features as well as potential imaging pitfalls are presented. Components of the ankle extensor compartment include, from medial to lateral, the AT, EHL, and EDL tendons; the superior and inferior extensor retinacula; and the anterior tarsal tun-nel (Fig 1). Primary focus is given to the ankle extensor tendons because tendinous injury ac-counts for the vast majority of diseases of the ankle extensor compartment.

US General ConceptsNormal tendons appear at US as uniformly echo-genic bands with an internal fibrillar echotexture (Figs 2, 3). The surrounding paratenon appears as an echogenic line demarcating the tendon margin (7). High-frequency US provides higher-resolution imaging at the cost of decreased pen-etration and is recommended for imaging the superficially located ankle extensor compartment. The transducer should be held in true parallel or perpendicular alignment to the tendon during

Page 10: Ultrasonido de tobillo anatomía

• Origen: En el cóndilo lateral de la tibia y el tercio superior de la tibia lateral.

• Inserción: La superficie medial e inferior del cuneiforme medial (1er cuneiforme) y la base del primer metatarsiano.

• Función: Dorsiflexión del pie y el tobillo.

TIBIAL ANTERIOR

SU

BA

SH

KC

/NM

C-1

5TH

/201

4

Page 11: Ultrasonido de tobillo anatomía

• Origen: En el tercio medio de la fíbula y la membrana interósea.

• Inserción: Base dorsal del primer dedo en la falánge distal.

• Función: Extensión del dedo gordo.

EXTENSOR DEL HALLUX

SU

BA

SH

KC

/NM

C-1

5TH

/201

4

Page 12: Ultrasonido de tobillo anatomía

• Origen: Condilo Lateral de la tibia, Fíbula superior y anterior y la membrana interósea.

• Inserción: En las falanges medias y distales del 2-5o dedo.

EXTENSOR LARGO DE LOS DEDOS

SU

BA

SH

KC

/NM

C-1

5TH

/201

4

Page 13: Ultrasonido de tobillo anatomía

The systematic scanning technique described below is only theoretical, considering the fact that the examination of the ankle is, for the most, focused to one (or a few) aspect(s) only of the joint based on clinical findings.

Note

1Patient seated on the examination bed with the knee flexed 45° so that the plantar surface of the foot lies flat on the table. Alternatively, the patient may lie supine with the foot free to allow manipulation by the examiner during scanning. Place the transducer in the axial plane and sweep it up and down over the dorsum of the ankle to examinethe tibialis anterior, extensor hallucis longus and extensor digitorum longus. These tendons must be examined in their full length starting from the myotendinous junction. Look at the tibialis anterior artery and the adjacent deep peroneal nerve.

Legend: a, anterior tibial ar-tery; edl, extensor digitorum longus tendon; ehl, exten-sor hallucis longus tendon; ta, tibialis anterior tendon; void arrows, distal tibialis anterior tendon; v, anterior tibial vein; void arrowheads, superior extensor retinacu-lum; white arrowhead, deep peroneal nerve

1

Ankle

Be sure to examine the superior extensor retinaculum and the insertion of the tibialis ante-rior tendon, which lies distally and medially. Follow the tibialis anterior tendon up to reach its insertion onto the first cuneiform.

Cuneiform1

ta edlehl

Talus

ehl

av

!"#$%&'%(!")*$+(,-.,/012(.,/31/0

The systematic scanning technique described below is only theoretical, considering the fact that the examination of the ankle is, for the most, focused to one (or a few) aspect(s) only of the joint based on clinical findings.

Note

1Patient seated on the examination bed with the knee flexed 45° so that the plantar surface of the foot lies flat on the table. Alternatively, the patient may lie supine with the foot free to allow manipulation by the examiner during scanning. Place the transducer in the axial plane and sweep it up and down over the dorsum of the ankle to examinethe tibialis anterior, extensor hallucis longus and extensor digitorum longus. These tendons must be examined in their full length starting from the myotendinous junction. Look at the tibialis anterior artery and the adjacent deep peroneal nerve.

Legend: a, anterior tibial ar-tery; edl, extensor digitorum longus tendon; ehl, exten-sor hallucis longus tendon; ta, tibialis anterior tendon; void arrows, distal tibialis anterior tendon; v, anterior tibial vein; void arrowheads, superior extensor retinacu-lum; white arrowhead, deep peroneal nerve

1

Ankle

Be sure to examine the superior extensor retinaculum and the insertion of the tibialis ante-rior tendon, which lies distally and medially. Follow the tibialis anterior tendon up to reach its insertion onto the first cuneiform.

Cuneiform1

ta edlehl

Talus

ehl

av

!"#$%&'%(!")*$+(,-.,/012(.,/31/0

TENDONES EXTENSORES

Page 14: Ultrasonido de tobillo anatomía

The systematic scanning technique described below is only theoretical, considering the fact that the examination of the ankle is, for the most, focused to one (or a few) aspect(s) only of the joint based on clinical findings.

Note

1Patient seated on the examination bed with the knee flexed 45° so that the plantar surface of the foot lies flat on the table. Alternatively, the patient may lie supine with the foot free to allow manipulation by the examiner during scanning. Place the transducer in the axial plane and sweep it up and down over the dorsum of the ankle to examinethe tibialis anterior, extensor hallucis longus and extensor digitorum longus. These tendons must be examined in their full length starting from the myotendinous junction. Look at the tibialis anterior artery and the adjacent deep peroneal nerve.

Legend: a, anterior tibial ar-tery; edl, extensor digitorum longus tendon; ehl, exten-sor hallucis longus tendon; ta, tibialis anterior tendon; void arrows, distal tibialis anterior tendon; v, anterior tibial vein; void arrowheads, superior extensor retinacu-lum; white arrowhead, deep peroneal nerve

1

Ankle

Be sure to examine the superior extensor retinaculum and the insertion of the tibialis ante-rior tendon, which lies distally and medially. Follow the tibialis anterior tendon up to reach its insertion onto the first cuneiform.

Cuneiform1

ta edlehl

Talus

ehl

av

!"#$%&'%(!")*$+(,-.,/012(.,/31/0

En esta imagen se observa la arteria y vena tibial anterior, con su íntima relación con el nervio peronéo profundo.

SU

BA

SH

KC

/NM

C-1

5TH

/201

4ARTERIA TIBIAL ANTERIOR Y NERVIO PERONÉO PROFUNDO

Page 15: Ultrasonido de tobillo anatomía

T. TIBIAL ANTERIOR

The systematic scanning technique described below is only theoretical, considering the fact that the examination of the ankle is, for the most, focused to one (or a few) aspect(s) only of the joint based on clinical findings.

Note

1Patient seated on the examination bed with the knee flexed 45° so that the plantar surface of the foot lies flat on the table. Alternatively, the patient may lie supine with the foot free to allow manipulation by the examiner during scanning. Place the transducer in the axial plane and sweep it up and down over the dorsum of the ankle to examinethe tibialis anterior, extensor hallucis longus and extensor digitorum longus. These tendons must be examined in their full length starting from the myotendinous junction. Look at the tibialis anterior artery and the adjacent deep peroneal nerve.

Legend: a, anterior tibial ar-tery; edl, extensor digitorum longus tendon; ehl, exten-sor hallucis longus tendon; ta, tibialis anterior tendon; void arrows, distal tibialis anterior tendon; v, anterior tibial vein; void arrowheads, superior extensor retinacu-lum; white arrowhead, deep peroneal nerve

1

Ankle

Be sure to examine the superior extensor retinaculum and the insertion of the tibialis ante-rior tendon, which lies distally and medially. Follow the tibialis anterior tendon up to reach its insertion onto the first cuneiform.

Cuneiform1

ta edlehl

Talus

ehl

av

!"#$%&'%(!")*$+(,-.,/012(.,/31/0

Page 16: Ultrasonido de tobillo anatomía

RECESO TIBIOTALAR ANTERIOR2Place the transducer in the mid longitudinal plane over the dorsum of the ankle to examine the anterior re-cess of the tibiotalar joint. Fluid may be shifted away from this recess using ex-cessive plantar flexion. 60%-70% of the talar dome can be easily assessed by moving the probe medially and laterally.

Legend: asterisks, anterior fat pad; arrows, anterior recess of the tibiotalar joint; T, tibia; TD, talar dome; TH, talar head

2

Ankle

3From the position described at point-1, roll the forefoot slightly internally (inversion) to stretch the lateral ligaments. A small pillow under the medial malleolus may help to impro-ve the contact between transducer and skin over the lateral ankle. Place the transducer parallel to the examination bed placing its posterior edge over the distal lateral malleolus to image the anterior talofibular ligament.

Legend: Anterior drawer test in patient with anterior talofibular ligament tear. asterisks, ligament stumps; arrow, talar shift; 1, talar landmark; 2, fibular landmark

TTalus

TH* *

LMTalus

When distinguishing a partial from a complete tear is difficult, perform a so-nographic anterior drawer test by pla-cing the patient prone with the foot hanging over the edge of the exami-nation table while pulling the forefoot anteriorly when in plantar flexion and inversion. When the ligament is torn, the anterior shift of the talus against the tibia will open the gap in the sub-stance of the ligament.

!"#$%&'

(%&)"%*$"+$

* *

* *

12

21

&,$"%-.%*%"/"++*.0*$1"*&,2'"*3.-,$

&,$"%-.%*$&'.0-4#'&%*'- &!",$

TD

Legend: LM, lateral malleolus; void arrowheads, anterior talofibular ligament

2Place the transducer in the mid longitudinal plane over the dorsum of the ankle to examine the anterior re-cess of the tibiotalar joint. Fluid may be shifted away from this recess using ex-cessive plantar flexion. 60%-70% of the talar dome can be easily assessed by moving the probe medially and laterally.

Legend: asterisks, anterior fat pad; arrows, anterior recess of the tibiotalar joint; T, tibia; TD, talar dome; TH, talar head

2

Ankle

3From the position described at point-1, roll the forefoot slightly internally (inversion) to stretch the lateral ligaments. A small pillow under the medial malleolus may help to impro-ve the contact between transducer and skin over the lateral ankle. Place the transducer parallel to the examination bed placing its posterior edge over the distal lateral malleolus to image the anterior talofibular ligament.

Legend: Anterior drawer test in patient with anterior talofibular ligament tear. asterisks, ligament stumps; arrow, talar shift; 1, talar landmark; 2, fibular landmark

TTalus

TH* *

LMTalus

When distinguishing a partial from a complete tear is difficult, perform a so-nographic anterior drawer test by pla-cing the patient prone with the foot hanging over the edge of the exami-nation table while pulling the forefoot anteriorly when in plantar flexion and inversion. When the ligament is torn, the anterior shift of the talus against the tibia will open the gap in the sub-stance of the ligament.

!"#$%&'

(%&)"%*$"+$

* *

* *

12

21

&,$"%-.%*%"/"++*.0*$1"*&,2'"*3.-,$

&,$"%-.%*$&'.0-4#'&%*'- &!",$

TD

Legend: LM, lateral malleolus; void arrowheads, anterior talofibular ligament

A este nivel podremos identificar líquido más objetivamente pidiendo al paciente que una flexión plantar máxima.

Page 17: Ultrasonido de tobillo anatomía

• IMPORTANTE:

• Las lesiones del compartimiento extensor del tobillo son infravaloradas y pueden requerir un diagnóstico temprano para preservar la función.

• El ligamento más frecuentemente lesionado es el tibial anterior, seguido del extensor del Hallux.

Page 18: Ultrasonido de tobillo anatomía

LIGAMENTOS DEL COMPARTIMIENTO ANTERIOR.

Page 19: Ultrasonido de tobillo anatomía

• Ligamento Tibiofibular Anterior Inferior.

• Origen: Se extiende oblicuamente hacia abajo y lateral desde el margen anterior de la tubérculo fíbular de la tibia.

• Inserción: Al borde anterior del eje distal del maléolo lateral.

• El grosor normal varia de 2.6 a 4mm.

• Ligamento Tibiofibular Posterior Inferior. No evaluado generalmente por ultrasonido.

LIGAMENTOS TIBIOFIBULARES

Page 20: Ultrasonido de tobillo anatomía

166 January-February 2015 radiographics.rsna.org

probes that had lower performance parameters, compared with more recent high-end equip-ment. Thus, it is possible that the already high detection values reported in the literature have improved. Milz et al (41) reported visibility of the anterior inferior TFL in 89.6% of cases in a series of 48 ankle specimens.

The anterior inferior TFL plays a crucial role in increasing the stability of the distal tibiofibular joint and is involved in up to 11% of ankle sprains (10). In these cases, patients may complain about instability resulting from the widening of the ankle mortise. A 1-mm widening of the ankle mortise implies a 42% loss of contact area of the tibiotalar joint, possibly leading to early osteoarthritis (42). The accuracy of US in the diagnosis of anterior inferior TFL sprains has been reported to be ap-proximately 85% (43). Previous trauma in the anterior inferior TFL is shown in Figure 2. The scanning technique for the anterior inferior TFL is reported below, in addition to other components of the lateral compartment of the ankle.

Posterior Inferior TFL.—The posterior inferior TFL is stronger than the anterior inferior TFL. It extends transversely from the posterior tu-bercle of the tibial shaft to the posterior aspect of the lateral malleolus. The most inferior fascicles comprise the inferior transverse ligament, which appears as a thick band extending from the pos-terior tubercle of the talus to the posterior aspect of the tibial articular surface, just lateral to the

diagnostic accuracy of the detection of tears and to differentiate a partial from a complete tear (36–39). Pertinent dynamic maneuvers are discussed in the relevant sections of this article.

Ankle Ligaments

Tibiofibular Ligaments

Biomechanics.—The tibia and fibula are articu-lated at their distal end at the inferior tibiofibular joint. This joint is mechanically linked to the an-kle and is placed in tension by flexion-extension. It is stabilized by two ligaments, one anterior and one posterior (10).

Anterior Inferior Tibiofibular Ligament.—The anterior inferior tibiofibular ligament (TFL) is a stiff, flattened band lying anterior to and partially blended with the interosseous membrane. Approxi-mately 20% of the anterior inferior TFL is intraar-ticular (40). It extends obliquely downward and laterally from the anterior margin of the fibular tu-bercle of the tibia to the anterior border of the distal fibular shaft and the lateral malleolus. The normal thickness of this ligament ranges between 2.6 and 4 mm (10) (Fig 1). A normal anterior inferior TFL may have a fascicular appearance and should not be confused with an injury or tear.

Most studies on the visibility of ligaments around the ankle were performed 15–20 years ago and involved the use of US systems and

Figure 1. Anterior inferior TFL. This ligament extends obliquely downward and laterally from the anterior margin of the fibular tubercle of the tibia to the anterior border of the distal fibular shaft and lateral malleolus. (a) Schematic drawing of the anterior inferior TFL anatomic structure. (b) Probe positioning on the lat-eral ankle. (c) US scan of the anterior inferior TFL (arrowheads). F = fibula, Ti = tibia.

166 January-February 2015 radiographics.rsna.org

probes that had lower performance parameters, compared with more recent high-end equip-ment. Thus, it is possible that the already high detection values reported in the literature have improved. Milz et al (41) reported visibility of the anterior inferior TFL in 89.6% of cases in a series of 48 ankle specimens.

The anterior inferior TFL plays a crucial role in increasing the stability of the distal tibiofibular joint and is involved in up to 11% of ankle sprains (10). In these cases, patients may complain about instability resulting from the widening of the ankle mortise. A 1-mm widening of the ankle mortise implies a 42% loss of contact area of the tibiotalar joint, possibly leading to early osteoarthritis (42). The accuracy of US in the diagnosis of anterior inferior TFL sprains has been reported to be ap-proximately 85% (43). Previous trauma in the anterior inferior TFL is shown in Figure 2. The scanning technique for the anterior inferior TFL is reported below, in addition to other components of the lateral compartment of the ankle.

Posterior Inferior TFL.—The posterior inferior TFL is stronger than the anterior inferior TFL. It extends transversely from the posterior tu-bercle of the tibial shaft to the posterior aspect of the lateral malleolus. The most inferior fascicles comprise the inferior transverse ligament, which appears as a thick band extending from the pos-terior tubercle of the talus to the posterior aspect of the tibial articular surface, just lateral to the

diagnostic accuracy of the detection of tears and to differentiate a partial from a complete tear (36–39). Pertinent dynamic maneuvers are discussed in the relevant sections of this article.

