trabajo jorge medicina tropical

16
 Maestría en Medicina Tropical Módulo 10: Cólera, Leptospirosis, Fiebre Tifoidea y otras virosis Tema: Luminally active, nonabsorbable CFTR inhibitors as potential therapy to reduce intestinal fluid loss in cholera. Inhibidores CFTR luminalmente activas, no absorbibles como terapia potencial para reducir la pérdida intestinal de fluidos en el Cólera. Nombre: Md. Jorge Guerrero Jiménez PROFESOR : DR. EMILIO PEREZ  

Upload: jorge-guerrero

Post on 10-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 1/16

 

Maestría en Medicina Tropical 

Módulo 10:

Cólera, Leptospirosis, Fiebre Tifoidea yotras virosis

Tema:

Luminally active, nonabsorbable CFTR inhibitorsas

potential therapy to reduce intestinal fluid loss incholera.

Inhibidores CFTR luminalmente activas, noabsorbibles como terapia potencial para reducir 

la pérdida intestinal de fluidos en el Cólera.

Nombre:

Md. Jorge Guerrero Jiménez

PROFESOR: DR. EMILIO PEREZ 

Page 2: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 2/16

2010 

©2005 FASEB The FASEB Journal  express article 10.1096/fj.05-4818fje. Published online Novem ber  29,

2005.

Luminally active, nonabsorbable CFTR inhibitors aspotential therapy to reduce intestinal fluid loss in

cholera N. D. Sonawane, Jie Hu, Chatchai Muan pr asat, and A. S. Verkman

Departments of Medicine and Physiology, Cardiovascular R esearch Institute, University 

of Califor nia, San Fr ancisco, Califor nia

Corresponding author: Alan S. Verkman, 1246 Health Sciences East Tower , University 

of Califor nia, San Fr ancisco, CA 94143-0521. E-mail: [email protected]

ABSTRACT

Enter otoxin-mediated secretory diarrheas such as choler a involve chloride secretion by 

enter ocytes  into the  intestinal  lumen by the cystic f i br osis tr ansmem br ane conductance regulator  (CFTR) chloride  channel. We  previously  identif ied glycine hydr azide CFTR 

 blockers that by electr o physiological studies a ppeared to block  the CFTR anion  pore at its lumen-facing sur face.

Here, we  synthesize  highly water -soluble, nonabsor  bable  malondihydr azides by cou pling 2,4- disulfobenzaldehyde, 4-sulfo phenylisothiocyante, and  polyethylene glycol 

(PEG) moieties  to 2- na phthalenylamino-[(3,5-di br omo-2,4-dihydr oxyphenyl)methylene]  pr o panedioic acid dihydr azide, and aminoacethydr azides by  cou pling PEG

to [( N -2-na phthalenyl)-2-(2- hydr oxyethyl)]-glycine-2-[(3,5-di br omo-2,4-

dihydr oxyphenyl) methylene] hydr azide.

Compounds r a pidly, fully and reversi bly blocked CFTR-mediated chloride current with 

K i  of 2±8 M when added  to the a pical  sur face of  epithelial  cell  monolayers.Compounds did not  pass acr oss Caco-2 monolayers, and were absor  bed by <2%/hr   inmouse  intestine. Luminally added compounds blocked by >90% choler a toxin-induced 

f luid secretion in mouse  intestinal  loo ps, without  inhi biting intestinal f luid absorption.These or ally administered, nonabsor  bable, nontoxic CFTR  inhi bitors  may  reduce 

intestinal f luid losses in choler a.

K ey words: diarrhea cystic f i br osis chloride channel dr ug discovery 

Intestinal f luid secretion in many types of diarrheas involves active secretion of chloride 

into the intestinal lumen by enter ocytes, which creates the driving force for  sodium and 

water  secretion. Cell culture (1±3) and animal (4) studies  indicate  that CFTR  pr ovides 

the   principle  r oute for   chloride  secretion at  the  luminal  mem br ane  in enter otoxin-

mediated secretory diarrheas  pr oduced by inf ection with Vi brio choler a and  Escherichia

coli (5, 6). Pharmacological CFTR inhi bition has  thus been  pr o posed as a str ategy  to

reduce f luid  losses  in choler a and other   enter otoxin-mediated  diarrheas (7, 8), which 

remain a major   pr oblem in the develo ping world (9, 10).

Our   lab has  identif ied by  high-thr oughput  screening two classes of   potent CFTR 

inhi bitors that blocked choler a toxin-induced intestinal f luid secretion in r odent models 

Page 3: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 3/16

(11, 12). The  thiazolidinone CFTR inh-172 (Fig. 1 A)  pr oduces a voltage-independent 

CFTR  chloride  channel block  with   pr olongation of  mean channel  closed  time (13).CFTR inh-172 is r a pidly absor  bed acr oss the intestinal wall and under goes enter ohepatic 

recirculation (14, 15). Other  CFTR  inhi bitors also act f r om  the  cyto plasmic  side of CFTR but are much  less  potent and selective  in their  action, including gli benclamide,

diphenylamine-2-car  boxylate, 5-nitr o-2(3- phenylpr o pylamino) benzoate, and 

f luf enamic acid (16±19). In contr ast, the glycine  hydr azide GlyH-101 a ppeared by electr o physiological studies to inhi bit CFTR by binding to a site at its exter nal  pore (11). GlyH-101 block of CFTR chloride conductance was r a pid and  pr oduced inward 

rectif ication with reduced mean channel o pen time.

Here, we report the synthesis and char acterization of highly  polar , non-absor  bable 

CFTR inhi bitors based on the glycine hydr azide scaffold. Str ucture-activity analysis 

indicated the glycyl methyl gr ou p as the unique site on the glycine hydr azide scaffold 

where modif ications could be toler ated with minimal eff ect on CFTR inhi bition activity.

On the basis of this information, we synthesized a series of malonic acid dihydr azides 

(MalH) linked to polar  moieties as shown in Fig. 1 B, as well as PEG-cou pled butyric 

acid hydr azides [GlyH-(PEG)n].

The compounds were highly water -soluble, nontoxic, and eff ective f r om the lumen side in inhi biting CFTR chloride channel function and choler a toxin-induced f luid secretion.

Unlike the  parent compound GlyH-101, the new inhi bitors were not absor  bed signif icantly by the intestine.

MATERIALS AND METHODS

Synthesis procedures1H and 13C NMR spectr a were obtained in CDCl3 or DMSO-d6 using a 400-MHz Varian

spectr ometer  ref erenced to CDCl3 or DMSO. Mass spectr ometry was done using aWaters LC/MS system (Alliance HT 2790+ZQ, HPLC: Waters model 2690, Milford,

MA). Flash chr omatogr a phy was  per formed using EM silica gel (230±400 mesh), and 

thin-layer  chr omatogr a phy was done on Merck  silica gel 60 F254  plates.

 Diethyl-(2-naphthalenylamino)-propanedioate (2). A mixture of 2-na phthylamine 

(compound 1,Fig. 2 A) (10 mmol), diethyl br omomaloante (10 mmol), and sodium 

acetate (1.64 g, 20 mmol, dissolved in 4 ml of water ) was stirred at 90°C for 8 h. The 

 black  solid material obtained u pon cooling was f iltered and recrystallized f r om hexane 

to yield 2.5 g of 2 (yield 84%); mp:189í190°C; 1H nmr (DMSO-d6): 1.17 (t, 6H,

 J=7.33 Hz), 4.17 (q, 4H,  J=7.33), 5.10 (d, 1H,

 J=8.79 Hz), 6.54 (d, 1H,  J=8.79 Hz), 6.75 (d, 1H,  J=2.20 Hz), 7.13 (t, 1H,  J=7.32 Hz),

7.19 (dd, 1H,  J=2.19, 8.79 Hz), 7.28  t, 1H,  J=8.06 Hz), 7.51 (d, 1H,  J=8.42 Hz), 7.61 (t,2H,  J=8.79 Hz).

