oral presentation

31
Comparison of Overlay Design Analysis Using Mechanistic and Semi-Analytical Methods Case Study : North Java Corridor (Pamanukan-Sewo Section) Pavements and Road Maintenanc Prof. DR. Ir. Bambang Sugeng Subagio., DEA HIGHWAY ENGINEERING AND DEVELOPMENT FACULTY OF CIVIL ENGINEERING AND ENVIRONMENT BANDUNG INSTITUT OF TECHNOLOGY Pamanukan Sewo Eastern Asia Society for Transportation Studies (EASTS) The 11 th EASTS Conference in Cebu, Philippines September 11-14, 2015

Upload: faisal-gerardo

Post on 23-Jan-2017

133 views

Category:

Engineering


0 download

TRANSCRIPT

Page 1: Oral Presentation

Comparison of Overlay Design AnalysisUsing Mechanistic and Semi-Analytical MethodsCase Study : North Java Corridor (Pamanukan-Sewo Section)

Pavements and Road Maintenance

Prof. DR. Ir. Bambang Sugeng Subagio., DEAHIGHWAY ENGINEERING AND DEVELOPMENT FACULTY OF CIVIL ENGINEERING AND ENVIRONMENT BANDUNG INSTITUT OF TECHNOLOGY

Pamanuk

an Sewo

Eastern Asia Society for

Transportation Studies (EASTS)The 11th EASTS Conference in Cebu, Philippines

September 11-14, 2015

Page 2: Oral Presentation

Easter

n Asia Socie

ty for T

ransp

ortatio

n Studies (E

ASTS)

Page 3: Oral Presentation

INTRODUCTION (1)

The purpose of this research is to compare the 2 (two) methods

mechanistic and semi analytical in analyzed the existing pavement

structure of the National Road (PANTURA).

And to calculate the overlays thickness required, based on the deflection-

bowl data using Falling Weight Deflectometer (FWD) equipment.

Considering the Cumulative Damage theory and the allowable

stress/strain in each layer, the overlay thickness needed were obtained.

PANTURA is a National Arteri road, located in North corridor of Java Island

and has very strategic role in the transportation mobility from west Java to

East Java.

Page 4: Oral Presentation

Pamanukan – SewoLocation of Pamanukan to Sewo Section

Case Study : North Java Corridor

Page 5: Oral Presentation

(Segment : Km. 141 + 000 - Km. 151 + 203) And (Segment : Km. 152 + 470 - Km. 141 + 405)

Km. 141 + 000 Sewo

To Pama nukan

To Sewo

Km. 146 + 286 Pamanukan Km. 152+ 470 Pamanukan

Km. 151 + 509 Sewo

Sew

oriv

er

Km. 152 + 500

Km. 151 + 203 SewoKm. 141 + 000 Sewo

Km. 152+ 000 PamanukanKm. 141+ 405 Pamanukan

Sta. 141 + 000 – 151 + 509 Sewo lane

Sta. 141 + 000 – 151 + 203 Sewo Lane

Sta. 152 + 470 – 146 + 286 Pamanukan lane

Sta. 152 + 000 – 141 + 405 Pamanukan lane

Location of Pamanukan to Sewo Section

Page 6: Oral Presentation

THE EVERSERIES PROGRAM

EVERSERIES User’s Guide, 2005

EVERSERIES

EVERCALC EVERSTRESS EVERPAVE

The Evercalc program can calculate the “elastic” moduli of pavement layer, determine the coefficient of stress sensitivity of unstabilized materials, stresses and strains at various depths, and optionally normalizes Asphalt mix modulus to a standard laboratory condition.

The Everstress program is capable of determining the stress, strains and deflections in a multi-layered elastic system under circular surface loads.

And the Everpave program is a flexible pavement overlay design based on the multilayered elastic system. The determination of the overlay thickness is based on the required thickness to bring the damage levels to an acceptable level under a design traffic condition. The damage levels are calculated on two primary distress type, fatigue cracking and rutting. This program is capable of considering seasonal variations and stress sensitivity of the pavement materials. (Mahoney and Pierce, 1996; Pierce and Mahoney, 1996)

Page 7: Oral Presentation

Principles in Everseries Program

FWD Deflection Data Pavement Layer Data

Backalculation Program EVERCALC

Pavement Layer Moduli

Pavement Data :Poisson’s Ratio & OverlayModuli, initial overlay thickness & incrementExisting Layer moduli & Poisson ratio

General Data :Type Pressre & SpasingShift FactorsSeasonal Temperature & Adjusments

Traffic Data :Design Period or ESAL per year or Average Daily Traffic

Overlay Design EVERPAVE

Overlay Thickness

Source: EVERSERIES User’s Guide, 2005

Page 8: Oral Presentation

EVERCALC Program (1)

Input Parameter

Deflection Data - Manual input data - Convert FWD (Dynatest 8000 V.20) - Thickness of layer - Pavement temperature - Drop no - Load deflection - Sensor deflection

General Data : - Number of layer - Number of deflection sensor - Plate radius FWD - Stiff layer - Temp. Corresction 77'F (25'C) - Sensor weight factor (check error) - Radial offsets

Layer instrument : - Poisson ratio - Iniitial moduli - Min&max moduli - Max iteration - RMS Tolerance (%) - Modulus tolerance - Stress and strain Location

Deflection Data(Backalculation)

START

Final Moduli

Deflection in tolerance

OK

Search for Modulus

NOT OK

Source: EVERSERIES User’s Guide, 2005

Page 9: Oral Presentation

The Methodology of Everseries Program consists of :

EVERPAVE, a computer program developed by Washington State Department of Transportation (WSDOT) for mechanistic - empirical overlay design [Mahoney and Pierce, 1996; Pierce and Mahoney, 1996] makes use of the effective layer moduli backcalculated from FWD deflections using EVERCALC backcalculation program. The failure modes considered are (i) rutting and (ii) fatigue cracking.