Ankle Ligaments

Tibiofibular Ligaments

Biomechanics.—The tibia and fibula are articu-lated at their distal end at the inferior tibiofibular joint. This joint is mechanically linked to the an-kle and is placed in tension by flexion-extension. It is stabilized by two ligaments, one anterior and one posterior (10).

Anterior Inferior Tibiofibular Ligament.—The anterior inferior tibiofibular ligament (TFL) is a stiff, flattened band lying anterior to and partially blended with the interosseous membrane. Approxi-mately 20% of the anterior inferior TFL is intraar-ticular (40). It extends obliquely downward and laterally from the anterior margin of the fibular tu-bercle of the tibia to the anterior border of the distal fibular shaft and the lateral malleolus. The normal thickness of this ligament ranges between 2.6 and 4 mm (10) (Fig 1). A normal anterior inferior TFL may have a fascicular appearance and should not be confused with an injury or tear.

Most studies on the visibility of ligaments around the ankle were performed 15–20 years ago and involved the use of US systems and

Figure 1. Anterior inferior TFL. This ligament extends obliquely downward and laterally from the anterior margin of the fibular tubercle of the tibia to the anterior border of the distal fibular shaft and lateral malleolus. (a) Schematic drawing of the anterior inferior TFL anatomic structure. (b) Probe positioning on the lat-eral ankle. (c) US scan of the anterior inferior TFL (arrowheads). F = fibula, Ti = tibia.

166 January-February 2015 radiographics.rsna.org

probes that had lower performance parameters, compared with more recent high-end equip-ment. Thus, it is possible that the already high detection values reported in the literature have improved. Milz et al (41) reported visibility of the anterior inferior TFL in 89.6% of cases in a series of 48 ankle specimens.

The anterior inferior TFL plays a crucial role in increasing the stability of the distal tibiofibular joint and is involved in up to 11% of ankle sprains (10). In these cases, patients may complain about instability resulting from the widening of the ankle mortise. A 1-mm widening of the ankle mortise implies a 42% loss of contact area of the tibiotalar joint, possibly leading to early osteoarthritis (42). The accuracy of US in the diagnosis of anterior inferior TFL sprains has been reported to be ap-proximately 85% (43). Previous trauma in the anterior inferior TFL is shown in Figure 2. The scanning technique for the anterior inferior TFL is reported below, in addition to other components of the lateral compartment of the ankle.

Posterior Inferior TFL.—The posterior inferior TFL is stronger than the anterior inferior TFL. It extends transversely from the posterior tu-bercle of the tibial shaft to the posterior aspect of the lateral malleolus. The most inferior fascicles comprise the inferior transverse ligament, which appears as a thick band extending from the pos-terior tubercle of the talus to the posterior aspect of the tibial articular surface, just lateral to the

diagnostic accuracy of the detection of tears and to differentiate a partial from a complete tear (36–39). Pertinent dynamic maneuvers are discussed in the relevant sections of this article.

Ankle Ligaments

Tibiofibular Ligaments

Biomechanics.—The tibia and fibula are articu-lated at their distal end at the inferior tibiofibular joint. This joint is mechanically linked to the an-kle and is placed in tension by flexion-extension. It is stabilized by two ligaments, one anterior and one posterior (10).

Anterior Inferior Tibiofibular Ligament.—The anterior inferior tibiofibular ligament (TFL) is a stiff, flattened band lying anterior to and partially blended with the interosseous membrane. Approxi-mately 20% of the anterior inferior TFL is intraar-ticular (40). It extends obliquely downward and laterally from the anterior margin of the fibular tu-bercle of the tibia to the anterior border of the distal fibular shaft and the lateral malleolus. The normal thickness of this ligament ranges between 2.6 and 4 mm (10) (Fig 1). A normal anterior inferior TFL may have a fascicular appearance and should not be confused with an injury or tear.

Most studies on the visibility of ligaments around the ankle were performed 15–20 years ago and involved the use of US systems and

Figure 1. Anterior inferior TFL. This ligament extends obliquely downward and laterally from the anterior margin of the fibular tubercle of the tibia to the anterior border of the distal fibular shaft and lateral malleolus. (a) Schematic drawing of the anterior inferior TFL anatomic structure. (b) Probe positioning on the lat-eral ankle. (c) US scan of the anterior inferior TFL (arrowheads). F = fibula, Ti = tibia.

Ligamento Tibiofibular Anterior Inferior • E l g r o s o r normal varia d e 2 . 6 a 4mm.

Se encuentra dañado en e l 11% de los esguinces de tobillo.

1mm de espesor más de la mortaja implica una pérdida del 42% del área de contacto de la articulación tibiotalar, aumentando la posibilidad de osteoartritis temprana.

• Dorsiflexión y V a r o . (Inversión)

Page 21: Ultrasonido de tobillo anatomía

4From the position described at point-3 (first sentence), keep the posterior edge of the transducer on the lateral malleolus and rotate its anterior edge upwards to image the anterior tibiofibular ligament. The transducer will pass over a part of the talar cartilage, which lies in between the anterior talofibular ligament and the anterior tibiofibular ligament.

3

Ankle

LMTibia

Legend: arrowheads, anterior tibiofibular ligament; LM, lateral malleolus

5With the ankle lying on its medial aspect, place the transducer in an oblique coronal plane with its superior edge over the tip of the lateral malleolus and its inferior margin slightly posterior to it, towards the heel, while the foot is dorsiflexed to image the calcaneofibularligament.

Legend: arrowheads, calcaneofibular ligament; LM, lateral malleolus; pb, peroneus brevis tendon; pl, peroneus longus tendon

Calcaneus LM

plpbpl

pb

Calcaneus LM

!"#$%&'%(#&)&'*&)+,!%(,& !!$"#

/!,/!"$'*&)+,!%(,& !!$"#

4From the position described at point-3 (first sentence), keep the posterior edge of the transducer on the lateral malleolus and rotate its anterior edge upwards to image the anterior tibiofibular ligament. The transducer will pass over a part of the talar cartilage, which lies in between the anterior talofibular ligament and the anterior tibiofibular ligament.

3

Ankle

LMTibia

Legend: arrowheads, anterior tibiofibular ligament; LM, lateral malleolus

5With the ankle lying on its medial aspect, place the transducer in an oblique coronal plane with its superior edge over the tip of the lateral malleolus and its inferior margin slightly posterior to it, towards the heel, while the foot is dorsiflexed to image the calcaneofibularligament.

Legend: arrowheads, calcaneofibular ligament; LM, lateral malleolus; pb, peroneus brevis tendon; pl, peroneus longus tendon

Calcaneus LM

plpbpl

pb

Calcaneus LM

!"#$%&'%(#&)&'*&)+,!%(,& !!$"#

/!,/!"$'*&)+,!%(,& !!$"#

Page 22: Ultrasonido de tobillo anatomía

RG • Volume 35 Number 1 Sconfienza et al 167

Figure 2. US scan shows a fibrotic appearance of the anterior inferior TFL after previous trauma. The ligament is remarkably thickened and inho-mogeneous (*). F = fibula, Ti = tibia. (Courtesy of Luca De Flaviis, MD, Studio Radiologico De Flaviis, Milan, Italy.)

Figure 3. Posterior inferior TFL. This ligament extends transversely from the posterior tubercle of the tibial shaft to the posterior aspect of the lateral malleolus. (a) Schematic drawing of the posterior inferior TFL anatomic structure. (b) Probe positioning on the lateral ankle. (c) US scan of the posterior inferior TFL (arrow-heads). F = fibula, Ti = tibia.

medial malleolus. The posterior inferior TFL is usually less visible than the anterior inferior TFL and is rarely involved in ankle sprains (44). This ligament is not usually assessed as part of routine US of the lateral ankle. However, it can be stud-ied by placing the transducer almost horizontally and medially from the posterior aspect of the tip of the lateral malleolus (Fig 3). Dynamic evalua-tion of the posterior inferior TFL includes dorsi-flexion and eversion of the hindfoot, maneuvers that may reduce anisotropy (45).

Lateral and Medial Ligaments

Biomechanics.—The joints of the hindfoot are stabilized by two main ligamentous systems (the lateral collateral ligament [LCL] and medial col-

lateral ligament complexes) and two accessory systems (the anterior and posterior ligaments). The collateral functional complexes have the bio-mechanical purpose of containing the lateral forces that act around the ankle and could be considered as inversion and eversion ligament chains (46,47).

LCL Complex

The inversion ligament chain acts along two axes: the main tension line, originating from the lateral malleolus and extending along the anterior bundles of the LCL complex, and the accessory tension line, originating from the medial malleolus and extend-ing along the posterior bundles of the medial collat-eral ligament complex. The eversion ligament chain also acts along two lines: the main tension line, orig-inating from the medial malleolus and extending along the anterior bundles of the medial collateral ligament complex, and the accessory tension line, originating from the lateral malleolus and extending along the posterior bundles of the LCL complex (46,48). The LCL complex of the ankle consists of three separate ligaments: the anterior talofibular ligament, the posterior talofibular ligament, and the calcaneofibular ligament (CFL).

Anterior Talofibular Ligament.—The anterior talofibular ligament is the weakest and most fre-quently injured among the three components of

Ultrasonido que muestra una apariencia fibrótica de AITFL.

Page 23: Ultrasonido de tobillo anatomía

6Look at the following midtarsal ligaments: dorsal talonavicular, dorsal calcaneocuboid and calca-neo-cuboido-navicular ligament (avulsion of the anterolateral tu-bercle of the calcaneus).

4

Ankle

Legend: arrowheads, dorsal talonavi-cular ligament; NAV, navicular bone

NAVTalus

7Behind the lateral malleolus, place the transducer over the peroneal tendons to examine them in their short-axis (long-axis planes are of limited utility). Because these tendons arc around the malleolus, tilt the transducer to maintain the US beam perpendicular to them and avoid anisotropy as scanning progresses. Continue to follow these tendons upwards for approximately 5 cm and downwards through the inframalleolar region.

LM

LM!" pbm pbm

Check them at the level of the peroneal tubercle of calcaneus, and the peroneus longus down to the area where the os peroneum can be found. Follow the peroneus brevis until the base of the 5th metatarsal. Look at the superior and inferior peroneal retinacula.

#

Legend: arrowheads, peroneus brevis tendon; curved arrows, superior extensor retinaculum; LM, lateral malleolus; pbm, peroneus brevis muscle; void arrow, peroneal tubercle; white arrow, peroneus longus tendon

When intermittent subluxation of the peroneals is suspected clinically, perform scanning at rest and during dorsiflexion and eversion of the foot against resistance, placing the transducer in a transverse plane over them, at the level of the lateral malleolus. Stress eversion can be done while pushing with the examiner’s free hand on the forefoot of the patient, to see subtle subluxation or distension of the superior retinaculum.

$%&'!()!+$,!&'!()(+ !!./,'

0123410)156037)".&%/.!(),./$%/'

! "

#

6Look at the following midtarsal ligaments: dorsal talonavicular, dorsal calcaneocuboid and calca-neo-cuboido-navicular ligament (avulsion of the anterolateral tu-bercle of the calcaneus).

4

Ankle

Legend: arrowheads, dorsal talonavi-cular ligament; NAV, navicular bone

NAVTalus

7Behind the lateral malleolus, place the transducer over the peroneal tendons to examine them in their short-axis (long-axis planes are of limited utility). Because these tendons arc around the malleolus, tilt the transducer to maintain the US beam perpendicular to them and avoid anisotropy as scanning progresses. Continue to follow these tendons upwards for approximately 5 cm and downwards through the inframalleolar region.

LM

LM!" pbm pbm

Check them at the level of the peroneal tubercle of calcaneus, and the peroneus longus down to the area where the os peroneum can be found. Follow the peroneus brevis until the base of the 5th metatarsal. Look at the superior and inferior peroneal retinacula.

#

Legend: arrowheads, peroneus brevis tendon; curved arrows, superior extensor retinaculum; LM, lateral malleolus; pbm, peroneus brevis muscle; void arrow, peroneal tubercle; white arrow, peroneus longus tendon

When intermittent subluxation of the peroneals is suspected clinically, perform scanning at rest and during dorsiflexion and eversion of the foot against resistance, placing the transducer in a transverse plane over them, at the level of the lateral malleolus. Stress eversion can be done while pushing with the examiner’s free hand on the forefoot of the patient, to see subtle subluxation or distension of the superior retinaculum.

$%&'!()!+$,!&'!()(+ !!./,'

0123410)156037)".&%/.!(),./$%/'

! "

#

LIGAMENTO TALONAVICULAR

Page 24: Ultrasonido de tobillo anatomía

LIGAMENTOS DEL COMPARTIMIENTO LATERAL.

Page 25: Ultrasonido de tobillo anatomía

• El LCL consiste en tres elementos separados:

• El ligamento talofibular anterior. (peronéoastragalino)

• Ligamento calcáneofibular. (peronéocalcaneo)

• Peronéo largo y Peronéo corto.

Page 26: Ultrasonido de tobillo anatomía

• Ligamento Anterior Talofibular.

• Es el más débil y el más frecuentemente lastimado de los tres componentes del LCL.

• Conecta el borde anterolateral del maléolo lateral y la superficie lateral del cuello talar. 168 January-February 2015 radiographics.rsna.org

Figure 5. US appearances of injured anterior talofibular ligament. F = fibula, Ta = talus. (a) Acute full-thickness tear of the anterior talofibular ligament in a 27-year-old basketball player. The ligament stump is clearly visible (arrowheads), together with fluid effusion in the anterolateral recess (*). (b) Fibrotic appearance of the anterior talofibular ligament after trauma. The ligament is remarkably thickened and inhomogeneous (arrowheads). Note the tiny bone avulsion over the proximal insertion (arrows). (Courtesy of Luca De Flaviis, MD, Studio Radiologico De Flaviis, Milan, Italy.)

the LCL complex of the ankle joint. It connects the anterolateral border of the lateral malleolus and the lateral surface of the talar neck (Fig 4). Along its course, it blends with some fibers of the capsule of the tibiotalar joint. The anterior talofibular ligament serves to stabilize the talus, preventing anterior talar motion. The primary function of the anterior talofibular ligament is to restrain the anterior displacement of the talus with respect to the fibula and tibia. The axis of the anterior talofibular ligament becomes paral-lel to the axis of the leg when the foot is plantar flexed (ie, pushed down); thus, the anterior talofibular ligament acts as a collateral ligament.

Because most sprains occur when the foot is in plantar flexion, injuries to this ligament most frequently occur, either in isolation or in associa-tion with the CFL, when the foot is inverted (ie, turned in). In these cases, US findings include diffuse or focal areas of hypoechoic thickening of the ligament, accompanied by intrasubstance linear defects in the context of a partial-thickness tear (19). Small avulsed bone fragments can also result from a traction mechanism (Fig 5).

Friedrich et al (49) reported visibility of the anterior talofibular ligament in 91% of cases in a series of 20 healthy volunteers. Milz et al (41) re-ported visibility of the anterior talofibular ligament

Figure 4. Anterior talofibular ligament. This ligament originates from the anterolateral border of the lateral malleolus and inserts on the lateral surface of the talar neck. (a) Schematic drawing of the anterior talofibular ligament anatomic structure. (b) Probe po-sitioning on the lateral ankle. (c) US scan of the anterior talofibular ligament (arrowheads). F = fibula, Ta = talus.

