mejoramiento del proceso de pintura electrostÁtica …

43
MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA A PARTIR DEL ANÁLISIS DE LA RED DE ALIMENTACIÓN Y EL SISTEMA DE PUESTA A TIERRA EN LA EMPRESA PINTUTECNIA SAS Presentado por: FABIAN ALEJANDRO RODRIGUEZ CÓDIGO: 20121007089 SEBASTIAN ROJAS MELO CÓDIGO: 20121007093 TIPO DE TRABAJO: PASANTÍA PROYECTO DE GRADO DIRECTOR INTERNO ING. OSCAR DAVID FLOREZ CEDIEL DIRECTOR EXTERNO DANIEL ALFONSO CASTRO MIRANDA UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS PROYECTO CURRICULAR INGENIERÍA ELÉCTRICA FACULTAD DE INGENIERÍA 2018

Upload: others

Post on 16-Oct-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA A PARTIR DEL ANÁLISIS DE LA RED DE ALIMENTACIÓN Y EL SISTEMA DE PUESTA A

TIERRA EN LA EMPRESA PINTUTECNIA SAS

Presentado por:

FABIAN ALEJANDRO RODRIGUEZ

CÓDIGO: 20121007089 SEBASTIAN ROJAS MELO

CÓDIGO: 20121007093

TIPO DE TRABAJO: PASANTÍA

PROYECTO DE GRADO

DIRECTOR INTERNO

ING. OSCAR DAVID FLOREZ CEDIEL

DIRECTOR EXTERNO DANIEL ALFONSO CASTRO MIRANDA

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS

PROYECTO CURRICULAR INGENIERÍA ELÉCTRICA FACULTAD DE INGENIERÍA

2018

Page 2: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

1. Tabla de contenido 2. INTRODUCCIÓN ........................................................................................................................ 5

3. DEFINICIÓN DEL PROBLEMA ..................................................................................................... 6

4. OBJETIVOS ................................................................................................................................. 7

4.1 OBJETIVO GENERAL ................................................................................................................. 7

4.2 OBJETIVOS ESPECIFICOS .......................................................................................................... 7

5. MARCO REGULATORIO PARA LA MEDICION, EVALUACION Y MODIFICACION EN

INSTALACIONES ELECTRICAS ......................................................................................................... 8

5.1 RETIE ........................................................................................................................................ 8

5.1.1 Instalaciones ......................................................................................................................... 9

5.2 NTC-2050 ............................................................................................................................... 10

5.2.1 Alcance. .............................................................................................................................. 10

5.2.2 Equipo electrostático fijo ................................................................................................... 11

5.3 REGULACION ......................................................................................................................... 12

6. RESULTADOS OBTENIDOS ....................................................................................................... 13

6.1 ESTADO CONDUCTORES PUNTOS DE CONEXION Y SPT ........................................................ 13

6.1.1 Circuitos ramales ................................................................................................................ 14

6.1.2 Sistema de Puesta a Tierra ................................................................................................. 15

6.2 CUADRO DE CARGAS ............................................................................................................. 16

6.3 PLANOS .................................................................................................................................. 18

6.3.1 PRIMER PISO....................................................................................................................... 18

6.3.2 SEGUNDO PISO ................................................................................................................... 18

6.4 TOPOLOGIA UTILIZADA PARA EL SISTEMA DE PUESTA A TIERRA ......................................... 19

7. ANÁLISIS DE RESULTADOS ....................................................................................................... 20

7.1 MEDICION DE ALIMENTACION Y EVALUACION PUNTOS DE USO COMUN ........................... 20

7.1.1 Corrientes y voltajes ramales de uso común ..................................................................... 20

7.1.2 Conductores ramales ......................................................................................................... 21

7.1.3 Protecciones asociadas a los ramales ................................................................................ 22

7.2 MEDICION DE ALIMENTACION Y EVALUACION CABINA ....................................................... 23

7.2.1 Corrientes y voltajes del ramal que energiza la cabina ...................................................... 23

7.2.2 Conductores alimentación cabina ...................................................................................... 23

7.2.3 Protección asociada a la cabina ......................................................................................... 23

7.3 REGULACION ......................................................................................................................... 24

7.4 EVALUACIÓN DE PUESTA A TIERRA ....................................................................................... 26

7.4.1 MEDICION DE PUESTA A TIERRA GENERAL ........................................................................ 26

7.4.2 MEDICION Y EVALUACION DE PUESTA A TIERRA CABINA .................................................. 27

Page 3: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

7.5 PROYECCION DE INVERSION ................................................................................................. 28

