capÍtulo 3. axiomas de...

55
ELEMENTOS DE GEOMETRÍA EUCLIDIANA CAPÍTULO 3. AXIOMAS DE CONGRUENCIA Introducción La relación de congruencia como relación primitiva que regula este tercer grupo, se introduce entre los segmentos y entre los ángulos dando origen a dos de los Axiomas de mayor utilización en la construcción de la teoría como son, el Axioma de construcción del segmento y el Axioma de construcción del ángulo. Objetivos Específicos 1. Aclarar como la relación de congruencia, que es también una relación de equivalencia, es distinta de la relación de igualdad. 2. Destacar, como se presentará en muchos otros contextos posteriores, que las relaciones de congruencia establecidas entre los segmentos, se cumplen en forma dual para los ángulos. 3. Definir una figura cual es el triángulo, que se puede considerar como la piedra angular en la Geometría Euclidiana. Esta figura es el eje central del trabajo geométrico y a partir de la definición de la congruencia entre triángulos, fundamentada ella en las relaciones de congruencias entre segmentos y entre ángulos se le dotaran cada vez de más propiedades, a medida que se avanza en la construcción de la teoría. 4. Presentar necesariamente como un Axioma el primer caso de congruencia de triángulos (L-A-L), permitiendo la presentación de los dos siguientes (A-L-A) y (L- L-L) como teoremas. 5. Introducir la primera clasificación entre los triángulos como isósceles y equiláteros y las propiedades por equivalencia que caracterizan a sus ángulos. 6. Establecer una segunda clasificación angular, correspondiente a los ángulos adyacentes, ángulos que hacen par lineal y ángulos opuestos por el vértice. Material educativo Uso no comercial

Upload: lequynh

Post on 30-Sep-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

CAPÍTULO 3. AXIOMAS DE CONGRUENCIA

Introducción

La relación de congruencia como relación primitiva que regula este tercer grupo, se introduce

entre los segmentos y entre los ángulos dando origen a dos de los Axiomas de mayor utilización

en la construcción de la teoría como son, el Axioma de construcción del segmento y el Axioma de

construcción del ángulo.

Objetivos Específicos

1. Aclarar como la relación de congruencia, que es también una relación de

equivalencia, es distinta de la relación de igualdad.

2. Destacar, como se presentará en muchos otros contextos posteriores, que las

relaciones de congruencia establecidas entre los segmentos, se cumplen en forma

dual para los ángulos.

3. Definir una figura cual es el triángulo, que se puede considerar como la piedra

angular en la Geometría Euclidiana. Esta figura es el eje central del trabajo

geométrico y a partir de la definición de la congruencia entre triángulos,

fundamentada ella en las relaciones de congruencias entre segmentos y entre

ángulos se le dotaran cada vez de más propiedades, a medida que se avanza en la

construcción de la teoría.

4. Presentar necesariamente como un Axioma el primer caso de congruencia de

triángulos (L-A-L), permitiendo la presentación de los dos siguientes (A-L-A) y (L-

L-L) como teoremas.

5. Introducir la primera clasificación entre los triángulos como isósceles y

equiláteros y las propiedades por equivalencia que caracterizan a sus ángulos.

6. Establecer una segunda clasificación angular, correspondiente a los ángulos

adyacentes, ángulos que hacen par lineal y ángulos opuestos por el vértice.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 2: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

7. Definir los ángulos rectos sin requerir para nada de la función de medida,

insistiendo una vez más en la importancia del trabajo preciso, coherente que

caracteriza el desarrollo de una teoría axiomática.

8. Presentar la definición de rectas perpendiculares como una consecuencia

inmediata de la existencia de los ángulos rectos.

9. Definir el triángulo rectángulo en términos de una figura de este tipo que tiene

mínimo dos ángulos rectos y mostrar la coherencia de la misma con la teoría vista

y como posteriormente se prueba la unicidad de dicho ángulo.

10. Definir las nociones duales en sus contextos respectivos, de punto medio de un

segmento no nulo y bisectriz de un ángulo no nulo y no llano.

11. Caracterizar los designados como segmentos y también (hago énfasis personal en

ello) las rectas notables en el triángulo, destacando las propiedades que

caracterizan en particular al triángulo isósceles.

12. Mostrar como desde la relación de congruencia, se definen las relaciones mayor,

respectivamente menor entre segmentos y su dual entre ángulos, nuevamente sin

recurrir a la función de medida.

13. Evidenciar como se avanza en la construcción de la teoría sin aplicar

necesariamente la función medida.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 3: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

3.1 LA RELACIÓN DE CONGRUENCIA.

Cuando se piensa en la forma y tamaño de las figuras geométricas, surge de un modo natural

la posibilidad de que dos o más figuras coincidan.

El paso siguiente de este trabajo, consiste en establecer una relación que incluye esta

posibilidad en el tratamiento geométrico.

Se denomina congruencia a esta nueva relación. Será suficiente establecer sin definición dicha

relación para segmentos y ángulos, y después extenderlo mediante definiciones para otras

figuras u objetos geométricos.

En adelante podremos hacer afirmaciones como:

AB es congruente con CD ,

o bien,

CBA ˆ es congruente con FED ˆ .

La relación de congruencia será denotada por el signo primitivo y así las anteriores

afirmaciones se podrán escribir:

CDAB , FEDCBA ˆˆ .

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 4: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

3.2 GRUPO III. AXIOMAS DE CONGRUENCIA.

III.1 Axioma de la construcción del segmento.

Sea AB un segmento cualquiera y CE una semirrecta de origen C.

Entonces existe en CE un único punto D tal que CDAB . (Ver Figura 30).

Figura 30

En términos prácticos, este axioma afirma la posibilidad de construir o trasladar un segmento

haciendo uso, por ejemplo, de regla y compás.

III.2 La congruencia entre segmentos es una relación de equivalencia

i. Propiedad reflexiva: Cada segmento es congruente consigo mismo, es decir:

ABAB para todo segmento AB .

ii. Propiedad de simetría: Si CDAB , entonces ABCD .

iii. Propiedad transitiva: Si CDAB y EFCD entonces EFAB .

III.3 Sean A, B, C puntos de una recta a y A', B', C' puntos de a ó de otra recta b tales que B

está entre A y C y B' entre A' y C'.

i. Si ''BAAB y ''CBBC , entonces, ''CAAC .

ii. Si ''BAAB y ''CAAC , entonces, ''CBBC .

(Ver Figura 31).

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 5: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Figura 31

El anterior axioma expresa que la "suma" y la "diferencia" de segmentos congruentes, dan

lugar a segmentos congruentes.

III.4 Axioma de la construcción del ángulo.

Sea OBOA , un ángulo cualquiera y O' un punto de una recta l situada en un plano .

Sea lΠ uno cualquiera de los semiplanos en que l divide a Π y CO´ una de las semirrectas

en que O' divide a l.

Entonces existe una semirrecta única DO' situada en el semiplano l tal que:

DO' ,' , COOBOA

(Ver Figura 32)

Figura 32

Igual que en III.1, este axioma afirma la posibilidad de construir o trasladar un ángulo

haciendo uso por ejemplo, del compás y la regla.

III.5 La congruencia entre ángulos es una relación de equivalencia

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 6: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

El siguiente axioma expresa que la relación de congruencia entre ángulos verifica las

propiedades reflexiva, simétrica y transitiva, en términos similares a los del axioma 3.2, es

decir:

i. OBOAOBOA , , .

ii. Si YOXOOBOA ' ,' , , entonces, OBOAYOXO ,' ,' .

iii. Si UDUCOBOA , , y WYWXUDUC , , entonces

WYWXOBOA , , .

III.6 Sea OH , OK , OL semirrectas con un mismo origen O y situadas en un mismo

plano.

Sea RO' , SO' , TO' semirrectas con un mismo origen O’ y situadas en o en otro

plano ' .

Supongamos además que OL está en el interior de OKOH , y TO ' en el

interior de SORO ' ,' . (Ver Figura 33).

En consecuencia:

i. Si TOROOLOH ' ,' , y SOTOOKOL ' ,' , entonces

SOROOKOH ' ,' , .

ii. Si TOROOLOH ' ,' , y SOROOKOH ' ,' , entonces

SOTOOKOL ' ,' , .