Page 27: Ultrasonido de tobillo anatomía

168 January-February 2015 radiographics.rsna.org

Figure 5. US appearances of injured anterior talofibular ligament. F = fibula, Ta = talus. (a) Acute full-thickness tear of the anterior talofibular ligament in a 27-year-old basketball player. The ligament stump is clearly visible (arrowheads), together with fluid effusion in the anterolateral recess (*). (b) Fibrotic appearance of the anterior talofibular ligament after trauma. The ligament is remarkably thickened and inhomogeneous (arrowheads). Note the tiny bone avulsion over the proximal insertion (arrows). (Courtesy of Luca De Flaviis, MD, Studio Radiologico De Flaviis, Milan, Italy.)

the LCL complex of the ankle joint. It connects the anterolateral border of the lateral malleolus and the lateral surface of the talar neck (Fig 4). Along its course, it blends with some fibers of the capsule of the tibiotalar joint. The anterior talofibular ligament serves to stabilize the talus, preventing anterior talar motion. The primary function of the anterior talofibular ligament is to restrain the anterior displacement of the talus with respect to the fibula and tibia. The axis of the anterior talofibular ligament becomes paral-lel to the axis of the leg when the foot is plantar flexed (ie, pushed down); thus, the anterior talofibular ligament acts as a collateral ligament.

Because most sprains occur when the foot is in plantar flexion, injuries to this ligament most frequently occur, either in isolation or in associa-tion with the CFL, when the foot is inverted (ie, turned in). In these cases, US findings include diffuse or focal areas of hypoechoic thickening of the ligament, accompanied by intrasubstance linear defects in the context of a partial-thickness tear (19). Small avulsed bone fragments can also result from a traction mechanism (Fig 5).

Friedrich et al (49) reported visibility of the anterior talofibular ligament in 91% of cases in a series of 20 healthy volunteers. Milz et al (41) re-ported visibility of the anterior talofibular ligament

Figure 4. Anterior talofibular ligament. This ligament originates from the anterolateral border of the lateral malleolus and inserts on the lateral surface of the talar neck. (a) Schematic drawing of the anterior talofibular ligament anatomic structure. (b) Probe po-sitioning on the lateral ankle. (c) US scan of the anterior talofibular ligament (arrowheads). F = fibula, Ta = talus.

168 January-February 2015 radiographics.rsna.org

Figure 5. US appearances of injured anterior talofibular ligament. F = fibula, Ta = talus. (a) Acute full-thickness tear of the anterior talofibular ligament in a 27-year-old basketball player. The ligament stump is clearly visible (arrowheads), together with fluid effusion in the anterolateral recess (*). (b) Fibrotic appearance of the anterior talofibular ligament after trauma. The ligament is remarkably thickened and inhomogeneous (arrowheads). Note the tiny bone avulsion over the proximal insertion (arrows). (Courtesy of Luca De Flaviis, MD, Studio Radiologico De Flaviis, Milan, Italy.)

the LCL complex of the ankle joint. It connects the anterolateral border of the lateral malleolus and the lateral surface of the talar neck (Fig 4). Along its course, it blends with some fibers of the capsule of the tibiotalar joint. The anterior talofibular ligament serves to stabilize the talus, preventing anterior talar motion. The primary function of the anterior talofibular ligament is to restrain the anterior displacement of the talus with respect to the fibula and tibia. The axis of the anterior talofibular ligament becomes paral-lel to the axis of the leg when the foot is plantar flexed (ie, pushed down); thus, the anterior talofibular ligament acts as a collateral ligament.

Because most sprains occur when the foot is in plantar flexion, injuries to this ligament most frequently occur, either in isolation or in associa-tion with the CFL, when the foot is inverted (ie, turned in). In these cases, US findings include diffuse or focal areas of hypoechoic thickening of the ligament, accompanied by intrasubstance linear defects in the context of a partial-thickness tear (19). Small avulsed bone fragments can also result from a traction mechanism (Fig 5).

Friedrich et al (49) reported visibility of the anterior talofibular ligament in 91% of cases in a series of 20 healthy volunteers. Milz et al (41) re-ported visibility of the anterior talofibular ligament

Figure 4. Anterior talofibular ligament. This ligament originates from the anterolateral border of the lateral malleolus and inserts on the lateral surface of the talar neck. (a) Schematic drawing of the anterior talofibular ligament anatomic structure. (b) Probe po-sitioning on the lateral ankle. (c) US scan of the anterior talofibular ligament (arrowheads). F = fibula, Ta = talus.

Sirve como un estabilizar del tálus, previniendo el desplazamiento anterior con respecto a la fíbula y tibia.

Puede haber una lesión aislada, o asociada con CFL (Calcáneofibular), cuando el pie es invertido.

• El grosor normal es de 2 a 3.5mm.

Ligamento talofibular anterior

• Rotación Interna

Page 28: Ultrasonido de tobillo anatomía

2Place the transducer in the mid longitudinal plane over the dorsum of the ankle to examine the anterior re-cess of the tibiotalar joint. Fluid may be shifted away from this recess using ex-cessive plantar flexion. 60%-70% of the talar dome can be easily assessed by moving the probe medially and laterally.

Legend: asterisks, anterior fat pad; arrows, anterior recess of the tibiotalar joint; T, tibia; TD, talar dome; TH, talar head

2

Ankle

3From the position described at point-1, roll the forefoot slightly internally (inversion) to stretch the lateral ligaments. A small pillow under the medial malleolus may help to impro-ve the contact between transducer and skin over the lateral ankle. Place the transducer parallel to the examination bed placing its posterior edge over the distal lateral malleolus to image the anterior talofibular ligament.

Legend: Anterior drawer test in patient with anterior talofibular ligament tear. asterisks, ligament stumps; arrow, talar shift; 1, talar landmark; 2, fibular landmark

TTalus

TH* *

LMTalus

When distinguishing a partial from a complete tear is difficult, perform a so-nographic anterior drawer test by pla-cing the patient prone with the foot hanging over the edge of the exami-nation table while pulling the forefoot anteriorly when in plantar flexion and inversion. When the ligament is torn, the anterior shift of the talus against the tibia will open the gap in the sub-stance of the ligament.

!"#$%&'

(%&)"%*$"+$

* *

* *

12

21

&,$"%-.%*%"/"++*.0*$1"*&,2'"*3.-,$

&,$"%-.%*$&'.0-4#'&%*'- &!",$

TD

Legend: LM, lateral malleolus; void arrowheads, anterior talofibular ligament

2Place the transducer in the mid longitudinal plane over the dorsum of the ankle to examine the anterior re-cess of the tibiotalar joint. Fluid may be shifted away from this recess using ex-cessive plantar flexion. 60%-70% of the talar dome can be easily assessed by moving the probe medially and laterally.

Legend: asterisks, anterior fat pad; arrows, anterior recess of the tibiotalar joint; T, tibia; TD, talar dome; TH, talar head

2

Ankle

3From the position described at point-1, roll the forefoot slightly internally (inversion) to stretch the lateral ligaments. A small pillow under the medial malleolus may help to impro-ve the contact between transducer and skin over the lateral ankle. Place the transducer parallel to the examination bed placing its posterior edge over the distal lateral malleolus to image the anterior talofibular ligament.

Legend: Anterior drawer test in patient with anterior talofibular ligament tear. asterisks, ligament stumps; arrow, talar shift; 1, talar landmark; 2, fibular landmark

TTalus

TH* *

LMTalus

When distinguishing a partial from a complete tear is difficult, perform a so-nographic anterior drawer test by pla-cing the patient prone with the foot hanging over the edge of the exami-nation table while pulling the forefoot anteriorly when in plantar flexion and inversion. When the ligament is torn, the anterior shift of the talus against the tibia will open the gap in the sub-stance of the ligament.

!"#$%&'

(%&)"%*$"+$

* *

* *

12

21

&,$"%-.%*%"/"++*.0*$1"*&,2'"*3.-,$

&,$"%-.%*$&'.0-4#'&%*'- &!",$

TD

Legend: LM, lateral malleolus; void arrowheads, anterior talofibular ligamentPaciente con ruptura del ligamento Talofibular anterior

Evaluación del Cajón Anterior

2Place the transducer in the mid longitudinal plane over the dorsum of the ankle to examine the anterior re-cess of the tibiotalar joint. Fluid may be shifted away from this recess using ex-cessive plantar flexion. 60%-70% of the talar dome can be easily assessed by moving the probe medially and laterally.

Legend: asterisks, anterior fat pad; arrows, anterior recess of the tibiotalar joint; T, tibia; TD, talar dome; TH, talar head

2

Ankle

3From the position described at point-1, roll the forefoot slightly internally (inversion) to stretch the lateral ligaments. A small pillow under the medial malleolus may help to impro-ve the contact between transducer and skin over the lateral ankle. Place the transducer parallel to the examination bed placing its posterior edge over the distal lateral malleolus to image the anterior talofibular ligament.

Legend: Anterior drawer test in patient with anterior talofibular ligament tear. asterisks, ligament stumps; arrow, talar shift; 1, talar landmark; 2, fibular landmark

TTalus

TH* *

LMTalus

When distinguishing a partial from a complete tear is difficult, perform a so-nographic anterior drawer test by pla-cing the patient prone with the foot hanging over the edge of the exami-nation table while pulling the forefoot anteriorly when in plantar flexion and inversion. When the ligament is torn, the anterior shift of the talus against the tibia will open the gap in the sub-stance of the ligament.

!"#$%&'

(%&)"%*$"+$

* *

* *

12

21

&,$"%-.%*%"/"++*.0*$1"*&,2'"*3.-,$

&,$"%-.%*$&'.0-4#'&%*'- &!",$

TD

Legend: LM, lateral malleolus; void arrowheads, anterior talofibular ligament

Page 29: Ultrasonido de tobillo anatomía

168 January-February 2015 radiographics.rsna.org

Figure 5. US appearances of injured anterior talofibular ligament. F = fibula, Ta = talus. (a) Acute full-thickness tear of the anterior talofibular ligament in a 27-year-old basketball player. The ligament stump is clearly visible (arrowheads), together with fluid effusion in the anterolateral recess (*). (b) Fibrotic appearance of the anterior talofibular ligament after trauma. The ligament is remarkably thickened and inhomogeneous (arrowheads). Note the tiny bone avulsion over the proximal insertion (arrows). (Courtesy of Luca De Flaviis, MD, Studio Radiologico De Flaviis, Milan, Italy.)

the LCL complex of the ankle joint. It connects the anterolateral border of the lateral malleolus and the lateral surface of the talar neck (Fig 4). Along its course, it blends with some fibers of the capsule of the tibiotalar joint. The anterior talofibular ligament serves to stabilize the talus, preventing anterior talar motion. The primary function of the anterior talofibular ligament is to restrain the anterior displacement of the talus with respect to the fibula and tibia. The axis of the anterior talofibular ligament becomes paral-lel to the axis of the leg when the foot is plantar flexed (ie, pushed down); thus, the anterior talofibular ligament acts as a collateral ligament.

Because most sprains occur when the foot is in plantar flexion, injuries to this ligament most frequently occur, either in isolation or in associa-tion with the CFL, when the foot is inverted (ie, turned in). In these cases, US findings include diffuse or focal areas of hypoechoic thickening of the ligament, accompanied by intrasubstance linear defects in the context of a partial-thickness tear (19). Small avulsed bone fragments can also result from a traction mechanism (Fig 5).

Friedrich et al (49) reported visibility of the anterior talofibular ligament in 91% of cases in a series of 20 healthy volunteers. Milz et al (41) re-ported visibility of the anterior talofibular ligament

Figure 4. Anterior talofibular ligament. This ligament originates from the anterolateral border of the lateral malleolus and inserts on the lateral surface of the talar neck. (a) Schematic drawing of the anterior talofibular ligament anatomic structure. (b) Probe po-sitioning on the lateral ankle. (c) US scan of the anterior talofibular ligament (arrowheads). F = fibula, Ta = talus.

168 January-February 2015 radiographics.rsna.org

Figure 5. US appearances of injured anterior talofibular ligament. F = fibula, Ta = talus. (a) Acute full-thickness tear of the anterior talofibular ligament in a 27-year-old basketball player. The ligament stump is clearly visible (arrowheads), together with fluid effusion in the anterolateral recess (*). (b) Fibrotic appearance of the anterior talofibular ligament after trauma. The ligament is remarkably thickened and inhomogeneous (arrowheads). Note the tiny bone avulsion over the proximal insertion (arrows). (Courtesy of Luca De Flaviis, MD, Studio Radiologico De Flaviis, Milan, Italy.)

the LCL complex of the ankle joint. It connects the anterolateral border of the lateral malleolus and the lateral surface of the talar neck (Fig 4). Along its course, it blends with some fibers of the capsule of the tibiotalar joint. The anterior talofibular ligament serves to stabilize the talus, preventing anterior talar motion. The primary function of the anterior talofibular ligament is to restrain the anterior displacement of the talus with respect to the fibula and tibia. The axis of the anterior talofibular ligament becomes paral-lel to the axis of the leg when the foot is plantar flexed (ie, pushed down); thus, the anterior talofibular ligament acts as a collateral ligament.

Because most sprains occur when the foot is in plantar flexion, injuries to this ligament most frequently occur, either in isolation or in associa-tion with the CFL, when the foot is inverted (ie, turned in). In these cases, US findings include diffuse or focal areas of hypoechoic thickening of the ligament, accompanied by intrasubstance linear defects in the context of a partial-thickness tear (19). Small avulsed bone fragments can also result from a traction mechanism (Fig 5).

Friedrich et al (49) reported visibility of the anterior talofibular ligament in 91% of cases in a series of 20 healthy volunteers. Milz et al (41) re-ported visibility of the anterior talofibular ligament

Figure 4. Anterior talofibular ligament. This ligament originates from the anterolateral border of the lateral malleolus and inserts on the lateral surface of the talar neck. (a) Schematic drawing of the anterior talofibular ligament anatomic structure. (b) Probe po-sitioning on the lateral ankle. (c) US scan of the anterior talofibular ligament (arrowheads). F = fibula, Ta = talus.

168 January-February 2015 radiographics.rsna.org

Figure 5. US appearances of injured anterior talofibular ligament. F = fibula, Ta = talus. (a) Acute full-thickness tear of the anterior talofibular ligament in a 27-year-old basketball player. The ligament stump is clearly visible (arrowheads), together with fluid effusion in the anterolateral recess (*). (b) Fibrotic appearance of the anterior talofibular ligament after trauma. The ligament is remarkably thickened and inhomogeneous (arrowheads). Note the tiny bone avulsion over the proximal insertion (arrows). (Courtesy of Luca De Flaviis, MD, Studio Radiologico De Flaviis, Milan, Italy.)

the LCL complex of the ankle joint. It connects the anterolateral border of the lateral malleolus and the lateral surface of the talar neck (Fig 4). Along its course, it blends with some fibers of the capsule of the tibiotalar joint. The anterior talofibular ligament serves to stabilize the talus, preventing anterior talar motion. The primary function of the anterior talofibular ligament is to restrain the anterior displacement of the talus with respect to the fibula and tibia. The axis of the anterior talofibular ligament becomes paral-lel to the axis of the leg when the foot is plantar flexed (ie, pushed down); thus, the anterior talofibular ligament acts as a collateral ligament.

Because most sprains occur when the foot is in plantar flexion, injuries to this ligament most frequently occur, either in isolation or in associa-tion with the CFL, when the foot is inverted (ie, turned in). In these cases, US findings include diffuse or focal areas of hypoechoic thickening of the ligament, accompanied by intrasubstance linear defects in the context of a partial-thickness tear (19). Small avulsed bone fragments can also result from a traction mechanism (Fig 5).

Friedrich et al (49) reported visibility of the anterior talofibular ligament in 91% of cases in a series of 20 healthy volunteers. Milz et al (41) re-ported visibility of the anterior talofibular ligament

Figure 4. Anterior talofibular ligament. This ligament originates from the anterolateral border of the lateral malleolus and inserts on the lateral surface of the talar neck. (a) Schematic drawing of the anterior talofibular ligament anatomic structure. (b) Probe po-sitioning on the lateral ankle. (c) US scan of the anterior talofibular ligament (arrowheads). F = fibula, Ta = talus.

Lesión del ligamento talofibular.

Lesión aguda.

Lesión crónica

Normal

Page 30: Ultrasonido de tobillo anatomía

•CFL. Es el más largo de los ligamentos en LCL. Es una estructura fuerte que cruza oblicuamente debajo de los tendones peronéo.

• Origen.Se extiende desde el borde inferior del maleo lateral.

• Inserción. Eminencia troclear en la superficie lateral del calcáneo.