7.5.1 Red de alimentación ........................................................................................................... 28

7.5.2 Sistema de puesta a tierra.................................................................................................. 29

7.5.3 Uniones y empalmes .......................................................................................................... 29

7.5.4 Reubicación del electrodo de puesta a tierra y realización de caja de inspección ............ 29

8. EVALUACION Y CUMPLIMIENTO DE OBJETIVOS ..................................................................... 30

9. MODIFICACIONES Y RECOMENDACIONES .............................................................................. 33

9.1 Generales .............................................................................................................................. 33

9.1.1 Canalizaciones .................................................................................................................... 33

9.1.2 Tomacorrientes .................................................................................................................. 33

9.1.3 Conductores ....................................................................................................................... 34

9.1.4 Protecciones ....................................................................................................................... 34

9.1.5 Regulación .......................................................................................................................... 35

9.1.6 Planos ................................................................................................................................. 35

9.2 sistema puesta tierra ............................................................................................................. 35

9.2.1 Uniones .............................................................................................................................. 35

9.2.2 Conductores ....................................................................................................................... 35

9.2.3 Equipotencializar ................................................................................................................ 36

9.2.4 Resistencia y electrodo de puesta a tierra ......................................................................... 37

10. CONCLUSIONES ..................................................................................................................... 38

11. BIBLIOGRAFÍA ........................................................................................................................ 39

12. ANEXOS ................................................................................................................................. 40

Índice de Ilustraciones

Ilustración 1. Cuadro de Cargas .................................................................................................. 17

Ilustración 2. Plano primer piso PINTUTECNIA SAS ..................................................................... 18

Ilustración 3. Plano segundo piso PINTUTECNIA SAS .................................................................. 18

Ilustración 4. Tipo de conexión del telurómetro para medición de resistencia del terreno ...... 26

Ilustración 5. Principio de funcionamiento del método de medición: caída de potencial ........ 27

Ilustración 6. Sistemas de puestas a tierra dedicadas o interconectadas .................................. 37

Ilustración 7. Una sola puesta a tierra para todas las necesidades ............................................ 37

Ilustración 8. Puestas a tierra separadas o independientes ....................................................... 37

Índice de Tablas

Tabla 1. Evaluación circuitos ramales ......................................................................................... 14

Tabla 2. Evaluación del sistema de puesta a tierra ..................................................................... 15

Tabla 3 Cargas de Pintutecnia sas ............................................................................................... 16

Tabla 4. Corrientes y voltajes de los distintos ramales ............................................................... 20

Page 4: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

Tabla 5. Corrientes y voltajes del circuito de la cabina ............................................................... 23

Tabla 6. Presupuesto de materiales ............................................................................................ 29

Tabla 7. Evaluación y cumplimiento de los objetivos de la pasantía .......................................... 30

Tabla 8. Calibre mínimo de los conductores de puesta a tierra de equipos para puesta a tierra

..................................................................................................................................................... 36

Page 5: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

2. INTRODUCCIÓN

En la actualidad existen diferentes tipos de tecnologías enfocadas al recubrimiento de pintura

en productos metálicos, estos recubrimientos suelen ser en pintura líquida o pintura en polvo,

siendo la pintura en polvo la más demandada en el mercado actual, ya que su calidad y vida útil

(10 años) supera ampliamente a las pinturas convencionales [1]. Este tipo de pintura, bien

conocida como pintura electrostática, se caracteriza por su durabilidad, el espesor de las capas

y su resistencia a la corrosión. El proceso para el recubrimiento en polvo consta de varios

subprocesos que se pueden dividir en tres grandes grupos, en la primera etapa se realiza el

acondicionamiento, en donde se limpia el material para eliminar grasa y partículas de la pieza y

luego se procede con el proceso de fosfatado para evitar la corrosión, la segunda es la de pintado

allí se carga la pintura negativamente y la pieza se aterriza de tal manera que sea un imán para

la pintura, por último se procede con la tercera etapa en donde la pieza pintada pasa por un

horno entre los 180° y 200°, este es el proceso de polimerización en la que se da el curado de la

pintura y adquiere su acabado final. [2].

Sin duda las fases más importantes en todo el proceso son la de curado y recubrimiento, y éstas

dependen directamente de dos factores: el horno y el sistema de puesta a tierra

respectivamente.