13C nmr (DMSO-d6): 14.57, 60.43, 60.49, 62.27, 104.70, 104.75, 119.04, 122.60,126.36, 126.81, 127.79, 128.05, 129.15, 135.21, 144.88, 144.95, 168.26; MS (ES +)

(m/z): [M+1]+calculated for C17H20 NO4, 302.35, found 302.2.

(2-naphthalenylamino)-propanedioic acid dihydrazide (3). A solution of 2 (10 mmol) inethanol (10 ml) was ref luxed with hydr azine hydr ate (12 mmol) for 10 h. Solvent and 

excess reagent were distilled under vacuum. The  pr oduct was recrystallized f r om ethanol to give 2.5 g of 3 (92%); mp 268-270°C; 1H nmr (DMSO-d6): 4.29 (d, 4H,  J  = 

4.03 Hz), 4.56 (d, 1H,  J=8.79 Hz), 6.03 (d, 1H,  J=8.79 Hz), 6.62 (d, 1H,  J=1.46 Hz),

Page 4: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 4/16

7.09 (m, 2H), 7.28 (t, 1H,  J=8.05 Hz), 7.50  d, 1H,  J=8.06 Hz), 7.61 (m, 2H), 9.22 (s,

2H). 13C nmr (DMSO-d6): 59.90, 104.70, 119.51, 122.51, 126.28, 126.81, 127.79,128.07, 129.07, 135.21, 145.11, 167.26; MS (ES +) (m/z): [M+1]+ calculated for  

C13H15 N5O2, 273.30, found 274.2.

2-naphthalenylamino-bis[(3,5-dibromo-2,4-dihydroxyphenyl)methylene]propanedioic

acid dihydrazide (MalH-1) . A mixture of 3 (10 mmol) and 3,5-di br omo-2,4-dihydr oxy benzaldehyde (20 mmol) in ethanol (5 ml) was ref luxed for 3 h. The hydr azone that crystallized u pon cooling was f iltered, washed with ethanol, and  purif ied 

 by column chr omatogr a phy (silica gel EtOAc:hexane 2:3) to give 3.2 g of 4 (54%) as an

off-white solid; mp 246±248°C; 1H nmr (DMSO-d6): 4.91, 5.48 (d, 1H,  J=7.69, 9.15

Hz, CHCO, D2O exchange), 6.62 (d, 1H,  J=7.32 Hz, Ar H), 6.73, 6.84 (s, 1H, NH, D2O 

exchange), 7.13í7.32 (m, 3H, Ar H), 7.57 (d, 1H,  J=8.06 Hz), 7.61í7.70 (m, 3H, Ar H),

7.80, 7.90 (s, 1H), 8.15, 8.37 (s, 2H, CH=N-NH, CH=N-N=), 10.10±10.40 (br oad s, 2H,

OH, D2O exchange), 11.72, 11.90 (s, 2H, OH, D2O exchange), 12.22, 12. 53 (s, 2H,

CONH, D2O exchange). The MalH-x compounds exist in at least three tautomeric forms 

and interpretation of NMR spectr um are done according to other  malonic acid hydr azide 

derivatives, as descri bed by Zhang et al. ( Z.  Anorg .  Allg . Chem. 628: 1259±1268, 2002).

MS (ES+) (m/z): [M+1]+ calculated for C27H19Br 4 N5O6, 829.10, found 830.1.

2-naphthalenylamino-[(3,5-dibromo-4-hydroxyphenyl)methylene][(2,4

disodiumdisulfophenyl) methylene] propanedioic acid dihydrazide (MalH-2). A mixture of dihydr azide 4 (5 mmol) and 2,4-disodium-disulfobenzaldehyde (5 mmol) in DMF (5

ml) was ref luxed for 4 h. The reaction mixture, u pon cooling, was added dr o pwise to a stirred solution of 

EtOAc:EtOH (1:1), f iltered, washed with ethanol, and further   purif ied by columnchr omatogr a phy (silica gel EtOAc:hexane 2:3) to give 2.3 g of 5 (58%) as an off-white 

solid; mp >300°C; 1H nmr (DMSOd6): 4.98, 5.63 (d, 1H,  J=9.88, 8.51 Hz, COCH),6.33-6.51 (m, 1H, Ar -H), 6.71, 6.84 (m, 1H, Ar -H), 7.03±7.37 (m, 4H, Ar -H and Ar -

 NH), 7.42±7.65 (m, 4H, Ar -H), 7.77í7.92 (m, 3H, Ar - H), 7.98±8.11 (m, 1H), 8.93(s,

1H), 9.13, 9.15, 9.21 (three s, 1H), 11.62, 11.70 (two s, 1H), 11.98, 12.00, 12.21 (s, 1H).All signals between 8.93±12.21 and 4.98, 5.63 were D2O exchangeable; MS (ES+)

(m/z): [M+1]+ calculated for C27H21Br 2 N5O10S2, 799.43, found 800.5.

2-na phthalenylamino-[(3,5-di br omo-2,4-dihydr oxyphenyl)methylene][3-(4-

sodiumsulfo phenyl)- thioureido]pr o panedioic acid dihydr azide (MalH-3) and 2-

na phthalenylamino- [(3,5-di br omo-2,4-dihydr oxyphenyl)methylene][3-[4-(3-(PEG)n-

thioureido) phenyl)- thioureido]pr o panedioic acid dihydr azide [MalH-(PEG)n] and 

[MalH-(PEG)n-B] were synthesized following similar  reaction conditions used for  

MalH-2, except that 4-sodiumsulfo phenylisothiocyanate and 6aíd were used in  place of 

2,4-disodium-disulfobenzaldehyde.

MalH-3, yield 47%, mp >300°C; 1H nmr (DMSO-d6): 4.98, 5.05 (d, 1H,  J=8.42, 9.52

Hz, COCH), 6.62-6.91 (m, 2H, Ar H), 7.01í7.21 (m, 2H, Ar H and Ar -NH), 7.25í7.35

(m, 2H, Ar H), 7.34í7.59 (m, 5H, Ar H), 7.64 (d, 2H,  J=8.69, Ar H), 7.90, 8.33 (two s,

1H, CH=N-NH, CH=NN=), 9.60 (br oad s, 1H, OH), 9.82 (s, 1H, Ar  NHCS), 9.95 (s, 1H,CSNH), 10.54, 10.67 (two s, 1H, OH or CONH), 12.27, 12.45 (two s, 2H, CONH, or  

OH), all signals between 9.60 and 12.45 and 4.98, 5.05 were D2O exchangeable; MS(ES+) (m/z): [M-1] ± calculated for C27H22Br 2 N6O7S2, 765.45, found 765.3. MalH-

(PEG)1: yield 40%, mp >300°C; 1H nmr (DMSO-d6): 3.70í4.37 (m, 8H, PEG CH),

Page 5: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 5/16

4.81, 5.01 (s, 1H, COCH), 5.27 (s, 1H, methyl-OH), 6.60 (d, 1H,  J=7.32 Hz, Ar H), 6.75

(s, 1H, Ar  NH), 7.19±7.38 (m, 4H, Ar H), 7.59 (d, 2H, 8.00 Hz, Ar H), 7.64í7.76 (m, 3H,Ar H), 7.90 (d, 2H, 8.00 Hz, Ar H), 8.21, 8.30 (s, 1H, CH=N-NH, CH=N-N=), 9.76 (s,

2H, Ar  NHCS) 9.83 (s, 1H, CSNH), 10.01 (s, 1H, NH), 10.36 (s, 1H, OH), 11.20, 11. 51(s, 2H, CONH), 11.54í11.62 (s, 1H, OH); MS (ES+) (m/z): [M+1]+ calculated for  

C32H32Br 2 N8O6S2, 849.60, found 849.4.

