moleculas organicas e inorganicas en el proceso vital

27
MOLECULAS ORGANICAS E INORGANICAS EN EL PROCESO VITAL BIOMOLECULAS Las biomoléculas son las moléculas constituyentes de los seres vivos. Se constituyen de: carbono (C), hidrógeno (H), oxígeno (O), nitrógeno (N), azufre (S), fosforo (P), boro (B) y halógenos (H). Se pueden clasificar en: 1) Inorgánicas: (no están formadas por cadenas de carbono e hidrógeno). Agua (H 2 O). Fosfato (HPO 4 ). Amonio (NH 4 ). Bicarbonato (HCO 4 ). Sales minerales. Iones. AGUA (H 2 O): Es el componente más abundante. El agua se encuentra en los seres vivos y es esencial para la vida. Una molécula de agua se compone de dos átomos de hidrógeno enlazados covalentemente a un átomo de oxígeno formando químicamente H2O. El agua, mediante la sudoración, es el principal componente para regular la temperatura del organismo. Funciona como termorregulador. FOSFATO (HPO 4 ): Los fosfatos son las sales o los ésteres del ácido fosfórico . Tienen en común un átomo de fósforo rodeado por cuatro átomos de oxígeno en forma tetraédrica .

Upload: rocio-anazco

Post on 26-Jul-2015

296 views

Category:

Documents


2 download

TRANSCRIPT

MOLECULAS ORGANICAS E INORGANICAS EN EL PROCESO VITAL

BIOMOLECULAS

Las biomoléculas son las moléculas constituyentes de los seres vivos. Se constituyen de: carbono (C), hidrógeno (H), oxígeno (O), nitrógeno (N), azufre (S), fosforo (P), boro (B) y halógenos (H).

Se pueden clasificar en:

1) Inorgánicas: (no están formadas por cadenas de carbono e hidrógeno).

Agua (H2O). Fosfato (HPO4). Amonio (NH4). Bicarbonato (HCO4). Sales minerales. Iones.

AGUA (H2O):

Es el componente más abundante. El agua se encuentra en los seres vivos y es esencial para la vida.

Una molécula de agua se compone de dos átomos de hidrógeno enlazados covalentemente a un átomo de oxígeno formando químicamente H2O.

El agua, mediante la sudoración, es el principal componente para regular la temperatura del organismo. Funciona como termorregulador.

FOSFATO (HPO4):

Los fosfatos son las sales o los ésteres del ácido fosfórico. Tienen en común un átomo de fósforo rodeado por cuatro átomos de oxígeno en forma tetraédrica.

Los fosfatos secundarios y terciarios son insolubles en agua, a excepción de los de sodio, potasio y amonio.

AMONIO (NH4 +):

El amonio es un catión poliatómico cargado positivamente, de fórmula química NH4

+. Tiene un peso molecular de 18,04 y se forma mediante la protonación del amoníaco (NH3). El ion resultante tiene un pKa de 9,25. Los nombres amonio y aminio también son nombres generales para las aminas sustituidas protonadas o cargadas positivamente, y los cationes amonio cuaternario N+R4, donde uno o más átomos de hidrógeno son reemplazados por grupos alquilo (que pueden ser simbolizados como R).

BICARBONATO: (HCO4-):

Los bicarbonatos son sales ácidas derivadas del ácido carbónico, de fórmula H2CO3, que contienen el anión bicarbonato, de fórmula HCO3

-.

El nombre bicarbonato está aún muy extendido en el comercio y la industria, pero no está recomendado por la IUPAC: se prefiere el nombre antiguo admitido anión hidrogenocarbonato o si es una sal ácida hidrogenocarbonato del metal correspondiente, o mejor aún, el nombre sistemático anión hidrogenotrioxidocarbonato (1-) o si es una sal hidrogenotrioxidocarbonato del metal correspondiente.

El bicarbonato más importante es el bicarbonato de sodio o hidrogenotrioxidocarbonato de sodio, de fórmula NaHCO3. Debido a su relativamente baja solubilidad en agua es un intermedio clave en el proceso de obtención del carbonato de sodio según el proceso de Solvay.

Los bicarbonatos se encuentran en equilibrio con carbonatos, agua y dióxido de carbono (CO2). Este equilibrio interviene en gran multitud de procesos naturales y artificiales. El cuerpo emplea catalizadores de zinc para que se produzca más rápidamente y facilitar así la respiración.

El hecho de que el bicarbonato de calcio o bis(hidrogenotrioxidocarbonato) de calcio, de fórmula Ca(CO3H)2, sea más soluble que el carbonato de calcio, CaCO3, (o caliza) es importante en geoquímica y ha conducido a la formación de los sistemas kársticos en las rocas calizas.

SALES MINERALES:

Las sales minerales son moléculas inorgánicas de fácil ionización en presencia de agua y que en los seres vivos aparecen tanto precipitadas, como disueltas, como cristales o unidas a otras biomoléculas.