Para garantizar un correcto curado y polimerización de la pintura es necesario someter la pieza

a un temperatura superior a los 180°C esto se hace con un horno Trifásico, es por esto que se

hace relevante que la alimentación de dicho horno cumpla los valores nominales estipulados

por el fabricante para su óptimo funcionamiento, es de esta manera que el correcto

funcionamiento de toda la red será fundamental para obtener la eficiencia energética deseada,

todo lo anterior según lo establecido por las normativas colombianas tales como la NTC 2050 y

el Reglamento Técnico de Instalaciones Eléctricas (RETIE).

Por otra parte, se encuentra la etapa del recubrimiento de pintura en polvo, donde es

fundamental contar con un sistema de puesta a tierra bastante eficiente ya que de éste depende

que la pieza adquiera la carga positiva necesaria para la correcta adherencia de la pintura a la

pieza.

Page 6: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

3. DEFINICIÓN DEL PROBLEMA

PINTUTECNIA SAS es una empresa dedicada a la prestación de servicio de acabados en pintura

electrostática (recubrimiento en pintura en polvo), actualmente dentro de sus procesos, no se

cuenta con estudios o análisis referentes a la eficiencia energética de su red eléctrica ni tampoco

verificación del cumplimiento de la NTC2050 y RETIE, además no se tiene la descripción y el

dimensionamiento del sistema de puesta a tierra, estos dos hechos hacen pertinente la

realización de un diagnóstico muy completo donde se logre evaluar el funcionamiento actual del

sistema de puesta tierra, debido a que este juega un papel muy importante en la etapa de

recubrimiento o pintado, es aquí donde la pieza metálica que se va a pintar se debe descargar

de electrones obteniendo carga positiva para atraer toda la pintura cargada negativamente y la

eficiencia de la red eléctrica que alimenta los equipos como el horno, para de esta manera

realizar todas las medidas y cálculos necesario que nos permitan proponer las respectivas

correcciones que conlleven al mejoramiento de la eficiencia del proceso, todo esto con el fin de

seguir posicionando a Pintutecnia SAS en el mercado como una de las empresas con los

estándares más altos de calidad, asegurando el cumplimiento de los lineamientos que dicta la

normatividad vigente. Finalmente se busca fortalecer y aplicar los conocimientos adquiridos

durante el pregrado de Ingeniería Eléctrica y de tal manera cumplir con el requisito para optar

por el título de ingeniero eléctrico.

Page 7: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

4. OBJETIVOS

4.1 OBJETIVO GENERAL

Mejorar el proceso de pintura electrostática en la empresa Pintutecnia SAS. mediante

la modernización de la red eléctrica y el sistema de puesta a tierra.

4.2 OBJETIVOS ESPECIFICOS

Realizar un diagnóstico energético en la planta de producción de la empresa y en las

zonas destinadas a la parte administrativa determinando falencias según la

normatividad vigente.

Describir detalladamente todo el proceso de producción de la empresa y la relación

directa que tiene con la calidad de energía que se tiene en la planta.

Determinar cada una de las adecuaciones para la red eléctrica con la que cuenta la

empresa de manera clara, acogiéndose estrictamente a la normatividad vigente.

Diseñar el sistema de puesta a tierra a partir de mediciones obtenidas que permitan el

mejoramiento en la eficiencia para el proceso de recubrimiento de pintura.

Analizar los resultados obtenidos enfocándose en la viabilidad técnica y financiera

Page 8: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

5. MARCO REGULATORIO PARA LA MEDICION, EVALUACION Y

MODIFICACION EN INSTALACIONES ELECTRICAS

Las normas establecidas en el territorio nacional colombiano, determinan la manera correcta de

diseñar e intervenir cualquier sistema eléctrico, según las condiciones técnicas a las cuales están

operando. Para este trabajo se tendrán en cuenta las dos más grandes e importantes normas

nacionales (RETIE y NTC 2050), de igual manera la norma IEEE 80, que permitirá diagnosticar de

manera correcta el sistema de puesta a tierra.

5.1 RETIE

El objeto fundamental de este reglamento es establecer las medidas tendientes a garantizar la

seguridad de las personas, de la vida tanto animal como vegetal y la preservación del medio

ambiente; previniendo, minimizando o eliminando los riesgos de origen eléctrico. Sin perjuicio

del cumplimiento de las reglamentaciones civiles, mecánicas y fabricación de equipos.