Backcalculation method is defined where measured and calculated surface deflection

basins are matched (to within some tolerable error) and the associated layer moduli required

to achieve that match are determined. In this approach, layer moduli can be calculated for

each deflection test point according to the flowchart Evercalc© Screen

Everpave© Screen

Source: EVERSER

IES User’s G

uide, 2005

Page 10: Oral Presentation

Pavement Instrument Data :- Layer Thickness- Type of Pavement Material

FWD Instrument Data :- Loading Plate (P)- Loading Plate Radius (a)- Distance Among Deflector (r)- Stress Upon Contact Area (p)

Deflection Data :d1,d2, d3, d4, d5, d6, d7,d8,d9

Pavement Temperature DataAsphalt, Surface, Air

Do Field Result x TAF

r = 0,7 x Ae

EP (Effective Modulus of Pavement)

SN Effective (SNeff ) min

Traffic AnalysisAADT, WIM Survey

Traffic Analysis and Calculate :NP, Nf, N2,5

SNf (Structural number in future)SNf > SNeff 1

Remaining Life (RL)

Actual Cumulative ESAL (Actual condition), (Terminate condition)

Overlay not needed Overlay needed calculate overlay thickness

NO

FINISH

YES

NO

YES

START

SNeff

Source: AASHTO 1993

AA

SHTO

199

3

Page 11: Oral Presentation

The Methodology of Structural analysis consists of :

The cumulative ESAL value can be

determined by multiplying the AADT value for

oneyear with the lane distribution factor and the

average Truck Factor (TF) for each vehicle.

The prediction of cumulative ESAL from 2013

to 2018 is calculated using the AASHTO 1993

and EVERSERIES program equation.

This value is important in order to obtain the

remaining life (RL) and the overlay thickness of

that section. The actual Cumulative ESAL

predicted from 2013 to 2018 is shown

The collection of some principal data in the Pamanukan -

Sewo section, which consists of traffic data (AADT), the

axle-loading data resulted from WIM survey in 2013, the

FWD’s deflection data, the pavement thickness data and

the pavement temperature data.

The average Traffic Growth was calculated based on the

“time series” AADT data.

The Truck Factor for each vehicle type was calculated

using the axle-loading data.

The cumulative ESAL actual and the “future” cumulative

ESAL will be determined considering the AADT data, the

average growth factor and the Truck Factor for each

vehicle.

Hence, the AASHTO-93 method can be applied to obtain

the SNf and SNeff (future and effective values,

respectively), and the overlay thickness for several survey

point.

Page 12: Oral Presentation

ANALYSIS OF TWO METHODS

The analysis of the two methods, in AASHTO 1993

method assumsing pavement modeling only two layers

from deflection data, and then determine the value of

Resilient Modulus (MR) and Pavement Effective

Modulus (Ep), then used in determining the value of

SNeff (Structural Number Effective), SNf (Structural

Number in Future)

And added layer on EVERSERIES Program, FWD

deflection data is input into the EVERCALC Program to

calculate the stiffness modulus with process

backcalculation, then on EVERPAVE Program

determine added layer thickness ratio (overlay) based

on existing pavement condition.

Page 13: Oral Presentation

Traffic Data (1)

Source : IRMS’s database, 2013

PANTURA is a National Arteri road, located in North corridor of Java Island. It can be said that the heavy vehicles in PANTURA National Road prefer to use fast lane rather than slow lane.

However, this phenomenon is contradictive with the regular lane distribution in the arterial road in Indonesia.

The actual traffic data was classified into ten vehicle categories, based on Bina Marga’s Classification, i.e. vehicle category 2 until vehicle category 7C. For example, the distribution of traffic data for Sewo-Pamanukan direction is shown in Table.

Design and Actual Truck Factor

Source : IRMS’s database, 2013

The vehicle axle load data was obtained from WIM (Weight-in-Motion), It is similar to a gross weight survey for moving vehicle, and the weight proportion for each vehicle tires was determined by analyzing the dynamic pressure of each tires.

Page 14: Oral Presentation

Traffic Data (1)Design and Actual Truck Factor

Source : IRMS’s database, 2013

The vehicle axle load data was obtained from WIM (Weight-in-Motion), It is similar to a gross weight survey for moving vehicle, and the weight proportion for each vehicle tires was determined by analyzing the dynamic pressure of each tires.

0123456789

101112131415

3.779644.45246

8.2906

6.130855.6505 5.7784

10.2771

12.3124

TF Design Bina's Marga MST 10 TON TF WIM Actual2013

Vehicle Class

Truc

k Fa

ctor

Page 15: Oral Presentation

Traffic AnaysisYear Pamanukan Sewo (cumulative)2013 6.404.098

2014 13.239.065

2015 20.533.845

2016 28.319.436

2017 36.628.753

2018 45.469.099

The Cumulative ESAL predicted from 2013 to 2018

The cumulative ESAL value can be determined by multiplying the AADT value for one-year with the lane distribution factor and the Truck Factor (TF) of each vehicle. The prediction of cumulative ESAL from 2013 to 2018 will important in order to calculate the remaining life (RL) and the overlay thickness of that section, using the AASHTO 1993 method

Page 16: Oral Presentation

Layer pavement models Basic pavement layers

AASHTO (2 Layers) EVERSERIES (2, 3, 4 Layers)

AASHTO-93 only 2 (two) layer. The

EVERSERIES program used 3 (three) or

more deflections to calculate the resilient

modulus of each layer. Depending on the

system considered i.e. 2 (two) layer, 3

(three) layer, 4 (four) layer, or more.

H4 = ~ (100 - 500 Mpa)

H1 = 12 cm (1000 - 3500 Mpa)

Four Layer Model

H2 = 25 cm (1000 - 3500 Mpa)

H3 = 30 cm (1000 - 3500 Mpa)

H2 = 55 cm (1000 - 3500 Mpa)

H3 = ~ (100 - 500 Mpa)

Existing Pavement Two Layer Model

H1 = 12 cm (1000 - 3500 Mpa)

H1 = 37 cm (1000 - 3500 Mpa)

H2 = ~ (100 - 500 Mpa)

Three Layer Model

AC-BC 7 mm

CMRFB 250 mm

CTRB 300 mm

SUBGRADE

AC-WC 5 mm

Page 17: Oral Presentation

These FWD’s deflection data were obtained from survey in 2013 using the Falling Weight Deflectometer (FWD)

equipment

And then will be used in structural analysis and combined with the AADT data, axle load (WIM) data and pavement

thickness.

For example, the d1(maximum deflection) of FWD deflection data for Pamanukan direction in fast lane is shown in Figure .