Figura 33

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 7: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Este axioma, lo mismo que el III.3, expresa que la suma y la diferencia de ángulos

respectivamente congruentes, dan como resultado, ángulos respectivamente congruentes.

Definición 10.

Sean A, B, C tres puntos distintos y no colineales. Los segmentos AB , BC , CA

determinarán el triángulo de vértices A, B, C que denotaremos: ABC ó CBA

, y se

define:

∆ 𝐴𝐵𝐶 = 𝐴𝐵 ∪ 𝐵𝐶 ∪ 𝐴𝐶 .

Los segmentos AB , BC y CA se llaman lados del triángulo. Los ángulos CBA ˆ ,

CAB ˆ y BCA ˆ se llaman ángulos interiores o simplemente, ángulos del triángulo

CBA

y también serán denotados por sus vértices o sea A , B , C .

En un triángulo CBA

, diremos que A es el ángulo opuesto al lado BC y B y C son

ángulos adyacentes a dicho lado. Recíprocamente, BC se llama lado opuesto al ángulo A y el

mismo lado BC se llama lado adyacente tanto a B como a C . (Ver Figura 34).

Esta misma terminología es aplicable a los otros ángulos y lados del triángulo.

Figura 34

Definición 11.

El triángulo ABC es congruente al triángulo A’B’C’ si:

''BAAB , ''CAAC , ''CBBC .

''ˆ'ˆ CBACBA , ''ˆ'ˆ CABCAB , ''ˆ'ˆ ACBACB .

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 8: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Escritura simbólica: ''' CBAABC .

(Ver Figura 35).

Figura 35

La definición anterior establece que dos triángulos son congruentes si tanto los lados como los

ángulos se presentan en pares respectivamente congruentes.

Consecuencias de esta definición:

Si dos triángulos son congruentes, entonces, a lados respectivamente congruentes se

oponen ángulos respectivamente congruentes y recíprocamente.

El siguiente axioma establece condiciones mínimas para la congruencia de dos triángulos y se

denomina axioma LADO-ÁNGULO-LADO, en símbolos: L-A-L.

III.7 Axioma L-A-L.

Si los triángulos ABC y A’B’C’ presentan las congruencias: ''BAAB , ''CAAC y

''ˆ'ˆ CABCAB , entonces ''' CBAABC . (Figura 36.).

Figura 36

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 9: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Según el axioma L-A-L, dos triángulos son congruentes si en uno de ellos existen dos lados y el

ángulo comprendido (entre dichos lados), respectivamente congruentes a dos lados y el

ángulo comprendido (entre dichos lados), en el otro triángulo.

El siguiente teorema establece que la relación de congruencia entre segmentos

(respectivamente entre ángulos), mantiene la disposición de los puntos en una recta

(respectivamente, la disposición de las semirrectas que tienen el origen en el vértice de un

ángulo.).

Figura 37

Demostración.

Por el axioma de construcción del segmento, existe un punto C’’ en b tal que B’ está entre A’ y

C’’ y además '''CBBC . (Ver Figura 37.).

El teorema quedará demostrado si se logra probar que C’’ coincide con C’.

De las congruencias: ''BAAB .

'''CBBC .

TEOREMA 9.

Sean A, B, C tres puntos de una recta a y A’B’C’ tres puntos de una recta b tales que,

y .

Si B está entre A y C y B’ está del mismo lado que C’ con respecto a A’ (ver Figura 33),

entonces B’ está entre A’ y C’.

''BAAB ''CAAC

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 10: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Se obtiene '''CAAC (Suma de segmentos), y como ''CAAC (hipótesis) se concluye

''''' CACA (transitividad). De donde se sigue, como una consecuencia del axioma de

construcción del segmento, que C' y C" coinciden pues están en la recta b, del mismo lado de

A'. Ya que C" se tomó de modo que B' está entre A' y C" se concluye que B' está entre A' y C',

como se quería demostrar.

Tiene lugar un teorema, análogo al anterior, para ángulos.

Figura 38

TEOREMA 10.

Supongamos que en cierto plano fijo se tienen las semirrectas , y y que

en el mismo plano o en otro cualquiera, se tienen las semirrectas , y .

Supongamos además que las semirrectas y están en el mismo semiplano

respecto a la recta y que las semirrectas , tienen disposición análoga

con respecto a .

Entonces, si y

En consecuencia:

Si la semirrecta está en el interior de (Figura 38), la semirrecta

estará así mismo en el interior de .

OH OK OL

'' HO ''KO ''LO

OK OL

OH ''KO ''LO

'' HO

'' ,'' ,. KOHOOKOH

O'L'HOOLOH ,'' ,

OK OLOH , ''KO

'' ,'' LOHO

TEOREMA 11. (Caso Ángulo-Lado-Ángulo: A-L-A)

Sean y dos triángulos tales que:

, ,𝐶��𝐴 ≅ 𝐶′𝐵′𝐴′.

Entonces, . (Figura 39).

ABC ''' CBA

''BAAB ''ˆ'ˆ CABCAB

''' CBAABC

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 11: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Figura 39

Demostración.

Esta consistirá en demostrar que ''CAAC con lo cual se tiene ''' CBAABC (por el

axioma L-A-L).

Razonando por reducción al absurdo, supongamos ''CAAC . Sea D un punto en la

semirrecta AC tal que:

''CAAD (Axioma de construcción del segmento).

Por tanto, ''' CBAABD (Axioma L-A-L). (Ver Figura 40).

Figura 40

Luego ''ˆ'ˆ ABCABD y como ''ˆ'ˆ ABCABC , (hipótesis), se tiene por transitividad,

ABCABD ˆˆ lo cual contradice el axioma de construcción del ángulo. Esta contradicción

permite concluir que ''CAAC como se quería demostrar.

Definición 12.

i. Se llama triángulo isósceles aquel que tiene al menos dos lados congruentes

(Figura 41).

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 12: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

ii. Si el triángulo ABC es isósceles con ACAB y ABBC , entonces se llama

base del triángulo al tercer lado BC .

Figura 41

Demostración.

Figura 42

Sea ABC un triángulo isósceles con ACAB .

Veamos que los ángulos B y C son congruentes.

Sean D y E puntos tales que B está entre A y D, C entre A y E y CEBD . ¿Por qué ? (Ver

Figura 42).

TEOREMA 12.

En todo triángulo isósceles, los ángulos opuestos a los lados congruentes son

congruentes.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 13: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Por suma de segmentos, ADAE .

Entonces en los triángulos EBA

, DCA

se tiene:

ACAB , ADAE , DACEAB ˆˆ .

(El ángulo del vértice en A es común para ambos triángulos).

Se concluye que dichos triángulos son congruentes (L-A-L). De donde:

CEBCDB ˆˆ , CDBE , DCAEBA ˆˆ .

Consideremos ahora los triángulos, BDC , CEB . En dichos triángulos se tiene:

CEBD , BECD , CEBCDB ˆˆ .

Luego CEBBDC (Axioma L-A-L), de donde, BCDCBE ˆˆ . Y puesto que ya se tenía

DCAEBA ˆˆ , se sigue por diferencia de ángulos que BCACBA ˆˆ que era lo que se quería

demostrar.

Definición 13. Primera clasificación angular.

i. Dos ángulos se llaman adyacentes si tienen el mismo vértice, un lado común y

ninguno de los lados de uno de ellos está en el interior del otro (Ver Figura 43).

ii. Dos ángulos hacen un par lineal si son adyacentes y los lados no comunes son

semirrectas opuestas. (Ver Figura 44).

iii. Dos ángulos se llaman opuestos por el vértice si tienen el mismo vértice y sus

lados son semirrectas opuestas. (Ver Figura 45).

Figura 43

Figura 44

Figura 45

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 14: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

En la Figura 43, los ángulos BOA ˆ , COB ˆ son adyacentes. En la figura 44, los ángulos BOA ˆ y

COB ˆ hacen un par lineal. En la Figura 45, los ángulos COA ˆ y DOB ˆ son opuestos por el

vértice.

Observaciones.

