algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/algoritmospararedes.pdf ·...

101
1 Profesor Leopoldo Silva Bijit 30/12/2009 Algoritmos para el análisis de redes. El disponer de herramientas computacionales que resuelvan sistemas de ecuaciones no lineales dinámicos y que permitan desplegar las formas de ondas de las respuestas, puede llevar a desconocer la forma en que estas herramientas ocupan los conceptos y teorías en que están basadas. Se desea usar herramientas computacionales para resolver los problemas matemáticos asociados a la teoría de redes y a la vez ilustrar en qué aspectos de la teoría están basados los programas y aplicaciones de análisis de redes de tipo electrónicas. A partir de la teoría básica de las redes eléctricas se modelará la red en términos de un sistema de ecuaciones. Debido a los diferentes modelos matemáticos de representación, primero se expondrán los algoritmos numéricos simplificados, para resolver: un sistema algebraico de ecuaciones, un sistema de ecuaciones diferenciales de primer orden, un sistema de ecuaciones no lineales, la linealización de un sistema no lineal para señales pequeñas en comparación con los valores de polarización. A través de Maple se ilustrarán algoritmos simplificados que realizan las mismas funciones que los sofisticados algoritmos internos que emplea SPICE para los diferentes análisis que efectúa. La reproducción de los ejemplos propuestos frente a un computador permite la asimilación más rápida de los conceptos que se exponen.

Upload: lynguyet

Post on 25-Mar-2019

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

1

Profesor Leopoldo Silva Bijit 30/12/2009

Algoritmos para el análisis de redes.

El disponer de herramientas computacionales que resuelvan sistemas de ecuaciones no lineales dinámicos y que permitan desplegar las formas de ondas de las respuestas, puede llevar a

desconocer la forma en que estas herramientas ocupan los conceptos y teorías en que están basadas.

Se desea usar herramientas computacionales para resolver

los problemas matemáticos asociados a la teoría de redes y a la vez ilustrar en qué aspectos de la teoría están basados los programas y aplicaciones de análisis de redes de tipo electrónicas.

A partir de la teoría básica de las redes eléctricas se

modelará la red en términos de un sistema de ecuaciones. Debido a los diferentes modelos matemáticos de representación, primero se expondrán los algoritmos numéricos simplificados, para resolver:

un sistema algebraico de ecuaciones, un sistema de ecuaciones diferenciales de primer orden, un sistema de ecuaciones no lineales, la linealización de un sistema no lineal para señales

pequeñas en comparación con los valores de polarización.

A través de Maple se ilustrarán algoritmos simplificados que realizan las mismas funciones que los sofisticados algoritmos internos que emplea SPICE para los diferentes análisis que efectúa.

La reproducción de los ejemplos propuestos frente a un

computador permite la asimilación más rápida de los conceptos que se exponen.

Page 2: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

2 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

1. Métodos de análisis para redes estáticas.

Están basados en resolver un sistema lineal de ecuaciones.

1.1. Formulación de ecuaciones.

La siguiente red se estudia en condiciones estacionarias. Si existieran condensadores éstos se reemplazan por circuitos abiertos; los inductores por cortocircuitos. Las resistencias se consideran elementos lineales.

2

v4

4

I(R2)

3 R3 R5

R4 R6 E v1 v2 v3

R1 1

0

R2

i01

Figura 1. Red resistiva.

Aplicando método nodal, considerando una incógnita adicional por cada fuente de tensión se obtienen:

01 1 2 1

1

2 1 1 2 2 2 3 3

3 2 3 3 4 3 4 5

4 3 5 4 6

( ) / 0

( ) / / ( ) / 0

( ) / / ( ) / 0

( ) / / 0

i v v R

v E

v v R v R v v R

v v R v R v v R

v v R v R

Además de las cuatro incógnitas de los voltajes de nodos,

aparece la corriente i01 en la fuente de tensión. Expresando en forma matricial, se obtiene:

Page 3: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 3

Profesor Leopoldo Silva Bijit 30/12/2009

1 1

01

1

1 1 2 3 3 2

3

3 3 4 5 5 4

5 5 6

1 11 0 0

00 1 0 0 0

1 1 1 1 10 0

0

1 1 1 1 1 00 0

0

1 1 10 0 0

R R

i

v E

R R R R R v

v

R R R R R v

R R R

La matriz de coeficientes resulta no simétrica y no densa

(sparse en inglés); es decir, con numerosos elementos con valor cero.

1.2. Modelo matemático.

Si se aplica método nodal con modificaciones, para tratar fuentes de voltajes controladas e independientes, se obtiene un sistema de ecuaciones, del tipo:

A x b

Donde A es la matriz nodal aumentada, x es el vector de

incógnitas y b el vector de excitaciones. Existen dos esquemas generales para resolver sistemas

lineales de ecuaciones: Métodos de eliminación directa y Métodos Iterativos. Los métodos directos, están basados en la técnica de eliminación de Gauss, que mediante la aplicación

sistemática de operaciones sobre los renglones transforma el problema original de ecuaciones en uno más simple de resolver.

De entre los variados esquemas, basados en la eliminación

de Gauss, el método de descomposición en submatrices triangulares (LU, de Lower y Upper) es preferentemente empleado en implementaciones computacionales, para sistemas de menos de 300 ecuaciones.

Page 4: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

4 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Para sistemas de un mayor número de ecuaciones se emplean métodos iterativos.

La mayoría de estos procedimientos están basados en el método de Gauss Seidel, con aceleraciones para la convergencia.

1.3. Descomposición LU.

Está basado en descomponer la matriz de coeficientes en dos matrices triangulares L y U, según:

A L U

Donde L es una matriz triangular inferior (lower), y U es una

matriz triangular superior (upper). El sistema original de ecuaciones, queda:

L U x b

Que puede ser interpretado como dos sistemas de

ecuaciones:

L d b

U x d

Los dos sistemas anteriores son sencillos de resolver, como

se verá más adelante. El sistema con matriz L, puede ser resuelto por substituciones hacia adelante; el sistema con matriz U se resuelve por substituciones hacia atrás.

El procedimiento está basado en obtener las matrices L y U, a partir de A; luego en obtener el vector d; y finalmente en calcular la solución en el vector x.

Existen varias formas de efectuar la descomposición, el

método de Doolittle asigna unos a los elementos de la diagonal principal de L.

Veremos a través de un ejemplo, las principales ideas,

intentando obtener un algoritmo para el cálculo. Se tiene la matriz A de 4x4 y se desea obtener L y U.

Page 5: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 5

Profesor Leopoldo Silva Bijit 30/12/2009

11 12 13 14 11 12 13 14

21 22 23 24 21 22 23 24

31 32 33 34 31 32 33 34

41 42 43 44 41 42 43 44

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

a a a a u u u u

a a a a l u u uA

a a a a l l u u

a a a a l l l u

Efectuando la multiplicación de las matrices L y U, se

obtiene:

11 12 13 14

21 11 21 12 22 21 13 23 21 14 24

31 11 31 12 32 22 31 13 32 23 33 31 14 32 24 34

41 11 41 12 42 22 41 13 42 23 43 33 41 14 42 24 43 34 44

u u u u

l u l u u l u u l u uA

l u l u l u l u l u u l u l u u

l u l u l u l u l u l u l u l u l u u

El primer renglón de A permite, por comparación, determinar

el primer renglón de U.

11 11 12 12 13 13 14 14 u ; u ; u ; ua a a a

Una vez conocido u11, la primera columna de A permite

determinar el primer renglón de L, se obtienen:

21 21 11 31 31 11 41 41 11/ ; / ; /l a u l a u l a u

El segundo renglón de A, permite calcular el segundo renglón

de U, una vez conocidos los elementos del primer renglón de U, se tienen:

21 12 22 22 21 13 23 23 21 14 24 24; ; l u u a l u u a l u u a

Despejando los elementos del segundo renglón de U, se

obtienen:

22 22 21 12

23 23 21 13

24 24 21 14

u a l u

u a l u

u a l u

Page 6: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

6 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

La segunda columna de A, permite calcular la segunda columna de L.

31 12 32 22 32 41 12 42 22 42; l u l u a l u l u a

Despejando los elementos de la segunda columna de L. se

obtienen:

32 32 31 12 22

42 42 41 12 22

( ) /

( ) /

l a l u u

l a l u u

Del tercer renglón de A, resultan:

31 13 32 23 33 33 31 14 32 24 34 34; l u l u u a l u l u u a

Las que permiten despejar los elementos del tercer renglón

de U:

33 33 31 13 32 23

34 34 31 14 32 24

u a l u l u

u a l u l u

De la tercera columna de A, se puede calcular la tercera

columna de L:

43 43 41 13 42 23 33( ) /l a l u l u u

Finalmente, el cuarto renglón de A, permite calcular el cuarto

renglón de U.

44 44 41 14 42 24 43 34u a l u l u l u

Si bien se ha desarrollado para una matriz de 4x4, de las

expresiones obtenidas puede inducirse que el n-avo renglón de U se obtiene según:

, 1n nl

1

, , , ,1

n

n i n i n k k ik

u a l u

Para: ,..., ;i n N

Y la n-ava columna de L con:

Page 7: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 7

Profesor Leopoldo Silva Bijit 30/12/2009

1

, , , , ,1

/n

j n j n j k k n n nk

l a l u u

Para: 1,...,j n N

Donde N es el número de renglones y columnas de A. De la relación:

L d b

Se obtiene:

11 1 1

21 22 2 2

31 32 33 3 3

41 42 43 44 4 4

0 0 0 d b

0 0 d b

0 d b

d b

l

l l

l l l

l l l l

Efectuando las multiplicaciones, en el lado derecho, se tiene:

11 1 1

21 1 22 2 2

31 1 32 2 33 3 3

41 1 42 2 43 3 44 4 4

b

b

b

b

l d

l d l d

l d l d l d

l d l d l d l d

Las componentes del vector d, se obtienen según:

1 1 11

2 2 21 1 22

3 3 31 1 32 2 33

4 4 41 1 42 2 43 3 44

/

( ) /

( ) /

( ) /

d b l

d b l d l

d b l d l d l

d b l d l d l d l

Una vez obtenido d1, se substituye en la expresión siguiente

para calcular d2; con d1 y d2, se puede calcular d3; y así sucesivamente. Por esta razón, al procedimiento se lo denomina substitución hacia adelante (forward).

El vector d, puede recalcularse para diferentes valores del vector b, que es la situación que se produce en un barrido DC. Debido a que en el método de Gauss se ocupa, desde el inicio

Page 8: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

8 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

de las operaciones, los valores de b; el efectuar cálculos con b variable lo realiza con ventajas el método de descomposición triangular.

La relación anterior, permite deducir una expresión para

calcular los di, en una matriz de orden N.

1

( ) /i l

i i ij j ii

j

d b l d l

Para: 1,2, ,i N

Para la triangular superior:

U x d

Se tiene:

11 12 13 14 1 1

22 23 24 2 2

33 34 3 3

44 4 4

x d

0 x d

0 0 x d

0 0 0 x d

u u u u

u u u

u u

u

Efectuando las multiplicaciones, se obtiene:

11 1 12 2 13 3 14 4 1

22 2 23 3 24 4 2

33 3 34 4 3

44 4 4

d

d

d

d

u x u x u x u x

u x u x u x

u x u x

u x

Despejando los xi, se obtienen:

4 4 44

3 3 34 4 33

2 2 23 3 24 4 22

1 1 12 2 13 3 14 4 11

/

( ) /

( ) /

( ) /

x d u

x d u x u

x d u x u x u

x d u x u x u x u

Que entrega la solución del sistema de ecuaciones. Nótese que primero se obtiene x4; y luego x3, que se calcula en

Page 9: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 9

Profesor Leopoldo Silva Bijit 30/12/2009

términos de x4; y así sucesivamente. Por esta razón a este algoritmo se lo denomina substitución hacia atrás (back).

En general:

1

/N N NN

N

i ij j

j i

i

ii

x d u

d u x

xu

Para: ( 1), ( 2), ,3,2,1i N N

1.4. Implementación en Maple.

De las ecuaciones generales desarrolladas antes, se puede

traducir la descomposición LU, mediante:

Para: 1,..., ;n N

> for n from 1 to N do

l[n,n]:=1:

for i from n to N do Para: ,..., ;i n N

s:=0;

for k from 1 to (n-1) do

s:=s+l[n,k]*u[k,i]:

od:

u[n,i]:=a[n,i]-s:

#print(u[n,i]):

od:

for j from (n+1) to N do Para: 1,...,j n N

s:=0:

for k from 1 to (n-1) do

s:=s+l[j,k]*u[k,n]:

od:

l[j,n]:=(a[j,n]-s)/u[n,n]:

#print(l[j,n]):

od:

od:

Se han colocado a la derecha las sumatorias obtenidas antes.

El código para la substitución hacia adelante:

1

, ,1

n

n k k ik

s l u

, ,n i n iu a s

, 1n nl

1

, ,1

n

j k k nk

s l u

, , ,( ) /j n j n n nl a s u

Page 10: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

10 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

> for i from 1 to N do Para: 1,2, ,i N

s:=0:

for j from 1 to (i-1) do

s:=s+l[i,j]*d[j]:

od:

d[i]:=(b[i]-s)/l[i,i]:

#print(d[i]);

od:

El código para la substitución hacia atrás: > x[N]:=d[N]/u[N,N]:

Para: for i from (N-1) by -1 to 1 do

s:=0;

for j from (i+1) to N do

s:=s+u[i,j]*x[j]:

od:

x[i]:=(d[i]-s)/u[i,i]:

#print(x[i]):

od:

Para probar los algoritmos pueden definirse, antes de los

códigos anteriores, en forma simbólica los coeficientes, según:

> N:=3:

a[1,1]:=a11:a[1,2]:=a12:a[1,3]:=a13:

a[2,1]:=a21:a[2,2]:=a22:a[2,3]:=a23:

a[3,1]:=a31:a[3,2]:=a32:a[3,3]:=a33:

b[1]:=b1:b[2]:=b2:b[3]:=b3:

Y sacando los comentarios (#) se pueden observar la generación de las fórmulas, para el caso N=3.

Si se dan valores numéricos a los coeficientes de la matriz A, y al vector de excitaciones:

> datos:={a11=1,a12=2,a13=3,

a21=3,a22=2,a23=1,

a31=1,a32=-1,a33=-2,

b1=1,b2=2,b3=3}:

Se obtienen los valores de las incógnitas:

1

i l

ij j

j

s l d

,( ) /i i i id b s l

( 1), ( 2), ,3, 2,1i N N

/N N NNx d u

1

N

ij j

j i

s u x

( ) /i i iix d s u

Page 11: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 11

Profesor Leopoldo Silva Bijit 30/12/2009

> for i from 1 to N do print(eval(x[i],datos)):

od:

Para los valores anteriores, se obtienen:

1 2 3

13 21 11, ,

4 4 4x x x

En Maple, está implementado el algoritmo para resolver un

sistema de ecuaciones lineales, con el comando solve. Para el mismo sistema anterior:

> ecs:={x1+2*x2+3*x3=1,3*x1+2*x2+x3=2,x1-x2-2*x3=3}:

> solve(ecs,{x1,x2,x3});

{ }, ,x311

4x2

-21

4x1

13

4

Dando iguales resultados.