Las sales minerales disueltas en agua siempre están ionizadas. Estas sales tienen función estructural y funciones de regulación del pH, de la presión osmótica y de reacciones bioquímicas, en las que intervienen iones específicos. Participan en reacciones químicas a niveles electrolíticos.

IONES:

Un ion o ión1 ("yendo", en griego; ἰών [ion] es el participio presente del verbo ienai: ‘ir’) es una partícula cargada eléctricamente constituida por un átomo o molécula que no es eléctricamente neutra. Conceptualmente esto se puede entender como que, a partir de un estado neutro de un átomo o partícula, se han ganado o perdido electrones; este fenómeno se conoce como ionización.

Los iones cargados negativamente, producidos por haber más electrones que protones, se conocen como aniones (que son atraídos por el ánodo) y los cargados positivamente, consecuencia de una pérdida de electrones, se conocen como cationes (los que son atraídos por el cátodo).

2) Orgánicas: (están formadas por cadenas de carbono).

o Glúcidos o carbohidratos (hidratos de carbono).o Lípidos o grasas.o Proteínas o prótidos.o Enzimas.o Ácidos nucleicos. o Vitaminas.

GLUCIDOS O CARBOHIDRATOS:

Constituyen la mayor fuente de energía en la alimentación humana, suministrando más de la mitad de las necesidades de energía en condiciones normales.

En algunos países pobres la alimentación es mayormente glucídica, mientras que en los países desarrollados estos valores son más bajos que lo aconsejable, lo que podría suponer un aumento en el consumo de grasas y proteínas, predisponiendo a diversas patologías.

Clasificación:

Monosacáridos: o de utilización rápida o inmediata: son los azúcares más simples y comunes como la glucosa se encuentra en los alimentos y la fructosa que está en las frutas y en la miel de abejas.

Oligosacáridos o Disacáridos: sacarosa, es el carbohidrato más común en la dieta cotidiana, es el azúcar común obtenido de la caña de azúcar, la remolacha, ananá y zanahoria, y la lactosa que encontramos en la leche, y la maltosa en productos de malta y cereales.

Polisacáridos: o de utilización lenta o de reserva, en este grupo se encuentran el almidón o fécula que se encuentra en cereales( trigo, maíz, avena), en verduras como ( papa, batata), y legumbres(lenteja, soja, poroto), glucógeno en carnes y mariscos, fibras como celulosa que se encuentra en tallos, hojas de verdura, corteza de granos de cereales y legumbres y cáscaras de frutas.

Funciones:

La función principal en la nutrición humana es la de proporcionar energía. Una pequeña cantidad de carbohidratos se almacena en el hígado, en los tejidos musculares y está presente en el azúcar de la sangre para proporcionar energía suficiente por más o menos 13 hs. de actividad muy moderada, por lo que se deben ingerir regularmente para satisfacer las exigencias del organismo.

Intervienen en el ahorro de proteínas, permitiendo que éstas cumplan su función básica estructural que consiste en la formación de tejidos, evitando así que cumplan una función energética. El exceso de glúcidos o carbohidratos se transforma en grasas bajo la forma de triglicéridos, lo que puede ser causa de obesidad.

El glucógeno en el músculo cardíaco es una importante fuente para obtener energía contráctil. La escasa provisión de glucógeno o baja ingestión de carbohidratos, puede causar ciertos síntomas cardíacos.

El sistema nervioso central necesita una cantidad constante de carbohidratos para su correcto funcionamiento. Su centro regulador que es el cerebro no puede acumular glucosa, o sea que necesita de una provisión constante de éste azúcar por medio de la sangre.

En el hígado cumplen una función protectora al estar presente el glucógeno participando en procesos de desintoxicación metabólica.

Fuentes: azúcar, dulces, pan, pastas, cereales y derivados, legumbres y derivados, productos de panadería, de pastelería, de confitería y de repostería, vegetales como papa, batata, mandioca, y choclo, frutas secas como maní, almendras, avellanas, nueces; y frutas desecadas como pasas de uva, orejones de durazno, damasco, pera, manzana, etc.

Necesidades Diarias: el 50 % del total de calorías deben ser cubiertas por los carbohidratos.

Por ejemplo para un individuo que necesita cubrir 2.500 cal. diarias, deberemos aportar 310 gramos, por lo que debemos consumir alimentos ricos en azúcares variados, de los que mencioné anteriormente a través de las comidas principales:

Desayuno y Merienda: ejemplos opcionales

"Café con leche con azúcar, acompañado con pan con mermelada o dulces."

"Licuado o con frutas con sándwich de queso" "Leche chocolatada o yogurt frutado con cereales"

Almuerzo y Cena:

“Guiso de verduras con arroz o lenteja acompañado con pan y fruta" "Salpicón con arroz con leche o queso y dulce" "Pastas con flan con dulce de leche"

LIPIDOS O GRASAS:

En bioquímica, grasa es un término genérico para designar varias clases de lípidos, aunque generalmente se refiere a los acilglicéridos, ésteres en los que uno, dos o tres ácidos grasos se unen a una molécula de glicerina, formando monoglicéridos, diglicéridos y triglicéridos respectivamente. Las grasas están presentes en muchos organismos.