• Función. Estabilizador de la articulación subtalar. La función principal es evitar la inversión del calcáneo con respecto a la fíbula.

170 January-February 2015 radiographics.rsna.org

almost parallel to the sole of the foot (Fig 4b). The anterior talofibular ligament can be seen as a hyperechoic fibrillar band in tension between the lateral malleolus and the talus (Movie 2 [online]). The functionality of the anterior talofibular liga-ment can be tested by using the anterior drawer test. This test consists of stressing the plantar flexion and internal rotation of the foot. This may help to differentiate partial- from full-thickness tears by separating the stumps of a torn ligament (Movie 3 [online]).

From the position used to evaluate the ante-rior talofibular ligament, one edge of the probe should be held over the lateral malleolus and the other edge should be rotated cranially to image the anterior inferior TFL along its major axis (Fig 1b). At this position, the anterior inferior TFL can be seen as a short, thick, hyperechoic fibrillar band extending from the fibular malleolus to the anterior aspect of the tibia. Dynamic evaluation of the anterior inferior TFL may be performed while placing the ligament in tension with dorsi-flexion and varus positioning (Movie 4 [online]). The anterior inferior TFL and the anterior talo-fibular ligament can be easily differentiated on the basis of their anatomic orientations.

To image the CFL, from the position used to image the anterior inferior TFL, one edge

of the probe should be held over the tip of the lateral malleolus and the probe should be ro-tated caudad to reach a coronal plane, with the distal edge of the probe slightly posterior to the lateral malleolus (Fig 7b). The CFL has a concave course, which makes its evaluation par-ticularly challenging. Forced dorsiflexion of the foot tightens the CFL, making it straighter and more perpendicular to the US beam (Movie 5 [online]), thus allowing optimal visibility. On its long axis, the CFL is visualized as a thick hyper-echoic fibrillar band extending from the inferior aspect of the lateral malleolus to the lateral sur-face of the calcaneus. In some cases, short-axis evaluation of the CFL may be helpful (32). In short-axis evaluation, the ligament is seen as an oval-shaped structure located deep under the peroneal tendons, with an echogenicity that may vary according to the orientation of the US beam. When the CFL is continuous, forced dorsiflexion of the foot displaces the peroneal

Figure 7. CFL. This ligament originates from the lateral mal-leolar tip and inserts on the lateral surface of the calcaneus. (a) Schematic drawing of the CFL anatomic structure. (b) Probe po-sitioning on the lateral ankle. (c) US scan of the CFL (arrowheads). C = calcaneus. F = fibula, PBT = peroneus brevis tendon, PLT = peroneus longus tendon.

Figure 8. US scan shows a partial tear of the CFL. The ligament appears inhomogeneous and hy-poechoic (arrowheads), with periligamentous effu-sion (*). C = calcaneus, F = fibula, PBT = peroneus bre-vis tendon, PLT = peroneus longus tendon, Ta = talus.

• Si no hay lesión del ligamento talofibular anterior la lesión del CFL es poco probable.

Page 31: Ultrasonido de tobillo anatomía

170 January-February 2015 radiographics.rsna.org

almost parallel to the sole of the foot (Fig 4b). The anterior talofibular ligament can be seen as a hyperechoic fibrillar band in tension between the lateral malleolus and the talus (Movie 2 [online]). The functionality of the anterior talofibular liga-ment can be tested by using the anterior drawer test. This test consists of stressing the plantar flexion and internal rotation of the foot. This may help to differentiate partial- from full-thickness tears by separating the stumps of a torn ligament (Movie 3 [online]).

From the position used to evaluate the ante-rior talofibular ligament, one edge of the probe should be held over the lateral malleolus and the other edge should be rotated cranially to image the anterior inferior TFL along its major axis (Fig 1b). At this position, the anterior inferior TFL can be seen as a short, thick, hyperechoic fibrillar band extending from the fibular malleolus to the anterior aspect of the tibia. Dynamic evaluation of the anterior inferior TFL may be performed while placing the ligament in tension with dorsi-flexion and varus positioning (Movie 4 [online]). The anterior inferior TFL and the anterior talo-fibular ligament can be easily differentiated on the basis of their anatomic orientations.

To image the CFL, from the position used to image the anterior inferior TFL, one edge

of the probe should be held over the tip of the lateral malleolus and the probe should be ro-tated caudad to reach a coronal plane, with the distal edge of the probe slightly posterior to the lateral malleolus (Fig 7b). The CFL has a concave course, which makes its evaluation par-ticularly challenging. Forced dorsiflexion of the foot tightens the CFL, making it straighter and more perpendicular to the US beam (Movie 5 [online]), thus allowing optimal visibility. On its long axis, the CFL is visualized as a thick hyper-echoic fibrillar band extending from the inferior aspect of the lateral malleolus to the lateral sur-face of the calcaneus. In some cases, short-axis evaluation of the CFL may be helpful (32). In short-axis evaluation, the ligament is seen as an oval-shaped structure located deep under the peroneal tendons, with an echogenicity that may vary according to the orientation of the US beam. When the CFL is continuous, forced dorsiflexion of the foot displaces the peroneal

Figure 7. CFL. This ligament originates from the lateral mal-leolar tip and inserts on the lateral surface of the calcaneus. (a) Schematic drawing of the CFL anatomic structure. (b) Probe po-sitioning on the lateral ankle. (c) US scan of the CFL (arrowheads). C = calcaneus. F = fibula, PBT = peroneus brevis tendon, PLT = peroneus longus tendon.

Figure 8. US scan shows a partial tear of the CFL. The ligament appears inhomogeneous and hy-poechoic (arrowheads), with periligamentous effu-sion (*). C = calcaneus, F = fibula, PBT = peroneus bre-vis tendon, PLT = peroneus longus tendon, Ta = talus.

170 January-February 2015 radiographics.rsna.org

almost parallel to the sole of the foot (Fig 4b). The anterior talofibular ligament can be seen as a hyperechoic fibrillar band in tension between the lateral malleolus and the talus (Movie 2 [online]). The functionality of the anterior talofibular liga-ment can be tested by using the anterior drawer test. This test consists of stressing the plantar flexion and internal rotation of the foot. This may help to differentiate partial- from full-thickness tears by separating the stumps of a torn ligament (Movie 3 [online]).

From the position used to evaluate the ante-rior talofibular ligament, one edge of the probe should be held over the lateral malleolus and the other edge should be rotated cranially to image the anterior inferior TFL along its major axis (Fig 1b). At this position, the anterior inferior TFL can be seen as a short, thick, hyperechoic fibrillar band extending from the fibular malleolus to the anterior aspect of the tibia. Dynamic evaluation of the anterior inferior TFL may be performed while placing the ligament in tension with dorsi-flexion and varus positioning (Movie 4 [online]). The anterior inferior TFL and the anterior talo-fibular ligament can be easily differentiated on the basis of their anatomic orientations.

To image the CFL, from the position used to image the anterior inferior TFL, one edge

of the probe should be held over the tip of the lateral malleolus and the probe should be ro-tated caudad to reach a coronal plane, with the distal edge of the probe slightly posterior to the lateral malleolus (Fig 7b). The CFL has a concave course, which makes its evaluation par-ticularly challenging. Forced dorsiflexion of the foot tightens the CFL, making it straighter and more perpendicular to the US beam (Movie 5 [online]), thus allowing optimal visibility. On its long axis, the CFL is visualized as a thick hyper-echoic fibrillar band extending from the inferior aspect of the lateral malleolus to the lateral sur-face of the calcaneus. In some cases, short-axis evaluation of the CFL may be helpful (32). In short-axis evaluation, the ligament is seen as an oval-shaped structure located deep under the peroneal tendons, with an echogenicity that may vary according to the orientation of the US beam. When the CFL is continuous, forced dorsiflexion of the foot displaces the peroneal

Figure 7. CFL. This ligament originates from the lateral mal-leolar tip and inserts on the lateral surface of the calcaneus. (a) Schematic drawing of the CFL anatomic structure. (b) Probe po-sitioning on the lateral ankle. (c) US scan of the CFL (arrowheads). C = calcaneus. F = fibula, PBT = peroneus brevis tendon, PLT = peroneus longus tendon.

Figure 8. US scan shows a partial tear of the CFL. The ligament appears inhomogeneous and hy-poechoic (arrowheads), with periligamentous effu-sion (*). C = calcaneus, F = fibula, PBT = peroneus bre-vis tendon, PLT = peroneus longus tendon, Ta = talus.

Ligamento Calcáneofibular.

Flexión dorsal

Page 32: Ultrasonido de tobillo anatomía

4From the position described at point-3 (first sentence), keep the posterior edge of the transducer on the lateral malleolus and rotate its anterior edge upwards to image the anterior tibiofibular ligament. The transducer will pass over a part of the talar cartilage, which lies in between the anterior talofibular ligament and the anterior tibiofibular ligament.

3

Ankle

LMTibia

Legend: arrowheads, anterior tibiofibular ligament; LM, lateral malleolus

5With the ankle lying on its medial aspect, place the transducer in an oblique coronal plane with its superior edge over the tip of the lateral malleolus and its inferior margin slightly posterior to it, towards the heel, while the foot is dorsiflexed to image the calcaneofibularligament.

Legend: arrowheads, calcaneofibular ligament; LM, lateral malleolus; pb, peroneus brevis tendon; pl, peroneus longus tendon

Calcaneus LM

plpbpl

pb

Calcaneus LM

!"#$%&'%(#&)&'*&)+,!%(,& !!$"#

/!,/!"$'*&)+,!%(,& !!$"#

4From the position described at point-3 (first sentence), keep the posterior edge of the transducer on the lateral malleolus and rotate its anterior edge upwards to image the anterior tibiofibular ligament. The transducer will pass over a part of the talar cartilage, which lies in between the anterior talofibular ligament and the anterior tibiofibular ligament.

3

Ankle

LMTibia

Legend: arrowheads, anterior tibiofibular ligament; LM, lateral malleolus

5With the ankle lying on its medial aspect, place the transducer in an oblique coronal plane with its superior edge over the tip of the lateral malleolus and its inferior margin slightly posterior to it, towards the heel, while the foot is dorsiflexed to image the calcaneofibularligament.

Legend: arrowheads, calcaneofibular ligament; LM, lateral malleolus; pb, peroneus brevis tendon; pl, peroneus longus tendon

Calcaneus LM

plpbpl

pb

Calcaneus LM

!"#$%&'%(#&)&'*&)+,!%(,& !!$"#

/!,/!"$'*&)+,!%(,& !!$"#

4From the position described at point-3 (first sentence), keep the posterior edge of the transducer on the lateral malleolus and rotate its anterior edge upwards to image the anterior tibiofibular ligament. The transducer will pass over a part of the talar cartilage, which lies in between the anterior talofibular ligament and the anterior tibiofibular ligament.

3

Ankle

LMTibia

Legend: arrowheads, anterior tibiofibular ligament; LM, lateral malleolus

5With the ankle lying on its medial aspect, place the transducer in an oblique coronal plane with its superior edge over the tip of the lateral malleolus and its inferior margin slightly posterior to it, towards the heel, while the foot is dorsiflexed to image the calcaneofibularligament.

Legend: arrowheads, calcaneofibular ligament; LM, lateral malleolus; pb, peroneus brevis tendon; pl, peroneus longus tendon

Calcaneus LM

plpbpl

pb

Calcaneus LM

!"#$%&'%(#&)&'*&)+,!%(,& !!$"#

/!,/!"$'*&)+,!%(,& !!$"#

4From the position described at point-3 (first sentence), keep the posterior edge of the transducer on the lateral malleolus and rotate its anterior edge upwards to image the anterior tibiofibular ligament. The transducer will pass over a part of the talar cartilage, which lies in between the anterior talofibular ligament and the anterior tibiofibular ligament.

3

Ankle

LMTibia

Legend: arrowheads, anterior tibiofibular ligament; LM, lateral malleolus

5With the ankle lying on its medial aspect, place the transducer in an oblique coronal plane with its superior edge over the tip of the lateral malleolus and its inferior margin slightly posterior to it, towards the heel, while the foot is dorsiflexed to image the calcaneofibularligament.

Legend: arrowheads, calcaneofibular ligament; LM, lateral malleolus; pb, peroneus brevis tendon; pl, peroneus longus tendon

Calcaneus LM

plpbpl

pb

Calcaneus LM

!"#$%&'%(#&)&'*&)+,!%(,& !!$"#

/!,/!"$'*&)+,!%(,& !!$"#

4From the position described at point-3 (first sentence), keep the posterior edge of the transducer on the lateral malleolus and rotate its anterior edge upwards to image the anterior tibiofibular ligament. The transducer will pass over a part of the talar cartilage, which lies in between the anterior talofibular ligament and the anterior tibiofibular ligament.

3

Ankle

LMTibia

Legend: arrowheads, anterior tibiofibular ligament; LM, lateral malleolus

5With the ankle lying on its medial aspect, place the transducer in an oblique coronal plane with its superior edge over the tip of the lateral malleolus and its inferior margin slightly posterior to it, towards the heel, while the foot is dorsiflexed to image the calcaneofibularligament.

Legend: arrowheads, calcaneofibular ligament; LM, lateral malleolus; pb, peroneus brevis tendon; pl, peroneus longus tendon

Calcaneus LM

plpbpl

pb

Calcaneus LM

!"#$%&'%(#&)&'*&)+,!%(,& !!$"#

/!,/!"$'*&)+,!%(,& !!$"#

Ligamento Calcáneofibular Dorsiflexión

Page 33: Ultrasonido de tobillo anatomía

Lesión parcial del CFL.

170 January-February 2015 radiographics.rsna.org

almost parallel to the sole of the foot (Fig 4b). The anterior talofibular ligament can be seen as a hyperechoic fibrillar band in tension between the lateral malleolus and the talus (Movie 2 [online]). The functionality of the anterior talofibular liga-ment can be tested by using the anterior drawer test. This test consists of stressing the plantar flexion and internal rotation of the foot. This may help to differentiate partial- from full-thickness tears by separating the stumps of a torn ligament (Movie 3 [online]).

From the position used to evaluate the ante-rior talofibular ligament, one edge of the probe should be held over the lateral malleolus and the other edge should be rotated cranially to image the anterior inferior TFL along its major axis (Fig 1b). At this position, the anterior inferior TFL can be seen as a short, thick, hyperechoic fibrillar band extending from the fibular malleolus to the anterior aspect of the tibia. Dynamic evaluation of the anterior inferior TFL may be performed while placing the ligament in tension with dorsi-flexion and varus positioning (Movie 4 [online]). The anterior inferior TFL and the anterior talo-fibular ligament can be easily differentiated on the basis of their anatomic orientations.

To image the CFL, from the position used to image the anterior inferior TFL, one edge

of the probe should be held over the tip of the lateral malleolus and the probe should be ro-tated caudad to reach a coronal plane, with the distal edge of the probe slightly posterior to the lateral malleolus (Fig 7b). The CFL has a concave course, which makes its evaluation par-ticularly challenging. Forced dorsiflexion of the foot tightens the CFL, making it straighter and more perpendicular to the US beam (Movie 5 [online]), thus allowing optimal visibility. On its long axis, the CFL is visualized as a thick hyper-echoic fibrillar band extending from the inferior aspect of the lateral malleolus to the lateral sur-face of the calcaneus. In some cases, short-axis evaluation of the CFL may be helpful (32). In short-axis evaluation, the ligament is seen as an oval-shaped structure located deep under the peroneal tendons, with an echogenicity that may vary according to the orientation of the US beam. When the CFL is continuous, forced dorsiflexion of the foot displaces the peroneal

Figure 7. CFL. This ligament originates from the lateral mal-leolar tip and inserts on the lateral surface of the calcaneus. (a) Schematic drawing of the CFL anatomic structure. (b) Probe po-sitioning on the lateral ankle. (c) US scan of the CFL (arrowheads). C = calcaneus. F = fibula, PBT = peroneus brevis tendon, PLT = peroneus longus tendon.

Figure 8. US scan shows a partial tear of the CFL. The ligament appears inhomogeneous and hy-poechoic (arrowheads), with periligamentous effu-sion (*). C = calcaneus, F = fibula, PBT = peroneus bre-vis tendon, PLT = peroneus longus tendon, Ta = talus.