1.5. Comandos Maple de álgebra lineal.

En el paquete de álgebra lineal, se tienen comandos para la descomposición y las substituciones hacia adelante y hacia atrás. Para la red de la Figura 1, se tienen:

> restart;with(linalg):

> A := array(1..5,1..5,[

[1,-1/R1,1/R1,0,0],

[0,1,0,0,0],

[0,-1/R1,1/R1+1/R2+1/R3,-1/R3,0],

[0,0,-1/R3,1/R3+1/R4+1/R5,-1/R5],

[0,0,0,-1/R5,1/R5+1/R6] ]):

> b:=vector([0,E,0,0,0]):

> LUdecomp(A,L='l',U='u'): d := forwardsub(l,b):

x := backsub(u,d):

Con los datos para la red de la Figura 1: > datos:={R1=1, R2=5, R3=3,R4=4, R5=1,R6=3, E=10}:

Se obtienen: >i01:=eval(x[1],datos);v1:=eval(x[2],datos);

v2:=eval(x[3],datos); v3:=eval(x[4],datos);

01 1 2 3 420 / 7, 10, 50 / 7, 20 / 7, 15/ 7i v v v v

Page 12: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

12 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

1.6. Solución usando ecuaciones de la red y solve de Maple.

Se plantean las ecuaciones de equilibrio de las componentes,

LVK en las mallas y LCK en los nodos, y se emplea el comando solve, para resolver para todos los voltajes y corrientes de la red. Para la red de la Figura 1, se tienen:

ecs:={v1=E, v12=R1*i12, v2=i20*R2, v23=i23*R3,

v3=R4*i30, v34=R5*i34, v4=R6*i40,

v1=v12+v2,v2=v23+v3,v3=v34+v4,

i01=i12,i12=i20+i23,i23=i30+i34,i34=i40};

incognitas:={v1,v12,i12,v2,i20,v23,i23,v3,i30,v34,i34,

v4,i40,i01}

sol:=solve(ecs, incognitas);

#Se asignan valores a las componentes:

valores:={E=10, R1=1, R2=5, R3=3, R4=4, R5=1, R6=3};

subs(valores, sol);

Se obtiene la solución para todas las variables de la red: {i01 = 2.857142857, i40 = .7142857143, i30 = .7142857143, v23 = 4.285714286, i20 = 1.428571429, v34 = .7142857143, v2 = 7.142857143, v4 = 2.142857143, i23 = 1.428571429, v3 = 2.857142857, v12 = 2.857142857, i12 = 2.857142857, i34 = .7142857143, v1 = 10.};

1.7. Solución SPICE.

Se describe la red de la Figura 1, mediante un netlist, y se

emplea el modo .op, que resuelve el sistema de ecuaciones. Red simple *Descripción de la red.

V1 1 0 DC 10.0V ; Fuente de voltaje: * Comienza con V. Polaridad de 1 a 0 R1 1 2 1.0 ; Resistencias comienzan con R R2 2 0 5.0 R3 2 3 3.0 R4 3 0 4.0 R5 3 4 1.0 R6 4 0 3.0 .OP ; Cálculo punto de operación. .END

Page 13: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 13

Profesor Leopoldo Silva Bijit 30/12/2009

Se obtienen los valores en el archivo de salida .out: SMALL SIGNAL BIAS SOLUTION TEMPERATURE =27.000 DEG C

********************************************************************

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

( 1) 10.0000 ( 2) 7.1429 ( 3) 2.8571

NODE VOLTAGE

( 4) 2.1429

VOLTAGE SOURCE CURRENTS

NAME CURRENT

V1 -2.857E+00

TOTAL POWER DISSIPATION 2.86E+01 WATTS

Los resultados son similares a los obtenidos antes.

1.8 Métodos iterativos.

Para deducir expresiones generales que permitan escribir

algoritmos iterativos, consideremos el sistema lineal de tres ecuaciones:

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

a a a x b

a a a x b

a a a x b

Despejando de la primera ecuación, la variable 1x ; de la

segunda 2x ; y de la tercera 3x , obtenemos:

1 1 12 2 13 3 11

2 2 21 1 23 3 22

3 3 31 1 32 2 33

( ) /

( ) /

( ) /

x b a x a x a

x b a x a x a

x b a x a x a

Si consideramos conocidos los valores de las variables del

lado derecho, podremos estimar un nuevo valor para las variables del lado izquierdo de las ecuaciones. Podemos anotar lo anterior, mediante:

Page 14: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

14 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

1 1 12 2 13 3 11

2 2 21 1 23 3 22

3 3 31 1 32 2 33

[ 1] ( [ ] [ ]) /

[ 1] ( [ ] [ ]) /

[ 1] ( [ ] [ ]) /

x n b a x n a x n a

x n b a x n a x n a

x n b a x n a x n a

Durante el proceso iterativo se verifica la convergencia

calculando el mayor cambio relativo entre una iteración y la siguiente, y comparando el valor absoluto de esta diferencia con la tolerancia deseada.

| [ 1] [ ] | i ix n x n tolerancia

Si el error es menor que la exactitud requerida el proceso

termina; en caso contrario se realiza una nueva iteración. Si se tienen N variables, pueden generalizarse las iteraciones

según: 1

1 1

[ 1] ( [ ] [ ]) /j i j N

i i ij j ij j ii

j j i

x n b a x n a x n a

El esquema anterior se reconoce como método de Jacobi.

Si el cálculo de las variables se realiza en orden, desde 1x

hasta Nx , puede observarse que una vez obtenido 1x puede

usarse este valor para calcular 2x ; y así sucesivamente.

Entonces en el cálculo ix se pueden emplear los nuevos valores

de las variables desde 1x hasta 1ix .

Entonces el esquema iterativo puede plantearse:

1

1 1

[ 1] ( [ 1] [ ]) /j i j N

i i ij j ij j ii

j j i

x n b a x n a x n a

El que se denomina método de Gauss Seidel.

Mejores resultados se logran calculando las variables en

orden decreciente de los valores de la diagonal principal.

Page 15: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 15

Profesor Leopoldo Silva Bijit 30/12/2009

Una mejora notable de la convergencia se logra empleando un promedio ponderado de los resultados de las dos últimas iteraciones para obtener el nuevo valor. Esto se denomina método de sucesivas sobre relajaciones (SOR Successive Over-Relaxation).

[ 1] [ 1] (1 ) [ ]i i ix n ax n a x n

Con: 0 2a

Si a es 1, se tiene la fórmula de Gauss Seidel. Con a>1, el nuevo valor, en la iteración (n+1), tiene mayor importancia. Con a<1, se tiene subrelajación. La elección de este valor, y su influencia en la convergencia debería aclararse en un curso de

análisis numérico.

Ejemplo.

Para el siguiente sistema lineal de ecuaciones:

1

2

3

1 2 3 1

3 2 1 2

1 1 2 3

x

x

x

Las siguientes líneas implementan el algoritmo de Gauss

Seidel con sucesivas subrelajaciones.

> x1[0]:=0:x2[0]:=0:x3[0]:=0:nmax:=300: err:=1e-6:alpha:=0.69:

> for n from 0 to nmax do x1[n+1]:=(2-2*x2[n]-x3[n])/3;

x3[n+1]:=(1-x1[n+1]-2*x3[n])/3;

x2[n+1]:=(-3+x1[n+1]-2*x3[n+1])/2;

x1[n+1]:=(alpha*x1[n+1]+(1-alpha)*x1[n]):

x2[n+1]:=(alpha*x2[n+1]+(1-alpha)*x2[n]):

x3[n+1]:=(alpha*x3[n+1]+(1-alpha)*x3[n]):

if (abs(x1[n+1]-x1[n])<err) and

(abs(x2[n+1]-x2[n])<err) and

(abs(x3[n+1]-x3[n])<err)

then

# solución dentro de la tolerancia

break ;

fi ;

od:

Page 16: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

16 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Se obtiene la respuesta en 13 iteraciones con el factor a=0,69. Si se aplica factor a=1, se logra el resultado en 83 iteraciones. Con factor a sobre 1,05 se requieren más de 300 iteraciones; con valores del factor un poco mayores el algoritmo no converge.

2. Métodos de análisis para redes dinámicas.

Los diferentes métodos generales de análisis de redes permiten generar sistemas de ecuaciones diferenciales de primer orden, en términos de los voltajes en los condensadores y las corrientes en los inductores.

Para esto basta plantear los sistemas de ecuaciones en algún conjunto de variables independientes, y luego expresar en términos de las variables de las componentes dinámicas. Se ilustra la metodología empleando el método de mallas y luego el método mixto.

2.1. Método de mallas.

Analizar la siguiente red, aplicando método de mallas a la

red de la Figura 2.

vf(t)

if(t)

L

ic

C R kic

a b

c d

Figura 2. Diagrama de la red.

2.1.1. Identificación de las corrientes de mallas.

Se identifican las corrientes de mallas:

Page 17: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 17

Profesor Leopoldo Silva Bijit 30/12/2009

vf(t) if(t)

L

ic

C R kic

a b

c d

i1

i2 i3 vi vic vC

Figura 3. Mallas.

La red es dinámica de segundo orden por lo cual las variables de interés son el voltaje en el condensador, y la corriente en el inductor.

2.2.2. Ecuaciones:

LVK en mallas:

22 3 3 2; ( ) ; ( );i f C C ic

div v v L R i i v v R i i

dt

Ecuaciones de equilibrio:

1 2 1 3 1 2; ; ( )Cf

dvC i i i i i k i i

dt

Hasta aquí la formulación del problema empleando la teoría

de redes. Se ha logrado un sistema de 6 ecuaciones independientes en 6 incógnitas. Lo que resta es resolver el sistema, y éste es un problema matemático.

2.1.3. Un método para papel y lápiz:

Deben eliminarse todas las variables, que no sean las de interés.

Se reemplazan las ecuaciones de equilibrio en las de mallas, resultando un sistema de ecuaciones diferenciales de primer orden:

Page 18: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

18 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

22 2

2

( ( ( ))f C

Cf

diL R i k i i v

dt

dvC i i

dt

En caso de redes no planas la formulación es similar. Pero

debe usarse en forma explícita LCK. Podría discutirse si es mejor exponer un método de análisis

en lugar de varios. Algunos opinan que el método nodal podría ser suficiente, ya que el de mallas no puede emplearse en redes no planas.

Pero en el método nodal se tiene que resolver: el tratamiento

de fuentes de tensión, el caso transitorio y la introducción de elementos no lineales controlados por corrientes.

Sin embargo, el método que mejor se adapta a todo tipo de

situaciones es el método mixto. Consiste en escoger como variables independientes: las corrientes de cuerdas y los voltajes de ramas. La adecuada elección del árbol permite la formulación dinámica de la red, en forma de un sistema de ecuaciones diferenciales de primer orden.

2.2. Método mixto.

Analizar la siguiente red, aplicando método mixto a la red de la Figura 4.

vf(t)

if(t)

L

ic

C R kic

a b

c d

Figura 4. Diagrama de la red.

Page 19: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 19

Profesor Leopoldo Silva Bijit 30/12/2009

2.2.1. Elección de un árbol.

Se identifican las variables, empleando un árbol.

3

1

a b

c d

4 5

6

2

Figura 5. Árbol y variables.

La red es dinámica de segundo orden por lo cual las variables de interés son el voltaje en el condensador, y la corriente en el inductor.

2.2.2. Ecuaciones:

LCK. Corrientes de ramas en función de corrientes de

cuerdas:

3 4 1 2 4 5 2 6; ;i i i i i i i i

LVK. Voltajes de cuerdas en función de voltajes de ramas.

4 1 3 2 1 5 6 5; ;v v v v v v v v

Ecuaciones de equilibrio:

51 21 2 3 4 5 6 1; ; ; ; ;f f

vdv dii C v L v v i i i i ki

dt dt R

Hasta aquí la formulación del problema empleando la teoría

de redes. Se ha logrado un sistema de 12 ecuaciones independientes en 12 incógnitas. Lo que resta es resolver el sistema, y éste es un problema matemático.

Page 20: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

20 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

2.2.3. Un método para papel y lápiz:

Deben eliminarse todas las variables, que no sean las de

interés. Se reemplazan las ecuaciones de equilibrio en LCK y LVK:

51 13 2 2

24 1 1 5 6 5

; ;

; ;

f f

f

vdv dvi i C i i i kC

dt R dt

div v v L v v v v

dt

Se elimina v5 resultando las ecuaciones de estado:

12

21 2

;

(1 ) ;

f

f

dvC i i

dt

diL v R k i Rki

dt

Que resultan iguales a las obtenidas empleando el método de

mallas, salvo que se ha empleado 1v , en lugar de Cv .

Las ecuaciones que quedan, permiten calcular el resto de las variables.

13 4 1 5 2 6 5; ; ; ;f f

dvi i v v v v Ri kRC v v

dt

Se ha logrado un modelo matemático que describe la

conducta dinámica de la red, y resta resolver el sistema de ecuaciones diferenciales de primer orden en las variables de

interés (variables de estado).

2.3. Solución Maple, para obtener las

ecuaciones de estado, y resolver las ecuaciones diferenciales.

Empleando el procesador matemático Maple:

Page 21: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 21

Profesor Leopoldo Silva Bijit 30/12/2009

> restart;

LCK > lck:={i3=14, i1=i2-i4,i5=-i2-i6}:

LVK: > lvk:={v4=v1-v3,v2=v5-v1,v6=v5}:

Ecuaciones de equilibrio: > eq:={i4=ift,v3=vf,i1=C*DV1,v2=L*DI2,v5=R*i5,i6=k*i1}:

> ecs:= lck union lvk union eq:

> ec1:=eliminate(ecs,{i1,i3,i4,i5,i6,v2,v3,v4,v5, v6}):

> ec2:=solve(ec1[2], {DV1,DI2}):

>ecestado:=subs(v1=v1(t),i2=i2(t),DV1=diff(v1(t),t),

DI2=diff(i2(t),t),ec2):

> solresto:=subs(v1=v1(t),i2=i2(t),DV1=diff(v1(t),t),

DI2=diff(i2(t), t),ec1[1]):

> varestado:={v1(t), i2(t)}:

estadoinicial:={v1(0)=2, i2(0)=1}:

>estado1:=dsolve(estadoinicial union ecestado,

varestado);

Resultan las soluciones en forma simbólica:

estado1 ( )i2 t C1

4( )R k C R C R2 k2 C2 2 R2 k C2 R2 C2 4 L C :=

e

( )R k C R C R2

k2

C2

2 R2

k C2

R2

C2

4 L C t

2 L C2 ift L R2 C ift 2 R C(

R2 k C ift 2 R k C R2 k2 C2 2 R2 k C2 R2 C2 4 L C R ift

2 R2 k2 C2 2 R2 k C2 R2 C2 4 L C 2 L ) L C(

R2 k2 C2 2 R2 k C2 R2 C2 4 L C )1

4

( )R k C R C R2 k2 C2 2 R2 k C2 R2 C2 4 L C

e

( )R k C R C R2

k2

C2

2 R2

k C2

R2

C2

4 L C t

2 L C2 ift L R2 C ift 2 R C(

R2 k C ift 2 R k C R2 k2 C2 2 R2 k C2 R2 C2 4 L C R ift

2 R2 k2 C2 2 R2 k C2 R2 C2 4 L C 2 L ) L C(

R2 k2 C2 2 R2 k C2 R2 C2 4 L C ) ift ( )v1 t1

2,

Page 22: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

22 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

e

t ( )R k C R C C ( )R2

C k2

2 R2

C k R2

C 4 L

2 L C2 ift L R2 C ift 2 R C(

R2 k C ift 2 R k C R2 k2 C2 2 R2 k C2 R2 C2 4 L C R ift

2 R2 k2 C2 2 R2 k C2 R2 C2 4 L C 2 L )

R2 k2 C2 2 R2 k C2 R2 C2 4 L C1

2

e

t ( )R k C R C C ( )R2

C k2

2 R2

C k R2

C 4 L

2 L C2 ift L R2 C ift 2 R C(

R2 k C ift 2 R k C R2 k2 C2 2 R2 k C2 R2 C2 4 L C R ift

2 R2 k2 C2 2 R2 k C2 R2 C2 4 L C 2 L )

R2 k2 C2 2 R2 k C2 R2 C2 4 L C R ift

Si se desea efectuar cálculos numéricos, se asignan valores a los datos. En el caso del ejemplo, se emplea una fuente continua y una sinusoidal, para ilustrar lo general de la solución.