141

141.2

99

142.1

93

142.3

4214

2.5

142.7

05

142.9

06

143.1

07

143.3

47

143.5

09

143.7

15

143.9

15

144.1

74

144.3

3

144.5

19

144.6

2114

6.7

147.5

1214

7.714

7.9

148.1

01

148.3

06

148.5

1214

8.7 149

149.1

3514

9.915

0.1

150.3

67

150.5

47

150.7

2115

0.9

151.0

97

151.3

1

151.5

090.000

50.000

100.000

150.000

200.000

250.000

300.000

350.000

400.000

450.000

Sta. 141+000 - 151+509 (Deflection in Pamanukan Sewo dorection

Defle

ctio

n (x

0,0

01 m

m)

FWD’s Deflection Data

Page 18: Oral Presentation

Segmentation Data’s

STA.Pamanukan Sewo

STA. Sewo Pamanukan

E1 (MPa) E2 (MPa) E1 (MPa) E2 (MPa)

141,000 3500 257 152,000 3500 200141,246 3500 293 151,586 3500 276142,300 3500 281 151,404 3500 244142,419 2311 169 151,000 3500 213142,602 3500 247 150,773 3500 225142,809 3500 219 150,163 3500 220143,011 3500 293 149,776 3500 193143,212 3500 214 149,573 3500 218143,449 1785 110 149,400 3500 215143,629 1257 116 149,165 3500 217143,920 3500 153 148,400 3500 220144,001 3500 197 148,196 3500 237144,204 3500 500 147,985 3500 217144,406 3500 312 147,775 3500 216144,608 1000 100 147,597 3500 220146,600 3500 350 147,468 1916 247146,800 3500 210 146,704 3500 272147,279 3500 216 146,409 3500 275147,430 3500 258 146,187 3500 288147,624 3500 140 146,004 1000 184147,809 2230 104 145,800 1000 138148,037 3500 318 145,589 1000 313148,200 3500 230 145,378 1000 275148,442 3208 184 145,206 1000 161148,650 3500 145 145,017 3500 163148,819 2953 158 144,800 3500 405149,000 3500 211 144,604 3500 266149,135 2684 210 144,385 3500 368149,900 3500 168 144,200 3500 462150,000 3500 203 144,000 3500 246150,234 3500 168 143,807 1000 129150,448 3500 196 143,603 3500 317150,600 3500 264 143,374 3500 279150,800 3500 349 143,201 3500 356151,000 3500 349 143,002 3500 209151,203 3500 349 142,598 3500 356

      142,379 2617 232      142,193 3500 441      142,005 3500 306      141,801 1000 181      141,601 1000 206      141,405 1000 164

STA.Pamanukan Sewo

STA.Pamanukan Sewo

E1 (MPa) E2 (MPa) E3 (MPa) E1 (MPa) E2 (MPa) E3 (MPa)

141,000 1000 237 228 152,000 1000 1933 172141,246 3500 416 186 151,586 1000 2994 219142,300 3500 3500 287 151,404 1000 3462 179142,419 3500 3500 210 151,000 1000 2781 169142,602 3500 3500 199 150,773 1000 3071 176142,809 3500 3500 315 150,163 1000 2754 176143,011 3500 3500 266 149,776 1000 3135 144143,212 3500 3500 191 149,573 1000 2331 180143,449 3500 1737 207 149,400 1000 2475 177143,629 1477 3153 261 149,165 1140 2886 171143,920 1946 2575 242 148,400 1000 2360 181144,001 3500 3500 205 148,196 1000 1950 208144,204 3500 3500 237 147,985 1000 2792 173144,406 3500 3500 222 147,775 1344 2691 171144,608 3500 3500 253 147,597 1000 2652 176146,600 3500 3368 107 147,468 1000 924 237146,800 3500 3500 147 146,704 1000 2352 225147,279 3500 2064 195 146,409 1000 3408 212147,430 3500 1725 183 146,187 1000 3500 215147,624 3500 3500 238 146,004 3500 259 191147,809 3500 3500 288 145,800 3500 163 147148,037 2479 3500 310 145,589 3500 232 337148,200 3500 3500 287 145,378 3500 163 296148,442 1000 196 144 145,206 3500 136 172148,650 3500 189 141 145,017 1796 1825 137148,819 3500 489 136 144,800 1212 3500 308149,000 3500 227 136 144,604 1000 2818 215149,135 3500 617 156 144,385 3500 3500 251149,900 3500 517 166 144,200 3500 3500 320150,000 1973 136 151 144,000 3500 1301 227150,234 2504 89 122 143,807 3500 104 139150,448 3500 196 148 143,603 1000 2758 257150,600 3500 112 139 143,374 1000 3500 210150,800 3347 138 142 143,201 1000 3071 288151,000 1647 122 129 143,002 1000 3500 152151,203 2274 1817 150 142,598 1000 3500 266

        142,379 1000 925 216        142,193 1000 2451 386        142,005 1000 1610 279        141,801 1600 155 193        141,601 3500 330 207        141,405 1000 137 174

STA.Pamanukan Sewo

STA.Pamanukan Sewo

E1 (MPa) E2 (MPa) E3 (MPa) E4 (MPa) E1 (MPa) E2 (MPa) E3 (MPa) E4 (MPa)

141,000 3500 1000 1500 203 152,000 1000 1000 3740 174141,246 1000 1000 1500 172 151,586 1000 1709 5000 217142,300 3500 3500 5000 272 151,404 1000 1503 5000 185142,419 3500 3500 5000 200 151,000 1000 1771 4501 166142,602 3500 3500 4529 193 150,773 1005 3092 2987 177142,809 3500 3500 5000 298 150,163 1000 2388 3144 175143,011 3500 3500 5000 251 149,776 1000 1561 5000 145143,212 3500 3500 3576 191 149,573 1000 1489 3841 177143,449 3375 2152 1500 208 149,400 1000 2559 2403 177143,629 2433 1588 5000 255 149,165 1078 3500 2550 171143,920 1920 3500 1829 246 148,400 1000 1210 5000 177144,001 3500 3500 5000 196 148,196 1000 1749 2177 207144,204 3500 3500 5000 224 147,985 1000 2570 3009 173144,406 3500 3500 5000 210 147,775 1272 3500 2288 172144,608 3500 3500 5000 240 147,597 1000 1610 4592 173146,600 3500 3500 2616 110 147,468 1000 1000 1500 230146,800 3500 3500 4890 140 146,704 1000 1052 5000 223147,279 3500 3163 1500 197 146,409 1000 2246 5000 210147,430 3500 2414 1500 182 146,187 1000 2526 5000 212147,624 3500 3500 5000 226 146,004 1000 1000 1500 177147,809 3500 3500 5000 273 145,800 1000 1000 1500 135148,037 1848 3500 5000 302 145,589 1000 1000 1500 325148,200 3500 3500 5000 272 145,378 1000 1000 1500 291148,442 1000 1000 1500 132 145,206 1000 1000 1500 162148,650 1000 1000 1500 130 145,017 1305 3263 1500 138148,819 1000 1000 1500 129 144,800 1000 3500 5000 297149,000 1000 1000 1500 124 144,604 1000 1958 4110 213149,135 1463 1000 1500 149 144,385 2790 3500 5000 243149,900 1007 1000 1500 157 144,200 3500 3500 5000 306150,000 1000 1000 1500 140 144,000 2113 1875 1500 224150,234 1000 1000 1500 111 143,807 1000 1000 1500 127150,448 1000 1000 1500 137 143,603 1000 1380 5000 256150,600 1000 1000 1500 126 143,374 1000 1882 5000 212150,800 1000 1000 1500 129 143,201 1000 1854 5000 285151,000 1000 1000 1500 117 143,002 1000 1999 5000 153151,203 1536 3414 1500 151 142,598 1000 3063 5000 258