MalH-(PEG)15: Yield 51%; mp >300°C; 1H nmr (DMSO-d6): 2.82 (s, 3H, PEG-

OCH3), 3.24í4.10 (m, PEG-H, CH), 4.51 (s, 1H, COCH), 6.63í7.52 (two sets of m,

7H, Ar H), 7.58í8.08 (m, 7H, Ar H), 8.16, 8.21 (s, 1H, CH=N, CH=N-N=), 9.74 (s, 1H,

Ar  NHCS) 9.79 (s, 1H, CSNH), 10.05 (s, 1H, CSNH), 10.44 (s, 1H, OH), 11.22, 11. 53

(s, 2H, CONH), 11.59í11.65 (s, 1H, OH); MS (ES+) (m/z): [M+1]+ calculated for  

C61H90Br 2 N8O20S2, 1480.38, found 1480.5 ( 44, 88, 132, 176).

MalH-(PEG)1B: Yield 48%; mp >300°C; 1H nmr (DMSO-d6): 3.21í4.47 (m, 10H,

PEG CH2), 4.82, 5.11 (d, 1H,  J=7.47, 9.07 Hz, COCH), 5.38 (s, 1H, methyl-OH), 6.71± 

7.12 (two sets of multiplate, 8H, Ar H, Ar  NH), 7.20í7.57 (m, 4H, Ar H), 7.66í7.89 (m,

5H, Ar H), 8.16, 8.24 (s, 1H, CH=N, CH=N-N=), 9.74 (s, 2H, Ar  NHCS) 9.80 (s, 1H,

CSNH), 10.07 (s, 1H, CSNH), 10.25 (s, 1H, OH), 11.12, 11. 47 (s, 2H, CONH), 11.62± 11.67 (s, 1H, OH). MS (ES+) (m/z): [M+1]+ calculated for C39H38Br 2 N8O6S2, 939.7,

found 939.6.

MalH-(PEG)15B: Yield 39%; mp >300°C; 1H nmr (DMSO-d6): 2.92 (s, 3H, CH3),

3.12í4.37 (m, PEG-H, CH2), 4.81 (s, 1H, COCH), 6.68-6.79 (m, 6H, Ar H, Ar  NH),

7.15í7.48 (m, 4H, Ar H), 7.57í8.10 (m, 7H, Ar H), 8.24, 8.38 (s, 1H, CH=N-NH,

CH=N-N=), 9.85 (s, 2H, Ar  NHCS), 9.89 (s, 1H, CSNH), 10.12 (s, 1H, CSNH), 10.28(s, 1H, OH), 11.22, 11. 54 (s, 2H, CONH), 11.56 (s, 1H, OH); MS (ES+) (m/z): [M+1]+

calculated for C68H96Br 2 N8O20S2, 1570.50, found 1570.2 ( 44, 88, 132, 176).4-[[((2-(2-Hydr oxyethoxy)ethyl)amino)thioxomethyl]amino]phenylisothiocyante (6a).

To a solution of 1,4- phenylene diisothiocyanate (1 mmol, 2 mL DMF) was added 2-

aminoethoxyethanol (0.3 mmol, 2 mL DMF) over 30 min. Af ter  stirring for additional 

30 min, the DMF was distilled and the  pr oduct was  purif ied by column chr omatogr a phy 

on silica gel using as solvent n-hexane:AcOEt (1:1). Fr actions were eva por ated to give 

58 mg of 2 (65%); 1H nmr (DMSO-d6): 3.41 (t, 2H, CH2,  J=5.49 Hz), 3.47 (t, 2H,

CH2,  J=5.49 Hz), 3.52 (t, 2H, CH2,  J=5.49 Hz), 3.59 (t, 2H, CH2,,  J=5.86 Hz), 4.55 (t,

1H, OH,  J  = 5.49 Hz), 7.33 (d, 2H, Ar -H,  J=8.42 Hz), 7.52 (d, 2H, Ar -H,  J=8.79 Hz),

7.86 (br oad s, 1H, NH), 9.74 (br oad s, 1H, NH); MS (ES+) (m/z): [M+1]+ calculated for  

C12H15 N3O2S2, 298.40, found 298.5.

Similarly, the following compounds were synthesized using a ppr o priate amino-PEGs.

105 and 750 are the molecular weight of (PEG)1 and (PEG)15, respectively.

4-[[((Methoxy-(PEG)15)amino)thioxomethyl]amino]phenylisothiocyante (6b). Yield,

58%; 1H nmr (DMSO-d6): 3.21±3.52 (m, PEG-H), 3.91 (s, 3H, OCH3), 7.26 (d, 2H,

Ar -H, 8.46 Hz), 7.47 (d, 2H, Ar -H, 8.46 Hz), 7.92 (br oad s, 1H, Ar -NH), 9.41 (br oad s,

1H, NH); MS (ES+) (m/z): [M+1]+ calculated for C41H73 N3O16S2, 929.18, found 929.2

( 44, 88, 132, 176).

Page 6: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 6/16

4-[4-[[(2-(2

Hydr oxyethoxy)ethylamino)thioxomethyl]amino]phenylmethyl]phenylisothiocyante (6c). Yield 63%; 1H nmr (DMSO-d6): ~3.28 (t, 2H, CH2,  J=5.48 Hz), 3.40 (t, 2H, CH2,

 J=5.47 Hz), 3.47 t, 2H, CH2,  J=5.46 Hz), 3.52 (t, 2H, CH2,  J=5.82 Hz), 4.49 (s, 1H,OH), 7.23±7.29 (m, 4H, Ar -H), 7.29±7.40 (m, 4H, Ar -H), 7.81 (br oad s, 1H, NH), 9.48

(br oad s, 1H, NH); MS (ES+) (m/z): [M+1]+ calculated for C19H21 N3O2S2, 388.53, found 

388.3.

4-[4-[[((PEG-750)amino)thioxomethyl]amino]phenylmethyl]phenylisothiocyante (6d).

Yield, 58%; 1H nmr (DMSO-d6): 2.04 (s, 2H, CH2), 3.19±3.48 (m, PEG-CH2), 3.87 (s,

3H, OCH3), 7.10±7.14 (m, 4H, Ar -H), 7.25±7.32 (m, 4H, Ar -H), 7.60 (br oad s, 1H,

 NH), 9.49 (br oad s, 1H, NH); MS (ES+) (m/z): [M+1]+ calculated for C48H79 N3O16S2,

1019.30, found 1019.4 ( 44, 88, 132, 176).