> datos:={R=1, L=1, C=1, vf=2, ift=5*cos(2*t),k=3}:

>estado:=dsolve(estadoinicial union

eval(ecestado, datos), varestado);

Ahora se tienen soluciones específicas.

estado ( )i2 t 2 e( )2 t t 3 45 3

73

211

146e

( )2 t t 3 45 3

73

211

1463{ :=

2 e( )2 t t 3 45 3

73

211

146e

( )2 t t 3 45 3

73

211

1463

130

73( )sin 2 t

225

73( )cos 2 t ( )v1 t e

( )2 t t 3 45 3

73

211

146e

( )2 t t 3 45 3

73

211

146,

65

73( )cos 2 t

70

73( )sin 2 t }

Si se desean formas numéricas, se evalúa con flotantes:

> assign(estado):

> evalf(i2(t));

0.673331677 e( )0.267949192 t

1.408860100 e( )3.732050808 t

1.780821918 ( )sin 2. t

3.082191781 ( )cos 2. t

Page 23: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 23

Profesor Leopoldo Silva Bijit 30/12/2009

Si se desea visualizar las soluciones:

> plot({i2(t),v1(t)},t=0..10);

Figura 6. Formas de ondas.

2.4. Solución de las ecuaciones diferenciales usando SPICE.

Vf

If(t)

L

ic

C

R F1=kic

1 2

0 3

4 VC

Figura 7. Diagrama de la red.

2.4.1. Netlist y estímulos transitorios.

Con: vf(t)=2, if(t)=5cos(2t), R=1, C=1, L= 1, vC(0)=2, iL(0)=1,

k=3. El estímulo SIN (<ioff> <iampl> <freq> <td> <df> <phase>),

puede programarse para generar el estímulo sinusoidal, empleando:

Page 24: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

24 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

2 2

10.31832

f

f

Como la excitación es coseno, al seno se le suman 90 grados de desfase. Con offset cero ioff=0, sin retardo td=0, y sin amortiguamiento exponencial df=0)

Resulta: SIN(0, 5, 0.31832 , 0, 0, 90) Para la fuente de corriente controlada por corriente F1, se

define una fuente de tensión continua de 0 volts, Vc, que se emplea para definir la corriente de control.

2.4.2. Análisis transitorio

* R 2 3 1 C 4 0 1 IC=2 L 3 0 1 IC=1 Vf 1 2 2 If 1 0 SIN(0, 5, 0.31832 , 0, 0, 90) F1 2 3 Vc 3 Vc 2 4 DC 0 .TRAN 0s 10s 0 0.1s .probe .end

2.4.3. Formas de ondas.

El modo transitorio de análisis genera la solución como series de puntos, con los que pueden dibujarse las formas de ondas.

Page 25: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 25

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 8. Variables de estado, en el tiempo.

3. Solución numérica de sistemas de ecuaciones diferenciales.

Una ecuación diferencial de primer orden puede resolverse numéricamente mediante integración.

Si se tiene:

( )( )

dr tF t

dt

Entonces:

0

( ) (0) ( )

t

r t r F d

( )F t considera la variación de r(t) y de las excitaciones que

producen la respuesta r(t).

Una manera simple y aproximada de realizar la integración es calcular el área mediante la suma de rectángulos, que estudiaremos como el método de Euler.

Una mejor aproximación se logra sumando trapecios con la regla de Simpson; y si se desea mayor precisión y la no acumulación de errores se emplea aproximación por segmentos polinomiales mediante el método de Runge-Kutta.

Page 26: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

26 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

3.1. Formulación de ecuaciones de estado.

La formulación de las ecuaciones de una red eléctrica en términos de las variables de estado permite encontrar la solución de un sistema de ecuaciones diferenciales de primer orden en el dominio del tiempo. La solución numérica, que veremos a continuación, puede aplicarse a sistemas no lineales.

La representación se logra con un sistema de ecuaciones

diferenciales de primer orden:

dxAx Bu

dt

Donde x es el vector de estado, u es el vector de entrada o de

excitaciones. El resto de las variables del sistema puede expresarse en

términos del estado, según:

y Cx Du

Donde y es el vector de salida. A se denomina matriz de estado del sistema, B es la matriz

de entrada, C es la matriz de salida, y D se denomina matriz de alimentaciones directas (feedforward).

Veamos un ejemplo:

C

b

v L R

a

i(t)

L

v(t)

Figura 9. Red RLC.

Formulando las ecuaciones de estado, se obtienen:

Page 27: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 27

Profesor Leopoldo Silva Bijit 30/12/2009

0di

v Ri Ldt

dvi C

dt

Con las condiciones iniciales: v(0) e i(0). Del modelo de ecuaciones de estado pueden obtenerse las

ecuaciones diferenciales, de mayores órdenes, para cada una de las variables de la red, por ejemplo para el voltaje en el condensador, se obtiene eliminando i:

2

20

dv d vv RC LC

dt dt

Arreglando: 2

2

10

d v R dvv

dt L dt LC

Con C=1, R=2/3 y L=1/3, v(0)=1, i(0)=0, se tiene una

ecuación diferencial de segundo grado, sin excitaciones:

2 3 0

1(0) 1, v(0) (0) 0

v v v

v iC

Volviendo al problema de calcular soluciones numéricas en el dominio de tiempo, se desea obtener la solución v(t) para el intervalo desde t=0 hasta t=6.

A partir de las ecuaciones de estado, con los valores de los

parámetros, se tiene:

3 2

dvi

dt

div i

dt

Expresando matricialmente, se obtiene la matriz de estado A:

Page 28: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

28 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

0 1

3 2

dv

vdt

di i

dt

3.2. Método de Euler.

A partir de la expansión en serie de Taylor, para una variable escalar y, se tiene:

22

2

( ) 1 ( )( ) ( ) ....

2

dy t dy ty t t y t t t

dt dt

La relación anterior, puede generalizarse considerando y como un vector. Pueden calcularse, aproximadamente, los valores en el instante siguiente (k+1) a partir de los valores en el instante k-ésimo, mediante:

1

1

( )

( )

kk k

kk k

dv tv v t

dt

di ti i t

dt

Este procedimiento iterativo se denomina esquema simple de

Euler. Los valores de las derivadas, en un instante determinado, se

obtienen mediante la matriz de estado. A partir de la ecuación de estado se determina el valor de las

derivadas en un punto.

(0)

0 1 (0) 0 1 1 0

(0) 3 2 (0) 3 2 0 3

dv

vdt

di i

dt

Sea 0.1t , entonces los valores en t=0.1 se obtienen

mediante:

Page 29: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 29

Profesor Leopoldo Silva Bijit 30/12/2009

(0)

(0.1) (0)

(0.1) (0) (0)

dv

v v dtt

i i di

dt

Numéricamente, se obtiene: Para el siguiente punto, se efectúan los siguientes cálculos:

0.2

(0.1)

0 1 (0.1) 0 1 1 0.3

(0.1) 3 2 (0.1) 3 2 0.3 2.4

(0.2) 1 0.3 0.970.1

(0.2) 0.3 2.4 0.54

t

dv

vdt

di i

dt

v

i

Y así sucesivamente, hasta llegar al valor final de t deseado. La solución exacta de la ecuación de segundo orden,

obtenida por un método analítico es:

2 3 0

(0) 1, v(0) 0

1( ) (cos 2 sin 2 )

2

t

v v v

v

v t e t t

3.3. Solución analítica.

El siguiente segmento Maple, obtiene la solución de las

ecuaciones de estado y los diagramas temporales de v(t) e i(t).

(0.1) 1 0 10.1

(0.1) 0 3 0.3

v

i

Page 30: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

30 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 10. Solución transitoria analítica.

> restart; with(plots):

> ci:= {v(0)=1,i(0)=0};

:= ci { },( )v 0 1 ( )i 0 0

> ed:={diff(v(t),t)=i(t),diff(i(t,t)=-2*diff(v(t),t)-

3*v(t)};

:= ed { },d

d

t( )v t ( )i t

d

d

t( )i t 2

d

d

t( )v t 3 ( )v t

El conjunto de ecuaciones diferenciales y de condiciones iniciales, se resuelve para el conjunto de funciones que se coloca como último argumento (El conjunto: v(t), i(t) en este caso). dsolve resuelve un conjunto de ecuaciones diferenciales. > sol:= dsolve(ed union ci, {v(t),i(t)});

:= sol { },( )v t1

3e

( )t 3

22 ( )sin 2 t 3 ( )cos 2 t ( )i t

3

2e

( )t2 ( )sin 2 t

> assign(sol);

Se almacena gráfica de v(t) en la variable exacta; y se

efectúan las gráficas de v e i, que se muestran en la Figura 2. > exacta:=plot(v(t), t=0..6, thickness=2, color=red):

> plot([v(t),i(t)],t=0..6,thickness=2,color=[red, blue]);

3.4. Solución numérica.

La obtención de una solución numérica puede obtenerse de la siguiente forma: Primero se establecen los valores iniciales de las variables:

v(t)

i(t)

Page 31: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 31

Profesor Leopoldo Silva Bijit 30/12/2009

> v[0]:=1: i[0]:=0: t[0]:=0: Delta:=0.1:

La generación de los puntos se almacena en listas, usando notación de arreglos. Las ecuaciones de recurrencia se resuelven mediante una iteración. Si Delta disminuye, la solución aproximada de Euler es más exacta.

Se repite desde n igual 0 hasta 60 lo que está entre do y od, mediante el comando for. > for n from 0 to 60 do t[n+1]:=t[n]+ Delta: i[n+1]:=i[n]+(-3*v[n]-2*i[n])*Delta:

v[n+1]:=v[n]+i[n]*(Delta):

od:

Se genera secuencia de puntos, como pares ordenados (t, v) mediante seq. > S:=[seq([t[k],v[k]], k=0..60)]:

La gráfica formada por los puntos de la lista S, se genera empleando pointplot. > puntos:=pointplot(S,symbol=circle):

Display muestra los dos gráficos simultáneamente. > display(exacta, puntos);

Figura 11. Solución transitoria numérica.

La solución aproximada, por el esquema simple de Euler, puede ser suficiente en muchos casos. Existen numerosos métodos numéricos que dan mejores soluciones que el método de Euler, cuando las variables son funciones que tienen

dvi

dt

3 2di

v idt

Page 32: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

32 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

crecimientos o cambios muy grandes entre los intervalos en que se calculan los puntos.

En Sistemas Lineales se estudian métodos que permiten

pasar de la representación de variables de estado a funciones de transferencia. Las funciones de transferencia modelan la representación de sistemas en el dominio de la frecuencia.

Pueden obtenerse importantes propiedades del comportamiento del sistema en el espacio de estado. Esto se logra dibujando los valores de las variables de estado en términos del parámetro tiempo.

La secuencia de puntos (v, i) se logra con: > espacio:=[seq([v[k],i[k]],k=0..60)]:

> pointplot(espacio,symbol=circle);

Figura 12. Espacio de estado.

4. Redes No Lineales.

Las redes que se estudian en cursos básicos de electrónica usan componentes no lineales; para su análisis se requiere disponer de una herramienta especializada para este tipo de redes.

t=0 t=

Page 33: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 33

Profesor Leopoldo Silva Bijit 30/12/2009

Se ilustra el uso de SPICE en diferentes situaciones de análisis de redes sencillas en base a diodos y transistores.

SPICE posee modelos internos con las características no lineales, tanto estáticas como dinámicas, de diversas componentes semiconductoras, incluidos diodos y transistores. Los modelos pueden ser ajustados cambiando sus parámetros internos.

4.1. Redes con diodos.

4.4.1. Característica.

Una configuración simple permite visualizar la característica del modelo de un diodo.

Vin +

0

1

D1

Figura 13. Característica exponencial de diodo.

Característica exponencial *diodo Vin 1 0 DC 0 D1 1 0 mod1 .model modelo D (IS=1e-14 ) .DC Vin 0.60 0.85 .1 .probe I(D1) .end

Al efectuar un análisis en modo DC se calcula la corriente en

el diodo para cada uno de los voltajes de los voltajes de entrada, desde 0,65V hasta 0,85V, en incrementos de 0,1V. El comando probe almacena los valores de la corriente en el diodo para los diferentes valores del voltaje de entrada.

Page 34: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

34 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 14. Análisis DC.

Puede visualizarse el crecimiento exponencial aumentando el barrido hasta 950 mV, el simulador muestra que la corriente que circulará en el diodo es de tipo 15 A. Si se aumenta aún más el voltaje en la fuente, el simulador calculará corrientes enormes. Este sencillo ejemplo muestra que los analizadores de redes no lineales deben emplearse con criterios adicionales, para obtener resultados que puedan ser útiles en el laboratorio.

En cursos de electrónica se ilustran las mejores prácticas de diseño empleando componentes como diodos y transistores; ellas resumen la experiencia acumulada por los ingenieros y diseñadores en muchos años de creativos aportes y constituyen los criterios de diseño.

Puede refinarse el modelo propuesto, que ha idealizado la

fuente de tensión al asumir que éste no tiene una pequeña resistencia interna, y también puede mejorarse el modelo del diodo, considerando una pequeña resistencia interna.

Si se agrega en el modelo del diodo una resistencia serie de 1

ohm, RS=1, en la lista de parámetros del modelo, mediante: .model modelo D (IS=1e-14 RS=1) La nueva simulación se muestra en la Figura 15, si bien las

corrientes no son tan elevadas, podrían exceder las máximas corrientes de conducción soportadas por el diodo. Los valores de éstas dependen del tipo de diodo que se esté empleando; en diodos rectificadores y de potencia las corrientes suelen ser mucho mayores que las empleadas en dispositivos de conmutación o que los usados en diseños con diodos de pequeña señal.

Page 35: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 35

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 15. Efecto de la resistencia interna del diodo.

4.4.2. Diodo con resistencia limitadora de corriente.

Un circuito que limita la máxima corriente que circula en un diodo se muestra en la Figura 16.

Vin +

0

D1

2

R

1

Figura 16. Resistencia para limitar la corriente en el diodo.

Limitación de corriente en diodo Vi 1 0 2V R 1 2 100 ; Resistencia serie. D1 2 0 mod1

.model mod1 D (IS=1e-14 EG=0.7 RS=0.01 CJO=100pF) *Comandos de análisis: .DC Vi 0V 2.5V 10mV .op .probe .end El modelo contempla una pequeña resistencia serie del diodo

(RS) y un voltaje de EG=0,7V (bandgap voltage) que es típico en diodos de silicio.

Page 36: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

36 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Un cálculo simplificado de la corriente se logra asumiendo

que el diodo en conducción tiene un voltaje de 0,7 V, entonces:

0,7 2 0,7( 1) 13

100

VinI D mA

R

Se ha calculado la corriente para Vin=2. Los valores que da el comando .op, que calcula el punto de

operación, son: V(2) = 0,7211 e I(D1)= 1.279E-02 = 12,8 mA. Nótese que .op considera Vi con el valor que ha sido definido 2V; las variaciones de Vi que se establecen en el comando DC

son para este comando. El barrido DC, entrega la gráfica que se muestra en la Figura

17. Muestra 720 mV y 12,5 mA para Vin =2 V.

Figura 17. Corriente y Voltaje en el diodo.