          142,379 1000 1000 1500 206          142,193 1000 1523 4347 380          142,005 1000 1000 3347 271          141,801 1000 1000 1500 182          141,601 1001 1000 1500 192          141,405 1000 1000 1500 162

EVERCALC Formula’s

Page 19: Oral Presentation

Segmentation Data’s

NoSegmentation

E1 E2 E3STA

1 152+000 - 150+773 1000 3983 5492 150+773 - 149+165 1138 3418 5123 149+165 - 147+985 1175 3358 5494 147+985 - 146+187 1309 4325 6045 146+187 - 145+017 5002 3497 6406 145+017 - 144+000 4845 4669 7297 144+000 -.142+791 4154 5187 6608 142+791 - 141+405 3311 3884 738

NoSegmentation

E1 E2 E3STA

1 141+000 - 142+300 5553 5053 3362 142+300 -.148+442 4658 4804 3373 148+442 -. 149+900 5125 753 1714 149+900 -.151+000 4319 1576 171

NoSegmentation

E1 E2 E3 E4STA

1 152+000 - 150+773 1005 3366 5990 223

2 150+773 - 149+165 1077 4042 5254 196

3 149+165 - 147+985 1098 4257 5699 216

4 147+985 - 146+187 1244 3884 6730 249

5 146+187 - 145+017 1274 3438 4646 356

6 145+017 - 144+000 4021 4519 7140 360

7 144+000 -.142+791 2000 3139 7416 332

8 142+791 - 141+405 1001 2913 5745 386

NoSegmentation

E1 E2 E3 E4STA

1 141+000 - 142+300 5553 4720 6708 3182 142+300 -.148+442 4596 4599 6976 3223 148+442 -. 149+900 1455 2378 1500 1634 149+900 -.151+000 1446 3009 1500 165

NoSegmentation

E1 E2STA

1 152+000 - 150+773 3500 2912 150+773 - 149+165 3500 2373 149+165 - 147+985 3500 2424 147+985 - 146+187 4471 3095 146+187 - 145+017 4154 3616 145+017 - 144+000 3500 3417 144+000 -.142+791 5033 4368 142+791 - 141+405 4818 474

NoSegmentation

E1 E2STA

1 141+000 - 142+300 3500 3142 142+300 -.148+442 4684 18263 148+442 -. 149+900 3914 32794 149+900 -.151+000 3500 421

EVERCALC Formula’s

Page 20: Oral Presentation

Design Catalog

Overlay Thickness

AASHTO METHODS

SNf - Dov Dov

SNeff-min (Inch) (cm)1,193 3,576 5,378 1,802 needed 0,40 4,50 11,41,154 3,576 5,246 1,670 needed 0,40 4,18 10,61,274 3,576 5,624 2,048 needed 0,40 5,12 13,03,079 3,576 5,272 1,696 needed 0,40 4,24 10,81,000 3,576 5,429 1,854 needed 0,40 4,63 11,82,809 3,576 5,361 1,785 needed 0,40 4,46 11,3

SNf - Dov Dov

SNeff-min (Inch) (cm)1,300 3,576 5,471 1,895 needed 0,40 4,74 12,06,142 3,576 5,691 2,115 needed 0,40 5,29 13,41,458 3,576 5,954 2,379 needed 0,40 5,95 15,11,303 3,576 6,060 2,484 needed 0,40 6,21 15,8

SNf - Dov Dov

SNeff-min (Inch) (cm)2,570 3,576 5,553 1,977 needed 0,40 4,94 12,61,400 3,576 5,462 1,886 needed 0,40 4,71 12,02,427 3,576 5,402 1,826 needed 0,40 4,56 11,6

SNf - Dov DovSNeff-min (Inch) (cm)

1,227 3,576 6,078 2,502 needed 0,40 6,26 15,91,608 3,576 6,129 2,553 needed 0,40 6,38 16,21,180 3,576 5,660 2,085 needed 0,40 5,21 13,21,798 3,576 5,883 2,308 needed 0,40 5,77 14,71,170 3,382 5,483 2,101 needed 0,40 5,25 13,31,017 3,367 5,318 1,951 needed 0,40 4,88 12,41,209 3,576 5,276 1,700 needed 0,40 4,25 10,81,386 3,788 5,738 1,950 needed 0,40 4,88 12,4

152 + 000 s/d

141 + 4052

SNeff-min SNf

Overlay

Overlay

Overlay

Overlay

(Km)

(Km)

(Km)

(Km)

SEG KM aol

1152 + 470

s/d 146 + 286

SNeff-min SNf

SEG KM aol

SEG

1

KM aolSNeff-min SNf

2141 + 000

s/d 151 + 000

141 + 00 s/d

151 + 509

SEG KM SNeff-min SNf aol

Page 21: Oral Presentation

Design Catalog

Using the same input as the calculation above, the remaining life and overlay needed were obtained. The summary of overlay thickness calculation was presented in table

Deverseries (cm) 2 Layer

Deverseries (cm) 3 Layer

Deverseries (cm) 4 Layer

11,50 15,00 18,33

15,73 17,00 18,00

14,42 24,00 29,57

12,19 29,00 33,56

Deverseries (cm) 2 Layer

Deverseries (cm) 3 Layer

Deverseries (cm) 4 Layer

11,20 32,60 33,10

11,08 31,50 32,42

11,00 31,88 32,50

11,21 32,43 32,57

12,86 27,64 33,43

12,58 31,00 28,00

11,64 32,43 33,43

13,07 34,14 34,00

Overlay Thickness

EVERPAVE PROGRAM’S

Page 22: Oral Presentation

Overlay ThicknessComparison

Segment

SegmentationAASHTO

1993 (cm)

EVERSERIES PROGRAMS

STA 2 Layer (cm) 3 Layer (cm) 4 Layer (cm)

1

km.141+000 - km. 142+300 12,00 11,50 15,00 18,33

km. 142+300 - km.148+442 13,00 15,73 17,00 18,00

km.148+442 - km. 149+900 15,00 14,42 24,00 29,57

km. 149+900 - km.151+000 16,00 12,19 29,00 33,56

Segment

SegmentationAASHTO 1993 (cm)

EVERSERIES PROGRAMS

STA 2 Layer (cm) 3 Layer (cm) 4 Layer (cm)

2

km.152+000 - km.150+773 15,00 11,20 32,60 33,10

km. 150+773 - km.149+165 17,00 11,08 31,50 32,42

km.149+165 - km. 147+985 14,00 11,00 31,88 32,50

km. 147+985 - km.146+187 15,00 11,21 32,43 32,57

km. 146+187 - km.145+017 14,00 12,86 27,64 33,43

km. 145+017 - km.144+000 13,00 12,58 31,00 28,00

km. 144+000 - km.142+791 11,00 11,64 32,43 33,43

km. 142+791 - km.141+405 13,00 13,07 34,14 34,00

Two tables above show that

the overlay thickness needed

by EVERSERIES program is

greater than calculated by

the AASHTO 1993 method.