El tipo más común de grasa es aquél en que tres ácidos grasos están unidos a la molécula de glicerina, recibiendo el nombre de triglicéridos o triacilglicéridos. Los

triglicéridos sólidos a temperatura ambiente son denominados grasas, mientras que los que son líquidos son conocidos como aceites. Mediante un proceso tecnológico denominado hidrogenación catalítica, los aceites se tratan para obtener mantecas o grasas hidrogenadas. Aunque actualmente se han reducido los efectos indeseables de este proceso, dicho proceso tecnológico aún tiene como inconveniente la formación de ácidos grasos cuyas insaturaciones (dobles enlaces) son de configuración trans.

Todas las grasas son insolubles en agua teniendo una densidad significativamente inferior (flotan en el agua).

Químicamente, las grasas son generalmente triésteres del glicerol y ácidos grasos. Las grasas pueden ser sólidas o líquidas a temperatura ambiente, dependiendo de su estructura y composición. Aunque las palabras "aceites", "grasas" y "lípidos" se utilizan para referirse a las grasas, "aceites" suele emplearse para referirse a lípidos que son líquidos a temperatura ambiente, mientras que "grasas" suele designar los lípidos sólidos a temperatura ambiente. La palabra "lípidos" se emplea para referirse a ambos tipos, líquidos y sólidos. La palabra "aceite" se aplica generalmente a cualquier sustancia grasosa inmiscible con agua, tales como el petróleo y el aceite de cocina, independientemente de su estructura química.

Las grasas forman una categoría de lípidos que se distinguen de otros lípidos por su estructura química y sus propiedades físicas. Esta categoría de moléculas es importante para muchas formas de vida y cumple funciones tanto estructurales como metabólicas. Las grasas constituyen una parte muy importante de la dieta de la mayoría de los seres heterótrofos (incluidos los seres humanos).

Ejemplos de grasas comestibles son la manteca, la margarina, la mantequilla y la crema. Las grasas o lípidos son degradadas en el organismo por las enzimas llamadas lipasas.

Tipos de grasas

En función del tipo de ácidos grasos que formen predominantemente las grasas, y en particular por el grado de insaturación (número de enlaces dobles o triples) de los ácidos grasos, podemos distinguir:

Grasas saturadas: formadas mayoritariamente por ácidos grasos saturados. Aparecen por ejemplo en el tocino, en el sebo, en las mantecas de cacao o de cacahuete, etc. Este tipo de grasas es sólida a temperatura ambiente. Las grasas formadas por ácidos grasos de cadena larga (más de 8 átomos de carbono), como los ácidos láurico, mirístico y palmítico, se consideran que elevan los niveles plasmáticos de colesterol asociado a las lipoproteínas LDL. Sin embargo, las grasas saturadas basadas en el esteárico tienen un efecto neutro.

La mayoría de grasas saturadas son de origen animal, pero también se encuentra un contenido elevado de grasas saturadas en productos de origen vegetal, como puede ser por su contenido de grasas saturadas: el aceite de coco (92%) y Aceite de palma (52%).

Grasas insaturadas: formadas principalmente por ácidos grasos insaturados como el oleico o el palmitoleico. Son líquidas a temperatura ambiente y comúnmente se les conoce como aceites. Pueden ser por ejemplo el aceite de oliva, de girasol, de maíz. Son las más beneficiosas para el cuerpo humano por sus efectos sobre los lípidos plasmáticos1 ,2 y algunas contienen ácidos grasos que son nutrientes esenciales, ya que el organismo no puede fabricarlos y el único modo de conseguirlos es mediante ingestión directa. Ejemplos de grasas insaturadas son los aceites comestibles. Las grasas insaturadas pueden subdividirse en:

Grasas monoinsaturadas . Son las que reducen los niveles plasmáticos de colesterol asociado a las lipoproteínas LDL 3 (las que tienen efectos aterogénicos, por lo que popularmente se denominan "colesterol malo"). Se encuentran en el aceite de oliva, el aguacate, y algunos frutos secos. Elevan los niveles de lipoproteínas HDL (llamadas comúnmente colesterol "bueno").

Grasas poliinsaturadas (formadas por ácidos grasos de las series omega-3, omega-6). Los efectos de estas grasas sobre los niveles de colesterol plasmático dependen de la serie a la que pertenezcan los ácidos grasos constituyentes. Así, por ejemplo, las grasas ricas en ácidos grasos de la serie omega-6 reducen los niveles de las lipoproteínas LDL y HDL, incluso más que las grasas ricas en ácidos grasos monoinsaturados.4 Por el contrario, las grasas ricas en ácidos grasos de la serie omega-3 (ácido docosahexaenoico y ácido eicosapentaenoico) tienen un efecto más reducido, si bien disminuyen los niveles de triacilglicéridos plasmáticos.5 Se encuentran en la mayoría de los pescados azules (bonito, atún,

salmón, etc.), semillas oleaginosas y algunos frutos secos (nuez, almendra, avellana, etc.)