Adicionalmente, señala las exigencias y especificaciones que garanticen la seguridad de las

instalaciones eléctricas con base en su buen funcionamiento; la confiabilidad, calidad y

adecuada utilización de los productos y equipos, es decir, fija los parámetros mínimos de

seguridad para las instalaciones eléctricas. [[3] pág. 8, artículo 1]

Igualmente, es un instrumento técnico-legal para Colombia, que sin crear obstáculos

innecesarios al comercio o al ejercicio de la libre empresa, permite garantizar que las

instalaciones, equipos y productos usados en la generación, transmisión, transformación,

distribución y utilización de la energía eléctrica, cumplan con los siguientes objetivos legítimos:

La protección de la vida y la salud humana.

La protección de la vida animal y vegetal.

La preservación del medio ambiente.

La prevención de prácticas que puedan inducir a error al usuario.

Para cumplir estos objetivos legítimos, el presente reglamento se basó en los siguientes

objetivos específicos:

a. Fijar las condiciones para evitar accidentes por contacto directo o indirecto con partes

energizadas o por arcos eléctricos.

b. Establecer las condiciones para prevenir incendios y explosiones causados por la electricidad.

c. Fijar las condiciones para evitar quema de árboles causada por acercamiento a redes

eléctricas.

d. Establecer las condiciones para evitar muerte de personas y animales causada por cercas

eléctricas.

e. Establecer las condiciones para evitar daños debidos a sobrecorrientes y sobretensiones.

f. Adoptar los símbolos que deben utilizar los profesionales que ejercen la electrotecnia.

g. Minimizar las deficiencias en las instalaciones eléctricas.

Page 9: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

h. Establecer claramente las responsabilidades que deben cumplir los diseñadores,

constructores, interventores, operadores, inspectores, propietarios y usuarios de las

instalaciones eléctricas, además de los fabricantes, importadores, distribuidores de materiales

o equipos y las personas jurídicas relacionadas con la generación, transformación, transporte,

distribución y comercialización de electricidad, organismos de inspección, organismos de

certificación, laboratorios de pruebas y ensayos.

i. Unificar los requisitos esenciales de seguridad para los productos eléctricos de mayor

utilización, con el fin de asegurar la mayor confiabilidad en su funcionamiento.

j. Prevenir los actos que puedan inducir a error a los usuarios, tales como la utilización o difusión

de indicaciones incorrectas o falsas o la omisión del cumplimiento de las exigencias del presente

reglamento.

k. Exigir confiabilidad y compatibilidad de los productos y equipos eléctricos.

l. Exigir requisitos para contribuir con el uso racional y eficiente de la energía y con esto a la

protección del medio ambiente y el aseguramiento del suministro eléctrico.

El reglamento técnico de instalaciones eléctricas aplica a las instalaciones eléctricas, a los

productos utilizados en ellas y a las personas que las intervienen. [3]

Es necesario definir algunos términos que ayudarán a definir el campo de aplicación y de esta

manera utilizar de manera correcta a la norma.

5.1.1 Instalaciones

Se consideran como instalaciones eléctricas los circuitos eléctricos con sus componentes, tales

como, conductores, equipos, máquinas y aparatos que conforman un sistema eléctrico y que se

utilizan para la generación, transmisión, transformación, distribución o uso final de la energía

eléctrica; sean públicas o privadas y estén dentro de los límites de tensión y frecuencia aquí

establecidos, es decir, tensión nominal mayor o igual a 24 V en corriente continua (c.c.) o más

de 25 V en corriente alterna (C.A) con frecuencia de servicio nominal inferior a 1000 Hz.[[3], pág.

9, art 2]

Los requisitos del presente Reglamento aplican a las instalaciones eléctricas construidas con

posterioridad a la entrada en vigencia del mismo, así como a las ampliaciones y remodelaciones.

En las construidas con posterioridad al 1° de mayo de 2005, el propietario o tenedor de la misma

debe dar aplicación a las disposiciones contenidas en el RETIE vigente a la fecha de construcción

y en las anteriores al 1° de mayo de 2005, garantizar que no representen alto riesgo para la salud

o la vida de las personas y animales, o atenten contra el medio ambiente, o en caso contrario,

hacer las correcciones para eliminar o mitigar el riesgo. [[3], pág. 9, art 2]

Los requisitos y prescripciones técnicas de este reglamento serán de obligatorio cumplimiento

en Colombia, en todas las instalaciones eléctricas utilizadas en la generación, transporte,

transformación, distribución y uso final de la electricidad, incluyendo las que alimenten equipos

para señales de telecomunicaciones, electrodomésticos, vehículos, máquinas, herramientas y

Page 10: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

demás equipos. Estos requisitos son exigibles en condiciones normales o nominales de la

instalación. En caso de que se alteren las anteriores condiciones por fuerza mayor o situaciones

de orden público, el propietario o tenedor de la instalación buscará restablecer las condiciones

de seguridad en el menor tiempo posible.