1. Todo ángulo hace un par lineal con, exactamente, dos de sus ángulos adyacentes. En la

Figura 45, el ángulo BOA ˆ hace un par lineal con DOB ˆ y también con COA ˆ .

2. Cuando dos rectas distintas se cortan, determinan, alrededor del punto común, cuatro

ángulos que son opuestos por el vértice de dos en dos. En la Figura 46, las parejas

BOA ˆ y DOC ˆ , así como COA ˆ y DOB ˆ son respectivamente ángulos opuestos por el

vértice.

Figura 46

Demostración.

Sean BOA ˆ , COA ˆ un par lineal y ''ˆ' BOA , ''ˆ' COA otro par lineal tales que ''ˆ'ˆ BOABOA

(Figura 47). Veamos que ''ˆ'ˆ COACOA .

Supongamos que los puntos A', B', C' se tomaron de tal modo que:

TEOREMA 13.

Si uno de los ángulos de un par lineal, es congruente a uno de los ángulos de otro par

lineal, entonces los otros dos ángulos también son respectivamente congruentes.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 15: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Figura 47

'' AOOA , ''BOOB , ''COOC . ¿Por qué? (Ver Figura 48).

Figura 48

Se tiene por la tanto,

''' BOAAOB , (L-A-L) y ''BCCB (Suma de segmentos congruentes).

De donde, ''ˆ'ˆ ABOABO y ''BAAB

Ahora se puede concluir que:

''' CBAABC , (L-A-L)

Luego,

''ˆ'ˆ CBABCA y ''CAAC .

De estas dos últimas relaciones junto con ''COOC podemos afirmar que

''' COAAOC (L-A-L) y por tanto concluir que:

''ˆ'ˆ COACOA como se quería.

Demostración.

Sean BOA ˆ y DOC ˆ ángulos opuestos por el vértice, luego las semirrectas OC y OB están

en línea recta, lo mismo que las semirrectas OA y OD . (Ver Figura 49).

COROLARIO.

Dos ángulos opuestos por el vértice, son congruentes.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 16: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Veamos que los ángulos BOA ˆ y DOC ˆ son congruentes.

Figura 49

Esto resulta como una consecuencia del teorema anterior, ya que el ángulo AOC hace un par

lineal con cada uno de dichos ángulos.

El teorema 14 corresponde al recíproco del teorema 12, como se verá a continuación.

Demostración.

Consideremos en el triángulo ABC, los ángulos CBA ˆ y BCA ˆ congruentes y veamos que

ACAB (Figura 50).

TEOREMA 14.

Si un triángulo tiene dos de sus ángulos congruentes, entonces, los lados opuestos a

ellos son congruentes y en consecuencia el triángulo es isósceles.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 17: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Figura 50

Para ello, sean D y E puntos tales que B está entre A y D, C entre A y E y CEBD . ¿ por qué?

Por el teorema 13, y en vista de que BCACBA ˆˆ y además CBA ˆ y DBC ˆ hacen un par

lineal y BCA ˆ y ECB ˆ hacen otro par lineal, se tiene:

ECBDBC ˆˆ .

Siendo BC un lado común para los triángulos DBCΔ

y EBCΔ

, se concluye que dichos

triángulos son congruentes (L-A-L). De donde:

CDBE , CEBCDB ˆˆ , BCDCBE ˆˆ .

Como se tienen las congruencias, BCACBA ˆˆ y BCDCBE ˆˆ , se sigue que DCAEBA ˆˆ

(Suma de ángulos congruentes) y por lo tanto los triángulos EBA

, DCAΔ

que tienen además

CDBCEB ˆˆ y CDBE , son congruentes (A-L-A), de donde ACAB como se quería

demostrar.

Observación.

Los teoremas 12 y 14 se pueden reunir en un solo enunciado, así:

TEOREMA 15.

Un triángulo es isósceles si y solo si al menos dos de sus ángulos son congruentes.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 18: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Definición 14.

Un triángulo CBA

se llama equilátero si sus tres lados son congruentes, es decir,

BCACAB .

Una consecuencia del teorema 15 es la siguiente:

Observación.

La demostración del corolario anterior se propone al lector.

Definición 15.

Un triángulo ∆ ABC se llama equiángulo si sus tres ángulos son congruentes, es decir

�� ≅ �� ≅ ��.

Demostración.

Sean CBA

y ''' CBA

dos triángulos que tienen: (Figura 51),

''BAAB , ''CAAC , ''CBBC .

Consideremos en el semiplano ABC

~ el punto A" tal que:

'C'B'A''ABC , '''' BABA . (Axiomas de construcción del segmento y el ángulo)

COROLARIO.

Un triángulo es equilátero si y solo si sus ángulos interiores son congruentes.

TEOREMA 16. (Caso Lado-Lado-Lado: L-L-L).

Sí un triángulo tiene sus tres lados respectivamente congruentes a los tres lados de

otro triángulo entonces estos dos triángulos son congruentes.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 19: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Figura 51

Según el axioma de separación, el segmento ''AA tiene un punto P en el segmento BC . Para

dicho punto P se presentan tres opciones:

1. P está en el interior de BC , como en la Figura 51.

2. P coincide con uno de los extremos, corno en la Figura 52.

3. P está en el exterior de BC , como en la Figura 53.

Figura 52

Figura 53

Vamos a demostrar el caso 1. Los otros dos se dejan al lector.

Los triángulos ''' CBA

y CBA

'' son congruentes por tener:

'''' BABA , ''CBBC , ''ˆ'ˆ ABCABC (L-A-L).

Veamos ahora que los triángulos CBAΔ

y CBA

'' son congruentes.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 20: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Por una parte se tiene ''BAAB y BABA '''' , luego BAAB '' (transitividad), de donde

el triángulo ''ABAΔ

es isósceles y por tanto A''AB''AAB (Teorema 12).

En la misma forma, el triángulo ''ACAΔ

es isósceles y por tanto AACAAC ''ˆ''ˆ .

Por otra parte, el segmento ''AA pasa por P, punto entre B y C, luego dicho segmento está en el

interior de los ángulos CAB ˆ y CAB ''ˆ , y por el axioma de suma de ángulos congruentes se

tiene: CABCAB ''ˆˆ .

Finalmente, los triángulos CBAΔ

y CBA

'' tienen:

BAAB '' , CAAC '' , CABCAB ''ˆˆ

y por el axioma L-A-L se concluye, BCAABC '' . Como ya se tenía BCACBÁ '''''

entonces, por transitividad4, ''' CBAABC como se quería demostrar.

Definición 16.

Si los ángulos de un par lineal son congruentes, cada uno de ellos se llama ángulo recto.

(Figura 54).

Figura 54

Para indicar que un ángulo es recto vamos a emplear la siguiente representación gráfica: .

El siguiente teorema garantiza que existen ángulos rectos.

4 Observación: La transitividad para la congruencia entre triángulos es un resultado que se obtiene fácilmente

a partir de la transitividad de la congruencia tanto entre segmentos como entre ángulos.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 21: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Figura 55

Demostración.

Puesto que los puntos C y D están en lados opuestos a la recta l, el axioma de separación

asegura que la recta CD pasa por un punto P de l.

Además los ángulos CPO ˆ , DPO ˆ hacen un par lineal ya que tienen un lado común OP y los

otros dos están en línea recta.

Veamos que el ángulo CPO ˆ es recto. Para ello se tiene que los ángulos COP ˆ y DOP ˆ son

congruentes por hacer pares lineales con respectivos ángulos congruentes COA ˆ y DOA ˆ

(Teorema 13).

Se tienen así los triángulos congruentes CPO

, DPOΔ

por tener:

DOPCOP ˆˆ , ODOC , OP lado común (L-A-L).

Se concluye así que los ángulos del par lineal CPO ˆ , DPO ˆ son congruentes y, de acuerdo a la

definición 15, se sigue que tanto CPO ˆ como DPO ˆ son ángulos rectos.

TEOREMA 17.

Sean O y A puntos de una recta 𝑙. Entonces existen ángulos rectos. (Ver figura 55)

TEOREMA 18.

Todos los ángulos rectos son congruentes entre sí.

O

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 22: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

La demostración del teorema 18 se deja como ejercicio. Se sugiere utilizar el método de

Reducción al absurdo.