Page 34: Ultrasonido de tobillo anatomía

• Origen: Cabeza y los dos tercios superiores de la fíbula lateral.

• Inserción: Base del primer metatarsiano y cuneiforme medial.

• Función: Eversión y Flexión plantar del pie.

PERONEO LARGOS

UB

AS

H K

C/N

MC

-15T

H/2

014

Page 35: Ultrasonido de tobillo anatomía

• Origen: Dos tercios inferiores de la fíbula lateral.

• Inserción: Base Dorsolateral del 5o metatarsiano.

• Función: Eversión del pie.

PERONEO CORTOS

UB

AS

H K

C/N

MC

-15T

H/2

014

Page 36: Ultrasonido de tobillo anatomía

6Look at the following midtarsal ligaments: dorsal talonavicular, dorsal calcaneocuboid and calca-neo-cuboido-navicular ligament (avulsion of the anterolateral tu-bercle of the calcaneus).

4

Ankle

Legend: arrowheads, dorsal talonavi-cular ligament; NAV, navicular bone

NAVTalus

7Behind the lateral malleolus, place the transducer over the peroneal tendons to examine them in their short-axis (long-axis planes are of limited utility). Because these tendons arc around the malleolus, tilt the transducer to maintain the US beam perpendicular to them and avoid anisotropy as scanning progresses. Continue to follow these tendons upwards for approximately 5 cm and downwards through the inframalleolar region.

LM

LM!" pbm pbm

Check them at the level of the peroneal tubercle of calcaneus, and the peroneus longus down to the area where the os peroneum can be found. Follow the peroneus brevis until the base of the 5th metatarsal. Look at the superior and inferior peroneal retinacula.

#

Legend: arrowheads, peroneus brevis tendon; curved arrows, superior extensor retinaculum; LM, lateral malleolus; pbm, peroneus brevis muscle; void arrow, peroneal tubercle; white arrow, peroneus longus tendon

When intermittent subluxation of the peroneals is suspected clinically, perform scanning at rest and during dorsiflexion and eversion of the foot against resistance, placing the transducer in a transverse plane over them, at the level of the lateral malleolus. Stress eversion can be done while pushing with the examiner’s free hand on the forefoot of the patient, to see subtle subluxation or distension of the superior retinaculum.

$%&'!()!+$,!&'!()(+ !!./,'

0123410)156037)".&%/.!(),./$%/'

! "

#

6Look at the following midtarsal ligaments: dorsal talonavicular, dorsal calcaneocuboid and calca-neo-cuboido-navicular ligament (avulsion of the anterolateral tu-bercle of the calcaneus).

4

Ankle

Legend: arrowheads, dorsal talonavi-cular ligament; NAV, navicular bone

NAVTalus

7Behind the lateral malleolus, place the transducer over the peroneal tendons to examine them in their short-axis (long-axis planes are of limited utility). Because these tendons arc around the malleolus, tilt the transducer to maintain the US beam perpendicular to them and avoid anisotropy as scanning progresses. Continue to follow these tendons upwards for approximately 5 cm and downwards through the inframalleolar region.

LM

LM!" pbm pbm

Check them at the level of the peroneal tubercle of calcaneus, and the peroneus longus down to the area where the os peroneum can be found. Follow the peroneus brevis until the base of the 5th metatarsal. Look at the superior and inferior peroneal retinacula.

#

Legend: arrowheads, peroneus brevis tendon; curved arrows, superior extensor retinaculum; LM, lateral malleolus; pbm, peroneus brevis muscle; void arrow, peroneal tubercle; white arrow, peroneus longus tendon

When intermittent subluxation of the peroneals is suspected clinically, perform scanning at rest and during dorsiflexion and eversion of the foot against resistance, placing the transducer in a transverse plane over them, at the level of the lateral malleolus. Stress eversion can be done while pushing with the examiner’s free hand on the forefoot of the patient, to see subtle subluxation or distension of the superior retinaculum.

$%&'!()!+$,!&'!()(+ !!./,'

0123410)156037)".&%/.!(),./$%/'

! "

#

TENDONES PERONÉOS

6Look at the following midtarsal ligaments: dorsal talonavicular, dorsal calcaneocuboid and calca-neo-cuboido-navicular ligament (avulsion of the anterolateral tu-bercle of the calcaneus).

4

Ankle

Legend: arrowheads, dorsal talonavi-cular ligament; NAV, navicular bone

NAVTalus

7Behind the lateral malleolus, place the transducer over the peroneal tendons to examine them in their short-axis (long-axis planes are of limited utility). Because these tendons arc around the malleolus, tilt the transducer to maintain the US beam perpendicular to them and avoid anisotropy as scanning progresses. Continue to follow these tendons upwards for approximately 5 cm and downwards through the inframalleolar region.

LM

LM!" pbm pbm

Check them at the level of the peroneal tubercle of calcaneus, and the peroneus longus down to the area where the os peroneum can be found. Follow the peroneus brevis until the base of the 5th metatarsal. Look at the superior and inferior peroneal retinacula.

#

Legend: arrowheads, peroneus brevis tendon; curved arrows, superior extensor retinaculum; LM, lateral malleolus; pbm, peroneus brevis muscle; void arrow, peroneal tubercle; white arrow, peroneus longus tendon

When intermittent subluxation of the peroneals is suspected clinically, perform scanning at rest and during dorsiflexion and eversion of the foot against resistance, placing the transducer in a transverse plane over them, at the level of the lateral malleolus. Stress eversion can be done while pushing with the examiner’s free hand on the forefoot of the patient, to see subtle subluxation or distension of the superior retinaculum.

$%&'!()!+$,!&'!()(+ !!./,'

0123410)156037)".&%/.!(),./$%/'

! "

#

Page 37: Ultrasonido de tobillo anatomía

6Look at the following midtarsal ligaments: dorsal talonavicular, dorsal calcaneocuboid and calca-neo-cuboido-navicular ligament (avulsion of the anterolateral tu-bercle of the calcaneus).

4

Ankle

Legend: arrowheads, dorsal talonavi-cular ligament; NAV, navicular bone

NAVTalus

7Behind the lateral malleolus, place the transducer over the peroneal tendons to examine them in their short-axis (long-axis planes are of limited utility). Because these tendons arc around the malleolus, tilt the transducer to maintain the US beam perpendicular to them and avoid anisotropy as scanning progresses. Continue to follow these tendons upwards for approximately 5 cm and downwards through the inframalleolar region.

LM

LM!" pbm pbm

Check them at the level of the peroneal tubercle of calcaneus, and the peroneus longus down to the area where the os peroneum can be found. Follow the peroneus brevis until the base of the 5th metatarsal. Look at the superior and inferior peroneal retinacula.

#

Legend: arrowheads, peroneus brevis tendon; curved arrows, superior extensor retinaculum; LM, lateral malleolus; pbm, peroneus brevis muscle; void arrow, peroneal tubercle; white arrow, peroneus longus tendon

When intermittent subluxation of the peroneals is suspected clinically, perform scanning at rest and during dorsiflexion and eversion of the foot against resistance, placing the transducer in a transverse plane over them, at the level of the lateral malleolus. Stress eversion can be done while pushing with the examiner’s free hand on the forefoot of the patient, to see subtle subluxation or distension of the superior retinaculum.

$%&'!()!+$,!&'!()(+ !!./,'

0123410)156037)".&%/.!(),./$%/'

! "

#

6Look at the following midtarsal ligaments: dorsal talonavicular, dorsal calcaneocuboid and calca-neo-cuboido-navicular ligament (avulsion of the anterolateral tu-bercle of the calcaneus).

4

Ankle

Legend: arrowheads, dorsal talonavi-cular ligament; NAV, navicular bone

NAVTalus

7Behind the lateral malleolus, place the transducer over the peroneal tendons to examine them in their short-axis (long-axis planes are of limited utility). Because these tendons arc around the malleolus, tilt the transducer to maintain the US beam perpendicular to them and avoid anisotropy as scanning progresses. Continue to follow these tendons upwards for approximately 5 cm and downwards through the inframalleolar region.

LM

LM!" pbm pbm

Check them at the level of the peroneal tubercle of calcaneus, and the peroneus longus down to the area where the os peroneum can be found. Follow the peroneus brevis until the base of the 5th metatarsal. Look at the superior and inferior peroneal retinacula.

#

Legend: arrowheads, peroneus brevis tendon; curved arrows, superior extensor retinaculum; LM, lateral malleolus; pbm, peroneus brevis muscle; void arrow, peroneal tubercle; white arrow, peroneus longus tendon

When intermittent subluxation of the peroneals is suspected clinically, perform scanning at rest and during dorsiflexion and eversion of the foot against resistance, placing the transducer in a transverse plane over them, at the level of the lateral malleolus. Stress eversion can be done while pushing with the examiner’s free hand on the forefoot of the patient, to see subtle subluxation or distension of the superior retinaculum.

$%&'!()!+$,!&'!()(+ !!./,'

0123410)156037)".&%/.!(),./$%/'

! "

#

Page 38: Ultrasonido de tobillo anatomía

• COMPARTIMIENTO MEDIAL• Ligamento Deltoideo.

• Arteria y Nervio Tibial Posterior.

• Tibial posterior (TOM), Flexor del Hallux (HARRY) y Flexor de los dedos (DICK) (orden supramaleolar).

Page 39: Ultrasonido de tobillo anatomía

TENDONES DEL COMPARTIMIENTO MEDIAL.

Page 40: Ultrasonido de tobillo anatomía

• Origen: En la membrana interósea y la superficie posterior de la tibia y el peroné.

• Inserción: Navicular, Cuneiforme medial, base del 2, 3 y 4o metatarsianos.

• Función: Inversión y Flexión plantar.

TIBIAL POSTERIOR

SU

BA

SH

KC

/NM

C-1

5TH

/201

4

Page 41: Ultrasonido de tobillo anatomía

• Origen: Tibia medial y posterior y sobre la aponeurosis de la fíbula.

• Inserción: Base de las falanges distales del 2o al 5o dedo.

• Función: Flexión de los 4to dedos.

FLEXOR LARGO DE LOS DEDOS

SU

BA

SH

KC

/NM

C-1

5TH

/201

4

Page 42: Ultrasonido de tobillo anatomía

• Origen: Fibula posterior e inferior y la membrana interósea.

• Inserción: Base de la falange distal del Hallux.

FLEXOR LARGO DEL HALLUX

SU

BA

SH

KC

/NM

C-1

5TH

/201

4

Page 43: Ultrasonido de tobillo anatomía

8For examination of the medial ankle, the patient is seated with the plantar surface of the foot rolled internally or in a “frog-leg”position. Alternatively, the patient may lie supine with the foot rotated slightly laterally. A small pillow under the lateral malleo-lus may help to improve the contact between transducer and skin over the medial ankle. The examination of tendons is per-formed first.

5

Ankle

Legend: a, tibialis posterior artery; MM, medial malleolus; v, posterior tibial veins; void arrowheads, flexor digitorum longus tendon; white arrowheads, flexor retinaculum; white arrows, tibialis posterior tendon

Behind the medial malleolus, place the transducer over the short-axis of the tibialis posterior and the flexor digitorum longus tendons. Follow the tibialis posterior from the myotendin-ous junction down to its insertion on short-axis planes. Check the presen-ce of an accessory navicular bone on long-axis scans over the insertion of the tibialis posterior.

!##

#$$

9Examine the flexor digitorum longus tendon down to reach the sustentaculum tali. Look at the flexor retinaculum, the posterior tibial vessels and the tibial nerve with its divisional branches (medial and lateral plantar nerves). Compression may help to assess whether the veins are patent.

Legend: AbdH, abductor hallucis muscle; curved arrow, tibial nerve; fhl, flexor hallucis longus tendon; ST, sustentaculum tali; straight arrows, flexor digitorum longus tendon; void arrowhead, posterior tibial artery; white arrowheads, posteiror tibial veins

%% %%&'( &'(

)*+&

$-./)01)230-4156*6!(671"975:;69;1!<+1&(:=9;1+6 659;?!1(9< ?715:<+9<7

5!;7!(15?<<:(1!<+156*6!(1<:;#:

TENDONES DEL COMPARTIMIENTO FLEXOR

8For examination of the medial ankle, the patient is seated with the plantar surface of the foot rolled internally or in a “frog-leg”position. Alternatively, the patient may lie supine with the foot rotated slightly laterally. A small pillow under the lateral malleo-lus may help to improve the contact between transducer and skin over the medial ankle. The examination of tendons is per-formed first.

5

Ankle

Legend: a, tibialis posterior artery; MM, medial malleolus; v, posterior tibial veins; void arrowheads, flexor digitorum longus tendon; white arrowheads, flexor retinaculum; white arrows, tibialis posterior tendon

Behind the medial malleolus, place the transducer over the short-axis of the tibialis posterior and the flexor digitorum longus tendons. Follow the tibialis posterior from the myotendin-ous junction down to its insertion on short-axis planes. Check the presen-ce of an accessory navicular bone on long-axis scans over the insertion of the tibialis posterior.

!##

#$$

9Examine the flexor digitorum longus tendon down to reach the sustentaculum tali. Look at the flexor retinaculum, the posterior tibial vessels and the tibial nerve with its divisional branches (medial and lateral plantar nerves). Compression may help to assess whether the veins are patent.

Legend: AbdH, abductor hallucis muscle; curved arrow, tibial nerve; fhl, flexor hallucis longus tendon; ST, sustentaculum tali; straight arrows, flexor digitorum longus tendon; void arrowhead, posterior tibial artery; white arrowheads, posteiror tibial veins

%% %%&'( &'(

)*+&

$-./)01)230-4156*6!(671"975:;69;1!<+1&(:=9;1+6 659;?!1(9< ?715:<+9<7

5!;7!(15?<<:(1!<+156*6!(1<:;#:

Page 44: Ultrasonido de tobillo anatomía

ARTERIA TIBIAL POSTERIOR Y NERVIO TIBIAL

8For examination of the medial ankle, the patient is seated with the plantar surface of the foot rolled internally or in a “frog-leg”position. Alternatively, the patient may lie supine with the foot rotated slightly laterally. A small pillow under the lateral malleo-lus may help to improve the contact between transducer and skin over the medial ankle. The examination of tendons is per-formed first.

5

Ankle

Legend: a, tibialis posterior artery; MM, medial malleolus; v, posterior tibial veins; void arrowheads, flexor digitorum longus tendon; white arrowheads, flexor retinaculum; white arrows, tibialis posterior tendon

Behind the medial malleolus, place the transducer over the short-axis of the tibialis posterior and the flexor digitorum longus tendons. Follow the tibialis posterior from the myotendin-ous junction down to its insertion on short-axis planes. Check the presen-ce of an accessory navicular bone on long-axis scans over the insertion of the tibialis posterior.

!##

#$$

9Examine the flexor digitorum longus tendon down to reach the sustentaculum tali. Look at the flexor retinaculum, the posterior tibial vessels and the tibial nerve with its divisional branches (medial and lateral plantar nerves). Compression may help to assess whether the veins are patent.

Legend: AbdH, abductor hallucis muscle; curved arrow, tibial nerve; fhl, flexor hallucis longus tendon; ST, sustentaculum tali; straight arrows, flexor digitorum longus tendon; void arrowhead, posterior tibial artery; white arrowheads, posteiror tibial veins

%% %%&'( &'(

)*+&

$-./)01)230-4156*6!(671"975:;69;1!<+1&(:=9;1+6 659;?!1(9< ?715:<+9<7

5!;7!(15?<<:(1!<+156*6!(1<:;#:

8For examination of the medial ankle, the patient is seated with the plantar surface of the foot rolled internally or in a “frog-leg”position. Alternatively, the patient may lie supine with the foot rotated slightly laterally. A small pillow under the lateral malleo-lus may help to improve the contact between transducer and skin over the medial ankle. The examination of tendons is per-formed first.