4.4.3. Simulación paramétrica.

Puede visualizarse el efecto de cambiar un parámetro mediante los comandos .param y .step. En el ejemplo se define el valor del parámetro Rlim, por defecto en 100; luego en el valor de la resistencia R, se coloca, entre paréntesis cursivos, el parámetro Rlim. Finalmente se efectúan 5 simulaciones variando en pasos de 100 el parámetro Rlim, a partir de un valor inicial 100 y uno final de 500.

Simulación paramétrica

Page 37: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 37

Profesor Leopoldo Silva Bijit 30/12/2009

* se analiza efecto de limitación de corriente. .PARAM Rlim = 100 Vi 1 0 2V R 1 2 {Rlim} D1 2 0 mod1 .model mod1 D (IS=1e-14 RS=0.01 VJ=0.7 CJO=100pF) .STEP PARAM Rlim 100, 500, 100 .DC Vi 500mV 2500mV 100mV .probe .end Si la resistencia aumenta, la corriente disminuye, se

obtienen:

Figura 18. Simulación paramétrica.

4.4.5. Rectificador de media onda.

En la Figura 19, se muestra una red no lineal cuyo propósito

es rectificar una onda sinusoidal. En la resistencia de carga Rc,

circula corriente cuando el diodo conduce.

Vin +

0

D1

2

R

Rc

3 1

Figura 19. Simulación transitoria.

R=200

ohms

Page 38: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

38 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Media Onda Vi 1 0 SIN(0, 10, 1, 0 , 0, 0) R 1 2 100 D1 2 3 mod1 Rc 3 0 1000 .model mod1 D (IS=1e-14 CJO=100pF) .tran 0 3 0.1ms .probe .end Se ha utilizado un estímulo sinusoidal, sin offset, con

amplitud 10 y una frecuencia de 1 Hertz. Se efectúan cálculos en el tiempo con incrementos de 0.1mseg desde 0 a 3 segundos,

mediante el comando .tran.

Figura 20. Respuesta transitoria.

4.4.5. Red no lineal dinámica.

Si agregamos un condensador en paralelo con la resistencia

de carga se mejora el valor medio de la señal rectificada. Para lograr esto, el condensador se descarga cuando el diodo no conduce; si la descarga es lenta, mayor será el valor medio.

El modelo matemático es una red no lineal dinámica, que

difícilmente puede ser estudiada con modelos para papel y lápiz.

Page 39: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 39

Profesor Leopoldo Silva Bijit 30/12/2009

Vin +

0

D1

2

R

Rc

3

C

1

Figura 21. Simulación transitoria con condensador.

Media Onda con condensador. Vi 1 0 SIN(0, 10, 1, 0 , 0, 0) R 1 2 100 D1 2 3 mod1 Rc 3 0 1000 C 3 0 1000u .model mod1 D (IS=1e-14 CJO=100pF) .tran 0 3 0.1ms .probe .end Cuando el diodo conduce, se carga el condensador; cuando

el diodo no conduce, el condensador se descarga a través de la resistencia.

Figura 22. Efecto del condensador.

Puede efectuarse una simulación paramétrica para el dimensionamiento del condensador.

Page 40: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

40 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

4.4.6. Característica de transferencia de circuitos con diodos.

Vin +

0

D1

2

R

3 V1

D2

V2 4

1

Figura 23. Limitador en base a diodos.

Limitador con diodos. Vi 1 0 5V R 1 2 1 D1 2 3 mod1 V1 3 0 10V D2 4 2 mod1 ;de ánodo a cátodo V2 4 0 6 Ro 2 0 100 .model mod1 D (IS=1e-14 RS=.01 VJ=0.7V CJO=100pF) .DC Vi 0V 15V 1V .probe .end El barrido DC, permite obtener la característica de

transferencia de un circuito limitador en base a diodos. Cambiando los valores de V1 y V2, se modifica la característica.

Figura 24. Transferencia V(2)/V(1).

Page 41: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 41

Profesor Leopoldo Silva Bijit 30/12/2009

4.2. Redes con transistores.

4.2.1. Modelos del transistor. Lo primero es visualizar las características no lineales del

transistor. Es un dispositivo de tres terminales, y sus características suelen representarse por las curvas:

Ib(Vbe, Vce) y Ic(Vce, Ib)

Debido a que son superficies en un espacio tridimensional,

suelen dibujarse empleando Vce como parámetro para la característica de entrada, e Ib para la característica de salida.

4.2.2. Característica de entrada.

NPN

Vce +

2

1

0

Vbe

+

Figura 25. Medición Ib(Vbe) con Vce constante.

Para el transistor bipolar se emplea el modelo npn. Características Ib(Vbe) en BJT Vce 1 0 DC 10V Vbe 2 0 DC 0; * C B E Q1 1 2 0 transistor

.model transistor NPN (Is=1.8104e-15A Bf=100 VAf=35V) *Análisis DC *Vbe varía desde 0.7V a 0.85V en incrementos de 10mV .DC Vbe 700mV 850mV 10mV .probe ; se visualiza la corriente en la base .end

Page 42: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

42 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 26. Característica Ib(Vbe) con Vce constante.

Si se efectúa una simulación paramétrica variando Vce, se visualiza que esta característica no varía prácticamente con Vce.

4.2.3. Característica de salida.

NPN

Vce +

2

1

0

Ib

Figura 27. Medición Ic(Vce) con Ib constante.

Características Ic(Vce) en BJT Vce 1 0 DC 0V Ib 0 2 DC 10uA ; SE INYECTA CORRIENTE CONSTANTE EN LA BASE

* C B E Q1 1 2 0 transistor .model transistor NPN (Is=1.8104e-15A Bf=100 VAf=35V) * Análisis DC Vce .DC Vce -2V +10V 100mV .probe ; se visualiza la corriente en el colector .end

Page 43: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 43

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 28. Característica de salida Ic(Vce) con Ib constante.

Para estudiar la influencia de la corriente de base, en la característica de salida, se efectúa una simulación paramétrica.

Características Ic(Vce) en BJT con Ib como parámetro. .PARAM IbVAL = 10uA Vce 1 0 DC 0V Ib 0 2 DC {IbVal} ; .step param IbVal 10uA 2mA 500ua * C B E Q1 1 2 0 transistor .model transistor NPN (Is=1.8104e-15A Bf=100 VAf=35V) .DC Vce -2V +10V 100mV .probe ; se visualiza la corriente en el colector .end Se aprecia para corrientes muy bajas en la base que la

corriente en el colector es cero (zona de corte). Para valores

mayores de la corriente de base, la de colector es tipo 100 veces mayor que la de base, para voltajes Vce mayores que 0.7 (zona lineal). También se aprecia que, prácticamente independiente de la corriente de base, el transistor se comporta como una fuente de voltaje de 0,2 V (zona de saturación); en la Figura 29, esta zona está representada por los segmentos prácticamente verticales en Vce=0,2.

Page 44: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

44 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 29. Influencia de la corriente de base.

4.2.4. Punto de operación.

Aplicando método de mallas, a la red de la Figura 30, se tienen:

ce c c cc

b b bp be

V R I V

V I R V

La intersección de estas rectas con las características no

lineales de entrada y de salida del transistor son la solución del sistema no lineal de ecuaciones; los valores de la solución suelen denominarse punto de operación. La solución simultánea son los cuatro valores: (Ib,Vb) (Ic, Vce); un punto en la característica de entrada, el otro en la de salida.

De la familia de rectas de salida del transistor, debe

considerarse sólo la correspondiente al valor actual de la

corriente en la base. La resistencia Rbp y Vb fijan la corriente de base.

Ib=1,5 mA

Ib=1,0 mA

Page 45: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 45

Profesor Leopoldo Silva Bijit 30/12/2009

NPN

Vb

+Vcc

Rc

2

4

3

Rbp

0

+ 6

Figura 30. Punto de operación.

Se estudia la variación del punto de operación, cambiando los valores de la fuente de polarización de la base Vb.

Punto de operación Vcc 4 0 10 Vcb 6 0 10 Rc 4 3 1k Rbp 6 2 19.85k Q1 3 2 0 npn-trans .DC Vcb .45 +5.V 10mV ; .model npn-trans npn (is=2e-15 bf=50 vaf=200) .op ; calcula punto operación .probe .end

El cálculo .op obtiene el punto de operación para los valores

de las fuentes y resistencias, se obtienen: V(2)=0.7574 V(3)=0.0959 V(4)=10.0000 V(6)=10.0000

La variación de Vb muestra el lugar geométrico de los puntos de operación del voltaje colector-emisor. En la Figura 31, se muestran las zonas de funcionamiento denominadas: corte, lineal y saturación. La zona lineal es la comprendida entre las zonas de corte y saturación.

Puede estudiarse las variaciones del punto de operación

variando las resistencias de polarización.

Page 46: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

46 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 31. Variación del punto de operación.

En amplificadores se ubica el punto de trabajo en la zona lineal; en dispositivos de conmutación el punto de operación se alterna entre las zonas de corte y saturación.

La Figura 32, ilustra en diversas escalas para la magnitudes,

la variación de la ganancia de corriente del colector versus la corriente de la base, y las corrientes de base y colector.

Figura 32. Corrientes en las zonas.

saturación

Zona lineal

corte

Page 47: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 47

Profesor Leopoldo Silva Bijit 30/12/2009

Nótese la variación prácticamente lineal de la corriente de base, y la abrupta caída de la ganancia en la zona de saturación; lo cual se refleja en la saturación de la corriente de colector. Se denomina saturación ya que la corriente de colector no sigue aumentando a pesar del aumento de la corriente de base.

4.2.5. Característica de transferencia.

Colocar al transistor en un punto de operación a través de las mallas de polarización, permite obtener la característica de transferencia entre el voltaje de salida y el voltaje o señal de entrada Vin.

NPN

Vb

+Vcc

Rc

2 1

4

3 Rb

Rbp

0

Vin

+

+ 6

Figura 33. Característica de transferencia.

Característica de transferencia Vcc 4 0 10 *Vcb 6 0 5.45 ; desplaza característica. Fijando umbrales. Vcb 6 0 10 Rc 4 3 1k Rbp 6 2 19.85k ; 19.85k a Vcc produce Vo=5 para Vi=0 Rb 1 2 2k

Q1 3 2 0 npn-trans Vin 1 0 .DC Vin -.5 +.5V 10mV ; calcula transferencia con barrido DC

.model npn-trans npn (is=2e-15 bf=50 vaf=200)

.op ;calcula punto operación

.probe

.end Las variaciones de Rbp o Vcb desplazan la característica.

Page 48: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

48 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 34. Característica Vce versus Vin.

4.2.6. Pequeña señal.

De la característica de la Figura 34, puede observarse que si se elige una señal sinusoidal de entrada de amplitud no mayor a 150 mV se tendrá en la salida una señal sinusoidal amplificada, con offset de 5 V y una amplitud cercana a los 3,5V.

Podemos visualizar esto mediante una simulación transitoria.

Pequeña señal alterna en la entrada. Vcc 4 0 10 Vcb 6 0 10 Rc 4 3 1k Rbp 6 2 19.85k ; 19.85k a Vcc produce Vo=5 para Vi=0 Rb 1 2 2k Q1 3 2 0 npn-trans Vin 1 0 SIN(0, 150mV, 1k, 0, 0, 0) .tran 0 2.0m 0.1u .model npn-trans npn (is=2e-15 bf=50 vaf=200) .op ;calcula punto operación .probe .end La Figura 35, muestra en escalas diferentes, los voltajes

sinusoidales de entrada y de salida. Observando con atención los máximos y mínimos del voltaje de salida puede concluirse

Page 49: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 49

Profesor Leopoldo Silva Bijit 30/12/2009

que se produce una pequeña distorsión debido a las no linealidades del transistor.

Figura 35. Amplificación.

Obteniendo la transformada rápida de Fourier, se aprecia la aparición de componentes de segunda armónica en el voltaje de salida.

Figura 36. Distorsión de segunda armónica.

Si la amplitud de la señal de entrada se aumenta a 350mV, la salida será claramente no sinusoidal. Debido a las no linealidades de la característica de transferencia, el amplificador genera nuevas frecuencias; en el caso del ejemplo, en la Figura 38, se muestra que la salida contiene ahora una componente importante de tercera armónica.

Segunda

Armónica

Page 50: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

50 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 37. Distorsión por no linealidad.

Figura 38. Distorsión de tercera armónica.

4.2.7. Amplificador.

De las experiencias acumuladas en el diseño de amplificadores, un circuito típico es el que se muestra en la Figura 39. Las razones de la configuración corresponden a cursos de diseño electrónico; lo que nos interesa es analizar la red no lineal con componentes dinámicas y sometida a estímulos variables en el tiempo.

Las redes de polarización se separan de las señales alternas

de entrada y de salida mediante los condensadores C1 y C2. Nótese que se ha agregado una resistencia en el emisor, y que

Page 51: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 51

Profesor Leopoldo Silva Bijit 30/12/2009

se emplea solamente una fuente para la polarización del transistor.

NPN Rs

+Vcc

Rc

3 2

0

1

6

C2

4 C1

RL

7

R1

R2 RE

5

Figura 39. Amplificador en base a transistor bipolar.

Amplificador en base a transistor bipolar. Vin 1 0 SIN(0V 0.1V 440Hz 0 0 0) Rs 1 2 10 Rc 6 4 1K R1 6 3 10K R2 3 0 1K Re 5 0 47 C1 2 3 10e-6 C2 4 7 10e-6 RL 7 0 1k Vcc 6 0 dc 12 q1 4 3 5 npn-trans .model npn-trans npn (is=2e-15 bf=100 vaf=200) .op ;calcula punto operación .tran 50us 6e-3s 0s 50us .probe .end

Se efectúa un análisis transitorio para generar la forma de

onda de la salida. El estímulo transitorio es una señal sinusoidal en el rango de frecuencia audible.

La salida no tiene una componente continua, debido al condensador C2. Se tiene también una pequeña distorsión, lo cual puede observarse ya que el máximo positivo y negativo son levemente diferentes.

Page 52: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

52 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 40. Entrada y salida sinusoidal.

Si se aumenta la frecuencia de la señal de entrada la amplificación de la salida tenderá a disminuir. Para simular esto puede modificarse los parámetros del transistor, para considerar las capacidades de las junturas, o bien colocar un condensador pequeño en paralelo con la resistencia de salida. Un amplificador real tendrá un ancho de banda de frecuencias a las cuales les proporciona una amplificación constante. Éste y otros aspectos del diseño de amplificadores se cubren en cursos de electrónica.

4.2.8. Inversor lógico.

El ejemplo anterior empleaba el transistor en la zona lineal de operación. Otro importante uso de los transistores es en circuitos de conmutación, en los cuales el transistor opera en las zonas de saturación o corte.

NPN Rb

Vc

+Vcc

Rc

3

2

0

1

4

C

Figura 41. Inversor simple.

Page 53: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 53

Profesor Leopoldo Silva Bijit 30/12/2009

En estos dispositivos digitales, las entradas se consideran 0 ó 1 lógicos dependiendo de sus niveles.

Inversor simple * Rb 1 2 10k ; influye en el rise-time Rc 4 3 4k ; si se aumenta Rc aumenta rise-time C 3 0 10n ; condensador de la línea. * C B E Q1 3 2 0 Q2N2222 Vcc 4 0 5V Vs 1 0 PULSE(0V 3.5V 0s 1ms 1ms .5ms 4ms ) *Vs 1 0 SIN(0V 2.7V 100Hz 0 0 0)

.model Q2N2222 npn (BF=80 CJE=0.6p CJC=0.58p CJS=2.8p

+ VJE=0.715)

*Comandos de análisis: .TRAN 0ms 3ms 0 0.01ms .probe .end Se aplica un pulso en la entrada. Para voltajes de entrada

menores que 0,8V la salida es mayor que 3 V. Para voltajes de entrada mayores que 1,2V la salida es menor que 0,3V.