2-(2-na phthalenylamino)-4-hydr oxy-butyric acid hydr azide (7). This compound was 

synthesized following similar  reaction conditions used for  compounds 2 and 3. Yield 

89%; mp 258-260°C; 1H nmr (DMSO-d6): 1.79 (m, 2H, CH2) 3.46 (q, 2H, CH2,

 J=3.98) (s, 1H, OH), 4.17 (d, 2H, NNH2,  J=4.52) (t, 1H, COCH), 5.94í5.96 (s, 1H,

Ar  NH), 6.68 (s, 1H, Ar H), 6.98 (dd, 1H,  J=Ar H), 7.05 (t, 1H,  J=Ar H), 7.24 (t, 1H, J=Ar H), 7.46 (d, 1H,  J=Ar H), 7.52-7.60 (m, 2H, Ar H) 9.17 (s, 1H, CONH). 13C nmr  (DMSO-d6): 36.77, 53.32, 58.26, 104.02, 119.24, 121.92, 126.08, 126.64, 127.29,

128.02, 128.84, 135.54, 146.55, 173.06; MS (ES +) (m/z): [M+1]+ calculated for  C14H17 N3O2, 260.31, found 260.2.

[2-(2-na phthalenylamino)-4-hydr oxy] butyric acid-2-[(1,1

dimethylethoxy)car  bonyl]hydr azide (8). To a solution of hydr azide 7 (10 mM) in THF(10 ml) was added (BOC)2O (20 mM) and heated under  ref lux for 5 h. The solvent was 

removed, and the residue was  purif ied by column chr omatogr a phy on silica gel. Elutionwith dichlor omethane gave 3.1 g of 8 (86%) as a white 

solid; mp 235í237°C; ms (ES+): M/Z 360 (M+1)+; 1H nmr (DMSO-d6): 1.33 (s, 9H),

1.92 (m, 2H, CH2), 3.52 (q,  J=2H), 4.01 (q, 1H,  J=OH), 4.52 (t, 1H,  J=COCH), 6.00(d, 1H,  J= NH), 6.70 (s, 1H, Ar H), 6.97 (dd, 1H,  J=Ar H), 7.06 (t, 1H,  J=Ar H), 7.25 (t,

1H,  J=Ar H), 7.45 (d, 1H,  J=Ar H), 7.52í7.59 (m, 2H, Ar H), 8.73 (s, 1H, CONH), 9.77

(s, 1H, NH-BOC). 13C nmr (DMSO-d6): 28.49, 28.64, 36.56, 53.14, 58.05, 58.17,

79.67, 104.15, 119.19, 121.90, 126.14, 126.58, 127.31, 127.99, 128.81, 135.54, 146.46,170.04, 173.43, 198.42; MS (ES +) (m/z): [M+1]+ calculated for C19H25 N3O4, 360.43,

found 360.5.

[2-(2-na phthalenylamino)-4-( p-tosyl)] butyric acid-2-[(1,1

dimethylethoxy)car  bonyl]hydr azide (9). To a solution of hydr azide 8 (1 mmol) in

 pyridine (5 ml) was added  p-TsCl (1 mmol) in three  portions 30 min a part (±15°C). The 

reaction mixture was stirred for 8 h at ±15°C, allowed to warm to r oom temper ature,diluted with 1N HCl, and extr acted 3 times with EtOAc. The com bined or ganic extr act 

was washed with brine, dried with Na2SO4, and eva por ated to dryness to give 374 mg of 

9 (73%) as a  pale yellow oil, used without further   purif ication for next step; MS (ES+)

(m/z): [M+1]+ calculated for C26H31 N3O6S, 514.62, found 514.3.

[2-(2-na phthalenylamino)-4-(PEG-amino-105)] butyric acid-2-[(1,1

dimethylethoxy)car  bonyl] hydr azide (10a). A solution of 2-aminoethoxyethanol (1 mM)

and 9 (1 mM) in DMF (2 ml) was stirred at 80°C for 24 h. The DMF was eva por ated in

Page 7: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 7/16

vacuo, and the residue was dissolved in minimum quantity of EtOAc and added to a

stirred solution of Et2O. The white  powder -like  precipitate was f iltered and washed with Et2O to give 170 mg of 10 (38%) as a yellow sticky mass; 1H nmr (DMSO-d6): 1.35

(s, 9H), 1.71 (m, 2H, CH2) 3.40-3.51 (m, 4H, CH2), 3.57 (t, 2H,  J=6.52 Hz CH2), 3.62± 3.89 (m, 5H, CH2, NH), 3.97 (s, 1H, OH), 4.42 (t, 1H,  J=COCH), 6.04í6.16 (s, 1H,

Ar  NH), 6.67 (s, 1H, Ar H), 6.93 (dd, 1H,  J=7.21, 2.33, Ar H), 7.03 (t, 1H,  J=7.24 Ar H),

7.32 (t, 1H,  J=7.24, Ar H), 7.45 (d, 1H,  J=2.34, Ar H), 7.50í7.62 (m, 2H, Ar H), 9.35 (s,1H, CONH), 9.89 (s, 1H, NH-BOC); MS (ES+) (m/z): [M+1]+ calculated for  

C23H34 N4O5, 447.55, found 447.8.

[2-(2-na phthalenylamino)-4-(PEG-amino-750)] butyric acid-2-[(1,1dimethylethoxy)car  bonyl] hydr azide (10b). Yield 44% as a yellow sticky mass; MS

(ES+) (m/z): [M+1]+ calculated for C52H92 N4O19, 1078.33, found 1078.2 ( 44, 88, 132,176).

[2-(2-na phthalenylamino)-4-(PEG-amino-105)] butyric acid hydr azide (11a). Hydr azide 

10 (1 mM) was dissolved in a minimal amount of trif luor oacetic acid:CH2Cl2 (1:1) and stirred at r oom temper ature for 30 min. The reaction mixture was diluted with satur ated 

aqueous NaHCO3 and extr acted with CH2Cl2. The com bined or ganic layer was washed successively with water and brine, dried (Na2SO4), and concentr ated in vacuo to yield 

253 mg of 11a (73%) as yellow semisolid; ms (ES+): M/Z 347 (M+1)+; 1H nmr (DMSO-

d6): 1.71 (m, 2H, CH2) 3.40±3.51 (m, 4H, CH2), 3.57 (t, 2H,  J=6.44, CH2), 3.68-3.79

(m, 5H, CH2, NH), 3.93 (s, 1H, OH), 4.26 (d, 2H, NNH2) 4.52 (t, 1H,  J=7.01 COCH),

6.02í6.21 (s, 1H, Ar  NH), 6.71 (s, 1H, Ar H), 6.85 (dd,  J=7.25, 2.34, 1H, Ar H), 7.10 (t,

1H,  J=7.30, Ar H), 7.34 (t, 1H, Ar H), 7.51 (d, 1H,  J=6.98 Ar H), 7.53±7.76 (m, 2H,

Ar H), 9.27 (s, 1H, CONH); MS (ES+) (m/z): [M+1]+ calculated for C18H26 N4O3, 347.47,

found 347.4.

[2-(2-na phthalenylamino)-4-(PEG-amino-750)] butyric acid hydr azide (11b). Yield 

63%; MS (ES+) (m/z): [M+1]+ calculated for C47H84 N4O17, 978.21, found 978.40 ( 44,

88, 132, 176).