La mayoría de grasas insaturadas provienen de origen vegetal, podemos encontrar el aceite de Canola con el mayor porcentaje (94%), Cártamo (91%), Girasol (89%) y Maíz (87%), considerándose aceites saludables para consumo humano.

Grasas trans: Se obtienen a partir de la hidrogenación de los aceites vegetales, por lo cual pasan de ser insaturadas a saturadas, y a poseer la forma espacial de trans, por eso se llaman ácidos grasos trans. Son mucho más perjudiciales que las saturadas presentes en la naturaleza (con forma cis), ya que son altamente aterogénicas y pueden contribuir a elevar los niveles de lipoproteínas LDL y los triglicéridos, haciendo descender peligrosamente los niveles de lipoproteínas HDL.

Ejemplos de alimentos que contienen estos ácidos grasos son: la manteca vegetal, margarina y cualquier alimento elaborado con estos ingredientes.

Funciones de las grasas

Producción de energía: la metabolización de 1 g de cualquier grasa produce, por término medio, unas 9 kilocalorías de energía.

Forman el panículo adiposo que protege a los mamíferos contra el frío. Sujetan y protegen órganos como el corazón y los riñones. En algunos animales, ayuda a hacerlos flotar en el agua.

PROTEINAS O PROTIDOS:

Las proteínas son esenciales en cada organismo viviente. Constituyen una gran parte de cada célula. Son imprescindibles para el desarrollo del organismo.

Formadas por carbono, hidrógeno, oxígeno y nitrógeno fundamentalmente.Las plantas y ciertos microorganismos pueden asimilar el nitrógeno existente en la atmósfera y la tierra para convertirlo en proteínas.  Esta acción no la pueden desempeñar ni el hombre ni los animales, así que para conseguir ese nitrógeno tenemos que comer animales o plantas.

Las proteínas están formadas por cadenas de aminoácidos. Realmente el organismo lo que necesita son los aminoácidos ya que los extrae de las proteínas que adquiere para formar otras nuevas. Existen cientos de aminoácidos diferentes, pero para crear las proteínas utilizamos tan solo 22.

Éstos se dividen en:

Aminoácidos esenciales, que no pueden ser sintetizados por el organismo y necesitamos adquirirlos de los alimentos. Son 9 aminoácidos: isoleucina, leucina, lisina, metionina, fenilalanina, treonina, triptófano, valina e histidina ( en el caso de los bebés)Aminoácidos no esenciales, pueden ser sintetizados por el organismo.

Contienen todos los aminoácidos esenciales, las carnes y pescados, huevos ( es la combinación ideal), leche, queso, yogur, soja.

También presentan la mayoría de ellos el  germen de trigo, levaduras, cereales integrales, las legumbres y el sésamo.

Las funciones de las proteínas son muy variadas y de gran importancia.Los aminoácidos son creadores de células, tejidos, músculos y órganos  en nuestro cuerpo, portadores de información genética; algunos son encimas.Algunas proteínas cumplen la función de transportadoras como por ejemplo la hemoglobina que transporta oxígeno o la albúmina que transporta ácidos grasos libres.Otras desempeñan un papel de reserva energética cuando la aportación de carbohidratos y grasas no son suficientes.

También presentan una actividad hormonal como la insulina (hormona del crecimiento). Incluso las hay que colaboran en la defensa del organismo ante agentes extraños o infecciones.

ENZIMAS:

Los enzimas son proteínas que catalizan reacciones químicas en los seres vivos. Los enzimas son catalizadores, es decir, sustancias que, sin consumirse en una reacción, aumentan notablemente su velocidad. No hacen factibles las reacciones imposibles, sino que sólamente aceleran las que espontáneamente podrían producirse. Ello hace posible que en condiciones fisiológicas tengan lugar reacciones que sin catalizador requerirían condiciones extremas de presión, temperatura o pH.

Aspectos generales de los enzimas.

Prácticamente todas las reacciones químicas que tienen lugar en los seres vivos están catalizadas por enzimas. Los enzimas son catalizadores específicos: cada enzima cataliza un solo tipo de reacción, y casi siempre actúa sobre un único sustrato o sobre un grupo muy reducido de ellos. En una reacción catalizada por un enzima:

La sustancia sobre la que actúa el enzima se llama sustrato. El sustrato se une a una región concreta de la enzima, llamada centro

activo. El centro activo comprende un sitio de unión formado por los aminoácidos que están en contacto directo con el sustrato y un sitio catalítico, formado por los aminoácidos directamente implicados en el mecanismo de la reacción

Una vez formados los productos el enzima puede comenzar un nuevo ciclo de reacción

Los enzimas, a diferencia de los catalizadores inorgánicos catalizan reacciones específicas. Sin embargo hay distintos grados de especificidad. El enzima sacarasa es muy específico: rompe el enlace b-glucosídico de la sacarosa o de compuestos muy similares. Así, para el enzima sacarasa, la sacarosa es su

sustrato natural, mientras que la maltosa y la isomaltosa son sustratos análogos. El enzima actúa con máxima eficacia sobre el sustrato natural y con menor eficacia sobre los sustratos análogos. Entre los enzimas poco específicos están las proteasas digestivas como la quimotripsina, que rompe los enlaces amida de proteínas y péptidos de muy diverso tipo.