It is shown that the

EVERSERIES program

gives the highest overlay

thickness compared to the

others, meaning that the

analytical method considers

all the “damage” obtained in

the flexible pavement

structure.

Page 23: Oral Presentation

Considering all results presented above, some conclusions could be drawn:

1. The EVERSERIES program, represented one of the Mechanistic method for pavement evaluation,

gives a faster method of analysis to calculate the Stiffness Modulus of pavement layers, when it is

compared to the Semi-mechanistic method i.e. the AASHTO- 93 method.

2. The overlay thickness calculated by the EVERSERIES program, was higher than the results

calculated by the AASHTO-93 method. In fact, the mechanistic method analyzes the “total” pavement

structure and considers all the “damage” occurred in each layer.

3. The high value of Truck Factor indicates the “overloading” effect in the road section, which was

shown in the case study i.e. Pantura road, Pamanukan Sewo section. A detail observation and

monitoring system was still required actually to overcome this problem.

Conclusions

Page 24: Oral Presentation

AASHTO (1993) Guide for Design of Pavement Structures 1993, American Association of State Highways and Transportation Officials, Washington DC; USA.

Qin, J. (2010) Predicting Flexible Pavement Structural Response Using Falling Weight Deflectometer Deflections, Thesis the faculty of the Russ College of Engineering and Technology of Ohio University.

Muench, S.T., Mahoney, J.P., and Pierce, L.M. (2003) The WSDOT Pavement Guide Interactive, Washington Department of Transportation (WSDOT), Olympia,WA. Retrieved June 12, 2009, from WSDOT Official (http://training.ce.washington.edu/WSDOT/).

Mahoney, J.P and Pierce, L.M. (1996) Examination of State Department of Transportation Transfer Functions for Mechanistic-Empirical Asphalt Concrete Overlay Design,Transportation Research Record No.1539, Transportation Research Board,Washington; DC, pp 25-32.

Subagio, B.S., Wibowo, S.S., Ferdian. T., dan Sufanir. A.M.S. (2011), Comparison of Overlay Design Analysis using Mechanistic and Semi-Analytical Methods, case study : Jakarta-Cikampek Toll Road, Proceedings of the Eastern Asia Society fot Transportation Studies, Vol.8

Subagio, B.S., RAMC, F., Rahman, H., dan Kusumawati, A. (2013) Structural and Functional Evaluation of Flexible Pavement in Indonesia Case Study: Ciasem-Pamanukan Section, Proceedings of 9th Conference EASTS;Taipei.

WSDOT (2005) Everseries©User’s Guide: Pavement Analysis Computer Software and Case Studies, Washington; USA.

References

Page 25: Oral Presentation

“The important thing is not to stop questioning.”- Albert Einstein -

thank you for your attentionMaraming

Salamat

Page 26: Oral Presentation

d1wakil = d9wakil =d1R+2*SD (d1) d9R+2*SD (d9)

(Kpa) (Psi) (oC) (Kpa) (Psi) (x 0.001 mm) (x 0.001 mm) (Kpa) (Psi) (oC)

583,000 84,5 49,5 262,07 25,07 100,67 14,60 100,67 2,65 784,35 113,73 49,5 463,415 30,358580,500 84,2 49,5 165,95 23,13 75,15 10,90 75,15 4,07 730,81 105,97 49,5 316,258 31,280581,071 84,3 49,5 213,87 28,94 93,40 13,54 93,40 4,39 767,88 111,34 49,5 400,678 37,719580,500 84,2 49,5 149,40 23,52 36,94 5,36 36,94 4,07 654,38 94,89 49,5 223,281 31,653580,957 84,2 49,5 228,42 25,84 74,73 10,84 74,73 4,31 730,42 105,91 49,5 377,877 34,455581,214 84,3 49,5 211,35 24,85 81,07 11,76 81,07 4,22 743,35 107,79 49,5 373,487 33,293

d1wakil = d9wakil =d1R+2*SD (d1) d9R+2*SD (d9)

(Kpa) (Psi) (oC) (Kpa) (Psi) (x 0.001 mm) (x 0.001 mm) (Kpa) (Psi) (oC)

580,333 84,15 43,4 259,57 26,37 198,12 28,73 198,12 5,05 976,57 141,60 43,4 655,804 36,467581,119 84,26 38,8 110,58 30,04 102,83 14,91 102,83 5,82 786,78 114,08 38,8 316,233 41,682585,100 84,84 38,8 310,49 35,10 135,88 19,70 135,88 3,08 856,86 124,24 38,8 582,253 41,257580,214 84,13 38,8 467,44 37,29 167,98 24,36 167,98 3,95 916,18 132,85 38,8 803,405 45,194

d1wakil = d9wakil =d1R+2*SD (d1) d9R+2*SD (d9)

(Kpa) (Psi) (oC) (Kpa) (Psi) (x 0.001 mm) (x 0.001 mm) (Kpa) (Psi) (oC)

581,067 84,25 40,80 198,59 27,91 59,62 8,64 59,62 5,14 700,31 101,54 40,80 317,829 38,185581,938 84,38 46,61 183,45 26,37 57,23 8,30 57,23 4,35 696,40 100,98 46,61 297,915 35,063581,654 84,34 46,80 163,28 25,46 32,14 4,66 32,14 3,99 645,94 93,66 46,80 227,572 33,446

d1wakil = d9wakil =d1R+2*SD (d1) d9R+2*SD (d9)

(Kpa) (Psi) (oC) (Kpa) (Psi) (x 0.001 mm) (x 0.001 mm) (Kpa) (Psi) (oC)