[2-(2-na phthalenylamino)-4-(PEG-amino-105)] butyric acid-2-[(3,5-di br omo-2,4-dihydr oxyphenyl) methylene] hydr azide (GlyH-(PEG)1). A mixture of 11a (1 mmol)

and 3,5- di br omo-2,4-dihydr oxy benzaldehyde (1 mmol) in ethanol (2 ml) was ref luxed for 3 h. The reaction mixture was concentr ated and added to a stirred solution of Et2O,

and the  precipitated hydr azone was f iltered and washed with Et2O to yield 362 mg of GlyH-(PEG)1 (58%); 1H nmr (DMSO-d6): 1H nmr (DMSO-d6): 1.75 (m, 2H, CH2)

3.43-3.48 (m, 4H, CH2), 3.59 (t, 2H,  J=6.52, CH2), 3.72í3.81 (m, 5H, CH2, NH), 3.97

(s, 1H, OH), 4.59 (t, 1H, COCH), 6.12, 6.26 (s, 1H, Ar  NH), 6.75 (s, 1H, Ar H),

6.85í6.96 (m, 2H, Ar H), 7.15í7.51 (m, 3H, Ar H), 7.53í7.76 (m, 2H, Ar H), 8.87, 8.93

(s, 1H, CH=N), 9.27 (s, 1H, CONH), 10.68 (s, 1H, OH), 11.92 (s, 1H, OH); MS (ES+)(m/z): [M+1]+ calculated for C25H28Br 2 N4O5, 625.33, found 625.2.

[2-(2-na phthalenylamino)-4-(PEG-amino-750)] butyric acid-2-[(3,5-di br omo-2,4-

dihydr oxyphenyl) methylene] hydr azide (GlyH-(PEG)15). Yield 46%; 1H nmr (DMSO-d6): 2.82 (s, 3H, OMe) 3.16±3.94 (m, PEG-H, 2CH2, NH), 4.56 (s, 1H,  J=COCH),

6.19, 6.32 (s, 1H, Ar  NH), 6.79í6.98 (m, 3H, Ar H), 7.13±7.62 (m, 3H, Ar H), 7.53±7.76(m, 2H, Ar H), 8.87±9.16 (m, 2H, CH=N, CONH), 10.51 (s, 1H, OH), 11.62 (s, 1H,

Page 8: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 8/16

OH); MS (ES+) (m/z): [M+1]+ calculated for C54H86Br 2 N4O19, 1256.11, found 1256.1

( 44, 88, 132, 176).

Short-circuit current measurements

Fischer  r at thyr oid (FRT) cells (stably expressing human wild-type CFTR) were 

cultured on Sna pwell f ilters with 1 cm2 sur face area (Cor ning-Costar ) to resistance >1,000 ·cm2 as descri bed by Muan pr asat and colleagues (11). Filters were mounted inan Easymount Cham ber System (Physiologic Instr uments, San Diego, CA). For a pical 

Cl ± current measurements, the basolater al hemicham ber  contained (in mM): 130 NaCl,

2.7 KCl, 1.5 KH2PO4, 1 CaCl2, 0.5 MgCl2, 10 Na-HEPES, 10 glucose ( pH 7.3). The 

 basolater al mem br ane was  permeabilized with amphotericin B (250 g/ml) for 30 min.

In the a pical solution 65 mM NaCl was replaced by sodium gluconate, and CaCl2 was 

increased to 2 mM. Solutions were bubbled with 95% O2/5% CO2 and maintained at 

37°C. Current was recorded using a DVC-1000 voltage-clamp (World Precision

Instr uments) using Ag/AgCl electr odes and 1 M KCl agar bridges.

Cholera model

Mice (CD1 str ain, 28±34 g) were deprived of food for 24 h (but given 5% sucr ose inwater ) and then anesthetized with 2.5% Avertin intr a pertitoneally. Body temper ature 

was maintained at 36± 38°C using a heating  pad. Af ter a small abdominal incision, three closed mid je junal loo ps (length 15±20 mm) were isolated by sutures. Loo ps were 

injected with 100 l of PBS or PBS containing choler a toxin (1 g) without or with test compounds. The abdominal incision was closed with a suture, and mice were allowed to

recover f r om anesthesia. At 6 h, the mice were anesthetized, intestinal loo ps were removed, and loo p length and weight were measured to quantif y net f luid secretion. In

some experiments, intestinal f luid absorption (without choler a toxin) was measured by injection of loo ps with 100 l  phosphate-buff ered saline containing glucose (10 mM),

with or without test compounds, and the f luid remaining at 20 and 30 min was measured 

 by the diff erence in weight of intact and empty loo p. Mice were killed by an overdose 

of Avertin. All  pr otocols were a ppr oved by the UCSF Committee on Animal R esearch.

Inhibitor absorption

Caco-2 cells were cultured on Sna pwell f ilters (1 cm2, Cor ning-Costar ) to resistance 

~1000 ·cm2. For   permeability measurements, the culture medium was replaced with 

an equal volume of Hank¶s buff ered salt solution (HBSS) containing 15 mM glucose 

and 25 mM HEPES ( pH 7.3). Af ter 1 h, compounds (20±100 M) were added to the 

donor (u pper ) cham ber , and  plates were gently r ocked at 37°C. Af ter 4 h, solution f r om the lower  cham ber was assayed for  inhi bitor  concentr ation. For  measurements of 

intestinal absorption, mid je junal loo ps were injected with 100 l of  phosphate buff ered-saline containing 10±20 g test compound and 5 g FITC-dextr an (40 k Da), in which 

100 mM NaCl was replaced by 200 mM r aff inose. The added r aff inose  prevented 

intestinal f luid absorption. Af ter 0 or 2 h, loo p f luid was withdr awn for assay of 

compound concentr ation f r om the r atio of o ptical absor  bance of test compound vs.

FITC-dextr an

(OD342/OD494nm), which was assumed to be impermeant. In some experiments, f luid 

samples were also analyzed by LC/MS.

Page 9: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 9/16

 

Inhibitor stabilityInhi bitors were tested for  stability at diff erent  pHs and in the  presence of intestinal 

contents (je junal f luid). Solutions of inhi bitors (100 M) at  pH 1.0 (0.1 N HCl), 4.4 (20mM AcONa), 6.1 (20 mM MES), 7.4 (20 mM HEPES), and 8.4 (20 mM TRIS) were 

incubated at 37°C for 2 h, and samples were analyzed by LC/MS af ter ad justing  pH to

7.0. Similarly, inhi bitors (100 M) added to je junal stool (1:1 diluted with PBS) were incubated at 37°C for 2 h, solids were removed by centrifugation at 20,000 g for 10 min,and the su per natant was analyzed. For LC/MS analysis, reversed- phase HPLC

separ ations were carried out using a Su pelco C18 column (2.1 × 100 mm, 3 m  particle 

size) connected to a solvent delivery system (Waters model 2690, Milford, MA). The 

solvent system consisted of a linear gr adient f r om 15% CH3CN/10 mM KH2PO4, pH

6.95 to 95% CH3CN/10mM KH2PO4, pH 6.95 r un over 15 min, followed by 6 min at 

95% CH3CN/10mM KH2PO4 (0.2 ml/min f low r ate). Inhi bitors were detected at 256 nm 

with linear  standard cali br ation cur ve for  the r ange of 20±5000 nM r ange. Mass spectr a

were acquired on a mass spectr ometer  (Alliance HT 2790 + ZQ) using negative and 

 positive (for MalH-1) ion detection, scanning f r om 200 to 2000 Da, as descri bed 

Sonawane and colleagues (15).