Figura 42. Conmutación.

Cuando la salida está en 1 lógico el transistor está cortado; cuando la salida está en 0 lógico el transistor está saturado. La energía consumida por el transistor es mayor cuando la salida conmuta de 1 a 0, pasando brevemente por la zona lineal.

Page 54: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

54 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

En los circuitos de conmutación es de interés dimensionar las componentes de tal modo de fijar los umbrales del 1 y 0 lógicos dentro de los rangos deseados. También resulta importante el retardo de la propagación de los cambios y los tiempos de levantamiento y caída de los pulsos de la salida.

4.2.9. Inversor TTL.

Un diseño más elaborado de un inversor es el de la familia lógica TTL (transistor-transistor-logic), que tiene transistores en la entrada y en la salida.

1

+Vcc

Q2

R1 R2

Q4

Q3

Q1

R3

R4

2

3

4

5

6

0

9 8

7

D1

D2

Figura 43. Inversor TTL.

El principio de funcionamiento y las razones de la estructura del inversor TTL corresponden a un curso de electrónica. El análisis de la red no lineal puede realizarse mediante la descripción del siguiente netlist:

Inversor TTL * R1 4 2 4k

R2 4 5 1.6k R3 4 7 80k ;simulación sensible a esta resistencia. Puede

bajarse a 40K para pulsos. (130 Ohms) R4 6 0 1k Q1 3 2 1 Q2N2222 Q2 5 3 6 Q2N2222 Q3 9 6 0 Q2N2222 Q4 7 5 8 Q2N2222 Vcc 4 0 5V Vs 1 0 PULSE(0V 3.5V 0s 4ms 4ms 2ms 12ms )

Page 55: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 55

Profesor Leopoldo Silva Bijit 30/12/2009

*Vs 1 0 SIN(0V 2.7V 100Hz 0 0 0) D1 8 9 mod1 D2 0 1 mod1 .model mod1 D (IS=1e-14 RS=16 CJO=100pF) .model Q2N2222 npn (is=2e-15 bf=100 vaf=200) .TRAN 10ms 20ms 0 0.01ms .probe .end

Figura 44. Conmutación inversor TTL.

4.3. Ejercicios propuestos.

Ejercicio 1. Describir el netlist para analizar la red de la Figura 45. Con Rc =4K, Rb = 10k, Vcc = 12V, Re=47 Con Vin=0 determinar Vb para que la salida tenga un offset

continuo de 6V.

Determinar la característica V(3)/Vin. Determinar formas de ondas de V(1)-V(6), y V(3).

Page 56: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

56 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

NPN

Vb

+Vcc

Rc

2

0

1

5

3 Rb

RE

4 Vin +

+ 6

Figura 45. Ejercicio 1.

Ejercicio 2.

Dibujar el esquemático asociado al siguiente netlist. Determinar que tipo de análisis se efectúa. Dibujar las formas de ondas, de las entradas y la salida. NAND TTL * Simulacion de multiemisor R1 4 2 4k R2 4 5 1.6k R3 4 7 50k ; R4 6 0 1k *se simula multiemisor con transistores Q11 y Q12 en paralelo.

Q11 3 2 11 Q2N2222 Q12 3 2 12 Q2N2222 Q2 5 3 6 Q2N2222 Q3 9 6 0 Q2N2222 Q4 7 5 8 Q2N2222 Vcc 4 0 5V

Vs1 11 0 PULSE(0V 3.5V 0s 2ms 2ms 2ms 14ms ) Vs2 12 0 PULSE(0V 3.5V 3ms 2ms 2ms 2ms 10ms ) D1 8 9 mod1 .model mod1 D (IS=1e-14 RS=16 CJO=100pF) .model Q2N2222 npn (is=2e-15 bf=100 vaf=200) .TRAN 10ms 20ms 0 0.01ms .probe ; entradas v11 y v12, salida v9 .END

Page 57: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 57

Profesor Leopoldo Silva Bijit 30/12/2009

Parámetros modelo transistor bipolar. *Model: npn2 -- Gummel and Poon model

*IS = 14.34f [A] transport saturation current

*BF = 255.9 [ - ] ideal maximum forward beta

*VAF = 74.03 [V] forward Early voltage

*IKF = 0.2847 [A] forward-beta high-current roll-off "knee" current

*ISE = 14.34f [A] base-emitter leakage saturation current

*NE = 1.307 [ - ] base-emitter leakage emission coefficient

*BR = 6.092 [ - ] ideal maximum reverse beta

*IKR = 0 [A] corner for reverse-beta high-current roll-off

*RB = 10 [] zero-bias (maximum) base resistance

*RC = 1 [] collector ohmic resistance

*CJE = 22.01p [F] base-emitter zero-bias p-n capacitance

*VJE = 0.75 [V] base-emitter built-in potential

*MJE = 0.377 [ - ] base-emitter p-n grading factor

*CJC = 7.306p [F] base-collector zero-bias p-n capacitance

*VJC = 0.75 [V] base-collector built-in potential

*MJC = 0.3416 [ - ] base-collector p-n grading factor

*FC = 0.5 [ - ] forward-bias depletion capacitor coefficient

*TF = 411.1p [s] ideal forward transit time

*XTF = 3 [ - ] transit time bias dependence coefficient

*VTF = 1.7 [V] transit time dependency on VBC

*ITF = 0.6 [A] transit time dependency on IC

*TR = 46.91n [s] ideal reverse transit time

*XTB = 1.5 [ - ] forward and reverse beta temperature coefficient

5. Algoritmos para análisis de redes no lineales.

SPICE es una aplicación muy útil para el análisis de redes no lineales dinámicas en su modo .tran, para análisis transitorio.

Se desarrolla a continuación los procedimientos matemáticos

que están en el interior de SPICE, para resolver sistemas simultáneos de ecuaciones no lineales, estos algoritmos se muestran en forma simplificada a través de programas Maple.

Page 58: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

58 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

5.1. Formulación de ecuaciones no lineales.

Vin +

0

D1

2

R

1

Figura 46. Diodo no lineal con resistencia serie.

La ecuación no lineal de equilibrio del diodo es:

/( 1)v Vt

d si I e

Vt es el voltaje térmico del diodo. Vt = KT/q, donde K es la

constante de Boltzmann, T es la temperatura absoluta (300 grados Kelvin temperatura ambiente), y q es la carga de un electrón. Vt toma valor cercano a 0.026 Volts a temperatura ambiente. Is es la corriente inversa de saturación y un valor típico para este parámetro es 10-14 A.

El modelo del diodo es simplificado. En la formulación del

modelo matemático, basado en consideraciones de la física de semiconductores, no se representan, entre otros, los efectos capacitivos ni el voltaje inverso de ruptura.

Aplicando método nodal, a la red de la Figura 46, se obtiene:

in dV Ri v

Dados ,inV R , y los parámetros ,s tI V del diodo, se requiere

calcular v .

Eliminando di de las ecuaciones anteriores, se obtiene la

ecuación no lineal, en términos del voltaje de nodo.

/( ) ( 1) 0v Vt

in sf v V RI e v

Page 59: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 59

Profesor Leopoldo Silva Bijit 30/12/2009

La solución de ( ) 0f v , puede ser difícil de encontrar

analíticamente, pero como veremos es sencilla de resolver iterativamente.

5.2. Método de Newton-Raphson.

Para resolver ( ) 0f x , se parte de un valor 0x y se genera

una serie de iteraciones ix que se acerquen a la solución sx ,

donde ( ) 0sf x .

En cursos de análisis numérico se responden las preguntas:

¿Cuándo la secuencia ix converge a la solución correcta?

¿Cuán rápido se converge? ¿La convergencia depende del

intento inicial 0x ? ¿Cuándo detener las iteraciones?.

El método de Newton-Raphson consiste en reemplazar,

mediante la expansión de Taylor, la función por su versión lineal, en torno a la solución:

( ) ( ) ( )( )s s s

dff x f x x x x

dx

Para un punto cualquiera se obtiene:

1 1( ) ( ) ( )( )k k k k k

dff x f x x x x

dx

Efectuando: 1( ) 0kf x , se obtiene la fórmula de la iteración

de Newton-Raphson, despejando 1kx :

1

1 ( ) ( )k k k k

dfx x x f x

dx

Podemos interpretar la fórmula de la iteración, planteando la

relación anterior en 0x , y calculando 1x . Situación que se

ilustra en la Figura 47.

Page 60: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

60 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

x0 x1

f(x)

x2

f(x0)

xs 0

f(x1)

Figura 47. Iteración Newton-Raphson.

Resulta, de la interpretación gráfica de la derivada en 0x :

00 0

0 1

( )( ) ( )

f xdftg x

dx x x

Despejando 1x , se obtiene el primer valor de aproximación

del método de Newton-Raphson:

Nótese que 1( )f x no es cero, lo cual implica que 1x es una

aproximación de sx . También debe notarse que para calcular la

siguiente aproximación deben calcularse la función y la derivada en el punto anterior.

El proceso debe repetirse hasta que: 1k kx x tolerancia

Donde el valor de tolerancia debe ser un valor lo

suficientemente pequeño, para que la solución se considere aceptable. Con números reales de precisión simple (float en C), un valor razonable de tolerancia es 10-6, que es el valor del número real más pequeño representable, en el formato interno normalizado IEEE754.

Si el valor inicial es adecuado conviene limitar el número

máximo de iteraciones, de este modo si no existe convergencia se asegura que el algoritmo termine.

1

1 0 0 0( ) ( )df

x x x f xdx

Page 61: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 61

Profesor Leopoldo Silva Bijit 30/12/2009

También puede verificarse que la ordenada en los puntos sucesivos esté dentro de cierto rango:

1( )kf x tolerancia

Emplearemos el método anterior para calcular, usando

Maple, el punto de operación para el circuito de la Figura 46.

5.4. Implementación Maple de Newton-Raphson.

Se definen los parámetros de la red no lineal: > restart; with(plots):

> Vin:=2: R:=100: Is:=1e-14: Vt:=.026: id:=Is*(exp(v/Vt)-1):

Se calcula la función f(v)=0 y la derivada de f respecto a v. > f:=Vin-R*id-v: df:=diff(f,v):

La característica del diodo, con la ordenada en mA, se

obtiene con: > plot(1000*id, v=0.6..0.8, thickness=2);

Figura 48. Característica diodo no lineal.

Los valores que da el comando .op, de SPICE, que calcula el punto de operación, son: V(2) = 0,7211 e I(D1)= 1.279E-02 = 12,8 mA.

Se efectúa un gráfico detallado de f(v), en la zona de solución,

mediante: > plot(f,v=0.72..0.73,thickness=2);

Page 62: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

62 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Se obtiene:

Figura 49. Punto de operación.

Se procede ahora a implementar el algoritmo de Newton-Raphson. Se ha puesto un límite de 100 iteraciones y una tolerancia de 10-8. Se emplea la fórmula:

1 ( ) / ( )n n n n

dfv v f v v v v

dx

> v[0]:=2: nmax:=100: tolerancia:=1e-8:

Se repite desde n igual 0 hasta nmax lo que está entre do y od, mediante el comando for.

El break, dentro del if, detiene las iteraciones. Note el uso del then, y del fi, con que termina el if.

> for n from 0 to nmax do

v[n+1]:=v[n]-subs(v=v[n],f)/subs(v=v[n],df);

if abs( v[n+1] - v[n] ) < tolerancia

then

# solución dentro de la tolerancia

break ;

fi ;

od:

Al salir del lazo for, v[n+1] contiene el valor de la última

iteración, siendo la solución buscada.

La secuencia de valores de v, para acercarse a la solución,

pueden visualizarse colocando un punto y coma en lugar de los dos puntos, en el comando siguiente: > S:=[seq([k,v[k]],k=0..n+1)]:

Page 63: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 63

Profesor Leopoldo Silva Bijit 30/12/2009

Una gráfica de los valores de v calculados en cada paso de la iteración, se logra con:

> pointplot(S,symbol=circle);

Figura 50. Convergencia hacia la solución.

5.5. Punto de operación.

El valor de la solución obtenida, se despliega mostrando el voltaje y la corriente en el diodo, mediante:

> v[n+1];eval(id,v=v[n+1]);

.7247286818

.01275271318

Valor de voltaje que coincide con el cruce por cero de la gráfica de la Figura 4; y también con el punto de operación obtenido con .op en SPICE.

El método de Newton-Raphson está incorporado en Maple,

mediante el comando fsolve, se obtiene prácticamente igual solución a la anterior, ejecutando simplemente:

> fsolve(f);

.7247286819

El algoritmo fsolve de Maple considera refinaciones del algoritmo anterior que se ha descrito en forma simplificada.

El análisis DC repite el cálculo anterior para diferentes

valores de Vin.

Page 64: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

64 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

5.6. Análisis DC.

Se implementa el comando de Spice: .DC Vi 0V 2.5V 25mV Empleando el comando fsolve de Maple. El algoritmo para efectuar un barrido DC, calculando los

puntos de V(2) y la corriente en el diodo Id, para los voltajes Vin desde 0 a 2.5V, en incrementos de 25 mV, se logra con:

> restart;with(plots):

> R:=100:Is:=1e-14:Vt:=.026:id:=Is*(exp(v/Vt)-1):

> f:=Vini-R*id-v:

> Vin[0]:=0:DeltaV:=0.025:nmax:=2.5/DeltaV:

> for n from 0 to nmax do V2[n]:=fsolve(subs(Vini=Vin[n],f)):

Id[n]:=eval(id,v=V2[n]):

Vin[n+1]:=Vin[n]+DeltaV;

od:

Las trazas se confeccionan mediante las secuencias: > S1:=[seq([Vin[k],1000*Id[k]],k=0..nmax)]: S2:=[seq([Vin[k],V2[k]],k=0..nmax)]:

> p1:=pointplot(S1,symbol=circle,color=red):

p2:=pointplot(S2,symbol=circle,color=blue):

display(p1);display(p2);

Nótese que se almacenan los puntos (Vin, Id), y que la gráfica

de la corriente se expresa en miliamperes.

Figura 51. Corriente en el diodo en [mA] versus Vin.

Page 65: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 65

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 52. Voltaje en el diodo versus Vin.

Esta es la forma en que SPICE realiza los cálculos en forma interna, pero con algoritmos más eficientes.

5.7. Generalización para sistemas de ecuaciones no lineales.

Para un sistema de ecuaciones no lineales, se emplea la

expansión de Taylor para varias variables. La expansión es una linealización en torno a la solución:

( ) ( ) ( )( )s s sF x F x J x x x

Las cantidades ( )F x y ( )sx x se expresan como vectores, y

( )sJ x como una matriz, denominada Jacobiano.

Para un punto cualquiera, con aproximación de primer

orden, se tiene:

1 1( ) ( ) ( )( )k k k k kF x F x J x x x

Para entender la relación anterior se ilustra la forma que ella

toma para dos funciones de dos variables x1 y x2, se tiene:

Page 66: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

66 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

1

2

1 1

1 1 1 1

1 1 2 12 2

( 1 , 2 ) ( 1 , 2 )

( 1 , 2 ) ( 1 , 2 ) 1 11 2

( 1 , 2 ) ( 1 , 2 ) 2 2( 1 , 2 ) ( 1 , 2 )

1 2

k k k k

k k k k k k

k k k k k kk k k k

F x x F x x

F x x F x x x xx x

F x x F x x x xF x x F x x

x x

Una explicación del cambio de la función de dos variables,

puede efectuarse considerando el plano tangente a la superficie, en el punto (x10, x20) que pasa también por el punto (x11, x21).