Definición 17. Triángulo rectángulo

Un triángulo se llama rectángulo si al menos uno de sus ángulos es recto.

Observaciones.

1. Más adelante se podrá demostrar que un triángulo no puede tener más de un

ángulo recto.

2. En un triángulo rectángulo los lados adyacentes al ángulo recto se llaman catetos y

el lado opuesto, hipotenusa. (Ver Figura 56).

Figura 56

Definición 18. Punto medio de un segmento

Se llama punto medio de un segmento AB al punto O que está en la recta AB tal que

OBAO .

Observaciones.

1. Es posible demostrar, que todo segmento tiene un punto medio único y que dicho

punto está en el interior del segmento.

La existencia del punto medio garantiza que todo segmento se puede dividir en

dos segmentos congruentes y esto de un modo único.

2. Así como todo segmento tiene punto medio, todo ángulo no nulo tiene una

semirrecta contenida en su interior que lo divide en dos ángulos congruentes. El

nombre de esta semirrecta se da en la siguiente definición:

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 23: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Definición 19. Bisectriz de un ángulo

Se llama bisectriz de un ángulo BOA ˆ a la semirrecta OD que está en el interior del

ángulo y además verifica BODDOA ˆˆ . (Ver Figura 57).

Figura 57

Observación.

En forma análoga a lo dicho para el punto medio de un segmento, se puede demostrar que

todo ángulo no nulo tiene bisectriz única y que dicha bisectriz está en el interior del

ángulo.

La existencia de la bisectriz garantiza que todo ángulo no nulo se puede dividir en dos ángulos

congruentes y esto de un modo único.

Definición 20. Rectas perpendiculares

Sean a y b dos rectas distintas. La recta a es perpendicular a la recta b, si a corta a b

determinando ángulos rectos.

Observaciones.

1. Para indicar que a es perpendicular a b se emplea la notación: ba

2. Si ba se sigue de inmediato que ab y por tanto es correcto decir que las

rectas a y b son perpendiculares entre sí o que se cortan perpendicularmente.

3. Si dos rectas se cortan perpendicularmente en un punto, los cuatro ángulos que se

forman alrededor de dicho punto son rectos. (Ver Figura 58).

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 24: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Figura 58

Observación.

Vamos a denotar también a las semirrectas que un punto determina en una recta a, por a

y 'a . En consecuencia, a y 'a son semirrectas opuestas de una misma recta a. (Ver Figura

59).

El ángulo formado por dos semirrectas a y b lo denotaremos: ba , . (Ver Figura 60). Materia

l edu

cativ

o

Uso no

comerc

ial

Page 25: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Figura 59

Figura 60

Demostración.

La demostración consta de dos partes. Veamos primero que si l es la recta dada en el plano Π

y A es un punto cualquiera de l, hay por lo menos una recta perpendicular a l que pasa por A y

está situada en Π .

Para demostrar esta primera parte, sea K una recta distinta de l y que también pasa por A. Sea

K una de las semirrectas en que A divide a K.

Si los ángulos Kl, y Kl ,' que forman un par lineal, son congruentes, cada uno es recto

y por tanto lK y la demostración termina. (Figura 61).

Pero si los ángulos del par lineal son diferentes, sea h una semirrecta de origen A situada en el

semiplano K:lΠ tal que:

TEOREMA 19.

Por un punto de una recta dada en un plano pasa una y solo una perpendicular a

dicha recta contenida en dicho plano.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 26: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Figura 61

(1) hlKl ,',

Se presentan dos posibilidades respecto a h :

i. La semirrecta h está en el exterior de Kl, . (Esto ocurre cuando Kl, es

agudo. (Figura 62).

ii. La semirrecta h está en el interior de Kl, . (Esto ocurre cuando Kl, es

obtuso. (Figura 63).

Figura 62

Figura 63

Para ambos casos se puede continuar de la siguiente manera:

Se traza por A la bisectriz b del ángulo h K , . Por tanto:

(2) bKbh , , (Figura 64).

De (1 ) y (2) se obtiene, por suma de ángulos, en el caso del ángulo agudo y por diferencia, en

el caso del ángulo obtuso,

blbl ,' ,

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 27: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Estos dos ángulos forman un par lineal, luego cada uno de ellos es recto. Se concluye así que

lb .

Figura 64

Veamos ahora que b es la única perpendicular a l que pasa por A y está en Π . Sea C una

perpendicular al que pasa por A y está en el plano Π Sea c la semirrecta de origen A que está

en el semiplano b:lΠ .

Por tanto el ángulo cl , es recto y como todos los ángulos rectos son congruentes (Teorema

18), se sigue que:

blcl , , .

Por el axioma de construcción del ángulo se concluye que las semirrectas c y b coinciden y

esto demuestra la segunda parte de la prueba.

Definición 21. Mediatriz de un segmento

Dado un segmento no nulo, contenido en un plano dado se llama mediatriz del segmento

de dicho plano a la recta única perpendicular, levantada por el punto medio del segmento

y contenida en dicho plano.

Definición 22. Segmentos notables en el triángulo.

i. En todo triángulo, se llama altura al segmento perpendicular trazado desde uno

cualquiera de los vértices, a la recta que contiene el lado opuesto. (Figura 65).

ii. Se llama mediana, al segmento comprendido entre uno cualquiera de los vértices y

el punto medio del lado opuesto. (Figura 65).

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 28: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

iii. Se llama bisectriz del triángulo, al segmento comprendido entre uno cualquiera de

los vértices y el lado opuesto y que divide al ángulo correspondiente a dicho

vértice en dos ángulos congruentes. (Ver Figura 65).

Figura 65

BH es altura, AM es mediana, AD es bisectriz.

Observaciones.

Tanto la mediana como la bisectriz son segmentos que están en el interior del triángulo.

Sin embargo la altura no siempre está en el interior. (Esto se demostrará posteriormente).

Puede definirse la bisectriz de un triángulo también como el segmento con extremos en el

vértice y en en el punto donde la bisectriz del ángulo intersecta el lado opuesto.

Demostración:

Sea ABC isósceles con ACAB y AM la mediana comprendida entre los lados

congruentes (Figura 66).

Se tiene MCBM (definición de mediana) con M entre B y C.

Por tanto, ACMABM (L-L-L).

De donde, MACBAM , luego AM es bisectriz del ABC .

TEOREMA 20. Propiedades de los segmentos notables en el triángulo isósceles.

En un triángulo isósceles, la mediana comprendida entre los lados congruentes es

altura, bisectriz y está contenida en la mediatriz del lado asociado a la mediana.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 29: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Figura 66

También AMCBAM , con lo cual se tiene un par lineal de ángulos congruentes y por

tanto MCAM o sea que AM es altura del ABC .

Además, como M es un punto medio de BC , el segmento AM está sobre la mediatriz del

segmento BC .

Observación.

También es cierto que si en un triángulo coinciden la mediana y la bisectriz, o la mediana y

la altura, o la altura y la bisectriz, o la mediana está sobre la mediatriz, entonces dicho

triángulo es isósceles. Este teorema se probará posteriormente porque una parte de la

demostración requiere un caso de congruencia de triángulos rectángulos que no se tiene

todavía justificado. Este resultado se designa como Teorema recíproco de los

segmentos notables en un triángulo.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 30: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

3.3 EJERCICIOS PROPUESTOS

Temas: La relación de congruencia en segmentos y ángulos.

Congruencia de triángulos.

Algunas propiedades referidas a triángulos isósceles.

1. Sean AB , ST segmentos no nulos ABIntM , STIntK . Determinar cuáles de las

afirmaciones siguientes son verdaderas y cuáles son falsas, justificando su

determinación. En el caso de que una afirmación sea falsa, construya un contraejemplo

adecuado.

1.1 Si SKAM entonces KTMB .

1.2 Si STAB entonces SKAM .

1.3 Si SKAM y KTMB entonces STAB .

1.4 Si KTMB y STAB entonces SKAM .

1.5 Si MBAM y KTSK entonces STAB .

1.6 Si STAB entonces MBAM y KTSK .

1.7 Si KTSK entonces K es un punto medio de ST .

1.8 Si M es punto medio de AB y K es punto medio de ST entonces STAB

1.9 Si KTSKMBAM entonces M es punto medio de AB y K es un

punto medio de ST .