Toxicity

For  cell cultures studies, compounds (50±100 M) or vehicle were added to the mediafor 2 days in FRT cells, and then quantitative cell counting was done. For  mouse 

studies, compounds (4±8 mg/k g) were administered by intr avenous or or al r outes every 12 h to adult mice for  three days.

Contr ol mice were administered vehicle (PBS or PBS containing 1% DMSO). Body 

weight was measured daily, and af ter 4 days, blood was collected for analysis of ser um chemistries.

RESULTS

Design and synthesis of nonabsorbable CFTR pore-blockers

We synthesized a series of highly  polar , nonabsor  bable CFTR inhi bitors based on the 

glycine hydr azide scaffold (Fig. 1 B). Prior  str ucture-activity analysis indicated the 

glycyl methylene gr ou p as the unique site on the glycine hydr azide scaffold where 

modif ications could be toler ated (11). One str ategy for  design of water -soluble and 

mem br ane impermeant CFTR inhi bitors was modif ication of GlyH-101 by linking it 

with bulky moieties containing polar gr ou ps such as sulfonic acid or  car  boxy, or  hydr oxy with  p K a < 7. A second str ategy was conjugation of GlyH- 101 to the water -

soluble  polymer   polyethylene glycol. In initial studies to explore the types of substitutions that could be toler ated without loss of activity, we synthesized a series of 

derivatives containing substituted  phenyl, hydr oxyethyl, ethoxycar  bonyl, car  boxyl, and 

ethyl at the glycyl methyl  position of GlyH-101 (data not shown). Most derivatives 

retained CFTR inhi bitory activity, and it was found that malonic acid hydr azides had 

greatest CFTR inhi bitory  potency, even better  than the  parent compound, GlyH-101. A

series of GlyH-101 analogs in which na phthalenyl moiety was substituted with more 

 polar /functional gr ou ps were substantially less active than the malonic acid hydr azides.

Page 10: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 10/16

Therefore, we devised eff icient syntheses of water -soluble, nonabsor  bable inhi bitors by 

using diethyl br omomalonate intermediate (Scheme 1, Fig. 2). R eaction of 2-na phthalenamine with diethyl br omomalonate followed by subsequent reaction with 

hydr azine gener ated a versatile malonic acid dihydr azide intermediate 3. Condensationof this dihydr azide with 3,5-di br omo- 2,4-dihydr oxy benzaldehyde  pr oduced a key 

intermediate, compound 4, which on further  condensation with the same aldehyde gave 

MalH-1. Similarly, 2,4-disulfobenzaldehyde and 4- sulfo phenyl-isothiocyanate were reacted with 4 to gener ate MalH-2 and MalH-3, respectively.

MalH-1 is str uctur ally similar  to GlyH-101 except for an additional (3,5-di br omo-2,4-

dihydr oxyphenyl)methylene]hydr azide moiety, making it doubly char ged, bulkier , and 

more hydr o philic, which conf erred greater water  solubility (~5 mM) compared with 

GlyH-101 and decreased mem br ane  permeability. MalH-2 carries two disulfonic acid 

gr ou ps, whereas MalH-3 contains one sulfonic acid moiety with a hydr o philic thiourea

link . MalH-2 and MalH-3 are f reely water  soluble, exceeding 50% wt/vol at 20°C in

saline.

Intermediate 4 was also used to gener ate MalH-(PEG)n and MalH-(PEG)nB by 

condensation with PEG-containing phenylisothiocyanates 6a± d (Scheme 2).Intermediates 6aíd were synthesized by reaction of 1,4- phenylenediisothiocyanate 5a or  

 bis[(4-isothiocyanato)]  phenylmethane 5b with a ppr o priate amino-PEGs. The 

conjugated PEG moiety increased compound water  solubility to 5±10 mM. MalH-(PEG)nB has a slightly longer  hydr o phobic chain than MalH-(PEG)n between the 

inhi bitor and PEG moieties,  potentially impr oving CFTR accessi bility by reducingintr amolecular  inter actions. Another a ppr oach taken for  synthesis of PEG-ylated 

compounds involved incorpor ation of hydr oxyethyl moiety onto the glycyl methylene,in which br omobuter olactone was reacted with 2-na phthalenamine and subsequently 

reacted with hydr azine to give hydr azide 7 (Scheme 3), which was PEG-ylated thr ough its hydr oxyl gr ou p using standard  pr otection-depr otection Boc chemistry. The PEG-

ylated hydr azide 11 was condensed with ar omatic aldehyde to  pr oduce GlyH-(PEG)n.

CFTR inhibition in cell monolayers by apically added compounds

CFTR inhi bition was assayed by short-circuit current analysis in FRT cells expressing

human wild-type CFTR. A pical mem br ane chloride current was measured af ter  

 permeabilization of the cell basolater al mem br ane in the  presence of a tr ansepithelial 

chloride gr adient, and CFTR chloride channel stimulation by the cell- permeant cAMP

agonist CPT-cAMP. Under  these conditions the measured current is a CFTR-dependent 

chloride current. R epresentative data shown in Fig. 3 A indicate  pr ompt reduction in

chloride current by the various compounds when added to the a pical bathing solution,with inhi bitory  potencies (K i) in the r ange 2±8 M and near  complete inhi bition at 

higher  compound concentr ations. CFTR inhi bition for  each of the compounds was reversed u pon compound washout, as shown for MalH-3 in Fig. 3 B.

Compound absorption and antidiarrheal properties

Tr ansepithelial  permeability of the CFTR inhi bitors was assessed by the Caco-2 assay,

in which a ppear ance of compounds in the basal solution was assayed at 4 h af ter  compound addition to the a pical solution. For  each of the compounds in Fig. 1 B,

a ppear ance in the basal solution could not be detected at 4 h. In this Caco-2 assay,

Page 11: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 11/16

CFTR inh-172 was ~45% equili br ated at 4 h. Intestinal absorption was measured in living

mice f r om compound disa ppear ance f r om the lumens of closed mid je junal loo ps over 2h. In these experiments, r aff inose was included in the infusate 

solutions to  prevent f luid absorption. Figure 4 A shows less than 2% compound absorption  per  hour , whereas >90% of the thiazolidinone CFTR inh-172 was absor  bed 

over 2 h, and ~65% of GlyH-101.

Antidiarrheal eff icacy was assayed in closed mid je junal loo ps in mice. Loo ps were injected with saline or  solutions of choler a toxin containing diff erent inhi bitor amounts.

Intestinal f luid secretion at 6 h was measured. The data summary inFig. 4 B shows a

loo p weight-to-length r atio (corresponding to 100% inhi bition) of ~0.09 in saline-

injected loo ps, and 0.28 (corresponding to 0% inhi bition) in choler a toxin-injected 

loo ps. Each compound inhi bited loo p secretion in a dose-dependent manner with 

essentially complete inhi bition at the higher amounts.

To determine whether  the compounds aff ected intestinal f luid absorption, measurements 

of remaining f luid were done in closed intestinal loo ps at 20 and 30 min af ter  injection

of 100 l saline containing glucose (without or with compounds). Figure 4C shows no

signif icant eff ect of the CFTR inhi bitors on intestinal f luid absorption.