626,857 90,89 49,00 202,47 36,04 38,56 5,59 38,56 12,75 703,97 102,08 49,00 279,58 61,54656,438 95,18 49,00 192,68 38,81 53,78 7,80 53,78 14,62 764,00 110,78 49,00 300,24 68,06540,667 78,40 49,00 162,47 29,72 38,53 5,59 38,53 11,45 617,73 89,57 49,00 239,53 52,61649,583 94,19 49,00 198,04 33,77 35,32 5,12 35,32 13,06 720,22 104,43 49,00 268,68 59,88581,000 84,25 49,00 337,36 26,68 85,08 12,34 85,08 10,18 751,15 108,92 49,00 507,51 47,04581,700 84,35 49,00 120,09 24,15 31,58 4,58 31,58 2,87 644,86 93,50 49,00 183,25 29,88581,250 84,28 49,00 247,34 30,87 144,81 21,00 144,81 8,76 870,87 126,28 49,00 536,96 48,38580,214 84,13 49,00 311,67 27,63 178,60 25,90 178,60 7,14 937,41 135,92 49,00 668,87 41,90

Twakil

(x 0.001 mm) (x 0.001 mm)

152+000 - 141+405Pamanukan

(Lajur Lambat)

d9R SD (P) SD (d1) SD (d9) PwakilSTA Line

PR TR d1R

(x 0.001 mm)

152+470 - 146+073 Pamanukan (Lajur Cepat)

SD (d1) SD (d9) Pwakil Twakil

(x 0.001 mm)

PR TR d1R d9R SD (P)

Pwakil Twakil

(x 0.001 mm) (x 0.001 mm)

TR d1R d9R SD (P) SD (d1)

141+000 - 151+203Sewo

(Lajur Lambat)

STA Line

SD (d9)STA Line

PR

141+000 - 151+509Sewo

(Lajur Cepat)

(x 0.001 mm)

TR d1R d9R

(x 0.001 mm)

SD (P) Pwakil TwakilSD (d1) SD (d9)STA Line

PR

Page 27: Oral Presentation

(x 0.001 mm) (inch) (inch) (mm) (inch) (Lbs) (psi) (psi) (oC) (oF) (x 0.001 mm) (inch) (inch) (psi)

25,067 0,00099 5,91 1800 70,87 0,33 9228,90 84,15 10451 49,5 121,1 0,4 262,07 0,01032 0,00413 14147723,133 0,00091 5,91 1800 70,87 0,33 9232,28 84,18 11329 49,5 121,1 0,4 165,95 0,00653 0,00261 22356428,943 0,00114 5,91 1800 70,87 0,33 9194,45 83,83 9018 49,5 121,1 0,4 213,87 0,00842 0,00337 17269723,520 0,00093 5,91 1800 70,87 0,33 9240,95 84,26 11153 49,5 121,1 0,4 149,40 0,00588 0,00235 24859925,837 0,00102 5,91 1800 70,87 0,33 9217,24 84,04 10127 49,5 121,1 0,4 228,42 0,00899 0,00360 16212524,851 0,00098 5,91 1800 70,87 0,33 9241,49 84,26 10556 49,5 121,1 0,4 211,35 0,00832 0,00333 175620

(x 0.001 mm) (inch) (inch) (mm) (inch) (Lbs ) (ps i ) (ps i) (oC) (oF) (x 0.001 mm) (inch) (inch) (ps i )

26,367 0,00104 5,91 1800 70,87 0,33 9171,92 83,63 9875 43,4 110,1 0,40 259,57 0,01022 0,00409 14195230,043 0,00118 5,91 1800 70,87 0,33 9174,79 83,65 8669 38,8 101,8 0,40 110,58 0,00435 0,00174 33348435,100 0,00138 5,91 1800 70,87 0,33 9213,66 84,01 7452 38,8 101,8 0,40 310,49 0,01222 0,00489 11920737,286 0,00147 5,91 1800 70,87 0,33 9225,19 84,11 7023 38,8 101,8 0,40 467,44 0,01840 0,00736 79260

(x 0.001 mm) (inch) (inch) (mm) (inch) (Lbs ) (ps i ) (ps i) (oC) (oF) (x 0.001 mm) (inch) (inch) (ps i )

27,913 0,00110 5,91 1800 70,87 0,33 9248,78 84,33 9406 40,8 105,4 0,40 198,59 0,00782 0,00313 18709426,369 0,00104 5,91 1800 70,87 0,33 9224,83 84,11 9931 46,6 115,9 0,40 183,45 0,00722 0,00289 20200825,458 0,00100 5,91 1800 70,87 0,33 9236,86 84,22 10300 46,8 116,2 0,40 163,28 0,00643 0,00257 227381

(x 0.001 mm) (inch) (inch) (mm) (inch) (Lbs ) (ps i ) (ps i) (oC) (oF) (x 0.001 mm) (inch) (inch) (ps i )

36,043 0,00142 5,91 1800 70,87 0,33 8828,02 80,49 6953 49,0 120,2 0,40 202,47 0,00797 0,00319 17518438,813 0,00153 5,91 1800 70,87 0,33 9241,99 84,27 6759 49,0 120,2 0,40 192,68 0,00759 0,00303 19284129,717 0,00117 5,91 1800 70,87 0,33 9238,42 84,24 8825 49,0 120,2 0,40 162,47 0,00640 0,00256 22846433,767 0,00133 5,91 1800 70,87 0,33 9227,58 84,14 7757 49,0 120,2 0,40 198,04 0,00780 0,00312 18728426,679 0,00105 5,91 1800 70,87 0,33 9213,48 84,01 9804 49,0 120,2 0,40 337,36 0,01328 0,00531 10968224,150 0,00095 5,91 1800 70,87 0,33 9218,49 84,05 10836 49,0 120,2 0,40 120,09 0,00473 0,00189 30848530,867 0,00122 5,91 1800 70,87 0,33 9225,66 84,12 8485 49,0 120,2 0,40 247,34 0,00974 0,00390 14983827,625 0,00109 5,91 1800 70,87 0,33 9233,83 84,19 9489 49,0 120,2 0,40 311,67 0,01227 0,00491 118999

a r9

d1

CP Mr T

TAFd1

CP Mr T

TAFa r9

EpC

P Mr d1 x TAFTTAF

d1

d1 x TAF Ep

Epd1 x TAFa r9

d1 x TAF Epd9 a r9 TMrPC TAF

d1

STA Line

152+000 - 141+405Pamanukan

(Lajur Lambat)

d9

d9

141+000 - 151+203Sewo

(Lajur Lambat)

STA Line

152+470 - 146+073 Pamanukan (Lajur Cepat)

d9

STA Line

141+000 - 151+509 Sewo (Lajur Cepat)

STA Line

Page 28: Oral Presentation

(inch) (inch) (psi) (psi) (inch) (inch)