1.10 Si M es un punto medio de AB y K es un punto medio de ST entonces

KTSKMBAM .

2. Sean BOA , QRP no nulos, no llanos; BOAIntM , QRPIntK . Determinar cuáles de

las afirmaciones siguientes son verdaderas y cuáles son falsas, justificando su

determinación. En el caso de que una afirmación sea falsa, construya un contraejemplo

adecuado.

2.1 OM y AB se cortan en un punto único.

2.2 Si A está entre O y L entonces LB y OM se cortan en un punto único.

2.3 Si KRPMOA entonces QRKBOM .

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 31: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

2.4 Si QRPBOA entonces KRPMOA .

2.5 Si QRKMOA y KRPMOB entonces QRPBOA .

2.6 Si QRKMOA y QRPBOA entonces KRPMOB .

2.7 Si MOBMOA y QRKKRP entonces QRPBOA .

2.8 Si QRPBOA entonces MOBMOA y QRKKRP .

2.9 Si QRKKRP entonces RK es bisectriz de QRP .

2.10 Si OM es bisectriz de BOA y RK es bisectriz de QRP entonces

QRPBOA

2.11 Si OM es bisectriz de BOA y RK es bisectriz de QRP entonces

QRKKRPBOMMOA .

2.12 Si QRKKRPBOMMOA entonces OM es bisectriz de BOA y RK es

bisectriz de QRP .

2.13 MOA y MOB son adyacentes.

2.14 MOBMOA entonces MOA y MOB hacen par lineal.

2.15 Si MOBMOA entonces ABOM .

3. Sean AB , CD rectas distintas, 0CDAB . Determinar cuáles de las siguientes

afirmaciones son verdaderas y cuáles son falsas, justificando su determinación. En el

caso de que una afirmación sea falsa, construya un contraejemplo adecuado.

3.1 COA y BOD son opuestos por el vértice.

3.2 BODCOA y BOCDOA .

3.3 BOCDOABODCOA .

3.4 DOA y BOD son adyacentes.

3.5 Si BODDOA entonces ABDC .

3.6 BOC hace par lineal únicamente con DOB .

3.7 Si BOCDOA y BODCOA entonces CDAB .

3.8 Si CD es mediatriz de AB en C,B,AΠ entonces:

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 32: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

3.9 D es punto medio de AB .

3.10 DC es bisectriz de BDA .

3.11 ADBΔ es isósceles.

3.12 ACBΔ es isósceles.

3.13 ACBΔADBΔ .

3.14 O es un punto medio de CD .

3.15 DAOCAO .

3.16 BOCΔAOCΔ .

3.17 DOBΔAODΔ .

3.18 DOBΔAODΔBOCΔAOCΔ .

4. Determinar cuáles de las siguientes afirmaciones son verdaderas y cuáles son falsas,

justificando su determinación. En el caso de que una afirmación sea falsa, construya un

contraejemplo adecuado.

4.1 En triángulos congruentes, a lados congruentes se oponen ángulos

congruentes.

4.2 En triángulos congruentes, a ángulos congruentes se oponen lados

congruentes.

4.3 En triángulos congruentes, todos los lados son congruentes.

4.4 En triángulos congruentes, todos los ángulos son congruentes.

4.5 Si los tres ángulos de un triángulo son respectivamente congruentes, a los

tres ángulos de otro triángulo entonces los triángulos son congruentes.

4.6 Si los tres lados de un triángulo, son respectivamente congruentes, a los

tres lados de otro triángulo, entonces los triángulos son congruentes.

4.7 Si dos triángulos tiene un lado respectivamente congruente, entonces los

ángulos opuestos son respectivamente congruentes.

4.8 Si dos triángulos tiene un ángulo respectivamente congruente, entonces los

lados opuestos son respectivamente congruentes.

4.9 Si dos triángulos tienen un lado respectivamente congruente, entonces los

ángulos adyacentes a dichos lados son respectivamente congruentes.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 33: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

4.10 Si dos triángulos son equiláteros entonces son congruentes.

4.11 Si dos triángulos isósceles, tiene sus bases respectivamente

congruentes, entonces son congruentes.

4.12 Si dos triángulos son isósceles entonces los cuatro ángulos adyacentes

a sus respectivas bases son congruentes.

5. Para cada pareja de triángulos se indican los respectivos elementos congruentes.

Señale cuáles de ellos son congruentes, y cuales no lo son, justificando su afirmación.

5.1. 5.2.

5.3. 5.4.

5.5. 5.6.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 34: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

5.7 5.8.

5.9. 5.10.

Para aquellas parejas de triángulos congruentes indique el caso que lo justifica y las

conclusiones derivadas.

6. Se tiene el HREΔ con RERH . Los puntos M y K están en los lados del ERH de tal

manera que H está entre R y M. E está entre R y K. EM y HK se intersectan en el

punto T; TRETRH ; RT y HE se intersectan en el punto P.

6.1 Trace una figura que satisfaga todas las condiciones descritas.

6.2 Demuestre que PREPRHΔΔ

.

6.3 Demuestre que TRETRHΔΔ

.

6.4 Demuestre que TPETPHΔΔ

6.5 Demuestre que TEKTHMΔΔ

.

6.6 Demuestre que KRMΔ es isósceles.

7. En los triángulos de las figuras se tiene:

i. 'C'AAC .

ii. AH bisectriz de DACΔ

.

iii. 'H'A bisectriz de 'D'A'CΔ

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 35: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

iv. 'C'DDC .

v. DCAH , .

vi. .

Demostrar:

7.1 ∆𝐴𝐷𝐶 ≅ ∆𝐴′𝐷′𝐶′.

7.2 ∆𝐴𝐵𝐷 ≅ ∆𝐴′𝐵′𝐷′.

7.3 .

8. Observe la figura y considere como hipótesis las siguientes proposiciones:

; B está entre A y C, y E está entre D y C ; .

Demuestre que:

8.1 .

8.2 .

8.3 .

8.4 es bisectriz de .

9. Si .

O: punto medio de y .

M está entre A y C.

N está entre D y B.

O está entre M y N.

Demuestre que:

9.1 .

9.2 .

9.3 .

10. En la figura se tiene y , , y además:

'C'D'H'A

'C'A'BCAB

'B'C'AΔACBΔ

BODBOA DCAC ODOA

DA

OEOB

CEBC

OC AOD

0CDAB

AB CD

BA

DNMC

ONOM

AODΔ BOCΔ EADOC FBCOD

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 36: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Hipótesis:

O es un punto medio de .

.

Tesis

i. .

ii. .

iii. .

iv. isósceles.

11. En la siguiente figura suponga que es bisectriz de y de , ,

. Demuestre que:

11.1 es isósceles.

11.2 .

11.3 .

11.4 .

12. En la figura se tiene:

N está entre O y A; M está entre O y B;

;

; .

Demuestre que:

12.1 es isósceles.

12.2 es bisectriz de .

13. En un triángulo isósceles ABC, . Se trazan las medianas y relativas a

los lados congruentes, las cuales se cortan en el punto I.

AB

COBDOA

BA

OCOD

BCAD

DC

EOFΔ

AB DAC DBC ABM

0 ABCD

CADΔ

ABCD

MDMC

CDMDCM

PBNAM

PMPN PBAP

OABΔ

OP BOA

ACAB BD CE

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 37: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

13.1 Demostrar que y son isósceles.

13.2 Demostrar que .

13.3 Demostrar que los puntos A, I y los puntos medios de y están

en línea recta.

14. En la figura se tiene:

Hipótesis:

es equilátero.

A está entre B y .

C está entre A y .

B está entre y C.

Tesis: es equilátero.

15. En la figura se tiene:

y

𝐷𝐶 ∩ 𝐵𝐸 = {𝐴}

B está entre O y D.

C está entre O y E.

Demostrar que 𝑂𝐴 es bisectriz de

16. En el se tiene y , G, H, I, J colineales. H está entre G e I, I

entre H y J.

Probar que:

i. 𝐺𝐾 ≅ 𝐽𝐾 .

ii. .