In toxicity studies, none of the compounds reduced cell  pr olif er ation when added to

FRT cells cultures at 50±100 M for 2 days (data not shown). In vivo toxicity was evaluated at 4 days af ter  twice daily administr ation of MalH-1, MalH-2, MalH-3, or  

MalH-(PEG)n in PBS (4±8 mg/k g) by intr avenous or or al r outes (3 mice  per  r oute  per  compound). No abnormalities were seen in mouse activity, and no signif icant 

diff erences were found in test vs. contr ol mice in body weight, urine output, or  ser um electr olyte, urea, creatinine, amylase or  tr ansaminase concentr ations (Table 1).

Compound stability was assessed in solutions of diff erent  pH (simulating diff erent 

regions of the gastr ointestinal tr act) and in the  presence of intestinal contents. LC/MS

analysis showed that compounds were stable (<5% loss) when incubated at 37°C for 2 h 

in saline solutions ( pH 4.4± 8.5). However , moder ate degr adation was found when

incubated at  pH 1.0, with reductions of 20±30% over 2 h of intact MalH-2, MalH-3, and 

MalH-(PEG)1. A ppr o priate compound formulation to bypass the gastric envir onment 

may thus be required. LC/MS analysis also showed that the compounds were stable 

when incubated at 37°C for 2 h in a 1:1 saline dilution of small intestinal f luid contents.

DISCUSSION

CFTR is a unique tar get for antidiarrheal ther a py because of its location at the lumen-facing sur face of enter ocytes and its r ole as the r ate-limiting step in ion secretion caused 

 by sever al enter otoxins, including choler a toxin. The glycine hydr azide-based CFTR inhi bitors synthesized here under go little intestinal absorption and are eff ective in

 preventing choler a toxin-induced f luid secretion in a r odent model of intestinal f luid 

secretion. The  potential advantages of antidiarrheal ther a py using a nonabsor  bable 

compound are that high concentr ations can be achieved in the gut lumen with minimal 

concer ns about toxicity and off-tar get eff ects related to cellular u ptake and systemic 

absorption. The nonabsor  bable glycine hydr azide inhi bitors can be synthesized at 

relatively low cost, which is an important consider ation for  third-world antidiarrheal 

a pplications.

Page 12: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 12/16

 

Short-circuit current analysis in CFTR-expressing epithelial cell monola yers showed  pr ompt inhi bition of chloride current in response to compound addition to the luminal 

solution. Near 100% block of chloride current was achieved at high inhi bitor  concentr ations. Inhi bitor  tr ansport acr oss Caco-2 monolayers was undetectable and <2%

disa ppear ance f r om the intestinal lumen  per  hour was found in closed intestinal loo ps in

mice in vivo. Also, the inhi bitors were chemically stable in the  presence of intestinal contents, and no toxicity was seen when the inhi bitors were  present at high concentr ation in cell cultures or when administered  systemically to mice.

The eff icacy of the luminally active CFTR inhi bitors in  preventing choler a toxin-

induced f luid secretion in je junal loo ps indicates that the inhi bitors have adequate access 

to the luminal sur face of crypt epithelial cells where f luid secretion occurs. The small-

molecule CFTR inhi bitors are thus able to overcome the  potential barrier  imposed by 

cryptal f luid secretion, in which convection away f r om the crypt might impair  inhi bitor  

access. Sever al factors may contri bute to this, including the r a pid diffusion of small 

molecules of the size of the CFTR inhi bitors (20), the relatively shallow crypts in small 

intestine vs. colon, and the intermittent nature of cryptal f luid secretion. Similar  

mechanism may account for  the ability of the relatively lar ger  choler a toxin molecule toaccess crypt epithelial cells.

The mainstay of current ther a py in choler a is or al rehydr ation solution (ORS) ther a py to prevent the consequences of massive volume and electr olyte depletion (21). Choler a

toxin and other  enter otoxins  pr oduce diarrhea by binding to ganglioside receptors at the enter ocyte lumen, resulting in elevated cyclic nucleotide concentr ations,  pr otein kinase 

activation, and CFTR  phosphorylation (22). Vaccines and anti biotic ther a py aimed at reducing bacterial load are under  clinical evaluation (23±25). Alter native str ategies to

reduce intestinal f luid losses in choler a have been  pr o posed, including enkephalinase inhi bition to reduce cyclic nucleotide concentr ation (26) and inhi bition of toxin binding

to cell sur face receptors (27). CFTR inhi bition is  predicted to reduce intestinal f luid 

losses in choler a and other  enter otoxin-mediated diarrheas and may be of  particular  

 benef it in young and elderly subjects where mor  bidity and mortality remain high despite 

ORS ther a py, as well as where ORS ther a py is not available or   pr actical. Also, since 

ORS ther a py does not reduce stool volume or  the dur ation of diarrhea (28±30), CFTR 

inhi bitors may have a r ole in reducing the dur ation and clinical severity of choler a.

Lar ge animal testing and clinical studies will be needed to determine the utility of the 

nonabsor  bable CFTR inhi bitors develo ped here.

ACKNOWLEDGMENTS

This work was su pported by gr ants DK-72517, AI-062530, HL-73854, EB-00415, EY-13574, DK35124, and DK-43840 f r om the National Institutes of Health, and Dr ug

Discovery and R esearch Develo pment Pr ogr am gr ants f r om the Cystic Fi br osis 

Foundation.

REFERENCES

1.  Chao, A. C., de Sauvage, F. J., Dong, Y. J., Wagner , J. A., Goeddel, D. V., and 

Gardner , P. (1994) Activation of intestinal CFTR Cl ± channel by heat-stable 

Page 13: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 13/16

Page 14: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 14/16

 

14. Thiagar ajah, J. R., Br oad bent, T., Hsieh, E., and Verkman, A. S. (2004)Prevention of toxininduced intestinal ion and f luid secretion by a small-molecule 

CFTR inhi bitor . Gastroenterology 126, 511±519

15. Sonawane, N. D., Muan pr asat, C., Nagatani, R., Song, Y., and Verkman, A.

S. (2005) In vivo  pharmacology and antidiarrheal eff icacy of a thiazolidinone CFTR inhi bitor  in r odents.  J . Pharm. S ci. 94, 134±143

16. Sheppard, D. N., and Robinson, K. A. (1997) Mechanism of gli benclamide 

inhi bition of cystic f i br osis tr ansmem br ane conductance regulator Cl ± channels 

expressed in a murine cell line.  J . Physiol . 503, 333±346

17. Zhou, Z., Hu, S., and Hwang, T. C. (2002) Pr obing an o pen CFTR  pore with 

or ganic anion blockers.  J . Gen. Physiol . 120, 647±662

18. Dawson, D. C., Smith, S. S., and Mansour a, M. K. (1999) CFTR : 

mechanism of anion conduction. Physiol .  Rev. 79, S47±S75

19. McCarty, N. A. (2000) Permeation thr ough the CFTR chloride channel.  J .  Exp.  Biol . 203, 1947±1962

20. Thiagar ajah, J. R., Pedley, K. C., and Naf talin, R. J. (2002) Evidence of 

amiloride-sensitive f luid absorption in r at descending colonic crypts f r om f luorescence recovery of FITClabelled bdextr an af ter   photobleaching.  J . 

 Physiol . 536, 541±553

21. Guerr ant, R. L., Car neir o-Filho, B. A., and Dillingham, R. A. (2003)Choler a, diarrhea, and or al rehydr ation ther a py: triumph and indictment. Clin. 