5,91 26,378 10451 141477 70,87 63,14 44 oke 6,18515,91 26,378 11329 223564 70,87 71,53 50 oke 7,20425,91 26,378 9018 172697 70,87 70,82 50 oke 6,61025,91 26,378 11153 248599 70,87 74,47 52 oke 7,46375,91 26,378 10127 162125 70,87 66,74 47 oke 6,47255,91 26,378 10556 175620 70,87 67,60 47 oke 6,6473

(inch) (inch) (psi) (psi) (inch) (inch)

5,91 26,38 9875 141952 70,87 64,41 45,09 oke 6,19205,91 26,38 8669 333484 70,87 89,24 62,47 oke 8,23155,91 26,38 7452 119207 70,87 66,73 46,71 oke 5,84195,91 26,38 7023 79260 70,87 59,46 41,62 oke 5,0988

(inch) (inch) (psi) (psi) (inch) (inch)

5,91 26,38 9406 187094 70,87 71,71 50,20 oke 6,78905,91 26,38 9931 202008 70,87 72,25 50,57 oke 6,96485,91 26,38 10300 227381 70,87 74,23 51,96 oke 7,2450

(inch) (inch) (psi) (psi) (inch) (inch)

5,91 26,38 6953 175184 70,87 77,56 54,29 oke 6,64185,91 26,38 6759 192841 70,87 80,82 56,57 oke 6,85785,91 26,38 8825 228464 70,87 78,25 54,78 oke 7,25655,91 26,38 7757 187284 70,87 76,47 53,53 oke 6,79135,91 26,38 9804 109682 70,87 59,29 41,50 oke 5,68205,91 26,38 10836 308485 70,87 80,76 56,53 oke 8,02045,91 26,38 8485 149838 70,87 68,94 48,26 oke 6,30465,91 26,38 9489 118999 70,87 61,57 43,10 oke 5,8385

a D Mr Ep r

r > 0.7AeSNeff-1

0,0045*D*3√Ep

Ae 0.7Ae r > 0.7AeSNeff-1

0,0045*D*3√Ep

Mr Ep r Ae 0.7Ae

152+470 - 146+073 Pamanukan

(Lajur Cepat)

STA Line

152+000 - 141+405Pamanukan

(Lajur Lambat)

STA Line

141+000 - 151+509Sewo

(Lajur Cepat)

0.7Aea D Mr Ep r Ae

STA Line

a D Mr Ep

141+000 - 151+203

STA Line

Sewo (Lajur Lambat)

a D

r > 0.7AeSNeff-1

0,0045*D*3√Ep

r Ae 0.7Ae r > 0.7AeSNeff-1

0,0045*D*3√Ep

Page 29: Oral Presentation

1,70 10451 4,481 6,995 -0,740 6,915 -0,2 -0,201 0,856 9,324 -8,07 9.881.2331,70 11329 4,481 7,076 -0,740 6,915 -0,2 -0,201 0,856 9,406 -8,07 11.913.8131,70 9018 4,481 6,846 -0,740 6,915 -0,2 -0,201 0,856 9,176 -8,07 7.017.3061,70 11153 4,481 7,060 -0,740 6,915 -0,2 -0,201 0,856 9,390 -8,07 11.489.3401,70 10127 4,481 6,963 -0,740 6,915 -0,2 -0,201 0,856 9,293 -8,07 9.184.1991,70 10556 4,481 7,005 -0,740 6,915 -0,2 -0,201 0,856 9,335 -8,07 10.112.851

1,7 9875 4,4806 6,938 -0,740 6,915 -0,2 -0,201 0,856 9,267 -8,07 8.662.1661,7 8669 4,4806 6,806 -0,740 6,915 -0,2 -0,201 0,856 9,136 -8,07 6.403.6821,7 7452 4,4806 6,654 -0,740 6,915 -0,2 -0,201 0,856 8,984 -8,07 4.507.5181,7 7023 4,4806 6,594 -0,740 6,915 -0,2 -0,201 0,856 8,924 -8,07 3.929.448

1,7 9406 4,4806 6,889 -0,740 6,915 -0,2 -0,201 0,856 9,218 -8,07 7.737.4881,7 9931 4,4806 6,943 -0,740 6,915 -0,2 -0,201 0,856 9,273 -8,07 8.776.9221,7 10300 4,4806 6,980 -0,740 6,915 -0,2 -0,201 0,856 9,310 -8,07 9.551.747

1,7 6953 4,4806 6,584 -0,740 6,915 -0,2 -0,201 0,856 8,914 -8,07 3.838.3931,7 6759 4,4806 6,556 -0,740 6,915 -0,2 -0,201 0,856 8,885 -8,07 3.595.2481,7 8825 4,4806 6,824 -0,740 6,915 -0,2 -0,201 0,856 9,154 -8,07 6.674.1131,7 7757 4,4806 6,694 -0,740 6,915 -0,2 -0,201 0,856 9,024 -8,07 4.948.5501,7 9804 4,4806 6,930 -0,740 6,915 -0,2 -0,201 0,856 9,260 -8,07 8.517.9111,7 10836 4,4806 7,031 -0,740 6,915 -0,2 -0,201 0,856 9,361 -8,07 10.745.0901,7 8485 4,4806 6,785 -0,740 6,915 -0,2 -0,201 0,856 9,114 -8,07 6.091.7961,7 9489 4,4806 6,897 -0,740 6,915 -0,2 -0,201 0,856 9,227 -8,07 7.896.437

Formula's Np (Traffic Exsisting)

SNo

-8,07

-8,07 ESAL9,36 LOG (SNo+1) -0,2 LOG(Δ PSI/(Po-Pf))

0,4+(1094/(SN+1)^5,19) 2,32 LOGMrΔ PSI MR

-0,2 LOG(Δ PSI/(Po-Pf)) 0,4+(1094/(SN+1)^5,19)

2,32 LOGMrΔ PSI MR SNo

SNo Log W18 Zr * So9,36 LOG (SNo+1) -0,2 LOG(Δ PSI/(Po-Pf))

0,4+(1094/(SN+1)^5,19) 2,32 LOGMr

152+000 - 141+405Pamanukan

(Lajur Lambat)

141+000 - 151+203Sewo

(Lajur Lambat)

STA Line

152+470 - 146+073 Pamanukan

(Lajur Cepat)

STA Line

141+000 - 151+509Sewo

(Lajur Cepat)

STA Line

LOG(Δ PSI/(Po-Pf))0,4+(1094/(SN+1)^

5,19) 2,32 LOGMr -8,07 ESAL

STA Line

Log W18 Zr * So

Δ PSI MR SNo Log W18 Zr * So9,36 LOG (SNo+1) -0,2

Log W18 Zr * So

-8,07 ESAL

Δ PSI MR ESAL

9,36 LOG (SNo+1)