ACIDOS NUCLEICOS:

Los ácidos nucleicos son grandes polímeros formados por la repetición de monómeros denominados nucleótidos, unidos mediante enlaces fosfodiéster. Se forman, así, largas cadenas; algunas moléculas de ácidos nucleicos llegan a alcanzar tamaños gigantescos, con millones de nucleótidos encadenados. Los ácidos nucleicos almacenan la información genética de los organismos vivos y son los responsables de la transmisión hereditaria. Existen dos tipos básicos, el ADN y el ARN.

Tipos de ácidos nucleicos

Existen dos tipos de ácidos nucleicos: ADN (ácido desoxirribonucleico) y ARN (ácido ribonucleico), que se diferencian:

Por el glúcido (la pentosa es diferente en cada uno; ribosa en el ARN y desoxirribosa en el ADN);

Por las bases nitrogenadas: adenina, guanina, citosina y timina, en el ADN; adenina, guanina, citosina y uracilo, en el ARN;

En la inmensa mayoría de organismos, el ADN es bicatenario (dos cadenas unidas formando una doble hélice), mientras que el ARN es monocatenario

(una sola cadena), aunque puede presentarse en forma extendida, como el ARNm, o en forma plegada, como el ARNt y el ARNr;

En la masa molecular: la del ADN es generalmente mayor que la del ARN.

Nucleósidas y nucleótidos

Las unidades que forman los ácidos nucleicos son los nucleótidos. Cada nucleótido es una molécula compuesta por la unión de tres unidades: un monosacárido de cinco carbonos (una pentosa, ribosa en el ARN y desoxirribosa en el ADN), una base nitrogenada purínica (adenina, guanina) o pirimidínica (citosina, timina o uracilo) y un grupo fosfato (ácido fosfórico). Tanto la base nitrogenada como los grupos fosfato están unidos a la pentosa.

La unidad formada por el enlace de la pentosa y de la base nitrogenada se denomina nucleósido. El conjunto formado por un nucleósido y uno o varios grupos fosfato unidos al carbono 5' de la pentosa recibe el nombre de nucleótido.

Se denomina nucleótido-monofosfato (como el AMP) cuando hay un solo grupo fosfato, nucleótido-difosfato (como el ADP) si lleva dos y nucleótido-trifosfato (como el ATP) si lleva tres.

Listado de las bases nitrogenadas

Las bases nitrogenadas conocidas son:

o Adenina , presente en ADN y ARNo Guanina , presente en ADN y ARNo Citosina , presente en ADN y ARNo Timina , presente exclusivamente en el ADNo Uracilo , presente exclusivamente en el ARN

Características del ADN

El ADN es bicatenario, está constituido por dos cadenas polinucleotídicas unidas entre sí en toda su longitud. Esta doble cadena puede disponerse en forma lineal (ADN del núcleo de las células eucarióticas) o en forma circular (ADN de las células procarióticas, así como de las mitocondrias y cloroplastos eucarióticos). La molécula de ADN porta la información necesaria para el desarrollo de las características biológicas de un individuo y contiene los mensajes e instrucciones para que las células realicen sus funciones. Dependiendo de la composición del ADN (refiriéndose a composición como la secuencia particular de bases), puede desnaturalizarse o romperse los puentes de hidrógenos entre bases pasando a ADN de cadena simple o ADNsc abreviadamente.

Excepcionalmente, el ADN de algunos virus es monocatenario.

Estructuras ADN

Estructura primaria. Una cadena de desoxirribonucleótidos (monocatenario) es decir, está formado por un solo polinucleótido, sin cadena complementaria. No es funcional, excepto en algunos virus.Estructura secundaria. Doble hélice, estructura bicatenaria, dos cadenas de nucleótidos complementarias, antiparalelas, unidas entre sí por las bases nitrogenadas por medio de puentes de hidrógeno. Está enrollada helicoidalmente en torno a un eje imaginario. Hay tres tipos:

Doble hélice A, con giro dextrógiro, pero las vueltas se encuentran en un plano inclinado (ADN no codificante).

Doble hélice B, con giro dextrógiro, vueltas perpendiculares (ADN funcional).

Doble hélice Z, con giro levógiro, vueltas perpendiculares (no funcional); se encuentra presente en los parvovirus.

Características del ARN

El ARN difiere del ADN en que la pentosa de los nucleótidos constituyentes es ribosa en lugar de desoxirribosa, y en que, en lugar de las cuatro bases A, G, C, T, aparece A, G, C, U (es decir, uracilo en lugar de timina). Las cadenas de ARN son más cortas que las de ADN, aunque dicha característica es debido a consideraciones de carácter biológico, ya que no existe limitación química para formar cadenas de ARN tan largas como de ADN, al ser el enlace fosfodiéster químicamente idéntico.El ARN está constituido casi siempre por una única cadena (es monocatenario), aunque en ciertas situaciones, como en los ARNt y ARNr puede formar estructuras plegadas complejas y estables.