Donde el punto 0 es el inicial, y el punto 1, se obtiene pasando un plano tangente a la superficie en el punto 0.

x10

x11

x20

x21 x1

x2

F1x1

F1x2

Figura 53. Interpretación del Jacobiano de dos variables.

Aplicando la interpretación geométrica de las derivadas parciales, se tienen:

1 0 0 1 11

0 1

1 0 0 1 22

0 1

( 1 , 2 )( )

1 1 1

( 1 , 2 )( )

2 2 2

xx

xx

F x x Ftg

x x x

F x x Ftg

x x x

El cambio total de la función, resulta:

1 0 0 1 0 01 1 1 2 0 1 0 1

( 1 , 2 ) ( 1 , 2 )( 1 1 ) ( 2 2 )

1 2x x

F x x F x xF F x x x x

x x

Aplicando el método de Newton-Raphson, que consiste en

asumir que el plano tangente pasa por el punto que es una aproximación a la solución. Esto equivale a efectuar:

Page 67: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 67

Profesor Leopoldo Silva Bijit 30/12/2009

1 1 1

2 1 1

( 1 , 2 )

( 1 , 2 )0k k

k k

F x x

F x x

Entonces la fórmula de iteración, resulta:

1 1

1 1

1 22 2

( 1 , 2 ) ( 1 , 2 )

1 1 ( 1 , 2 )1 2

2 2 ( 1 , 2 )( 1 , 2 ) ( 1 , 2 )

1 2

k k k k

k k k k

k k k kk k k k

F x x F x x

x x F x xx x

x x F x xF x x F x x

x x

Finalmente, despejando el nuevo punto:

1 1

1 1

1 22 2

1( 1 , 2 ) ( 1 , 2 )

1 1 ( 1 , 2 )1 2

2 2 ( 1 , 2 )( 1 , 2 ) ( 1 , 2 )

1 2

k k k k

k k k k

k k k kk k k k

F x x F x x

x x F x xx x

x x F x xF x x F x x

x x

La que expresada en términos de vectores y la matriz inversa

del Jacobiano, resulta en general, para n variables:

1

1 ( ) ( ) k k k kx x J x F x

Una mejor visualización de la suma de los incrementos, se

logra observando los triángulos semejantes en la Figura 54. Por el punto inicial (2, 2, 10) se pasa el plano z=2x+3y que

también pasa por el punto (0, 0, 0). Se han dibujado además los planos de z constante, z=4 y z=6.

2, 3z z

x y , 64

z zx y

x y

Page 68: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

68 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 54. Variación total de función de dos variables.

Volviendo al caso de dos variables, considerando el álgebra de matrices, se tiene:

11a b x by dx

c d y cx ayad bc

Entonces las fórmulas de iteración de Newton-Raphson para

un sistema de ecuaciones no lineales de dos variables, resultan:

1 22 1

11 2 1 2

( ) ( )( ( ) ( ))

2 21 1( ) ( ) ( ) ( )

1 2 2 1

k k

F k F kF k F k

x xx xF k F k F k F k

x x x x

2 11 2

11 2 1 2

( ) ( )( ( ) ( ))

2 12 2( ) ( ) ( ) ( )

1 2 2 1

k k

F k F kF k F k

x xx xF k F k F k F k

x x x x

En caso de mayores órdenes debe invertirse el Jacobiano, o

alternativamente resolverse el sistema lineal de ecuaciones,

para las incógnitas 1kx :

1( )( ) ( ) k k k kJ x x x F x

Page 69: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 69

Profesor Leopoldo Silva Bijit 30/12/2009

5.8. Sistema no lineal de dos ecuaciones.

Vin +

0

D1

2

R

3 E1

D2

E2 4

i1 i2

v1 v2

1

Figura 55. Red no lineal con dos diodos.

Se tienen:

1 1

2 2

1 2

in

in

V Ri E v

V Ri E v

i i i

Las ecuaciones exponenciales de los diodos, que se asumen

iguales son: 1

2

/

1

/

2

( 1)

( 1)

v Vt

s

v Vt

s

i I e

i I e

Eliminando las corrientes, se obtiene el sistema de

ecuaciones no lineales:

1 2

1 2

/ /

1 1 2 1 1

/ /

2 1 2 2 2

( , ) ( ) 0

( , ) ( ) 0

t t

t t

v V v V

in s

v V v V

in s

F v v V RI e e E v

F v v V RI e e E v

Definiendo los valores de los parámetros, se tiene:

> restart;with(plots):

> datos:={R=1,Is=1e-14,Vt=.026,E1=10,E2=10,Vin=10.2}:

> F1:=Vin-R*Is*(exp(v1/Vt)-exp(v2/Vt))-E1-v1;

:= F1 11 R Is e

v1

Vte

v2

VtE1 v1

> F2:=Vin-R*Is*(exp(v1/Vt)-exp(v2/Vt))-E2+v2;

:= F2 11 R Is e

v1

Vte

v2

VtE2 v2

Page 70: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

70 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Pueden obtenerse las gráficas de las funciones F1 y F2 en términos de v1 y v2, mediante:

> rangos:= v1=-1..1,v2=-1..1:

p1:=implicitplot(eval(F1,datos),rangos,numpoints=10000,co

lor=red,thickness=2):p2:=implicitplot(eval(F2,datos),rang

os,numpoints=10000,color=blue,thickness=2):

display(p1,p2);

Se obtienen, para Vin =10.2 V:

Figura 56. Vin>10. D1 conduce, D2 no conduce.

Nótese que la solución se encuentra en el cuarto cuadrante, debido a que el Vin es mayor que 10.

Cambiando el parámetro Vin a 9,8 V, se obtiene una

solución en el segundo cuadrante, como se muestra en la Figura 57.

Figura 57. Vin<10. D1 no conduce, D2 conduce.

Page 71: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 71

Profesor Leopoldo Silva Bijit 30/12/2009

5.9. Punto de operación.

La implementación de Newton-Raphson, para un sistema de dos ecuaciones simultáneas de dos variables se logra mediante:

Se dan valores a los parámetros:

> Vin:=11:

> datos:={R=1,Is=1e-14,Vt=.026,E1=10,E2=10}:

Se calcula el Jacobiano: > a:=diff(F1,v1):b:=diff(F1,v2):

c:=diff(F2,v1):d:=diff(F2,v2):

> det:=a*d-b*c:det1:=b*F2-d*F1:det2:=c*F1-a*F2:

> df1:=eval(det1/det,datos):df2:=eval(det2/det,datos):

Elección de punto de inicio. > if Vin>10 then v1p[0]:=1: v2p[0]:=-1:

else v1p[0]:=-1: v2p[0]:=1:

fi:

De las Figuras 56 y 57, el punto para iniciar el proceso de aproximación se elige adecuadamente, en puntos del segundo o cuarto cuadrante.

Se repite desde n igual 1 hasta nmax lo que está entre do y

od, mediante el comando for. El break, dentro del if, detiene las iteraciones. Note el uso del then, y del fi, con que termina el if.

> nmax:=100: tolerancia:=1e-8:

> for n from 0 to nmax do

v1p[n+1]:=v1p[n]+ eval(df1,{v1=v1p[n],v2=v2p[n]});

v2p[n+1]:=v2p[n]+ eval(df2,{v1=v1p[n],v2=v2p[n]});

if (abs(v1p[n+1]-v1p[n])<tolerancia)

and (abs(v2p[n+1]-v2p[n])<tolerancia)

then

# solución dentro de la tolerancia

break;

fi;

#printf("%f %f \n",v1p[n+1],v2p[n+1]);

od:

La solución para Vin dado, se obtiene con: > v1p[n+1];v2p[n+1];

Page 72: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

72 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Repitiendo esta iteración para diferentes valores de Vin, se

obtienen similares curvas de v1 y v2, a las generadas por SPICE, que se muestran en la Figura 58.

Figura 58. Solución SPICE. Barrido DC 0<Vin<15.

5.10. Barrido DC.

Puede emplearse el siguiente segmento para obtener las trazas de v1 y v2 en función de diferentes valores de Vin.

Se emplea fsolve, para resolver el sistema no lineal

simultáneo de ecuaciones. Debido a que este comando entrega el resultado como un conjunto se requiere, antes de almacenar los puntos, identificar la variable y su valor en cada conjunto; para esto se emplean los operadores lhs y rhs (por left y right hand side)

Usando instrucciones Maple, se implementa el comando de SPICE: .DC Vi 0V 15V 75mV

> Vin[0]:=0: DeltaV:=0.2: nmax:=15/DeltaV: datosDC:={R=1,Is=1e-14,Vt=.026,E1=10,E2=10,Vin=Vin[n]}:

> for n from 0 to nmax do

Cp[n]:=fsolve({eval(F1,datosDC),eval(F2,datosDC)},

{v1=0, v2=0});

if lhs(Cp[n][1])=v1

then V1[n]:=rhs(Cp[n][1])

else V2[n]:=rhs(Cp[n][1])

fi;

if lhs(Cp[n][2])=v2

v1(Vin)

v2(Vin)

Page 73: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 73

Profesor Leopoldo Silva Bijit 30/12/2009

then V2[n]:=rhs(Cp[n][2])

else V1[n]:=rhs(Cp[n][2])

fi;

Vin[n+1]:=Vin[n]+DeltaV;

od:

Los siguientes comados generan las secuencias de puntos,

generan los gráficos en base a puntos y finalmente se despliegan.

> S1:=[seq([Vin[k],V1[k]],k=0..nmax)]: S2:=[seq([Vin[k],V2[k]],k=0..nmax)]:

> p1:=pointplot(S1,symbol=circle,color=red): p2:=pointplot(S2,symbol=circle,color=blue):

display(p1,p2);

Figura 59. Solución Maple. Barrido DC 0<Vin<15.

Que es comparable con la Figura 58.

5.11. Transistor.

Las ecuaciones de Ebers-Moll para un transistor npn consideran corrientes exponenciales en los diodos.

0

0

/

/

( 1)

( 1)

e EB R c

c CB F e

tbe

tbc

v V

v V

I I I

I I I

e

e

v1(Vin)

v2(Vin)

Page 74: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

74 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

E

DF

B

RIc

DR FIe

C

Ic

Ib

Ie

C

B

E

Figura 60. Modelo de Ebers-Moll.

Las siguientes relaciones se tienen entre los coeficientes, del modelo de Ebers-Moll:

0

0

0 0

(1 )

(1 )

1

EB SE R F

CB SC R F

F EB R CB

Ffe

F

I I

I I

I I

h

Spice emplea el modelo de Gummel-Poon que considera

parámetros adicionales que permiten ajustar el modelo a cualquier transistor.

5.12. Parámetros del transistor.

Se planteará el modelo de Eber-Moll, empleando Maple, y se ajustarán los parámetros para tener igual modelo en SPICE.

Planteando las ecuaciones de Ebers-Moll:

> restart;with(plots):

> ecs:={-ib-ic=-Iebo*(exp((vbe)/Vt)-1)-ar*ic,

ic=-Icbo*(exp(((vbe)-vce)/Vt)-1)+af*(ib+ic)}:

> ecs1:=solve(ecs,{ib,ic}):

> datos:={Icbo=0.19733360e-15,

af=0.990099,ar=0.90,Vt=25.8e-3}:

hf:= eval(af/(1-af),datos);Iebo:=eval(ar*Icbo/af,datos):

Ise:=eval(Iebo/(1-ar*af),datos):Isc:=eval(Icbo/(1-

ar*af),datos);

Page 75: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 75

Profesor Leopoldo Silva Bijit 30/12/2009

:= hf 99.99989900

:= Isc .1811881088 10 -14

El modelo SPICE tiene los parámetros Is y BF, para describir Isc y hfe.

Las curvas características del transistor se obtienen con:

> sol:=eval(ecs1,datos):assign(sol):

> plot({eval(ic,vbe=0.65),eval(ic,vbe=0.75)},vce=0.0..1,

color=[red,blue]);

> plot({eval(ib*1e6,vce=.1),eval(ib*1e6,vce=10)},

vbe=0.5..0.7,color=[red,blue]);

Figura 61. Características de salida.

Nótese que la unidad de la corriente de base es A, en la Figura 62.

Figura 62. Características de entrada.

Para comprobar el ajuste de los parámetros, la corriente de base, en microamperes cuando vce=10 y vbe=0,68, resulta:

Vbe=0,65

Vbe=0,70

Vce=0,1

Vce=10

Page 76: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

76 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

> eval(ib*1e6,{vce=10,vbe=0.68});

4.559254875

Obteniendo la corriente de base y colector en el siguiente modelo SPICE, en el cual se han ajustado los parámetros de la corriente inversa de saturación y la ganancia del transistor BF, que equivale a hfe. Se obtiene la gráfica que se ilustra en la Figura 63.

Características Ib(Vbe) en BJT

Vce 1 0 DC 10V

Vbe 2 0 DC 0;

* C B E

Q1 1 2 0 transistor

.model transistor NPN (Is=.18111881088e-14A BF=100)

* Análisis DC Vbe varía desde 1 a 10 V en incrementos de 100mV

.DC Vbe 500mV 700mV 10mV

.probe

.end

Figura 63. Corrientes en SPICE.

Nótese que ajustando sólo los valores de Is y BF, las corrientes de colector y base tienen la misma forma. Mostrando una ganancia constante de 100; esto observando las diferentes escalas para las corrientes, en la Figura 63.

ib=4,7 A

Page 77: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 77

Profesor Leopoldo Silva Bijit 30/12/2009

Los valores de los parámetros son de fundamental importancia en el ajuste del modelo. Pequeñas variaciones de éstos mostrarán diferencias en las soluciones que se obtengan.

En el caso que se estudia, si los parámetros SPICE y Maple

difieren, las soluciones no serán comparables.

5.13. Punto de operación.

Agregando redes de polarización se deja al transistor

trabajando en un punto (ib, vbe) de la característica de entrada, y en un punto (ic, vce) de la característica de salida. Los valores pueden obtenerse aplicando método nodal, a la red de la Figura

64, calculando los voltajes vbe, vce. Mediante éstos pueden calcularse ib e ic.

Resolveremos el problema no lineal, empleando SPICE, que

entrega los resultados; y empleando Maple para resolver las ecuaciones no lineales. Mediante este proceder intentamos ilustrar la forma de cálculos que están incorporados en SPICE.

Para poder comparar los resultados los parámetros del

transistor Maple y SPICE deben modelar la misma componente. Esto se explicó en el punto anterior.

NPN Rb

Vc

+Vcc

Rc

3

2

0

1

4

Vin

Figura 64. Redes de polarización.

Emplearemos los siguientes valores para las mallas de polarización: Rb=10K, Rc=2K, Vcc=5, Vin=0,8.

El siguiente netlist representa la red de la Figura 64.

Page 78: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

78 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Punto de Operación de transistor * Rb 1 2 10k Rc 4 3 2k * C B E Q1 3 2 0 transistor Vcc 4 0 5V Vin 1 0 0.8 .model transistor NPN (Is=.1811881088e-14A BF=100 ) .op .probe .end

Los resultados quedan en un archivo con extensión .out,

resultan:

SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C

****************************************************************

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

( 1) .8000 (2) .6994 (3) 2.9886 (4) 5.0000

Donde V(2) es el voltaje base-emisor, y V(3) es el voltaje

collector-emisor. Las siguientes líneas, describen en Maple, las funciones no

lineales de las redes de polarización. El comando fsolve, encuentra, empleando el método de Newton-Raphson, la solución del sistema no lineal simultáneo de ecuaciones.