BICΔ DIEΔ

DICΔBIEΔ

ED BC

CBAΔ

1A

1C

1B

111 CCBBAA

111 CBAΔ

ACAB AEAD

GIKΔ IKHK IJGH

JKIHKG

EOD

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 38: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

17. Demuestre que un triángulo es isósceles si:

17.1 es a la vez mediana y altura.

17.2 es a la vez bisectriz y altura.

17.3 ¿Podrá decirse que el triángulo es isósceles si la bisectriz es a la vez

mediana?

Observación: Estos resultados pueden considerarse como “recíprocos” con relación a lo

planteado en el teorema Nº 20.

18. En la siguiente figura tenemos:

;

;

N está entre O y C.

M está entre O y D.

Demostrar que:

18.1 .

18.2 .

18.3 .

19. Demostrar que las medianas asociadas a los lados congruentes de un triángulo

isósceles son congruentes.

20. Demostrar que las bisectrices de los ángulos de la base de un triángulo isósceles

son congruentes.

21. Demostrar que en triángulos congruentes, las medianas homólogas son

congruentes, las bisectrices homólogas son congruentes.

CBAΔ

AD

AD

OCOA OBOD

OBOA ODOC

EBCAD

BCAD

AB

NCEΔMDEΔ

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 39: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

22. En ∆ ABC y ; y son bisectrices de y

respectivamente. , , . Demostrar que:

.

23. En y se tiene: y medianas de y

respectivamente, , , . Demostrar que

.

24. Sea no nulo y no llano. C, D sobre la semirrecta tal que C está entre O y

F; y ; . Demostrar:

24.1 .

24.2 .

24.3 𝑂𝑃 es bisectriz de .

Nota: Este problema establece una construcción alterna de la bisectriz de un ángulo.

25. En la figura se tiene:

; .

Demostrar que las medianas, alturas y bisectrices del

pasan por O.

26. Sean: y isósceles, tales que ; , : altura

asociada a , : altura asociada a .

Demostrar:

'C'B'AΔ AD 'D'A CAB 'C'A'B

'D'AAD 'C'A'BCAB 'B'AAB

'C'B'AΔABCΔ

ABCΔ 'C'B'AΔ AM 'M'A BC 'C'B

'M'AAM 'B'AAB 'C'AAC

'C'B'AΔABCΔ

BOA OA

OEOC OFOD PDECF

OCFΔOEDΔ

EPFΔCPDΔ

BOA

AOCCOBBOA OCOBOA

ABCΔ

ABCΔ 'C'B'AΔ ACAB 'C'A'B'A AH

BC 'H'A 'C'B

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 40: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

26.1 Si y entonces .

26.2 Si y entonces .

27. Sean , tales que: bisectriz de , 𝐷𝐾 : bisectriz de .

Demostrar que si , y entonces .

Propongo el siguiente problema como una conjetura (Proposición que creo que puede

ser verdadera, pero de la que no se tiene una demostración). Estudiela bien y trata de

demostrarla, ó por el contrario si usted encuentra que es falsa, construya un

contraejemplo.

28. Sean y tales que es bisectriz de y es bisectriz de

; , Si , y

, entonces,

'C'A'BCAB 'H'AAH 'C'B'AΔABCΔ

'C'BBC 'H'AAH 'C'B'AΔABCΔ

ABCΔ DEFΔ AT CAB FDE

FDECAB EDBA DKAT DEFΔABCΔ

ABCΔ DEFΔ AT CAB DK

FDE TBCAT KEFDK FDECAB DKAT

EFBC DEFΔABCΔ

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 41: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

3.4 LAS RELACIONES MAYOR (RESPECTIVAMENTE MENOR) EN LOS

SEGMENTOS Y EN LOS ÁNGULOS

Definición 23.

i. Dados dos segmentos , se dice que es mayor que , o bien que

es menor que , si existe un punto C en el interior de tal que

. (Figura 67).

Figura 67

ii. Dados dos ángulos: , se dice que es mayor que , o

bien que es menor que , si existe una semirrecta en el interior y

con origen en el vértice de tal que: . (Figura 68).

Figura 68

Observación.

Para expresar que un segmento es mayor que otro se emplea el símbolo >. Dicho símbolo

también será empleado para expresar que un ángulo es mayor que otro.

Para la expresión menor será empleado el símbolo <.

AB ''BA AB ''BA

''BA AB AB

''BAAC

ba , dc , ba , dc ,

dc , ba ,h

ba , dcha , ,

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 42: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Demostración.

Por el axioma de construcción del segmento, sobre la recta existe un punto X de la

semirrecta 𝐴𝐵 tal que:

De acuerdo con el axioma II.4 se presentan tres posibilidades:

Puede ocurrir que X esté entre A y B en cuyo caso: .

Puede ocurrir que B esté entre A y X en cuyo caso: .

Puede ocurrir que X coincida con B en cuyo caso: .

Veamos ahora que cualquiera de las posibilidades que se dé, excluye las otras dos.

Supongamos por ejemplo . Entonces existe un punto X en el interior de tal que:

.

Si también fuera posible entonces se tendría por transitividad, de

donde X coincidiría con D, en contradicción con el axioma de construcción de segmentos.

Tampoco puede tener lugar simultáneamente con ya que si ambas

relaciones se dieran, se tendría un punto Y entre A y B tal que: .

Y puesto que ya se tenía se tiene por una aplicación de teorema 9 que D está entre

C y X, lo cual contradice la afirmación hecha antes de que X es un punto interior de .

AB

CDAX

CDAB

CDAB

CDAB

CDAB CD

ABCX

CDAB ABCX

CDAB CDAB

CDAY

CDAB

CD

TEOREMA 21.

Dados dos segmentos cualesquiera y , siempre se cumple una de las tres

relaciones siguientes:

, , .

y cada una de ellas excluye las otras dos.

AB CD

CDAB CDAB CDAB

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 43: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Demostración.

Puesto que , existe un punto Y entre E y F tal que:

.

De la misma manera, puesto que , existe un punto X entre C y D tal que:

.

(Ver Figura 69).

Aplicando el axioma de construcción del segmento, sea P un punto de la semirrecta tal

que:

.

Entonces por el teorema 9 se sigue que P está entre E y F. Además, por transitividad se tiene:

.

Figura 69

En conclusión, se tiene un punto P entre E y F tal que: lo cual significa que

Los siguientes corolarios son de fácil demostración, lo cual se deja para el lector.

EFCD

EYCD

CDAB

XCAB

EF

CXEP

EPAB

EPAB

EFAB

TEOREMA 22 (Propiedad transitiva en la relación de desigualdad entre

segmentos).

Sean y , entonces, . CDAB EFCD EFAB

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 44: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Observación.

Análogos a los dos últimos teoremas y a los anteriores corolarios, tienen lugar resultados

relativos a los ángulos, los cuales se enuncian a continuación.

COROLARIOS

1. Si y , entonces, .

2. Si el segmento está contenido en el segmento , entonces, .

CDAB EFCD EFAB

CD AB ABCD

TEOREMA 23.

· Dados dos ángulos cualesquiera, y siempre se cumple una de las

relaciones siguientes:

, ,

y cada una de ellas excluye a las otras dos.

· Propiedad transitiva: Sean y . Entonces,

.

· Si y , entonces, .

· Si el ángulo tiene el mismo vértice y está en el interior del ángulo ,

entonces, .

ba , dc ,

dcba , , dcba , , dcba , ,

dcba , , fedc , ,

feba , ,

dcba , , fedc , , feba , ,

dc , ba ,

badc , ,

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 45: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

3.5 EJERCICIOS PROPUESTOS

Temas: Relaciones mayor (respectivamente menor) en segmentos.

Relaciones mayor (respectivamente menor) en ángulos.

1. Si P está entre Q y R y X está entre P y Q, señale cuáles de las siguientes proposiciones

son verdaderas y cuáles son falsas, justificando su determinación.

1.1 .

1.2 .

1.3 .

1.4 .

1.5 .

1.6 .

1.7 .

1.8 Si entonces .

1.9 Si entonces .

1.10 Si entonces .

2. Indicar para cada una de las siguientes proposiciones cuáles son verdaderas y cuáles

son falsas, justificando su determinación.