Mientras que el ADN contiene la información, el ARN expresa dicha información, pasando de una secuencia lineal de nucleótidos, a una secuencia lineal de aminoácidos en una proteína. Para expresar dicha información, se necesitan varias etapas y, en consecuencia existen varios tipos de ARN:

El ARN mensajero se sintetiza en el núcleo de la célula, y su secuencia de bases es complementaria de un fragmento de una de las cadenas de ADN. Actúa como intermediario en el traslado de la información genética desde el núcleo hasta el citoplasma. Poco después de su síntesis sale del núcleo a través de los poros nucleares asociándose a los ribosomas donde actúa como matriz o molde que ordena los aminoácidos en la cadena proteica. Su vida es muy corta: una vez cumplida su misión, se destruye.El ARN de transferencia existe en forma de moléculas relativamente pequeñas. La única hebra de la que consta la molécula puede llegar a presentar zonas de estructura secundaria gracias a los enlaces por puente de hidrógeno que se forman entre bases complementarias, lo

que da lugar a que se formen una serie de brazos, bucles o asas. Su función es la de captar aminoácidos en el citoplasma uniéndose a ellos y transportándolos hasta los ribosomas, colocándolos en el lugar adecuado que indica la secuencia de nucleótidos del ARN mensajero para llegar a la síntesis de una cadena polipeptídica determinada y por lo tanto, a la síntesis de una proteínaEl ARN ribosómico es el más abundante (80 por ciento del total del ARN), se encuentra en los ribosomas y forma parte de ellos, aunque también existen proteínas ribosómicas. El ARN ribosómico recién sintetizado es empaquetado inmediatamente con proteínas ribosómicas, dando lugar a las subunidades del ribosoma.

Ácidos nucleicos artificiales

Existen, aparte de los naturales, algunos ácidos nucleicos no presentes en la naturaleza (Análogos de ácidos nucleicos), sintetizados en el laboratorio.

Ácido nucleico peptídico , donde el esqueleto de fosfato-(desoxi)ribosa ha sido sustituido por 2-(N-aminoetil)glicina, unida por un enlace peptídico clásico. Las bases púricas y pirimidínicas se unen al esqueleto por el carbono carbonílico. Al carecer de un esqueleto cargado (el ion fosfato lleva una carga negativa a pH fisiológico en el ADN/ARN), se une con más fuerza a una cadena complementaria de ADN monocatenario, al no existir repulsión electrostática. La fuerza de interacción crece cuando se forma un ANP bicatenario. Este ácido nucleico, al no ser reconocido por algunos enzimas debido a su diferente estructura, resiste la acción de nucleasas y proteasas.

Morfolino y ácido nucleico bloqueado (LNA, en inglés). El morfolino es un derivado de un ácido nucleico natural, con la diferencia de que usa un anillo de morfolina en vez del azúcar, conservando el enlace fosfodiéster y la base nitrogenada de los ácidos nucleicos naturales. Se usan con fines de investigación, generalmente en forma de oligómeros de 25 nucleótidos. Se usan para hacer genética inversa, ya que son capaces de unirse complementariamente a pre-ARNm, con lo que se evita su posterior recorte y procesamiento. También tienen un uso farmacéutico, y pueden actuar contra bacterias y virus o para tratar enfermedades genéticas al impedir la traducción de un determinado ARNm.

Ácido nucleico glicólico . Es un ácido nucleico artificial donde se sustituye la ribosa por glicerol, conservando la base y el enlace fosfodiéster. No existe en la naturaleza. Puede unirse complementariamente al ADN y al ARN, y sorprendentemente, lo hace de forma más estable. Es la forma químicamente más simple de un ácido nucleico y se especula con que haya sido el precursor ancestral de los actuales ácidos nucleicos.

Ácido nucleico treósico . Se diferencia de los ácidos nucleicos naturales en el azúcar del esqueleto, que en este caso es una treosa. Se han sintetizado cadenas híbridas ATN-ADN usando ADN polimerasas. Se une complementariamente al ARN, y podría haber sido su precursor.

VITAMINAS:

Las vitaminas (del latín vita (vida) + el griego αμμονιακός, ammoniakós "producto libio, amoníaco", con el sufijo latino ina "sustancia") son compuestos heterogéneos imprescindibles para la vida, que al ingerirlos de forma equilibrada y en dosis esenciales promueven el correcto funcionamiento fisiológico. La mayoría de las vitaminas esenciales no pueden ser sintetizadas (elaboradas) por el organismo, por lo que éste no puede obtenerlas más que a través de la ingesta equilibrada de vitaminas contenidas en los alimentos naturales. Las vitaminas son nutrientes que

junto con otros elementos nutricionales actúan como catalizadoras de todos los procesos fisiológicos (directa e indirectamente).

Las vitaminas son precursoras de coenzimas, (aunque no son propiamente enzimas) grupos prostéticos de las enzimas. Esto significa, que la molécula de la vitamina, con un pequeño cambio en su estructura, pasa a ser la molécula activa, sea ésta coenzima o no.