Page 30: Oral Presentation

2,2 10451 4,481 7,126 -0,740 6,915 -0,2 -0,089 0,856 9,324 -8,07 13.356.0802,2 11329 4,481 7,207 -0,740 6,915 -0,2 -0,089 0,856 9,406 -8,07 16.103.4402,2 9018 4,481 6,977 -0,740 6,915 -0,2 -0,089 0,856 9,176 -8,07 9.485.0212,2 11153 4,481 7,191 -0,740 6,915 -0,2 -0,089 0,856 9,390 -8,07 15.529.6962,2 10127 4,481 7,094 -0,740 6,915 -0,2 -0,089 0,856 9,293 -8,07 12.413.9262,2 10556 4,481 7,136 -0,740 6,915 -0,2 -0,089 0,856 9,335 -8,07 13.669.149

2,2 9875 4,4806 7,068 -0,740 6,915 -0,2 -0,089 0,856 9,267 -8,07 11.708.3142,2 8669 4,4806 6,937 -0,740 6,915 -0,2 -0,089 0,856 9,136 -8,07 8.655.6092,2 7452 4,4806 6,785 -0,740 6,915 -0,2 -0,089 0,856 8,984 -8,07 6.092.6382,2 7023 4,4806 6,725 -0,740 6,915 -0,2 -0,089 0,856 8,924 -8,07 5.311.282

2,2 9406 4,4806 7,019 -0,740 6,915 -0,2 -0,089 0,856 9,218 -8,07 10.458.4622,2 9931 4,4806 7,074 -0,740 6,915 -0,2 -0,089 0,856 9,273 -8,07 11.863.4252,2 10300 4,4806 7,111 -0,740 6,915 -0,2 -0,089 0,856 9,310 -8,07 12.910.726

2,2 6953 4,4806 6,715 -0,740 6,915 -0,2 -0,089 0,856 8,914 -8,07 5.188.2072,2 6759 4,4806 6,687 -0,740 6,915 -0,2 -0,089 0,856 8,885 -8,07 4.859.5572,2 8825 4,4806 6,955 -0,740 6,915 -0,2 -0,089 0,856 9,154 -8,07 9.021.1402,2 7757 4,4806 6,825 -0,740 6,915 -0,2 -0,089 0,856 9,024 -8,07 6.688.7632,2 9804 4,4806 7,061 -0,740 6,915 -0,2 -0,089 0,856 9,260 -8,07 11.513.3302,2 10836 4,4806 7,162 -0,740 6,915 -0,2 -0,089 0,856 9,361 -8,07 14.523.7222,2 8485 4,4806 6,916 -0,740 6,915 -0,2 -0,089 0,856 9,114 -8,07 8.234.0442,2 9489 4,4806 7,028 -0,740 6,915 -0,2 -0,089 0,856 9,227 -8,07 10.673.308

ESAL

141+000 - 151+203Sewo

(Lajur Lambat)

STA Zr * So9,36 LOG (SNo+1) -0,2

LOG(Δ PSI/(Po-Pf))

ESAL

-0,2LOG(Δ PSI/(Po-

Pf))0,4+(1094/(SN

+1)^5,19)2,32LOGM

r -8,07

Line Δ PSI MR SNo Log W18

9,36 LOG (SNo+1)

152+000 - 141+405Pamanukan

(Lajur Lambat)

ESAL

152+470 - 146+073 Pamanukan

(Lajur Cepat)

STA Line Δ PSI MR SNo Log W18 Zr * So9,36 LOG (SNo+1) -0,2

LOG(Δ PSI/(Po-Pf))

0,4+(1094/(SN+1)^5,19)

2,32LOGMr -8,07

0,4+(1094/(SN+1)^5,19)

2,32LOGMr -8,07

ESAL

Sewo (Lajur Cepat)

STA Line Δ PSI MR SNo Log W18 Zr * So

141+000 - 151+509

Formula's N2 (Traffic to Pav. Failure )

STA Line Δ PSI MR SNo Log W18 Zr * So9,36 LOG (SNo+1) -0,2

LOG(Δ PSI/(Po-Pf))

0,4+(1094/(SN+1)^5,19)

2,32LOGMr -8,07

Page 31: Oral Presentation

SNf - Dov Dov

SNeff-min (Inch) (cm)1,193 3,576 5,378 1,802 needed 0,40 4,50 11,41,154 3,576 5,246 1,670 needed 0,40 4,18 10,61,274 3,576 5,624 2,048 needed 0,40 5,12 13,03,079 3,576 5,272 1,696 needed 0,40 4,24 10,81,000 3,576 5,429 1,854 needed 0,40 4,63 11,82,809 3,576 5,361 1,785 needed 0,40 4,46 11,3

SNf - Dov Dov

SNeff-min (Inch) (cm)1,300 3,576 5,471 1,895 needed 0,40 4,74 12,06,142 3,576 5,691 2,115 needed 0,40 5,29 13,41,458 3,576 5,954 2,379 needed 0,40 5,95 15,11,303 3,576 6,060 2,484 needed 0,40 6,21 15,8

SNf - Dov Dov

SNeff-min (Inch) (cm)2,570 3,576 5,553 1,977 needed 0,40 4,94 12,61,400 3,576 5,462 1,886 needed 0,40 4,71 12,02,427 3,576 5,402 1,826 needed 0,40 4,56 11,6

SNf - Dov DovSNeff-min (Inch) (cm)

1,227 3,576 6,078 2,502 needed 0,40 6,26 15,91,608 3,576 6,129 2,553 needed 0,40 6,38 16,21,180 3,576 5,660 2,085 needed 0,40 5,21 13,21,798 3,576 5,883 2,308 needed 0,40 5,77 14,71,170 3,382 5,483 2,101 needed 0,40 5,25 13,31,017 3,367 5,318 1,951 needed 0,40 4,88 12,41,209 3,576 5,276 1,700 needed 0,40 4,25 10,81,386 3,788 5,738 1,950 needed 0,40 4,88 12,4

152 + 000 s/d

141 + 4052

SNeff-min SNf

Overlay

Overlay

Overlay

Overlay

(Km)

(Km)

(Km)

(Km)

SEG KM aol

1152 + 470

s/d 146 + 286

SNeff-min SNf

SEG KM aol

SEG

1

KM aolSNeff-min SNf

2141 + 000

s/d 151 + 000

141 + 00 s/d

151 + 509

SEG KM SNeff-min SNf aol