5

Ankle

Legend: a, tibialis posterior artery; MM, medial malleolus; v, posterior tibial veins; void arrowheads, flexor digitorum longus tendon; white arrowheads, flexor retinaculum; white arrows, tibialis posterior tendon

Behind the medial malleolus, place the transducer over the short-axis of the tibialis posterior and the flexor digitorum longus tendons. Follow the tibialis posterior from the myotendin-ous junction down to its insertion on short-axis planes. Check the presen-ce of an accessory navicular bone on long-axis scans over the insertion of the tibialis posterior.

!##

#$$

9Examine the flexor digitorum longus tendon down to reach the sustentaculum tali. Look at the flexor retinaculum, the posterior tibial vessels and the tibial nerve with its divisional branches (medial and lateral plantar nerves). Compression may help to assess whether the veins are patent.

Legend: AbdH, abductor hallucis muscle; curved arrow, tibial nerve; fhl, flexor hallucis longus tendon; ST, sustentaculum tali; straight arrows, flexor digitorum longus tendon; void arrowhead, posterior tibial artery; white arrowheads, posteiror tibial veins

%% %%&'( &'(

)*+&

$-./)01)230-4156*6!(671"975:;69;1!<+1&(:=9;1+6 659;?!1(9< ?715:<+9<7

5!;7!(15?<<:(1!<+156*6!(1<:;#:

8For examination of the medial ankle, the patient is seated with the plantar surface of the foot rolled internally or in a “frog-leg”position. Alternatively, the patient may lie supine with the foot rotated slightly laterally. A small pillow under the lateral malleo-lus may help to improve the contact between transducer and skin over the medial ankle. The examination of tendons is per-formed first.

5

Ankle

Legend: a, tibialis posterior artery; MM, medial malleolus; v, posterior tibial veins; void arrowheads, flexor digitorum longus tendon; white arrowheads, flexor retinaculum; white arrows, tibialis posterior tendon

Behind the medial malleolus, place the transducer over the short-axis of the tibialis posterior and the flexor digitorum longus tendons. Follow the tibialis posterior from the myotendin-ous junction down to its insertion on short-axis planes. Check the presen-ce of an accessory navicular bone on long-axis scans over the insertion of the tibialis posterior.

!##

#$$

9Examine the flexor digitorum longus tendon down to reach the sustentaculum tali. Look at the flexor retinaculum, the posterior tibial vessels and the tibial nerve with its divisional branches (medial and lateral plantar nerves). Compression may help to assess whether the veins are patent.

Legend: AbdH, abductor hallucis muscle; curved arrow, tibial nerve; fhl, flexor hallucis longus tendon; ST, sustentaculum tali; straight arrows, flexor digitorum longus tendon; void arrowhead, posterior tibial artery; white arrowheads, posteiror tibial veins

%% %%&'( &'(

)*+&

$-./)01)230-4156*6!(671"975:;69;1!<+1&(:=9;1+6 659;?!1(9< ?715:<+9<7

5!;7!(15?<<:(1!<+156*6!(1<:;#:

8For examination of the medial ankle, the patient is seated with the plantar surface of the foot rolled internally or in a “frog-leg”position. Alternatively, the patient may lie supine with the foot rotated slightly laterally. A small pillow under the lateral malleo-lus may help to improve the contact between transducer and skin over the medial ankle. The examination of tendons is per-formed first.

5

Ankle

Legend: a, tibialis posterior artery; MM, medial malleolus; v, posterior tibial veins; void arrowheads, flexor digitorum longus tendon; white arrowheads, flexor retinaculum; white arrows, tibialis posterior tendon

Behind the medial malleolus, place the transducer over the short-axis of the tibialis posterior and the flexor digitorum longus tendons. Follow the tibialis posterior from the myotendin-ous junction down to its insertion on short-axis planes. Check the presen-ce of an accessory navicular bone on long-axis scans over the insertion of the tibialis posterior.

!##

#$$

9Examine the flexor digitorum longus tendon down to reach the sustentaculum tali. Look at the flexor retinaculum, the posterior tibial vessels and the tibial nerve with its divisional branches (medial and lateral plantar nerves). Compression may help to assess whether the veins are patent.

Legend: AbdH, abductor hallucis muscle; curved arrow, tibial nerve; fhl, flexor hallucis longus tendon; ST, sustentaculum tali; straight arrows, flexor digitorum longus tendon; void arrowhead, posterior tibial artery; white arrowheads, posteiror tibial veins

%% %%&'( &'(

)*+&

$-./)01)230-4156*6!(671"975:;69;1!<+1&(:=9;1+6 659;?!1(9< ?715:<+9<7

5!;7!(15?<<:(1!<+156*6!(1<:;#:

8For examination of the medial ankle, the patient is seated with the plantar surface of the foot rolled internally or in a “frog-leg”position. Alternatively, the patient may lie supine with the foot rotated slightly laterally. A small pillow under the lateral malleo-lus may help to improve the contact between transducer and skin over the medial ankle. The examination of tendons is per-formed first.

5

Ankle

Legend: a, tibialis posterior artery; MM, medial malleolus; v, posterior tibial veins; void arrowheads, flexor digitorum longus tendon; white arrowheads, flexor retinaculum; white arrows, tibialis posterior tendon

Behind the medial malleolus, place the transducer over the short-axis of the tibialis posterior and the flexor digitorum longus tendons. Follow the tibialis posterior from the myotendin-ous junction down to its insertion on short-axis planes. Check the presen-ce of an accessory navicular bone on long-axis scans over the insertion of the tibialis posterior.

!##

#$$

9Examine the flexor digitorum longus tendon down to reach the sustentaculum tali. Look at the flexor retinaculum, the posterior tibial vessels and the tibial nerve with its divisional branches (medial and lateral plantar nerves). Compression may help to assess whether the veins are patent.

Legend: AbdH, abductor hallucis muscle; curved arrow, tibial nerve; fhl, flexor hallucis longus tendon; ST, sustentaculum tali; straight arrows, flexor digitorum longus tendon; void arrowhead, posterior tibial artery; white arrowheads, posteiror tibial veins

%% %%&'( &'(

)*+&

$-./)01)230-4156*6!(671"975:;69;1!<+1&(:=9;1+6 659;?!1(9< ?715:<+9<7

5!;7!(15?<<:(1!<+156*6!(1<:;#:

Con Compresión

Page 45: Ultrasonido de tobillo anatomía

• TIBIONAVICULAR.

• TIBIOCALCÁNEO.

• TIBIOTALAR (ANTERIOR Y POSTERIOR).

LIGAMENTO DELTOIDEO

Tabla 1. Comparación de nomenclaturas de los componentes del ligamento colateral medial (LCM) sugeridas por Sarrafian11 y Milner y Soames41

Milner y Soames41 Sarrafian11

Capa superficial Capa superficialLigamento tibiospring (constante) Fascículo tibioligamentosoLigamento tibioescafoideo (constante) Fascículo tibioescafoideo + fascículo tibioastragalino anterior superficialLigamento tibioastragalino posterior superficial (inconstante) Fascículo tibioastragalino posterior superficialLigamento tibiocalcáneo (inconstante) Fascículo tibiocalcáneo

Capa profunda Capa profundaLigamento tibioastragalino posterior profundo (constante) Fascículo tibioastragalino posterior profundoLigamento tibioastragalino anterior profundo (inconstante) Fascículo tibioastragalino anterior profundo

profundo11,39,41,42. Los ligamentos que componen el planosuperficial cruzan dos articulaciones, la del tobillo y la sub-talar, mientras que los que forman el plano profundo sólo lohacen para la articulación del tobillo41, aunque esta diferen-ciación no es del todo clara39,43.

Para la descripción de los componentes del LCM segui-remos la propuesta por Milner y Soames41 y posteriormentecorroborada por Boss y Hintermann39(fig. 8). Seis bandas ocomponentes del LCM fueron observadas en 40 diseccionesosteoarticulares: tres de ellas fueron halladas constantemente(el ligamento tibiospring, el ligamento tibionavicular y el li-gamento tibiotalar posterior profundo) y tres inconstantemen-te (ligamento tibiotalar posterior superficial, ligamento tibio-calcáneo y el ligamento tibiotalar anterior profundo) (tabla 1).

Para comprender adecuadamente los orígenes del LCMes necesario recordar la morfología del maléolo tibial. Si és-te es observado en visión medial, podremos distinguir doszonas o segmentos (colliculi) separados por una escotaduraintercullicular, de unos 0,5-1 cm de longitud. El segmentoanterior o colliculus anterior desciende unos 0,5 cm másque el segmento posterior o colliculus posterior11. Utilizare-mos esta nomenclatura, ya que la terminología anatómicainternacional7,8 no contempla estos detalles anatómicos y

por que es utilizada por la mayoría de autores en sus des-cripciones anatómicas (fig. 9).

Componentes constantes

Ligamento tibiospring. Raramente descrito en la biblio-grafía a pesar de su importante papel en la estabilidad deltobillo40. Es el ligamento más superficial y el más perpendi-cular de todos, y se origina en el maléolo tibial para inser-tarse en el borde superior del ligamento calcaneonavicularsuperomedial. Denominado así por Siegler et al40, como fas-cículo tibioligamentoso por Sarrafian11, y también como li-gamento tibiocalcáneo42,44, no diferenciando estos autoresambos ligamentos.

Ligamento tibionavicular. Forma la parte más anteriordel LCM. Se origina en el borde anterior del colliculus ante-rior de la tibia y se inserta en zona dorsomedial del navicu-lar fusionándose algunas de sus fibras con el ligamento cal-caneonavicular superomedial45. Sarrafian11 divide esteligamento en dos, el tibionavicular y el tibiotalar anteriorsuperficial. Aunque se acepta que el ligamento tibionavicu-lar puede tener inserciones en el astrágalo, para Milner y

Golanó P, et al. Anatomía de los ligamentos del tobillo

42 Rev Ortop Traumatol 2004;48(Supl. 3):35-44

Figura 9. Visión lateral de la epífisis distal de la tibia derecha. 1. Co-lliculus anterior. 2. Colliculus posterior. 3. Escotadura intercollicular.4. Escotadura peronea.

Figura 8. Representación esquemática de los componentes constantesdel ligamento colateral medial descritos por Milner y Soames41. 1. Li-gamento tibiospring. 2. Ligamento tibionavicular. 3. Ligamento tibiota-lar posterior profundo. 4. Ligamento calcaneonavicular superomedial.

Documento descargado de http://www.elsevier.es el 26/03/2016. Copia para uso personal, se prohíbe la transmisión de este documento por cualquier medio o formato.

Page 46: Ultrasonido de tobillo anatomía

• Capa superficial.

• El ligamento tibionavicular se origina del borde anterior del colículo del maléolo medial y se inserta en el aspecto dorsomedial del hueso navicular.

Page 47: Ultrasonido de tobillo anatomía

RG • Volume 35 Number 1 Sconfienza et al 171

Figure 9. Tibionavicular ligament. This ligament originates from the anterior border of the anterior colliculus of the medial malleolus and inserts on the dorsomedial aspect of the navicular. (a) Schematic drawing of the tibionavicular ligament anatomic structure. (b) Probe positioning on the medial ankle. (c) US scan of the tibi-onavicular ligament (arrowheads). N = navicular, Ta = talus, Ti = tibia.

tendons superficially. This is an indirect sign of continuity of the CFL. If displacement is absent and the peroneal tendons do not move during this test, a complete CFL tear can be diagnosed reliably (11). During forced foot dorsiflexion, fluid effusion may cause distention of the lateral talocalcaneal recess (Movie 6 [online]).

Medial Collateral Ligament ComplexThe medial collateral ligament in the ankle, also known as the deltoid ligament, is a strong liga-mentous complex with various components. Al-though the anatomic description of this ligament varies widely among different authors (6–8), there is general agreement that the medial col-lateral ligament consists of two distinct layers. A deep layer extends from the medial malleolus to the talus and consists of the anterior and poste-rior tibiotalar ligaments. A triangular superficial layer extends from the medial malleolus to the navicular bone, the spring ligament, and the calcaneus and consists of the tibionavicular liga-ment, the tibiospring ligament, and the tibiocal-caneal ligament (51). The deep layer is stronger and more important for ankle stability than the superficial layer. In addition, the interlacing of the tibiospring ligament, the tibionavicular liga-ment, and the spring ligament complex supports the talar head and stabilizes the talocalcaneo-navicular joint. During ankle motion, all parts

of the deltoid ligament act as a unit providing support to the ankle. Insufficiency of the medial collateral ligament may lead to osteoarthritis in the ankle joint (51).

Lesions of the deltoid ligament occur during severe eversion injuries and are usually associ-ated with fractures of the lateral malleolus and with lateral displacement of the talus. Less com-monly, deltoid ligament injuries are observed in association with avulsion fractures of the medial malleolus at the site of attachment of its superficial portion. Rupture of the deltoid liga-ment is rarely encountered without additional injuries to the ankle, owing to the uncommon occurrence of eversion ankle sprains and to the intrinsic thickness of the ligament (14). Thus, US is not usually used alone in the evaluation of such traumatic events. However, it can be help-ful for differentiating a ligamentous injury from a lesion of the adjacent posterior tibial tendon, because both conditions manifest with similar symptoms. Focal changes of the deltoid liga-ment are more frequent than are full-thickness tears. Of note, because of the multilayered ap-pearance of the ligament, detection of focal changes in the ligament may be particularly challenging. In full-thickness tears, findings in-clude ligament interruption, soft tissue edema, and hematoma. Inability to detect the ligament may be a sign of a complete tear, although not all fascicles of the ligament are always present or visible, even in individuals with normal ankles. In these cases, MR imaging should be used to show the injury and to help detect the presence of possible associated findings.

Superficial Layer.—The tibionavicular ligament originates from the anterior border of the anterior colliculus of the medial malleolus and inserts on the dorsomedial aspect of the navicular bone (Fig 9). Some fibers may extend to the superomedial

RG • Volume 35 Number 1 Sconfienza et al 171

Figure 9. Tibionavicular ligament. This ligament originates from the anterior border of the anterior colliculus of the medial malleolus and inserts on the dorsomedial aspect of the navicular. (a) Schematic drawing of the tibionavicular ligament anatomic structure. (b) Probe positioning on the medial ankle. (c) US scan of the tibi-onavicular ligament (arrowheads). N = navicular, Ta = talus, Ti = tibia.

tendons superficially. This is an indirect sign of continuity of the CFL. If displacement is absent and the peroneal tendons do not move during this test, a complete CFL tear can be diagnosed reliably (11). During forced foot dorsiflexion, fluid effusion may cause distention of the lateral talocalcaneal recess (Movie 6 [online]).

Medial Collateral Ligament ComplexThe medial collateral ligament in the ankle, also known as the deltoid ligament, is a strong liga-mentous complex with various components. Al-though the anatomic description of this ligament varies widely among different authors (6–8), there is general agreement that the medial col-lateral ligament consists of two distinct layers. A deep layer extends from the medial malleolus to the talus and consists of the anterior and poste-rior tibiotalar ligaments. A triangular superficial layer extends from the medial malleolus to the navicular bone, the spring ligament, and the calcaneus and consists of the tibionavicular liga-ment, the tibiospring ligament, and the tibiocal-caneal ligament (51). The deep layer is stronger and more important for ankle stability than the superficial layer. In addition, the interlacing of the tibiospring ligament, the tibionavicular liga-ment, and the spring ligament complex supports the talar head and stabilizes the talocalcaneo-navicular joint. During ankle motion, all parts

of the deltoid ligament act as a unit providing support to the ankle. Insufficiency of the medial collateral ligament may lead to osteoarthritis in the ankle joint (51).

Lesions of the deltoid ligament occur during severe eversion injuries and are usually associ-ated with fractures of the lateral malleolus and with lateral displacement of the talus. Less com-monly, deltoid ligament injuries are observed in association with avulsion fractures of the medial malleolus at the site of attachment of its superficial portion. Rupture of the deltoid liga-ment is rarely encountered without additional injuries to the ankle, owing to the uncommon occurrence of eversion ankle sprains and to the intrinsic thickness of the ligament (14). Thus, US is not usually used alone in the evaluation of such traumatic events. However, it can be help-ful for differentiating a ligamentous injury from a lesion of the adjacent posterior tibial tendon, because both conditions manifest with similar symptoms. Focal changes of the deltoid liga-ment are more frequent than are full-thickness tears. Of note, because of the multilayered ap-pearance of the ligament, detection of focal changes in the ligament may be particularly challenging. In full-thickness tears, findings in-clude ligament interruption, soft tissue edema, and hematoma. Inability to detect the ligament may be a sign of a complete tear, although not all fascicles of the ligament are always present or visible, even in individuals with normal ankles. In these cases, MR imaging should be used to show the injury and to help detect the presence of possible associated findings.