Los requisitos mínimos diarios de las vitaminas no son muy altos, se necesitan tan solo dosis de miligramos o microgramos contenidas en grandes cantidades (proporcionalmente hablando) de alimentos naturales. Tanto la deficiencia como el exceso de los niveles vitamínicos corporales pueden producir enfermedades que van desde leves a graves e incluso muy graves como la pelagra o la demencia entre otras, e incluso la muerte. Algunas pueden servir como ayuda a las enzimas que actúan como cofactor, como es el caso de las vitaminas hidrosolubles

La deficiencia de vitaminas se denomina avitaminosis mientras que el nivel excesivo de vitaminas se denomina hipervitaminosis.

Está demostrado que las vitaminas del grupo B son imprescindibles para el correcto funcionamiento del cerebro y el metabolismo corporal. Este grupo es hidrosoluble (solubles en agua) debido a esto son eliminadas principalmente por la orina, lo cual hace que sea necesaria la ingesta diaria y constante de todas las vitaminas del complejo "B" (contenidas en los alimentos naturales).

Clasificación de las vitaminas

Las vitaminas se pueden clasificar según su solubilidad: si lo son en agua hidrosolubles o si lo son en lípidos liposolubles. En los seres humanos hay 13 vitaminas que se clasifican en dos grupos: (9) hidrosolubles (8 del complejo B y la vitamina C) y (4) liposolubles (A, D, E y K).

Vitaminas liposolubles

Las vitaminas liposolubles, A, D, E y K, se consumen junto con alimentos que contienen grasa.

Son las que se disuelven en grasas y aceites. Se almacenan en el hígado y en los tejidos grasos, debido a que se pueden almacenar en la grasa del cuerpo no es necesario tomarlas todos los días por lo que es posible, tras un consumo suficiente, subsistir una época sin su aporte.

Si se consumen en exceso (más de 10 veces las cantidades recomendadas) pueden resultar tóxicas. Esto les puede ocurrir sobre todo a deportistas, que aunque mantienen una dieta equilibrada recurren a suplementos vitamínicos en dosis elevadas, con la idea de que así pueden aumentar su rendimiento físico.

Esto es totalmente falso, así como la creencia de que los niños van a crecer más si toman más vitaminas de las necesarias.

Las vitaminas liposolubles son:

Vitamina A (Retinol) Vitamina D (Calciferol) Vitamina E (Tocoferol) Vitamina K (Antihemorrágica)

Estas vitaminas no contienen nitrógeno, son solubles en grasa, y por tanto, son transportadas en la grasa de los alimentos que la contienen. Por otra parte, son bastante estables frente al calor. Se absorben en el intestino delgado con la grasa alimentaria y pueden almacenarse en el cuerpo en mayor o menor grado (no se excretan en la orina). Dada a la capacidad de almacenamiento que tienen estas vitaminas no se requiere una ingesta diaria.

Vitaminas hidrosolubles

Las vitaminas hidrosolubles son aquellas que se disuelven en agua. Se trata de coenzimas o precursores de coenzimas, necesarias para muchas reacciones químicas del metabolismo.

Se caracterizan porque se disuelven en agua, por lo que pueden pasarse al agua del lavado o de la cocción de los alimentos. Muchos alimentos ricos en este tipo de vitaminas no nos aportan al final de prepararlos la misma cantidad que contenían inicialmente. Para recuperar parte de estas vitaminas (algunas se destruyen con el calor), se puede aprovechar el agua de cocción de las verduras para caldos o sopas.

En este grupo de vitaminas, se incluyen las vitaminas B1 (tiamina), B2 (riboflavina), B3 (niacina o ácido nicotínico), B5 (ácido pantoténico), B6 (piridoxina), B8 (biotina), B9 (ácido fólico), B12 (cianocobalamina) y vitamina C (ácido ascórbico).

Estas vitaminas contienen nitrógeno en su molécula (excepto la vitamina C) y no se almacenan en el organismo, a excepción de la vitamina B12, que lo hace de modo importante en el hígado. El exceso de vitaminas ingeridas se excreta en la orina, por lo cual se requiere una ingesta prácticamente diaria, ya que al no almacenarse se depende de la dieta.

Avitaminosis

La deficiencia de vitaminas puede producir trastornos más o menos graves, según el grado de deficiencia, llegando incluso a la muerte. Respecto a la posibilidad de que estas deficiencias se produzcan en el mundo desarrollado hay posturas muy enfrentadas. Por un lado están los que aseguran que es prácticamente imposible que se produzca una avitaminosis, y por otro los que responden que es bastante

difícil llegar a las dosis de vitaminas mínimas, y por tanto, es fácil adquirir una deficiencia, por lo menos leve.

Normalmente, los que alegan que es "poco probable" una avitaminosis son mayoría. Este grupo mayoritario argumenta que:

Las necesidades de vitaminas son mínimas, y no hay que preocuparse por ellas, en comparación con otros macronutrientes.

Se hace un abuso de suplementos vitamínicos. En nuestro entorno se hace una dieta lo suficientemente variada para cubrir

todas las necesidades. La calidad de los alimentos en nuestra sociedad es suficientemente alta.