> F1:=vce+Rc*ic-Vcc:F2:=vbe+Rb*ib-Vin:

> datospol:={Vcc=5,Rb=10e3,Rc=2e3,Vin=.8}:

> fsolve({eval(F1,datospol),eval(F2,datospol)},{vbe,vce});

{ },vce 3.004198067 vbe .7002098022

Los cuales son comparables a la solución obtenida por SPICE.

2.9886, 0.6994ce bev v

Empleando Maple, pueden graficarse las características no

lineales de las mallas de polarización:

> rangos:= vbe=0..0.8,vce=0..5: p1:=implicitplot(eval(F1,datospol),rangos,

numpoints=10000,color=red):

Page 79: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 79

Profesor Leopoldo Silva Bijit 30/12/2009

p2:=implicitplot(eval(F2,datospol),rangos,

numpoints=1000,color=blue):

display(p1,p2);

Se obtiene la gráfica de la Figura 65.

Figura 65. Redes de polarización.

5.14. Característica de transferencia.

En el programa SPICE, basta agregar el comando para

efectuar un barrido DC, variando el voltaje de entrada y obteniendo el voltaje de salida.

Variaremos desde 0,4 hasta 1,4 el voltaje de entrada, en intervalos de 10 mV:

.dc Vin 0.4 1.4 0.010

Se obtiene la gráfica de la Figura 66.

F1(vbe, vce)

F2(vbe, vce)

Page 80: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

80 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 66. Vout/Vin mediante SPICE.

En Maple es preciso repetir el cálculo anterior, para el punto de operación, variando el voltaje de entrada y almacenando los valores del punto de operación correspondiente en el arreglo Cp[n].

> Vin[0]:=0.4:DeltaV:=0.05:nmax:=1/DeltaV:

datosDC:={Vcc=5,Rb=10e3,Rc=2e3,Vin=Vin[n]}:

> for n from 0 to nmax do Cp[n]:=fsolve({eval(F1,datosDC),eval(F2,datosDC)},

{vbe,vce});

if lhs(Cp[n][1])=vbe

then Vbe[n]:=rhs(Cp[n][1])

else Vce[n]:=rhs(Cp[n][1])

fi;

if lhs(Cp[n][2])=vce

then Vce[n]:=rhs(Cp[n][2])

else Vbe[n]:=rhs(Cp[n][2])

fi;

Vin[n+1]:=Vin[n]+DeltaV;

#printf(" %f %f %f \n",Vin[n] ,Vbe[n],Vce[n]);

od:

Mediante los puntos generados, se generan gráficos, y se

obtiene la Figura 67.

> S1:=[seq([Vin[k],Vbe[k]],k=0..nmax)]:

S2:=[seq([Vin[k],Vce[k]],k=0..nmax)]:

> p1:=pointplot(S1,symbol=diamond,color=red): p2:=pointplot(S2,symbol=circle,color=blue):

display(p1,p2);

Page 81: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 81

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 67. Transferencia Vout/Vin mediante Maple.

La cual puede compararse con la Figura 66.

6. Análisis de pequeña señal.

Se desea encontrar modelos equivalentes, para pequeñas variaciones de las señales relativas a su punto de operación, en redes no lineales.

Consideremos la red no lineal RNL conectada a la red R, y tal

que no existen dependencias entre las variables internas de ambas redes, excepto la que se muestra entre los terminales de ellas.

v

i

R RNL va

+

iin

Figura 68. Conexiones de RNL.

No pueden presentarse fuentes controladas en una red, que tengan su elemento de control en la otra; tampoco inductores acoplados, que tengan una inductancia en una red y su par acoplado en la otra.

La fuente externa va, es un generador arbitrario, cuyas

componentes variables en el tiempo deben tener amplitudes mucho menores que su componente continua.

Page 82: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

82 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

En la red no lineal pueden estar presentes generadores

continuos cuyo fin es polarizar o dar un punto de operación a las componentes no lineales.

6.1. Modelo de pequeña señal.

Puede reemplazarse la red R por una fuente de corriente para efectuar cálculos en la red no lineal, como se muestra en la Figura 69.

v i RNL

va +

iin

Figura 69. Substitución por fuente de corriente.

La solución de la RNL es la misma si tiene conectada la red R o la fuente de corriente. La fuente i representa la corriente que circularía hacia la red R, cuando a ésta se le aplique la tensión v.

Si en la red de la Figura 69, se plantean las ecuaciones de la

red, y se eliminan las variables internas, se obtienen dos relaciones no lineales, que dependerán de las fuentes o causas:

1

2

( , , )

( , , )

a

in a

v F v i r

i F v i r

Donde r representa a los generadores continuos dentro de la red no lineal.

Para un sistema de ecuaciones no lineales, se emplea la

expansión de Taylor para varias variables. La expansión es una linealización en torno a la solución:

( ) ( ) ( )( )s s sF x F x J x x x

Page 83: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 83

Profesor Leopoldo Silva Bijit 30/12/2009

Las cantidades ( )F x y ( )sx x se expresan como vectores, y

( )sJ x como una matriz, denominada Jacobiano.

Para una variación, respecto de un punto cualquiera, con

aproximación de primer orden, se tiene:

1 1( ) ( ) ( )( )k k k k kF x F x J x x x

Para entender la relación anterior, se ilustra la forma que

ella toma para dos funciones de dos variables x1 y x2, se obtiene:

1 1

1 1 1 1 1

2 1 1 2 12 2

( 1 , 2 ) ( 1 , 2 )

( 1 , 2 ) ( 1 , 2 ) 1 11 2

( 1 , 2 ) ( 1 , 2 ) 2 2( 1 , 2 ) ( 1 , 2 )

1 2

k k k k

k k k k k k

k k k k k kk k k k

F x x F x x

F x x F x x x xx x

F x x F x x x xF x x F x x

x x

Para el caso que se estudia, se tienen las aproximaciones:

( , ) ( , )( , ) ( , ) ( ) ( )

( , ) ( , )( , ) ( , ) ( ) ( )

as s as sa as s a as s

a

in as s in as sin a in as s a as s

a

v v i v v iv v i v v i v v i i

v i

i v i i v ii v i i v i v v i i

v i

En las relaciones anteriores no se producen aportes de los

generadores continuos en el lado derecho de las ecuaciones.

6.2. Variables de pequeña señal.

Si definimos las variables de pequeña señal como las variaciones respecto del punto de operación, tendremos:

( , ) ( , )

( )

( )

( , ) ( , )

ps a as s

aps a as

ps s

inps in a in as s

v v v i v v i

v v v

i i i

i i v i i v i

Page 84: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

84 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Las que reemplazadas en las relaciones anteriores generan el

modelo para pequeñas señales:

( , ) ( , )

( , ) ( , )

as s as sps aps ps

a

in as s in as sinps aps ps

a

v v i v v iv v i

v i

i v i i v ii v i

v i

6.3. Red equivalente en pequeña señal.

Consideremos ahora la siguiente red:

vaps +

gips

Rin + +

Rout

kvaps

ips

vps

iinps

Figura 70. Red para pequeñas señales.

Para la Figura 70, se tienen:

ps aps out ps

aps in inps ps

v kv R i

v R i gi

Comparando con las ecuaciones anteriores se pueden

definir:

( , ) ( , )

( , )

1

( , ) ( , )

as s as sout

a

in as s

inin as s in as s

a a

v v i v v ik R

v i

i v i

iR gi v i i v i

v v

Donde k, sin unidades, es la ganancia de voltaje; g con

unidades de conductancia es la transconductancia incremental, que refleja el efecto de corriente de salida en el circuito de

Page 85: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 85

Profesor Leopoldo Silva Bijit 30/12/2009

entrada; Rin y Rout, con unidades de resistencia, se denominan resistencia de entrada y salida respectivamente.

6.4. Ejemplo. Red lineal con polarización.

Sea la red lineal, que se muestra en la Figura 71. La red R, de la Figura 68, se ha substituido por una fuente de corriente i. Calcularemos el modelo para pequeña señal, considerando que el punto de operación se calcula para los siguientes valores de las fuentes:

1, v 5, 3 /8a cv i

Consideramos los siguientes valores para las resistencias:

1, R 5, R 1a cR

Va

+

0

3

2

i

v

1

+

Rc

R

Vc

iin

Ra

Figura 71. Red lineal.

Se obtienen las siguientes ecuaciones, para el voltaje de salida y la corriente de entrada.

5( , , )

3

c a a c a c aa c

a c a c

RR v RR R i RR v v iv v i v

RR RR R R

( ) 2 5( , , )

3

c a c c ain a c

a c a c

R R v RR i Rv v ii v i v

RR RR R R

Se obtiene el punto de operación:

15/8, 7 /8, 1, v 5, 3/8in a cv i v i

Page 86: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

86 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Aplicando las fórmulas de definición, los parámetros de pequeña señal, resultan:

( , )= 1/ 3

( , )1/ 3

1= = 3/2

( , )

( , )

1/ 2( , )

as s c

a a c a c

as s a cout

a c a c

a c a cin

in as s c

a

in as s

c

in as s c

a

v v i RRk

v RR RR R R

v v i RR RR

i RR RR R R

RR RR R RR

i v i R R

v

i v iRRig

i v i R R

v

En la Figura 72, se muestra el plano, que representa la

función del voltaje de salida, en términos de las fuentes. Resulta un plano, debido a que la red es lineal.

Se muestra el punto de operación (p.o.) para polarización vc=5. Si se cambia el valor de polarización de vc a 10, el punto de operación se desplaza a la curva superior, ahora v en el punto de operación toma valor 3,54.

Figura 72. Red lineal.

Si ahora se inyecta una pequeña señal, sobre el punto de polarización:

1 ( ), ( ) 0,3cos( ), v 5, 3/8a aps aps cv v t v t t i

v(va,i,vc=5)

v(va,i,vc=10)

p.o.

Page 87: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 87

Profesor Leopoldo Silva Bijit 30/12/2009

Se obtiene para el voltaje de salida que la señal total es:

150,1cos( )

8v t

Entonces la pequeña señal del voltaje de salida es:

0,1cos( )psv t

Las formas de ondas se ilustran en la Figura 73, junto al valor de polarización del voltaje de salida:

15

8sv

Figura 73. Señal total y pequeña señal.

La red equivalente, con los valores de los parámetros de pequeña señal, se muestra en la Figura 74.

vaps +

-ips/2

3/2 + +

1/3

vaps/3

ips

vps

iinps

Figura 74. Red equivalente para pequeñas señales.

6.4.1. Solución SPICE.

El análisis de característica de transferencia de SPICE, permite obtener los parámetros de pequeña señal. El netlist que describe la red de la Figura 71, se muestra a continuación, con voltaje de salida V(2):

vps(t)

v(t) vs

Page 88: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

88 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

pequeña señal Va 1 0 1 Ra 1 2 1 Rc 2 3 1 Vc 3 0 5 R 2 0 1 I 2 0 0.375 .op .tf V(2) Va .end Los resultados para el punto de operación, se encuentran en

el archivo de salida, y coinciden con los anteriores:

****SMALL SIGNAL BIAS SOLUTION TEMPERATURE =27.000 DEG C

******************************************************************************

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

( 1) 1.0000 ( 2) 1.8750 ( 3) 5.0000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

Va 8.750E-01

Vc -3.125E+00

TOTAL POWER DISSIPATION 1.48E+01 WATTS

Los parámetros de pequeña señal, se entregan según:

**** SMALL-SIGNAL CHARACTERISTICS

V(2)/Va = 3.333E-01

INPUT RESISTANCE AT Va = 1.500E+00

OUTPUT RESISTANCE AT V(2) = 3.333E-01

Nótese que no entrega el parámetro g, sólo los valores de k,

Rin y Rout. Si se agrega una señal alterna, modificando el estímulo para

Va, y se realiza un análisis transitorio: pequeña señal Va 1 0 SIN(1V 0.3V 0.1592 0 0 90) ;pequeña señal

Ra 1 2 1

Rc 2 3 1

Page 89: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 89

Profesor Leopoldo Silva Bijit 30/12/2009

Vc 3 0 5

R 2 0 1

I 2 0 0.375

.op

.tf V(2) Va

.tran 0.1s 15 0.01

.probe

.end

Se obtienen las formas de ondas que se muestran en la Figura 75.

Figura 75. Señales totales en análisis transitorio.

6.4.2. Solución Maple.

La siguiente secuencia de comandos produce las ecuaciones, y efectúa los cálculos del punto de operación y de los parámetros de pequeña señal.

> restart;with(plots):

> ecs:={v1=va,v2=Ra*(-iin),v3=Rc*i3,v4=vc,v5=R*i5,i6=i, -iin+i3+i5+i6=0,v1+v2=v3+v4,v3+v4=v5,v5=v}:

datosop:={Ra=1,Rc=1,R=1,vc=5,va=1,i=3/8}:

Cálculo de ecuaciones

> solv:=eliminate(ecs,{v1,v2,v3,v4,v5,iin,i3,i4,i5,i6}):

ecv:=solve(solv[2],v);

:= ecv { }vR ( )vc Ra Rc i Ra Rc va

Rc R Rc Ra Ra R

> soli:=eliminate(ecs,{v1,v2,v3,v4,v5,v,i3,i4,i5,i6}):

va(t)

v(t

)

iin(t)

Page 90: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

90 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

eci:=solve(soli[2],iin);

:= eci { }iinR va vc R Rc va Rc i R

Rc R Rc Ra Ra R

> assign(ecv,eci);

Cálculo punto de operación > eval(iin,datosop);eval(v,datosop);

-7

8

15

8

Cálculo parámetros de pequeña señal: > k:=diff(v,va);

:= kR Rc

Rc R Rc Ra Ra R

> Rout:=-diff(v,i);

:= RoutR Rc Ra

Rc R Rc Ra Ra R

> Rin:=1/diff(iin,va);

:= RinRc R Rc Ra Ra R

R Rc

> g:=-diff(iin,i)/diff(iin,va);

:= gR Rc

R Rc

Evaluación de los parámetros de pequeña señal: > datos:={Ra=1,Rc=1,R=1,vc=5}:

datos1:={Ra=1,Rc=1,R=1,vc=10}:

> eval(k,datos);

1

3

> eval(Rout,datos);

1

3

> eval(Rin,datos);

3

2

> eval(g,datos);

-1

2

Page 91: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 91

Profesor Leopoldo Silva Bijit 30/12/2009

Cálculo valores punto de operación: > eval(iin,datosop);eval(v,datosop);

-7

8

15

8

La gráfica de la Figura 72, se obtiene con: > plot3d({eval(v,datos),eval(v,datos1)},va=0..2,i=3/8..2,

axes=boxed);

La gráfica de la Figura 73, se obtiene con: > datosop:={Ra=1,Rc=1,R=1,vc=5,va=1+0.3*cos(t),i=3/8}:

> plot([15/8,eval(v,datosop),0.1*cos(t)],t=0..15, y=-0.5..2.2,color=[red,blue,black]);

6.5. Ejemplo. Red no lineal basada en transistor bipolar.

NPN

Vb

+Vcc

Rc

2 1

4

3 Rb

Rbp

0

Vin

+

+ 6

iin

iload

Figura 76. Análisis de pequeña señal en red con transistor.

6.5.1. Modelo del transistor.

Se definen las ecuaciones de Ebers-Moll para el transistor. > restart;with(plots):

> ecs:={-ib-ic=-Iebo*(exp((vbe)/Vt)-1)-ar*ic,

ic=-Icbo*(exp(((vbe)-vce)/Vt)-1)+af*(ib+ic)}:

> ecs1:=solve(ecs,{ib,ic}):

> datos:={Icbo=0.19733360e-15,af=0.990099,ar=0.90,

Vt=25.8e-3}:

hf:= eval(af/(1-af),datos);

Iebo:=eval(ar*Icbo/af,datos):

Ise:=eval(Iebo/(1-ar*af),datos):

Isc:=eval(Icbo/(1-ar*af),datos);

:= Isc .1811881088 10 -14

> sol:=eval(ecs1,datos):assign(sol):

Page 92: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

92 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Luego del assign(sol), quedan definidas expresiones para las corrientes en el transistor: ib(vbe, vce) e ic(vbe, vce)

6.5.2. Punto de operación.

Para el cálculo del punto de operación se definen las ecuaciones F1=0, F2=0 y F3=0. Las que se obtienen a partir del circuito de la Figura 76.