Superficial Layer.—The tibionavicular ligament originates from the anterior border of the anterior colliculus of the medial malleolus and inserts on the dorsomedial aspect of the navicular bone (Fig 9). Some fibers may extend to the superomedial

LIGAMENTO TIBIONAVICULAR

Page 48: Ultrasonido de tobillo anatomía

• El ligamento tibiocalcáneo se origina del aspecto medial del colículo anterior del maléolo medial, desciende verticalmente y se inserta en el borde medial del sustentaculum tali.

Page 49: Ultrasonido de tobillo anatomía

172 January-February 2015 radiographics.rsna.org

Figure 10. Tibiospring ligament. This ligament connects the anterior malleolar colliculus to the superior border of the superomedial spring ligament (SL). (a) Schematic drawing of the tibiospring ligament ana-tomic structure. (b) Probe positioning on the medial ankle. (c) US scan of the tibiospring ligament (arrowheads). C = calcaneus, SL = spring ligament, Ti = tibia.

Figure 11. Tibiocalcaneal ligament. This ligament originates from the me-dial aspect of the anterior colliculus of the medial malleolus, descends verti-cally, and inserts on the medial border of the sustentaculum tali. (a) Schematic drawing of the tibiocalcaneal ligament anatomic structure. (b) Probe position-ing on the medial ankle. (c) US scan of the tibiocalcaneal ligament (arrow-heads). C = calcaneus, PTT = posterior tibial tendon, T = tibia.

just distal to the anterior part of the medial talar articular surface. Its absence can be attributed to a normal anatomic variance (Fig 13) (52).

The posterior tibiotalar ligament is the thick-est of the medial ligaments of the ankle. This ligament originates from the upper segment of the posterior surface of the anterior colliculus, the intercollicular groove, and the surface of the posterior colliculus of the medial malleolus.

portion of the spring ligament. The tibionavicular ligament has been reported to be present in ap-proximately 55% of the general population (52).

The tibiospring ligament connects the ante-rior malleolar colliculus to the superior border of the superomedial portion of the spring liga-ment (Fig 10) (52).

The tibiocalcaneal ligament originates from the medial aspect of the anterior colliculus of the medial malleolus, descends vertically, and inserts on the medial border of the sustentaculum tali (Fig 11). This ligament has been reported to be present in approximately 88% of the general population (52). A partial tear of the tibiocalca-neal ligament is shown in Figure 12.

Deep Layer.—The anterior tibiotalar ligament is a very thin ligament. It originates from the tip of the anterior colliculus and the anterior part of the intercollicular groove of the medial malleolus and inserts on the medial surface of the talus

172 January-February 2015 radiographics.rsna.org

Figure 10. Tibiospring ligament. This ligament connects the anterior malleolar colliculus to the superior border of the superomedial spring ligament (SL). (a) Schematic drawing of the tibiospring ligament ana-tomic structure. (b) Probe positioning on the medial ankle. (c) US scan of the tibiospring ligament (arrowheads). C = calcaneus, SL = spring ligament, Ti = tibia.

Figure 11. Tibiocalcaneal ligament. This ligament originates from the me-dial aspect of the anterior colliculus of the medial malleolus, descends verti-cally, and inserts on the medial border of the sustentaculum tali. (a) Schematic drawing of the tibiocalcaneal ligament anatomic structure. (b) Probe position-ing on the medial ankle. (c) US scan of the tibiocalcaneal ligament (arrow-heads). C = calcaneus, PTT = posterior tibial tendon, T = tibia.

just distal to the anterior part of the medial talar articular surface. Its absence can be attributed to a normal anatomic variance (Fig 13) (52).

The posterior tibiotalar ligament is the thick-est of the medial ligaments of the ankle. This ligament originates from the upper segment of the posterior surface of the anterior colliculus, the intercollicular groove, and the surface of the posterior colliculus of the medial malleolus.

portion of the spring ligament. The tibionavicular ligament has been reported to be present in ap-proximately 55% of the general population (52).

The tibiospring ligament connects the ante-rior malleolar colliculus to the superior border of the superomedial portion of the spring liga-ment (Fig 10) (52).

The tibiocalcaneal ligament originates from the medial aspect of the anterior colliculus of the medial malleolus, descends vertically, and inserts on the medial border of the sustentaculum tali (Fig 11). This ligament has been reported to be present in approximately 88% of the general population (52). A partial tear of the tibiocalca-neal ligament is shown in Figure 12.

Deep Layer.—The anterior tibiotalar ligament is a very thin ligament. It originates from the tip of the anterior colliculus and the anterior part of the intercollicular groove of the medial malleolus and inserts on the medial surface of the talus

LIGAMENTO TIBIOCALCÁNEO

Page 50: Ultrasonido de tobillo anatomía

RG • Volume 35 Number 1 Sconfienza et al 173

Figure 12. US scan shows a partial tear of the tibiocalcaneal ligament. The proximal portion of the ligament has normal fibrillar echotexture (arrowheads). More distally, the ligament is diffusely inhomogeneous (arrow), with some periligamentous fluid effusion (*). The distal insertion of the ligament is also in-homogeneous and hypoechoic (**).

Figure 13. Anterior tibiotalar ligament. This ligament originates from the tip of the anterior colliculus and the anterior part of the intercollicular groove of the medial mal-leolus and inserts on the medial surface of the talus just distal to the anterior part of the medial talar articular surface. (a) Schematic drawing of the anterior tibiotalar ligament anatomic structure. (b) Probe positioning on the medial ankle. (c) US scan of the an-terior tibiotalar ligament (arrowheads). Ta = talus, Ti = tibia.

thus appear as relatively hypoechoic structures in the normal ankle. In particular, the tibiotalar ligament complex, because of its angulation and the fat interspersed between fascicles, is gener-ally hypoechoic at US, and its normal appear-ance could mimic a tear. In addition, the tibio-calcaneal ligament has a straight vertical course and appears as a thin hypoechoic band located deep under the posterior tibial tendon.

To increase the diagnostic capability when examining such ligaments, dynamic evaluation is recommended. Because of its triangular shape, dynamic evaluation of the deltoid ligament may be performed while creating tension in the liga-ment components selectively with dorsiflexion (ie, tension of the posterior deep tibiotalar com-ponents and laxity of the anterior superficial tibionavicular component) or plantar flexion (ie, tension of the anterior superficial tibionavicular component and laxity of the posterior deep tibio-talar components) (Movie 8 [online]).

Distally, the fibers insert on the medial surface of the talus under the tail of the articular facet around the posteromedial talar tubercle (Fig 14) (52).

Scanning Technique for the Medial Ankle.—The scanning technique for the medial ankle is shown in Movie 7 (online). The medial aspect of the ankle is examined with the patient ly-ing supine or seated with the plantar surface of the foot rolled externally or in a frog leg posi-tion. The probe is placed on the coronal plane somewhat posteriorly at the medial aspect of the palpable tibia (50). A short deep and a lon-ger superficial tibiotalar portion of the deltoid ligament are seen. When the probe is rotated anteriorly, the tibiocalcaneal ligament is seen in an intermediate superficial position and the tibionavicular ligament is seen in an anterior superficial position. At US, both the superficial and the deep bands are oblique to the probe and

Page 51: Ultrasonido de tobillo anatomía

• Capa profunda.

• El ligamento anterior tibiotalar. Es muy delgado. Se origina de la punta del colículo anterior y la parte anterior del surco intercolicular del maléolo medial y se inserta en la superficie medial del tálus.

Page 52: Ultrasonido de tobillo anatomía

RG • Volume 35 Number 1 Sconfienza et al 173

Figure 12. US scan shows a partial tear of the tibiocalcaneal ligament. The proximal portion of the ligament has normal fibrillar echotexture (arrowheads). More distally, the ligament is diffusely inhomogeneous (arrow), with some periligamentous fluid effusion (*). The distal insertion of the ligament is also in-homogeneous and hypoechoic (**).

Figure 13. Anterior tibiotalar ligament. This ligament originates from the tip of the anterior colliculus and the anterior part of the intercollicular groove of the medial mal-leolus and inserts on the medial surface of the talus just distal to the anterior part of the medial talar articular surface. (a) Schematic drawing of the anterior tibiotalar ligament anatomic structure. (b) Probe positioning on the medial ankle. (c) US scan of the an-terior tibiotalar ligament (arrowheads). Ta = talus, Ti = tibia.

thus appear as relatively hypoechoic structures in the normal ankle. In particular, the tibiotalar ligament complex, because of its angulation and the fat interspersed between fascicles, is gener-ally hypoechoic at US, and its normal appear-ance could mimic a tear. In addition, the tibio-calcaneal ligament has a straight vertical course and appears as a thin hypoechoic band located deep under the posterior tibial tendon.

To increase the diagnostic capability when examining such ligaments, dynamic evaluation is recommended. Because of its triangular shape, dynamic evaluation of the deltoid ligament may be performed while creating tension in the liga-ment components selectively with dorsiflexion (ie, tension of the posterior deep tibiotalar com-ponents and laxity of the anterior superficial tibionavicular component) or plantar flexion (ie, tension of the anterior superficial tibionavicular component and laxity of the posterior deep tibio-talar components) (Movie 8 [online]).

Distally, the fibers insert on the medial surface of the talus under the tail of the articular facet around the posteromedial talar tubercle (Fig 14) (52).

Scanning Technique for the Medial Ankle.—The scanning technique for the medial ankle is shown in Movie 7 (online). The medial aspect of the ankle is examined with the patient ly-ing supine or seated with the plantar surface of the foot rolled externally or in a frog leg posi-tion. The probe is placed on the coronal plane somewhat posteriorly at the medial aspect of the palpable tibia (50). A short deep and a lon-ger superficial tibiotalar portion of the deltoid ligament are seen. When the probe is rotated anteriorly, the tibiocalcaneal ligament is seen in an intermediate superficial position and the tibionavicular ligament is seen in an anterior superficial position. At US, both the superficial and the deep bands are oblique to the probe and

RG • Volume 35 Number 1 Sconfienza et al 173

Figure 12. US scan shows a partial tear of the tibiocalcaneal ligament. The proximal portion of the ligament has normal fibrillar echotexture (arrowheads). More distally, the ligament is diffusely inhomogeneous (arrow), with some periligamentous fluid effusion (*). The distal insertion of the ligament is also in-homogeneous and hypoechoic (**).

Figure 13. Anterior tibiotalar ligament. This ligament originates from the tip of the anterior colliculus and the anterior part of the intercollicular groove of the medial mal-leolus and inserts on the medial surface of the talus just distal to the anterior part of the medial talar articular surface. (a) Schematic drawing of the anterior tibiotalar ligament anatomic structure. (b) Probe positioning on the medial ankle. (c) US scan of the an-terior tibiotalar ligament (arrowheads). Ta = talus, Ti = tibia.

thus appear as relatively hypoechoic structures in the normal ankle. In particular, the tibiotalar ligament complex, because of its angulation and the fat interspersed between fascicles, is gener-ally hypoechoic at US, and its normal appear-ance could mimic a tear. In addition, the tibio-calcaneal ligament has a straight vertical course and appears as a thin hypoechoic band located deep under the posterior tibial tendon.

To increase the diagnostic capability when examining such ligaments, dynamic evaluation is recommended. Because of its triangular shape, dynamic evaluation of the deltoid ligament may be performed while creating tension in the liga-ment components selectively with dorsiflexion (ie, tension of the posterior deep tibiotalar com-ponents and laxity of the anterior superficial tibionavicular component) or plantar flexion (ie, tension of the anterior superficial tibionavicular component and laxity of the posterior deep tibio-talar components) (Movie 8 [online]).

Distally, the fibers insert on the medial surface of the talus under the tail of the articular facet around the posteromedial talar tubercle (Fig 14) (52).

Scanning Technique for the Medial Ankle.—The scanning technique for the medial ankle is shown in Movie 7 (online). The medial aspect of the ankle is examined with the patient ly-ing supine or seated with the plantar surface of the foot rolled externally or in a frog leg posi-tion. The probe is placed on the coronal plane somewhat posteriorly at the medial aspect of the palpable tibia (50). A short deep and a lon-ger superficial tibiotalar portion of the deltoid ligament are seen. When the probe is rotated anteriorly, the tibiocalcaneal ligament is seen in an intermediate superficial position and the tibionavicular ligament is seen in an anterior superficial position. At US, both the superficial and the deep bands are oblique to the probe and

RG • Volume 35 Number 1 Sconfienza et al 173

Figure 12. US scan shows a partial tear of the tibiocalcaneal ligament. The proximal portion of the ligament has normal fibrillar echotexture (arrowheads). More distally, the ligament is diffusely inhomogeneous (arrow), with some periligamentous fluid effusion (*). The distal insertion of the ligament is also in-homogeneous and hypoechoic (**).

Figure 13. Anterior tibiotalar ligament. This ligament originates from the tip of the anterior colliculus and the anterior part of the intercollicular groove of the medial mal-leolus and inserts on the medial surface of the talus just distal to the anterior part of the medial talar articular surface. (a) Schematic drawing of the anterior tibiotalar ligament anatomic structure. (b) Probe positioning on the medial ankle. (c) US scan of the an-terior tibiotalar ligament (arrowheads). Ta = talus, Ti = tibia.

thus appear as relatively hypoechoic structures in the normal ankle. In particular, the tibiotalar ligament complex, because of its angulation and the fat interspersed between fascicles, is gener-ally hypoechoic at US, and its normal appear-ance could mimic a tear. In addition, the tibio-calcaneal ligament has a straight vertical course and appears as a thin hypoechoic band located deep under the posterior tibial tendon.

To increase the diagnostic capability when examining such ligaments, dynamic evaluation is recommended. Because of its triangular shape, dynamic evaluation of the deltoid ligament may be performed while creating tension in the liga-ment components selectively with dorsiflexion (ie, tension of the posterior deep tibiotalar com-ponents and laxity of the anterior superficial tibionavicular component) or plantar flexion (ie, tension of the anterior superficial tibionavicular component and laxity of the posterior deep tibio-talar components) (Movie 8 [online]).

Distally, the fibers insert on the medial surface of the talus under the tail of the articular facet around the posteromedial talar tubercle (Fig 14) (52).

Scanning Technique for the Medial Ankle.—The scanning technique for the medial ankle is shown in Movie 7 (online). The medial aspect of the ankle is examined with the patient ly-ing supine or seated with the plantar surface of the foot rolled externally or in a frog leg posi-tion. The probe is placed on the coronal plane somewhat posteriorly at the medial aspect of the palpable tibia (50). A short deep and a lon-ger superficial tibiotalar portion of the deltoid ligament are seen. When the probe is rotated anteriorly, the tibiocalcaneal ligament is seen in an intermediate superficial position and the tibionavicular ligament is seen in an anterior superficial position. At US, both the superficial and the deep bands are oblique to the probe and

LIGAMENTO TIBIOTALAR ANTERIOR

Page 53: Ultrasonido de tobillo anatomía

• El ligamento tibiotalar posterior es el más grueso de los ligamentos de la región medial. Este ligamento se origina en el segmento superior de la superficie posterior del colículo anterior, y se inserta en la superficie medial del tálus por debajo de la faceta articular.

Page 54: Ultrasonido de tobillo anatomía

174 January-February 2015 radiographics.rsna.org

Figure 14. Posterior tibiotalar ligament. This ligament originates from the upper seg-ment of the posterior surface of the anterior colliculus, the intercollicular groove, and the anterior surface of the posterior colliculus of the medial malleolus. The fibers insert on the medial surface of the talus under the tail of the articular facet, up to the posteromedial talar tubercle. (a) Schematic drawing of the posterior tibiotalar ligament anatomic struc-ture. (b) Probe positioning on the medial ankle. (c) US scan of the posterior tibiotalar ligament (arrowheads). PTT = posterior tibial tendon, Ta = talus, Ti = tibia.