 Infect .  Dis. 37, 398±405

22. Barrett, K. E., and K eely, S. J. (2000) Chloride secretion by the intestinal 

epithelium: molecular basis and regulatory aspects. Annu.  Rev. Physiol . 62, 535± 

572

23. Svennerholm, A. M., and Steele, D. (2004) Micr obial-gut inter actions in

health and disease. Pr ogress in enteric vaccine develo pment.  Best Pract .  Res. 

Clin. Gastroenterol . 18, 421±445

24. Boedeker , E. C. (2005) Vaccines for  enter otoxigenic Escherichia coli: current status. Curr . O pin. Gastroenterol . 21, 15±19

25. K han, W. A., Saha, D., Rahman, A., Salam, M. A., Bogaerts, J., and 

Bennish, M. L. (2002) Comparison of single-dose azithr omycin and 12-dose, 3-

day erythr omycin for  childhood choler a: a r andomised, double-blind trial.

 Lancet 360, 1722±1727

26. Alam, N. H., Ashr af, H., K han, W. A., Karim, M. M., and Fuchs, G. J.

(2003) Eff icacy and toler ability of r acecadotril in the treatment of choler a in

adults: a double-blind, r andomised, contr olled clinical trial. Gut 52, 1419±1423

Page 15: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 15/16

 

27. Pickens, J. C., Mitchell, D. D., Liu, J., Tan, X., Zhang, Z., Verlinde, C. L.,Hol, W. G., and Fan, E. (2004) Nonspanning bivalent ligands as impr oved 

sur face receptor binding inhi bitors of the choler a toxin B pentamer . Chem.  Biol . 11, 1205±1215

28. Guir aldes, E., Trivino, X., Hodgson, M. I., Quintana, J. C., and Quintana, C.(1995) Treatment of acute infantile diarrhoea with a commercial rice-based or al rehydr ation solution.  J .  Diarrhoeal  Dis.  Res. 13, 207±211

29. CHOICE Study Gr ou p (2001) Multicenter , r andomized, double-blind 

clinical trial to evaluate the eff icacy and saf ety of a reduced osmolarity or al 

rehydr ation salts solution in children with acute watery diarrhea. Pediatrics 107,

613±618

30. Santosham, M., Fayad. I., Abu. Zikri. M., Hussein, A., Amponsah, A.,

Duggan, C., Hashem, M., el Sady, N., Abu, Zikri, M., and Fontaine, O. (1996) A

double-blind clinical trial comparing World Health Or ganization or al 

rehydr ation solution with a reduced osmolarity solution containing equal amounts of sodium and glucose.  J . Pediatr . 128, 45±51 Received  J uly 26, 2005;accepted S eptember9, 2005

1 Table 1

Serum chemistries in control and inhibitor-treated miceControl Mice MalH-3 MalH-(PEG)15 

Oral IV Oral IV Oral IV

 Na+ (mM) 155 ± 3 154 ± 3 150 ± 1 148 ± 3 147 ± 2 148 ± 2Cl ± (mM) 115 ± 2 113 ± 2 110 ± 1 108 ± 1 110 ± 1 108 ± 3HCO3

 ± (mM) 20 ± 1 22 ± 2 19 ± 3 21 ± 1 21 ± 1 21 ± 1ALT (U/L) 35 ± 5 35 ± 3 33 ± 6 31 ± 6 29 ± 7 37 ± 6AST (U/L) 88 ± 19 124 ± 14 156 ± 17 92 ± 15 60 ± 7 120 ± 16Amylase (U/L) 1157 ± 37 1338 ± 24 1145 ± 69 1035 ± 50 1130 ± 55 1195 ± 65

BUN (mM) 17 ± 0.9 15 ± 2 19 ± 0.5 16 ± 0.4 16 ± 3 21 ± 4Creatinine (mM) 0.30 ± 0.05 0.20 ± 0.04 0.27 ± 0.02 0.27 ± 0.05 0.23 ± 0.05 0.17 ± 0.03Data are  presented as means ± SE for 5 mice  per gr ou p.

Fig. 1

Figure 1. Small-molecule CFTR inhi bitors. A) Str uctures of the thiazolidinone CFTR inh-172and the glycine hydr azide GlyH-101. B) Nonabsor  bable CFTR inhi bitors: malonic acid dihydr azides (MalH-x) and 

glycine hydr azides [GlyH-

(PEG)n].

Fig. 2

Figure 2. Synthesis of  polar nonabsor  bable CFTR inhi bitors. Scheme 1) Synthesis of  polar  

CFTR inhi bitors, MalH-1,MalH-2, and MalH-3: a. diethyl br omomalonate, NaOAc, 90°C, 8 h, 84%; b. N2H4. H2O,

EtOH/ref lux, 10 h, 92%; c, d.3,5-di-Br -2,4-di-OH-benzaldehyde (1 eq), EtOH/ref lux, 3 h, 54%; e. 2,4-di-SO3 Na- benzaldehyde, DMF/ref lux, 4 h, 58%. f.

4-sodiumsulfo phenyl-isothiocyante, DMF/ref lux, 4 h, 47%. Scheme 2) Synthesis of PEG-ylated 

compounds, MalH-(PEG)n

Page 16: Trabajo Jorge Medicina Tropical

8/8/2019 Trabajo Jorge Medicina Tropical

http://slidepdf.com/reader/full/trabajo-jorge-medicina-tropical 16/16

and MalH-(PEG)nB: g. Amino-PEG (0.3 eq), DMF, rt, 1 h, 65%. 4, DMF/ref lux, 3 h, 63 and 

58%. Scheme 3) Synthesis of 

PEG-ylated GlyH-(PEG)n. i. Br -buter olactone, NaOAc, 90°C, 8 h, 89%; j. N2H4. H2O,EtOH/ref lux, 10 h, 89%; k .

(BOC)2O, THF, rt, 86%; l. TsCl,  pyridine, ±15°C, 8 h, 73%; m. NH2-PEG, DMF, 80°C, 24 h,38%; n. TFA, CH2Cl2, rt, 30min, 73%; o. 3,5-di-Br -2,4-di-OH-benzaldehyde, EtOH/ref lux, 3 h, 58 and 46%.

Fig. 3

Figure 3. Inhi bition of a pical mem br ane chloride current in FRT epithelial cells expressinghuman wild-type CFTR.

Chloride current was measured by short-circuit current analysis in cells subjected to a chloride ion gr adient and af ter  

 permeabilization of the basolater al mem br ane (see Methods). CFTR was stimulated by 100 M

CPT-cAMP. A) Increasing

concentr ations of MalH compounds were added as indicated. B) R epresentative wash-out study showing reversi ble CFTR 

inhi bition by MalH-3.

Fig. 4Figure 4. Antidiarrheal  pr o perties and intestinal absorption of CFTR inhi bitors.  A) Compound absorption over 2 h in

closed je junal loo ps (SD, n=4í6 mice). For  comparison absorption of CFTR inh-172 and GlyH-101 is shown. B) Inhi bitionof choler a toxin-induced f luid secretion. Loo ps were injected with saline or  saline containing 1

g choler a toxin (CT) with 

indicated compound amounts. Loo p weight-to-length r atio was measured at 6 h (SD, n=3í5

mice). C ) Intestinal f luid absorption. Mid je junal loo ps were injected with 100 l of saline containing 10 mM glucose,without (contr ol) or with 

indicated compounds (100 M). Percentage f luid absorption measured at 20 and 30 min (SD,

3í6 mice  per  time  point).