2.1 Si y entonces .

2.2 Si y entonces .

2.3 Si y entonces existe tal que .

2.4 Si entonces .

2.5 Si , y entonces existe tal que

.

3 Indicar para cada una de las siguientes proposiciones cuáles son verdaderas y cuáles son

falsas, justificando su determinación.

3.1 Si entonces siempre se da una y solo una de las siguientes relaciones:

ó ó .

3.2 Si entonces siempre se da una y solo una de las siguientes relaciones:

ó ó .

QPQR

QXQR

RPQR

PXPR

PRQP

QXQP

XRQX

XRQX PRXP

PRXP XRQP

XRQP PRQX

PQAB PQCD CDAB

PQAB PQCD ABCD

CDAB TKCD TKInt'B AB'TB

CDAB CDAB

CDAB HKCD PQHK ABIntX

PQAX

ABX

ABAX ABAX ABAX

ABX

ABAX ABAX ABAX

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 46: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

3.3 Si entonces siempre se da una y solo una de las siguientes relaciones:

ó ó .

3.4 Si entonces A, X, B y C son colineales.

3.5 Si entonces A, B, X son colineales.

4 Sean no nulo y no llano, , ; señale cuáles de las

siguientes proposiciones son verdaderas y cuáles son falsas.

4.1 .

4.2 .

4.3 .

4.4 .

4.5

4.6 .

4.7 .

4.8 Si entonces

.

4.9 Si entonces

4.10 Si entonces

5 Sean , , no nulos y no llanos, señale cuáles de las siguientes

proposiciones son verdaderas y cuáles son falsas.

5.1 Si y , entonces, .

5.2 Si y , entonces, .

5.3 Si y , entonces, existe tal que

.

5.4 Si , entonces, .

ABX

ABAX ABAX ABAX

BCAX

ABAX

BOA BOAIntM MOAIntX

MOABOA

XOABOA

XOBMOB

XOMMOB

BOMMOA

MOAXOA

BOXKOA

BOXXOA

BOMMOX

BOMMOX

BOXMOA

BOXMOA

BOMXOA

BOA RQP KTS

KTSBOA KTSRQP RQPBOA

KTSBOA BOARQP RQPKTS

KTSBOA KTSRQP RQPIntM

MQPBOA

RQPBOA RQPBOA

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 47: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

3.6 EJERCICIOS RESUELTOS

Ilustración N° 1

Sean 𝐴𝐵 , 𝐶𝐷 rectas distintas, 𝐴𝐵 ∩ 𝐶𝐷 = {0}.

Determinar cuáles de las siguientes afirmaciones son verdaderas y cuáles son falsas,

justificando su determinación.

Presentamos una situación particular, quizás la más representativa inicialmente para el

estudiante, en la figura 1.

Figura 1.

Con relación a ella, podemos afirmar que:

a. Esta proposición es “verdadera” por definición de ángulos opuestos por el vértice.

b. Esta proposición es “verdadera” por el teorema que destaca esta propiedad en los

ángulos opuestos por el vértice.

c. Esta proposición es “falsa” porque podemos mostrar un contraejemplo, en la figura

señalada donde no se cumple.

d. Esta proposición es “verdadera” por la definición de ángulos adyacentes en la situación

presentada.

e. Esta proposición es “verdadera” porque con el antecedente cumplido, esto es si se

cumple la congruencia, como son adyacentes, entonces, por definición lo ángulos son

rectos.

Detengamos en este punto y presento a consideración otra figura que cumple igualmente con

todas las condiciones establecidas inicialmente:

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 48: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Figura 2.

Revisemos nuevamente el valor de verdad de cada una de las proposiciones:

a. Esta proposición es “falsa”, en este caso la figura nos muestra un contraejemplo.

b. Esta proposición es “verdadera” porque se está designando el mismo ángulo.

Como podemos concluir la primera proposición no corresponde a un resultado verdadero

siempre porque hemos señalado al menos un caso en el cual no se cumple.

Analícense las proposiciones restantes sobre las condiciones indicadas en la figura 2 y

revísense de nuevo para poder asegurarse que, el juicio que se emite, no depende de una

situación particular.

Téngase en cuenta que un teorema es válido en todas las situaciones en las cuales se planteen

sus condiciones; y que un enunciado del cual se pueda dar siquiera un contraejemplo de su no

validez, no es un teorema.

Ilustración N° 2

En la figura se tiene:

i. 𝐴𝐵 ∩ 𝐶𝐷 = {𝑂}

ii. 𝑂 punto medio de𝐴𝐵 y de 𝐶𝐷

iii. 𝑂 está entre 𝑀 y 𝑁

iv. 𝑀 está entre 𝐴 y 𝐶

v. 𝑁 está entre 𝐷 y 𝐵

Demuestre que:

1)

A ≅

B ; 2)𝑀𝐶 ≅ 𝐷𝑁; 3)𝑂𝑀 ≅ 𝑂𝑁.

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 49: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Demostración

1. 𝑂𝐴 ≅ 𝑂𝐵; de ii. definición de punto medio.

2. 𝑂𝐶 ≅ 𝑂𝐷; de ii. definición de punto medio.

3.

AOC≅

DOB ; de ii. Teorema ángulos opuestos por el vértice.

4. ∆𝐴𝑂𝐶 ≅ ∆𝐷𝑂𝐵 (L-A-L); de 1, 2 y 3.

Consecuencias:

A ≅

B⏟ 4′

,

C ≅

D⏟ 4′′

,𝐴𝐶 ≅ 𝐷𝐵⏟ 4′′′

5.

MOC≅

DON ; de ii. y iii. Teorema ángulos opuestos por el vértice.

6. ∆𝑀𝑂𝐶 ≅ ∆𝐷𝑂𝑁 (A-L-A); de 4´´, 2 y 5.

Consecuencias: 𝑀𝐶 ≅ 𝐷𝑁⏟ 6′

,𝑂𝑀 ≅ 𝑂𝑁⏟ 6′′

,

OMC ≅

OND⏟ 6′′′

Ilustración N° 3

En la figura se tienen:

i. OCOA

ii. ODOB

iii. 𝑂𝐴 ≅ 𝑂𝐵

iv. 𝑂𝐶 ≅ 𝑂𝐷

v. 𝑁 está entre 𝑂 y 𝐶.

vi. 𝑀 está entre 𝑂 y 𝐷.

vii. 𝐵𝐶 ∩ 𝐴𝐷 = {𝐸}

viii. 𝐵 − 𝑀 − 𝐸

ix. 𝐴 − 𝑁 − 𝐸

Demuestre que:

1. 𝐴𝐷 ≅ 𝐵𝐶

2.

B ≅

3. ∆𝑀𝐷𝐸 ≅ ∆𝑁𝐶𝐸

A

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 50: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Demostración

1. ≅ ; de i. y ii. propiedad de ángulos rectos.

2. ≅ ; adición de ángulos respectivamente congruentes, de 1.

3. ∆𝐵𝑂𝐶 ≅ ∆𝐴𝑂𝐷(L-A-L); de iii. iv. y 2.

Consecuencias: 𝐴𝐷 ≅ 𝐵𝐶⏟ 3′

, ≅⏟ 3′′

, ≅⏟ 3′′′

4. ∆𝑀𝑂𝐵 ≅ ∆𝑁𝑂𝐴(A-L-A); de iii. , 1 y 3´´

Consecuencias: ≅⏟ 4′

,𝑂𝑀 ≅ 𝑂𝑁⏟ 4′′

,𝐵𝑀 ≅ 𝐴𝑁⏟ 4′′′

5. ≅ ; Teorema propiedad de los ángulos opuestos por el vértice.

6. ≅ ; Teorema propiedad de los ángulos opuestos por el vértice.

7. ≅ ; transitividad entre 4´, 5 y 6.

8. 𝐷𝑀 ≅ 𝐶𝑁; sustracción de segmentos respectivamente congruentes, de iv. y 4´´

9. ∆𝐷𝑀𝐸 ≅ ∆𝐷𝑁𝐸(A-L-A); de 3´´´, 8 y 7.