Figure 15. Dorsal calcaneocuboid liga-ment. This ligament originates from the dor-sal aspect of the calcaneus and inserts over the superior aspect of the navicular bone. (a) Schematic drawing of the dorsal calca-neocuboid ligament anatomic structure. (b) Probe positioning on the superolateral midfoot. (c) US scan of the dorsal calcaneo-cuboid ligament (arrowheads). C = calca-neus, Cu = cuboid.

caneal tuberosity to the lateral side of the navicular and the dorsal surface of the cuboid. This ligament is scarcely detectable at US. The calcaneocuboid ligament is a thickening of the dorsolateral surface of the fibrous capsule of the calcaneocuboid joint, rather than a real separated ligament (Fig 15). This ligament is injured in up to 5.5% of inversion sprains, one-third of which result in a chronically

Midfoot Ligaments

Lateral LigamentsThe ligaments on the dorsal lateral side of the midfoot are the dorsal calcaneocuboid ligament and the dorsal talonavicular ligament. A third liga-ment, the bifurcate ligament (also known as the Chopart ligament), is the major stabilizer of the calcaneonavicular joint. The bifurcate ligament extends in two strong bands from the anterior cal-

174 January-February 2015 radiographics.rsna.org

Figure 14. Posterior tibiotalar ligament. This ligament originates from the upper seg-ment of the posterior surface of the anterior colliculus, the intercollicular groove, and the anterior surface of the posterior colliculus of the medial malleolus. The fibers insert on the medial surface of the talus under the tail of the articular facet, up to the posteromedial talar tubercle. (a) Schematic drawing of the posterior tibiotalar ligament anatomic struc-ture. (b) Probe positioning on the medial ankle. (c) US scan of the posterior tibiotalar ligament (arrowheads). PTT = posterior tibial tendon, Ta = talus, Ti = tibia.

Figure 15. Dorsal calcaneocuboid liga-ment. This ligament originates from the dor-sal aspect of the calcaneus and inserts over the superior aspect of the navicular bone. (a) Schematic drawing of the dorsal calca-neocuboid ligament anatomic structure. (b) Probe positioning on the superolateral midfoot. (c) US scan of the dorsal calcaneo-cuboid ligament (arrowheads). C = calca-neus, Cu = cuboid.

caneal tuberosity to the lateral side of the navicular and the dorsal surface of the cuboid. This ligament is scarcely detectable at US. The calcaneocuboid ligament is a thickening of the dorsolateral surface of the fibrous capsule of the calcaneocuboid joint, rather than a real separated ligament (Fig 15). This ligament is injured in up to 5.5% of inversion sprains, one-third of which result in a chronically

Midfoot Ligaments

Lateral LigamentsThe ligaments on the dorsal lateral side of the midfoot are the dorsal calcaneocuboid ligament and the dorsal talonavicular ligament. A third liga-ment, the bifurcate ligament (also known as the Chopart ligament), is the major stabilizer of the calcaneonavicular joint. The bifurcate ligament extends in two strong bands from the anterior cal-

174 January-February 2015 radiographics.rsna.org

Figure 14. Posterior tibiotalar ligament. This ligament originates from the upper seg-ment of the posterior surface of the anterior colliculus, the intercollicular groove, and the anterior surface of the posterior colliculus of the medial malleolus. The fibers insert on the medial surface of the talus under the tail of the articular facet, up to the posteromedial talar tubercle. (a) Schematic drawing of the posterior tibiotalar ligament anatomic struc-ture. (b) Probe positioning on the medial ankle. (c) US scan of the posterior tibiotalar ligament (arrowheads). PTT = posterior tibial tendon, Ta = talus, Ti = tibia.

Figure 15. Dorsal calcaneocuboid liga-ment. This ligament originates from the dor-sal aspect of the calcaneus and inserts over the superior aspect of the navicular bone. (a) Schematic drawing of the dorsal calca-neocuboid ligament anatomic structure. (b) Probe positioning on the superolateral midfoot. (c) US scan of the dorsal calcaneo-cuboid ligament (arrowheads). C = calca-neus, Cu = cuboid.

caneal tuberosity to the lateral side of the navicular and the dorsal surface of the cuboid. This ligament is scarcely detectable at US. The calcaneocuboid ligament is a thickening of the dorsolateral surface of the fibrous capsule of the calcaneocuboid joint, rather than a real separated ligament (Fig 15). This ligament is injured in up to 5.5% of inversion sprains, one-third of which result in a chronically

Midfoot Ligaments

Lateral LigamentsThe ligaments on the dorsal lateral side of the midfoot are the dorsal calcaneocuboid ligament and the dorsal talonavicular ligament. A third liga-ment, the bifurcate ligament (also known as the Chopart ligament), is the major stabilizer of the calcaneonavicular joint. The bifurcate ligament extends in two strong bands from the anterior cal-

Page 55: Ultrasonido de tobillo anatomía

• REGIÓN POSTERIOR

• Tendón de Aquiles.

• Grasa de Kagger.

• Bursa PA Y RA.

• Fascia Plantar.

Page 56: Ultrasonido de tobillo anatomía

TENDÓN DE AQUÍLES

12Place the patient prone with the foot resting on the toes over the ta-ble to maintain the foot perpendicular to the leg. The probe is positio-ned just medial to the Achilles tendon in an oblique sagittal plane to examine the proximal portion of the flexor hallucis longus in its long-axis and the posterior recesses of the tibiotalar and subtalar joints. Fluid in the posterior recess may travel anteriorly in this position.

7

Ankle

Legend: asterisk, posterior fat pad; arrowhead, flexor hallucic longus muscle; curved arrow, posterior ankle recess; straight arrows, flexor hallucis longus tendon; PM, posterior tibial malleolus +$ Talus*

13On a prone position, let the foot hanging out of the examinationtable. Look clinically to the position of the foot, comparing both sid-es to see any differences that can lead to the diagnosis of Achilles tendon full-thickness tear. Then, examine the Achilles tendon from its myotendinous junction to its calcanear insertion by means oftransverse and longitudinal planes. While scanning the Achilles tendon on short-axis planes, tilt the probe on each side of the tend-on to assess the peritendinous envelope. Measure the size of theAchilles tendon only on transverse planes. The Achilles tendon has to be followed down to its calcanear insertion. Check the retroachil-les and the retrocalcanear bursae.

Legend: arrowheads, Achilles tendon; asterisk, anisotropy; fhl, flexorhallucis longus muscle

soleus

fhl

Kager Calcaneus

*

!

"

#$

Check the plantaris tendon. In cases of complete Achilles tendon tear, the plantaris may mimic residual intact fibers of the Achilles. Dynamic scanning during passive dorsal and plantar flexion help to distinguish partial from complete Achilles tendon tears.

%&'()*+,#&&-./0+&)1 -0+3'14)1+(&)1 )#(/0*+#14+")03'*/)*+9)/13+*'.'00

:.,/&&'0+3'14)1

12Place the patient prone with the foot resting on the toes over the ta-ble to maintain the foot perpendicular to the leg. The probe is positio-ned just medial to the Achilles tendon in an oblique sagittal plane to examine the proximal portion of the flexor hallucis longus in its long-axis and the posterior recesses of the tibiotalar and subtalar joints. Fluid in the posterior recess may travel anteriorly in this position.

7

Ankle

Legend: asterisk, posterior fat pad; arrowhead, flexor hallucic longus muscle; curved arrow, posterior ankle recess; straight arrows, flexor hallucis longus tendon; PM, posterior tibial malleolus +$ Talus*

13On a prone position, let the foot hanging out of the examinationtable. Look clinically to the position of the foot, comparing both sid-es to see any differences that can lead to the diagnosis of Achilles tendon full-thickness tear. Then, examine the Achilles tendon from its myotendinous junction to its calcanear insertion by means oftransverse and longitudinal planes. While scanning the Achilles tendon on short-axis planes, tilt the probe on each side of the tend-on to assess the peritendinous envelope. Measure the size of theAchilles tendon only on transverse planes. The Achilles tendon has to be followed down to its calcanear insertion. Check the retroachil-les and the retrocalcanear bursae.

Legend: arrowheads, Achilles tendon; asterisk, anisotropy; fhl, flexorhallucis longus muscle

soleus

fhl

Kager Calcaneus

*

!

"

#$

Check the plantaris tendon. In cases of complete Achilles tendon tear, the plantaris may mimic residual intact fibers of the Achilles. Dynamic scanning during passive dorsal and plantar flexion help to distinguish partial from complete Achilles tendon tears.

%&'()*+,#&&-./0+&)1 -0+3'14)1+(&)1 )#(/0*+#14+")03'*/)*+9)/13+*'.'00

:.,/&&'0+3'14)1

Page 57: Ultrasonido de tobillo anatomía

BURSA PREAQUÍLEA

ECOGRAFIA DE LAS LESIONES TENDINOSAS COMPLEJAS

VOLUMEN XXV - N.º 147 - 2012

555A M D

sis crónica. Por otra parte, las lesiones de los tendones que se rodean de vaina sinovial se de-nominan tenosinovitis. Finalmente otro tipo de lesiones relacionadas con la interrupción de sus fibras son las roturas tendinosas de tipo parcial y las de tipo completo3.

En el estudio ecográfico del tendón de Aquiles de este paciente se apreciaba en el examen lon-gitudinal (Figura 1) un tendón moderadamente

engrosado respecto al contralateral y con un patrón hipoecogénico. Además se observaba una imagen anecoica intrafibrilar que correspondía a una pequeña rotura longitudinal. En el espacio situado entre el tendón y el calcáneo también se apreciaba una imagen anecoica que correspon-día a la ocupación de la bursa preaquílea.

El estudio dinámico es una de las ventajas que aporta la ecografía y precisamente a través de

FIGURA 1. Realizando un corte longitudinal del tendón de Aquiles se aprecia en el interior una imagen anecoica que corresponde a una rotura parcial (r). Además en la parte profunda del tendón se aprecia la ocupación de la bursa preaquílea (B)

FIGURA 2. El examen longitudinal realizado sobre el tendón aquileo con el pie en posición neutra permite observar la bursa preaquilea por debajo del tendón (B)

FIGURA 3. En este otro corte en eje largo al realizar la flexión plantar del pie, la bursa cambia su posición interponiéndose entre el calcáneo y el tendón

FIGURA 4. El corte axial del tendón de Aquiles permite ver la zona anecoica de la rotura en el interior del tendón (r) y la ocu-pación de la bursa (B) por debajo del mismo

Rotura Parcial del T.Aquiles.

ECOGRAFIA DE LAS LESIONES TENDINOSAS COMPLEJAS

VOLUMEN XXV - N.º 147 - 2012

555A M D

sis crónica. Por otra parte, las lesiones de los tendones que se rodean de vaina sinovial se de-nominan tenosinovitis. Finalmente otro tipo de lesiones relacionadas con la interrupción de sus fibras son las roturas tendinosas de tipo parcial y las de tipo completo3.

En el estudio ecográfico del tendón de Aquiles de este paciente se apreciaba en el examen lon-gitudinal (Figura 1) un tendón moderadamente

engrosado respecto al contralateral y con un patrón hipoecogénico. Además se observaba una imagen anecoica intrafibrilar que correspondía a una pequeña rotura longitudinal. En el espacio situado entre el tendón y el calcáneo también se apreciaba una imagen anecoica que correspon-día a la ocupación de la bursa preaquílea.

El estudio dinámico es una de las ventajas que aporta la ecografía y precisamente a través de

FIGURA 1. Realizando un corte longitudinal del tendón de Aquiles se aprecia en el interior una imagen anecoica que corresponde a una rotura parcial (r). Además en la parte profunda del tendón se aprecia la ocupación de la bursa preaquílea (B)

FIGURA 2. El examen longitudinal realizado sobre el tendón aquileo con el pie en posición neutra permite observar la bursa preaquilea por debajo del tendón (B)

FIGURA 3. En este otro corte en eje largo al realizar la flexión plantar del pie, la bursa cambia su posición interponiéndose entre el calcáneo y el tendón

FIGURA 4. El corte axial del tendón de Aquiles permite ver la zona anecoica de la rotura en el interior del tendón (r) y la ocu-pación de la bursa (B) por debajo del mismo

Page 58: Ultrasonido de tobillo anatomía

BURSA RETROAQUÍLEA

JIMÉNEZ DÍAZ, JF.

ARCHIVOS DE MEDICINA DEL DEPORTE

556A M D

él, se pudo demostrar el pinzamiento de la bursa como origen del dolor. De esta forma, cuando el pie ocupaba una posición neutra (Figura 2) la bursa se posicionaba por delante del tendón, mientras que cuando el pie hacía una flexión plantar (Figura 3), la bursa se desplazaba colo-cándose en el espacio situado entre la cortical del calcáneo y el propio tendón.

El corte axial del tendón (Figura 4) permitió valo-rar el tamaño de la rotura y de la bursa preaquíea y cuando se aplicó el Doppler Power (Figura 5) se evidenció la presencia de un gran número de neovasos que penetraban en el seno del tendón.

Finalmente, destacaba un dato ecográfico mas que fue la presencia de una imagen hipoecoica (Figura 6) por detrás de la cara posterior del tendón, que correspondía a una bursa retroaquílea que venía a complicar la sintomatología.

COMENTARIO

Se comprueba en este paciente, que ante una le-sión tendinosa de evolución crónica, es necesario

FIGURA 5. Al aplicar el Doppler Power, se aprecia un gran nú-mero de neovasos que invaden la porción distal del tendón

FIGURA 6. En este corte longitudinal se aprecia una imagen hipoecoica bien delimitada por encima de la inserción del tendón de Aquiles que corresponde a la bursitis retroaquílea (BR) y la ocupación simultánea de la bursa preaquílea (BP)

llevar a cabo un estudio ecográfico para definir el grado de lesión mediante esta técnica inocua y de bajo coste, y detectar la presencia de alguna de las complicaciones propias de la lesión tendinosa.

La tendinosis se presenta como un engrosamien-to focal o difuso, por lo general con un aspecto fusiforme en el eje longitudinal. Cuando aparece este proceso degenerativo en el tendón, éste toma un aspecto hipoecoico difuso aunque puede con-tener focos hiperecoicos o calcificaciones. Sin embargo, las roturas parciales aparecen como áreas de hipoecogenicidad bien definidas dentro de la sustancia del tendón, con pérdida focal de su patrón fibrilar4,5.

En general distinguir mediante ecografía la ten-dinosis de la pequeña rotura parcial del tendón es un reto, pero esta limitación no tiene una re-levancia clínica ya que ambas lesiones tienen un tratamiento conservador. Sin embargo, cuando se valora la neovascularización a través de Do-ppler Power, se correlaciona el número de vasos con la severidad del dolor6.

Por ello, los recientes avances en la investigación de la tendinitis enfocados al estudio del proceso

Page 59: Ultrasonido de tobillo anatomía

FASCIA PLANTAR14In the same position descri-bed at point-13, place the transducer over the plantar aspect of the hindfoot to examine the calcanear in-sertion of the plantar fascia. Long-axis scans obtained just medial to midline are used. Measure the fascia at the point where it leaves the calcanear tuberosity. The gain may be increased to avoid beam absorption by the thick plantar sole.

8

Ankle

Legend: arrowheads, plantar fascia; fdb, flexor digitorum brevis muscle

Calcaneusfdb

""#$%#&'(#)*+#14In the same position descri-bed at point-13, place the transducer over the plantar aspect of the hindfoot to examine the calcanear in-sertion of the plantar fascia. Long-axis scans obtained just medial to midline are used. Measure the fascia at the point where it leaves the calcanear tuberosity. The gain may be increased to avoid beam absorption by the thick plantar sole.

8

Ankle

Legend: arrowheads, plantar fascia; fdb, flexor digitorum brevis muscle

Calcaneusfdb

""#$%#&'(#)*+#

Page 60: Ultrasonido de tobillo anatomía

• REGIÓN POSTERIOR

• Tendón de Aquiles.

• Grasa de Kagger.

• Bursa Retrocalcánea.

• Fascia Plantar.