> F1:=vce+Rc*(ic+iload)-Vcc: F2:=vbe+Rb*iin-Vin:

F3:=vbe-(iin-ib)*Rbp-Vb:

Se definen datos para las mallas de polarización: > datospol:={Vcc=10,Vb=10,Rb=2e3,Rc=1e3,Rbp=22.4e3,

iload=0.5e-3,Vin=0}:

Se resuelve el sistema de ecuaciones no lineales: > fsolve({eval(F1,datospol),eval(F2,datospol),

eval(F3,datospol)},{vbe,vce,iin});

{ }, ,vce 5.083655665 vbe .7385850710 iin -.0003692925355

La solución SPICE para el punto de operación, entrega:

NODE VOLTAGE NODE VOLTAGE NODE VOLTAGE

( 1) 0.0000 ( 2) .7379 ( 3) 5.0470

( 4) 10.0000 ( 6) 10.0000

VOLTAGE SOURCE CURRENTS

NAME CURRENT

Vcc -4.953E-03

Vbp -4.135E-04

Vin 3.690E-04 La corriente iin, que circula del punto 1 al 2, es el valor

negativo de la corriente en la fuente Vin, ya que en ésta circula de 1 a 0.

V(2) es el voltaje base emisor, vbe. V(3) es el voltaje colector emisor, vce.

Page 93: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 93

Profesor Leopoldo Silva Bijit 30/12/2009

6.5.3. Análisis de pequeña señal. Cálculo de parámetros.

Las ecuaciones de la red, se evalúan de tal modo que las variables queden en términos de la corriente en la carga iload, y el voltaje Vin.

> ecs2:={vce+Rc*(ic+iload)-Vcc=0,

vbe+Rb*iin-Vin=0,

vbe-(iin-ib)*Rbp-Vb=0}:

datospeq:={Vcc=10,Vb=10,Rb=2e3,Rc=1e3,Rbp=22.4e3}:

> sol2:=solve(eval(ecs2,datospeq),{vbe,vce,iin}):

> assign(sol2):

Quedan asignadas las expresiones para vbe(Vin, iload), vce(Vin, iload), iin(Vin, iload).

Los parámetros de pequeña señal se calculan evaluando las

derivadas parciales, y luego tomando su valor en el punto de operación:

> k:=diff(vce,Vin):

k:=evalf(eval(k,{Vin=0,iload=0.5e-3}));

:= k -37.93115109

> Rout:=-diff(vce,iload):

Rout:=evalf(eval(Rout,{Vin=0,iload=0.5e-3}));

:= Rout 1000.

> Rin:=1/diff(iin,Vin):

Rin:=evalf(eval(Rin,{Vin=0,iload=0.5e-3}));

:= Rin 2569.344490

> g:=-diff(iin,iload)/diff(iin,Vin):

g:=evalf(eval(g,{Vin=0,iload=0.5e-3}));

:= g .3452697001 10 -6

Los cuales coinciden, dentro de la tolerancia de cálculo con números reales con que se definen los parámetros del transistor, con los obtenidos por SPICE, mediante el comando .tf V(3) Vin.

Page 94: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

94 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

**** SMALL-SIGNAL CHARACTERISTICS V(3)/Vin = -3.798E+01 INPUT RESISTANCE AT Vin = 2.566E+03 OUTPUT RESISTANCE AT V(3) = 1.000E+03 La forma de onda del voltaje de salida para una excitación

sinusoidal de 1KHz y amplitud 10mV, puede obtenerse con:

> plot(eval(vce,{iload=0.5e-3,

Vin=(10e-3)*sin(2*Pi*1e3*t)}),

t=0..1.4e-3);

Figura 77. Voltaje de salida. Maple.

La función no lineal vce, puede visualizarse en una gráfica tridimensional, que se obtiene con:

Page 95: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 95

Profesor Leopoldo Silva Bijit 30/12/2009

> plot3d(vce,iload=0.4e-3..0.6e-3,Vin=-0.2..0.2,

axes=boxed);

Figura 78. Característica no lineal de salida.

En la Figura 78, se ha marcado el punto de operación. Una gráfica tridimensional de la función no lineal que

describe la corriente de entrada en términos de Vin y la corriente en la carga, se obtiene con:

> plot3d(iin,iload=0.4e-3..0.6e-3, Vin=-0.2..0.2,

axes=boxed);

Figura 79. Característica no lineal de entrada.

p.o.

Page 96: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

96 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

6.5.4. Netlist para comparar resultados obtenidos con Maple.

Pequeña señal alterna en la entrada. Vcc 4 0 10

Vbp 6 0 10

Rc 4 3 1k

Rbp 6 2 22.4k ;

Rb 1 2 2k

*Rload 3 0 10k

Iload 3 0 0.5mA

Q1 3 2 0 npn-trans

Vin 1 0 SIN(0, 10mV, 1k, 0, 0, 0)

.DC Vin -.5 +.5V 10mV ; calcula transferencia con barrido DC

.tran 0 2.0m 0.1u

.tf V(3) Vin

.model npn-trans npn (is=.1811881088e-14 bf=100 vaf=000)

.op ;calcula punto operación

.probe

.end

La fuente de corriente en la carga de 0,5mA simula una resistencia de carga de 10K con vce=5 en el punto de operación.

Las formas de ondas del voltaje de salida y el de entrada, obtenidas mediante el comando .tran de SPICE, se muestran en la Figura 80.

Figura 80. Formas de ondas SPICE.

Page 97: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 97

Profesor Leopoldo Silva Bijit 30/12/2009

7. Resumen.

Mediante Maple se muestra cómo se efectúan cálculos en redes no lineales y dinámicas. Estos algoritmos, pero más avanzados, se encuentran incorporados internamente en la aplicación SPICE.

Debe considerarse a SPICE como un analizador de redes no

lineales dinámicas. En un ambiente de diseño electrónico interesa cambiar el

valor de alguna componente o estudiar el efecto de agregar o

quitar una componente, con miras a posteriormente armar el sistema para pruebas de laboratorio. Dependiendo de la habilidad y experiencia del diseñador, pueden someterse a análisis determinadas interconexiones de componentes, considerando precisas definiciones de los modelos de cada una (modelado). A este proceso suele denominarse simulación.

Mientras mayor sea la experiencia del diseñador, más

cercanos serán los resultados obtenidos por simulación a los medidos experimentalmente en el laboratorio. Las diferencias en los resultados se deben a modelos incompletos.

Referencia.

Leopoldo Silva Bijit, Redes Eléctricas, Pearson Prentice Hall, 2006. Apéndices 1 y 2.

Page 98: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

98 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Índice general.

ALGORITMOS PARA EL ANÁLISIS DE REDES. ....................................... 1

1. MÉTODOS DE ANÁLISIS PARA REDES ESTÁTICAS. ........................................... 2 1.1. Formulación de ecuaciones. ................................................................. 2 1.2. Modelo matemático. ............................................................................. 3 1.3. Descomposición LU. ............................................................................ 4 1.4. Implementación en Maple. ................................................................... 9 1.5. Comandos Maple de álgebra lineal. ................................................... 11 1.6. Solución usando ecuaciones de la red y solve de Maple. ..................... 12 1.7. Solución SPICE. ................................................................................ 12 1.8 Métodos iterativos. .............................................................................. 13

2. MÉTODOS DE ANÁLISIS PARA REDES DINÁMICAS. ........................................ 16 2.1. Método de mallas. .............................................................................. 16 2.2. Método mixto. .................................................................................... 18 2.3. Solución Maple, para obtener las ecuaciones de estado, y resolver las

ecuaciones diferenciales. ................................................................................ 20 2.4. Solución de las ecuaciones diferenciales usando SPICE. .................... 23

3. SOLUCIÓN NUMÉRICA DE SISTEMAS DE ECUACIONES DIFERENCIALES. .......... 25 3.1. Formulación de ecuaciones de estado................................................. 26 3.2. Método de Euler................................................................................. 28 3.3. Solución analítica. ............................................................................. 29 3.4. Solución numérica. ............................................................................ 30

4. REDES NO LINEALES. ................................................................................. 32 4.1. Redes con diodos. .............................................................................. 33 4.2. Redes con transistores. ....................................................................... 41 4.3. Ejercicios propuestos. ........................................................................ 55

5. ALGORITMOS PARA ANÁLISIS DE REDES NO LINEALES. ................................. 57 5.1. Formulación de ecuaciones no lineales. ............................................. 58 5.2. Método de Newton-Raphson. .............................................................. 59 5.4. Implementación Maple de Newton-Raphson. ...................................... 61 5.5. Punto de operación. ........................................................................... 63 5.6. Análisis DC........................................................................................ 64 5.7. Generalización para sistemas de ecuaciones no lineales. .................... 65 5.8. Sistema no lineal de dos ecuaciones. .................................................. 69 5.9. Punto de operación. ........................................................................... 71 5.10. Barrido DC. ..................................................................................... 72 5.11. Transistor. ....................................................................................... 73 5.12. Parámetros del transistor. ................................................................ 74 5.13. Punto de operación. ......................................................................... 77 5.14. Característica de transferencia......................................................... 79

6. ANÁLISIS DE PEQUEÑA SEÑAL. .................................................................... 81 6.1. Modelo de pequeña señal. .................................................................. 82

Page 99: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 99

Profesor Leopoldo Silva Bijit 30/12/2009

6.2. Variables de pequeña señal. ............................................................... 83 6.3. Red equivalente en pequeña señal. ..................................................... 84 6.4. Ejemplo. Red lineal con polarización. ................................................ 85 6.5. Ejemplo. Red no lineal basada en transistor bipolar. .......................... 91

7. RESUMEN. ................................................................................................. 97 REFERENCIA. ................................................................................................ 97 ÍNDICE GENERAL. .......................................................................................... 98 ÍNDICE DE FIGURAS. ...................................................................................... 99

Índice de Figuras.

Figura 1. Red resistiva. .......................................................... 2 Figura 2. Diagrama de la red. .............................................. 16 Figura 3. Mallas. ................................................................. 17 Figura 4. Diagrama de la red. .............................................. 18 Figura 5. Árbol y variables. .................................................. 19 Figura 6. Formas de ondas. ................................................. 23 Figura 7. Diagrama de la red. .............................................. 23 Figura 8. Variables de estado, en el tiempo. ......................... 25 Figura 9. Red RLC. .............................................................. 26 Figura 10. Solución transitoria analítica. ............................. 30 Figura 11. Solución transitoria numérica. ............................ 31 Figura 12. Espacio de estado. .............................................. 32 Figura 13. Característica exponencial de diodo. ..................... 33 Figura 14. Análisis DC. ........................................................ 34 Figura 15. Efecto de la resistencia interna del diodo. ............. 35 Figura 16. Resistencia para limitar la corriente en el diodo. ... 35 Figura 17. Corriente y Voltaje en el diodo. ............................. 36 Figura 18. Simulación paramétrica. ...................................... 37 Figura 19. Simulación transitoria. ........................................ 37 Figura 20. Respuesta transitoria. .......................................... 38 Figura 21. Simulación transitoria con condensador. .............. 39 Figura 22. Efecto del condensador. ....................................... 39 Figura 23. Limitador en base a diodos................................... 40 Figura 24. Transferencia V(2)/V(1). ....................................... 40 Figura 25. Medición Ib(Vbe) con Vce constante. ..................... 41 Figura 26. Característica Ib(Vbe) con Vce constante. ............. 42 Figura 27. Medición Ic(Vce) con Ib constante. ........................ 42 Figura 28. Característica de salida Ic(Vce) con Ib constante. .. 43 Figura 29. Influencia de la corriente de base. ........................ 44 Figura 30. Punto de operación. ............................................. 45

Page 100: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

100 Algoritmos para el análisis de redes.

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 31. Variación del punto de operación. ........................ 46 Figura 32. Corrientes en las zonas........................................ 46 Figura 33. Característica de transferencia. ............................ 47 Figura 34. Característica Vce versus Vin. .............................. 48 Figura 35. Amplificación. ..................................................... 49 Figura 36. Distorsión de segunda armónica. ......................... 49 Figura 37. Distorsión por no linealidad. ................................ 50 Figura 38. Distorsión de tercera armónica. ........................... 50 Figura 39. Amplificador en base a transistor bipolar. ........... 51 Figura 40. Entrada y salida sinusoidal. ................................ 52 Figura 41. Inversor simple. .................................................. 52 Figura 42. Conmutación. ..................................................... 53 Figura 43. Inversor TTL. ....................................................... 54 Figura 44. Conmutación inversor TTL. .................................. 55 Figura 45. Ejercicio 1. .......................................................... 56 Figura 46. Diodo no lineal con resistencia serie. .................... 58 Figura 47. Iteración Newton-Raphson. .................................. 60 Figura 48. Característica diodo no lineal. .............................. 61 Figura 49. Punto de operación. ............................................. 62 Figura 50. Convergencia hacia la solución. ........................... 63 Figura 51. Corriente en el diodo en [mA] versus Vin. ............. 64 Figura 52. Voltaje en el diodo versus Vin. ............................. 65 Figura 53. Interpretación del Jacobiano de dos variables. ...... 66 Figura 54. Variación total de función de dos variables. .......... 68 Figura 55. Red no lineal con dos diodos. ............................... 69 Figura 56. Vin>10. D1 conduce, D2 no conduce. ................... 70 Figura 57. Vin<10. D1 no conduce, D2 conduce. ................... 70 Figura 58. Solución SPICE. Barrido DC 0<Vin<15. ................ 72 Figura 59. Solución Maple. Barrido DC 0<Vin<15. ................ 73 Figura 60. Modelo de Ebers-Moll. ......................................... 74 Figura 61. Características de salida. ..................................... 75 Figura 62. Características de entrada. .................................. 75 Figura 63. Corrientes en SPICE. ........................................... 76 Figura 64. Redes de polarización. ......................................... 77 Figura 65. Redes de polarización. ......................................... 79 Figura 66. Vout/Vin mediante SPICE. .................................. 80 Figura 67. Transferencia Vout/Vin mediante Maple. ............. 81 Figura 68. Conexiones de RNL. ............................................. 81 Figura 69. Substitución por fuente de corriente. ................... 82 Figura 70. Red para pequeñas señales. ................................. 84 Figura 71. Red lineal. ........................................................... 85 Figura 72. Red lineal. ........................................................... 86

Page 101: Algoritmos para el análisis de redes. - elo.utfsm.cllsb/elo102/clases/AlgoritmosParaRedes.pdf · método de Doolittle asigna unos a los elementos de la diagonal principal de L. Veremos

Teoría de Redes Eléctricas. 101

Profesor Leopoldo Silva Bijit 30/12/2009

Figura 73. Señal total y pequeña señal. ................................. 87 Figura 74. Red equivalente para pequeñas señales. ............... 87 Figura 75. Señales totales en análisis transitorio. .................. 89 Figura 76. Análisis de pequeña señal en red con transistor. ... 91 Figura 77. Voltaje de salida. Maple. ...................................... 94 Figura 78. Característica no lineal de salida. ......................... 95 Figura 79. Característica no lineal de entrada. ...................... 95 Figura 80. Formas de ondas SPICE. ...................................... 96