Ilustración N° 4

Demuestre que: Si dos triángulos tienen dos lados respectivamente congruentes y las

medianas comprendidas entre estos lados, respectivamente congruentes, entonces, los

triángulos son congruentes.

Representamos en las figuras correspondientes a los y las condiciones señaladas en las

hipótesis.

BOD

AOC

BOC

AOD

B

A

C

D

OMB

ONA

OMB

DME

ONA

CNE

DME

CNE

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 51: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

i. ∆𝐴𝐵𝐶, ∆𝐴′𝐵′𝐶′

ii. 𝐴𝐵 ≅ 𝐴′𝐵′

iii. 𝐴𝐶 ≅ 𝐴′𝐶′

iv. 𝐴𝑀: mediana en ∆𝐴𝐵𝐶 Tesis: ∆𝐴𝐵𝐶 ≅ ∆𝐴′𝐵′𝐶′

v. 𝐴′𝑀′ : mediana en ∆𝐴′𝐵′𝐶′

vi. 𝐴𝑀 ≅ 𝐴′𝑀′

Nota:

Este teorema que a primera vista parece ser sencillo en su proceso demostrativo, no lo es

puesto que requiere de una construcción que no se ve fácil.

Demostración

1. 𝑀𝐵 ≅ 𝑀𝐶; de iv. definición de mediana.

2. 𝑀´𝐵´ ≅ 𝑀′𝐶′ ; de v. definición de mediana.

3. En la semirrecta opuesta a𝑀𝐴 , determinamos𝑀𝑃 ≅ 𝑀𝐴 ; axioma de construcción del

segmento.

4. En la semirrecta opuesta a𝑀′𝐴′ , determinamos𝑀′𝑃′ ≅ 𝑀′𝐴′ por la misma razón

anterior.

5. 𝑀𝑃 ≅ 𝑀′𝑃′ ; de vi. , 3 y 4 transitividad.

Hipótesis

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 52: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

6. Determinamos𝑃𝐶 y 𝑃′𝐶′ ; definición de segmento.

7. ≅ ; Teorema propiedad de los ángulos opuestos por el vértice.

8. ∆𝐵𝑀𝐴 ≅ ∆𝐶𝑀𝑃(L-A-L); de 1, 3 y 7.

Consecuencias: 𝐴𝐵 ≅ 𝐶𝑃⏟ 8′

, ≅⏟ 8′′

, ≅⏟ 8′′′

9. ≅ ; Teorema propiedad de los ángulos opuestos por el vértice.

10. ∆𝐵′𝑀′𝐴′ ≅ ∆𝐶′𝑀′𝑃′(L-A-L); de 2, 4 y 9.

Consecuencias: 𝐴′𝐵′ ≅ 𝐶′𝑃′⏟ 10′

, ≅⏟ 10′′

, ≅⏟ 10′′′

11. 𝐴𝑃 ≅ 𝐴′𝑃′ ; adición de segmentos respectivamente congruentes, de vi., 3 y 4.

12. 𝑃𝐶 ≅ 𝑃′𝐶′ ; de ii. 8´ y 10´.

13. ∆𝐴𝑃𝐶 ≅ ∆𝐴′𝑃′𝐶′(L-L-L); de iii. , 11 y 12.

Consecuencias: ≅⏟ 13′

, ≅⏟ 13′′

, ≅⏟ 13′′′

14. ∆𝑀𝑃𝐶 ≅ ∆𝑀′𝑃′𝐶′(L-A-L); de 5, 12 Y 13´

Consecuencias: 𝑀𝐶 ≅ 𝑀′𝐶′⏟ 14′

, ≅⏟ 14′′

, ≅⏟ 14′′′

15. 𝑀𝐵 ≅ 𝑀′𝐵′ ; de 14´, 1 y 2., por transitividad.

16. 𝐵𝐶 ≅ 𝐵′𝐶′ ; adición de segmentos respectivamente congruentes, de 14´ y 15.

17. ∆𝐴𝐵𝐶 ≅ ∆𝐴′𝐵′𝐶′(L-L-L); de ii., iii. y 16.

En la figura siguiente se registran los elementos correspondientes a la construcción total.

BMA

CMP

BAM

CPM

B

MCP

''' AMB

''' PMC

''' MAB

''' MPC

'B

''' PCM

MPC

''' CPM

MAC

''' CAM

ACP

''' PCA

CMP

''' PMC

MCP

''' PCM

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 53: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

Ilustración N°5

En la figura se tiene que 𝐴𝐵 biseca los ángulos y respectivamente; 𝑀𝜖𝐴𝐵 , 𝐶𝐷 ∩

𝐴𝐵 = {𝑂}

Demuestre que:

i.∆ 𝐶𝐴𝐷 es isósceles.

ii. 𝐶𝐷 ⊥ 𝐴𝐵

iii. 𝑀𝐶 ≅ 𝑀𝐷

iv.

Demostración

1. ≅ y ≅ de la hipótesis.

2. ∆𝐶𝐴𝐵 ≅ ∆𝐷𝐴𝐵 por el caso A - L - A, de 1.

2′. 𝐴𝐶 ≅ 𝐴𝐷 2′′. 𝐵𝐶 ≅ 𝐵𝐷 2′′′. ≅ Consecuencias de 2.

3. ∆𝐶𝐷𝐴 es isósceles. Definición triángulo isósceles de 2'.

4. 𝐴𝑂 es bisectriz en el ∆𝐶𝐷𝐴 de 1.

5. 𝐴𝑂 es altura mediana y está sobre la mediatriz del lado 𝐶𝐷 . Propiedad de los

segmentos notables del triángulo isósceles. De 3 y 4.

6. 𝐶𝐷 ⊥ 𝐴𝐵 , de 5.

CAD

CBD

MCD

MDC

CAB

DAB

CBA

ABD

ACB

ADB

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 54: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

7. En el ∆𝑀𝐶𝐷, 𝑀𝑂 es la mediana y altura ¿Por qué?

8. ∆𝑀𝐶𝐷 es isósceles. ¿Por qué?

9. 𝑀𝐶 ≅ 𝑀𝐷 , de 8, definición de triángulo isósceles.

10. , de 8 Propiedad del triángulo isósceles.

Ilustración N°6

En la figura se tiene:

i. A, O, B y C son coplanarios

Hipótesis ii. 𝑂𝐴 ≅ 𝑂𝐵 ≅ 𝑂𝐶

iii.

Tesis: Las medianas, las alturas y las bisectrices del ∆𝐴𝐵𝐶

pasan por el punto O.

Demostración

1. Determinamos 𝐴𝐵 , 𝐴𝐶 y 𝐵𝐶

2. ∆𝐴𝑂𝐵 ≅ ∆𝐵𝑂𝐶 ≅ ∆𝐶𝑂𝐴 (L - A - L) de las hipótesis ii. y iii.

2′. 𝐴𝐵 ≅ 𝐵𝐶 ≅ 𝐴𝐶

2’’.

consecuencia de 2 y propiedad del triángulo isósceles.

3. ∆𝐴𝐵𝐶 es equilátero de 2' definición triángulo equilátero.

4. 𝐵𝑂 es bisectriz del ¿Por qué?

5. 𝐵𝑂 ∩ 𝐴𝐶 = {𝐾}, 𝐾 es único. De 4. Teorema de la Barra transversal.

6. 𝐵𝐾 es bisectriz, mediana y altura en el ∆𝐵𝐴𝐶 , de 3 y 4 por propiedad de los

segmentos notables del triángulo isósceles.

MCD

MDC

AOB

BOC

COA

ABC

OAB

OBC

OCB

OCA

OAC

ABC

Materia

l edu

cativ

o

Uso no

comerc

ial

Page 55: CAPÍTULO 3. AXIOMAS DE CONGRUENCIAingenieria2.udea.edu.co/multimedia-static/elementos_geometria... · ELEMENTOS DE GEOMETRÍA EUCLIDIANA El siguiente axioma expresa que la relación

ELEMENTOS DE GEOMETRÍA EUCLIDIANA

7. En forma análoga se procede para las bisectrices 𝐴𝑂 y 𝐶𝑂 respectivamente.

Materia

l edu

cativ

o

Uso no

comerc

ial