Por el lado contrario se responde que:

La cantidad necesaria de vitaminas son pequeñas, pero también lo son las cantidades que se encuentran en los alimentos.

No son raras las carencias de algún nutriente entre la población de países desarrollados: hierro y otros minerales, antioxidantes (muy relacionados con las vitaminas), etc.

Las vitaminas se ven afectadas negativamente por los mismos factores que los demás nutrientes, a los que suman otros como: el calor, el pH, la luz, El oxígeno, etc.

Basta que no se sigan las recomendaciones mínimas de consumir 5 porciones de verduras o frutas al día para que no se llegue a cubrir las necesidades diarias básicas.

Cualquier factor que afecte negativamente a la alimentación, como puede ser, cambios de residencia, falta de tiempo, mala educación nutricional o problemas económicos; puede provocar alguna deficiencia de vitaminas u otros nutrientes.

Son bien conocidos, desde hace siglos, los síntomas de avitaminosis severas. Pero no se sabe tan bien como diagnosticar una deficiencia leve a partir de sus posibles síntomas como podrían ser: las estrías en las uñas, sangrado de las encías, problemas de memoria, dolores musculares, falta de ánimo, torpeza, problemas de vista, etc.

Por estos motivos un bando recomienda consumir suplementos vitamínicos si se sospecha que no se llega a las dosis necesarias. Por el contrario, el otro bando lo ve innecesario, y avisan que abusar de suplementos puede ser perjudicial.

Hipervitaminosis y toxicidad de las vitaminas

Las vitaminas aunque son esenciales, pueden ser tóxicas en grandes cantidades. Unas son muy tóxicas y otras son inocuas incluso en cantidades muy altas.La toxicidad puede variar según la forma de aplicar las dosis. Como ejemplo, la vitamina D se administra en cantidades suficientemente altas como para cubrir las

necesidades para 6 meses; sin embargo, no se podría hacer lo mismo con vitamina B3 o B6, porque sería muy tóxica.

Otro ejemplo es el que la suplementación con vitaminas hidrosolubles a largo plazo, se tolera mejor debido a que los excedentes se eliminan fácilmente por la orina.

Las vitaminas más tóxicas son la D, y la A, también lo puede ser la vitamina B3.Otras vitaminas, sin embargo, son muy poco tóxicas o prácticamente inocuas.La B12 no posee toxicidad incluso con dosis muy altas. A la tiamina le ocurre parecido, sin embargo con dosis muy altas y durante mucho tiempo puede provocar problemas de tiroides. En el caso de la vitamina E, sólo es tóxica con suplementos específicos de vitamina E y con dosis muy elevadas. También se conocen casos de intoxicaciones en esquimales al comer hígado de mamíferos marinos (el cual contiene altas concentraciones de vitaminas liposolubles)

Recomendaciones para evitar deficiencias de vitaminas

La principal fuente de vitaminas son los vegetales crudos, por ello, hay que igualar o superar la recomendación de consumir 5 raciones de vegetales o frutas frescas al día.

Hay que evitar los procesos que produzcan perdidas de vitaminas en exceso:

o Hay que evitar cocinar los alimentos en exceso. A mucha temperatura o durante mucho tiempo.

o Echar los alimentos que se vayan a cocer, en el agua ya hirviendo, en vez de llevar el agua a ebullición con ellos dentro.

o Evitar que los alimentos estén preparados (cocinados, troceados o exprimidos), mucho tiempo antes de comerlos.

o La piel de las frutas o la cáscara de los cereales contiene muchas vitaminas, por lo que no es conveniente quitarla.

o Elegir bien los alimentos a la hora de comprarlos, una mejor calidad redunda en un mayor valor nutritivo.

Aunque la mayoría de los procesamientos perjudica el contenido vitamínico, algunos procesos biológicos pueden incrementar el contenido de vitaminas en los alimentos, como por ejemplo:

La fermentación del pan, quesos u otros alimentos. La fabricación de yogur mediante bacterias. El curado de jamones y embutidos. El germinado de semillas, para ensaladas.

Los procesos industriales, normalmente suelen destruir las vitaminas. Pero alguno puede ayudar a que se reduzcan las pérdidas:

El vaporizado del arroz consigue que las vitaminas y minerales de la cáscara se peguen al corazón del arroz y no se pierda tanto al quitar la cáscara.Hay que recordar que el arroz con cáscara tiene 5 veces más vitamina b1 (y otras vitaminas) que el que está pelado.

La congelación produce pérdidas en la calidad de las moléculas de algunas vitaminas inactivando parte de ellas, es mejor consumir los alimentos 100% frescos.

Los procesos de esterilización UHT, muy rápidos, evitan un exceso de perdidas vitamínicas que un proceso más lento bien puede neutralizar el efecto de algunas enzimas destructoras de vitaminas como las que se encuentran dispersas en el zumo de naranja.

No consumir vitaminas en los niveles apropiados (contenidas en los alimentos naturales) puede causar graves enfermedades.