Las instalaciones deben construirse de tal manera que las partes energizadas peligrosas, no

deben ser accesibles a personas no calificadas y las partes energizadas accesibles no deben ser

peligrosas, tanto en operación normal como en caso de falla. [[3], pág. 9, art 2]

5.2 NTC-2050

El trabajo que se realizará en Pintutecnia estará apoyado también en la NTC 2050, ya que los

objetivos que esta norma dicta son pertinentes para la aplicación en esta empresa.

Objetivo.

a) Salvaguardia. El objetivo de este código es la salvaguardia de las personas y de los bienes

contra los riesgos que pueden surgir por el uso de la electricidad.

b) Provisión y suficiencia. Este código contiene disposiciones que se consideran necesarias para

la seguridad. El cumplimiento de las mismas y el mantenimiento adecuado darán lugar a una

instalación prácticamente libre de riesgos, pero no necesariamente eficiente, conveniente o

adecuada para el buen servicio o para ampliaciones futuras en el uso de la electricidad.

c) Intención. Este código no tiene la intención de marcar especificaciones de diseño ni de ser un

manual de instrucciones para personal no calificado.

5.2.1 Alcance.

a) Cobertura. Este código cubre:

1) Las instalaciones de conductores y equipos eléctricos en o sobre edificios públicos y privados

y otras estructuras, incluyendo casas móviles, vehículos de recreo y casas flotantes, y otras

instalaciones como patios, parques de atracciones, estacionamientos, otras áreas similares y

subestaciones industriales.

2) Instalaciones de conductores y equipos que se conectan con fuentes de suministro de

electricidad.

3) Instalaciones de otros conductores y equipos exteriores dentro de la propiedad.

4) Instalaciones de cables y canalizaciones de fibra óptica.

5) Instalaciones en edificaciones utilizadas por las empresas de energía eléctrica, como edificios

de oficinas, almacenes, garajes, talleres y edificios recreativos que no formen parte integral de

una planta generadora, una subestación o un centro de control. [[2], pág. 27, sección 90]

Page 11: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

5.2.2 Equipo electrostático fijo

Equipo electrostático fijo. Este Artículo se debe aplicar a cualquier equipo que utilice elementos

cargados electrostáticamente para la atomización fina, carga y/o precipitado de materiales

peligrosos para pintar objetos o para otros fines similares en los que el dispositivo de carga o

atomización esté unido a un soporte o manipulador mecánico, como los robots. Este artículo no

se debe aplicar a los dispositivos que se sujetan o manipulan con la mano. Cuando la

programación de los robots suponga la intervención manual sobre el brazo del robot para pintar,

mientras existan altas tensiones, se aplican las disposiciones del Artículo 516-5. El alambrado de

equipos atomizadores electrostáticos debe cumplir las siguientes condiciones a) hasta j). El

equipo de rociado debe estar certificado o aprobado. Todos los sistemas electrostáticos

automáticos deben cumplir las siguientes condiciones a) hasta i):

a) Equipo de suministro y control. Todos los transformadores, fuentes de alimentación de alta

tensión, equipos de control y demás piezas eléctricas del equipo, deben instalarse fuera de los

lugares Clase I como se definen en el Artículo 516-2 o ser de un tipo aprobado para el lugar

donde estén instalados.

Excepción: Se permite instalar en lugares Clase I rejillas de alta tensión, electrodos y cabezales

electrostáticos de atomización (pistolas) y sus conexiones.

b) Equipo electrostático. Los electrodos y cabezales electrostáticos de atomización deben estar

adecuadamente apoyados sobre soportes permanentes y estar aislados eficazmente de tierra.

Se considera que cumplen con este artículo los electrodos y cabezales electrostáticos de

atomización que estén conectados permanentemente a sus bases, soportes, mecanismos

alternativos o robots.

c) Terminales de alta tensión. Los terminales de alta tensión deben estar debidamente aislados

y protegidos contra daños mecánicos o de productos químicos destructivos. Cualquier elemento

expuesto a alta tensión debe estar eficaz y permanentemente sujeto por aisladores adecuados

y estar eficazmente protegido contra contactos accidentales o puesta a tierra.

d) Soporte de piezas. Las piezas que se vayan a pintar con estos procesos deben estar colgadas

de ganchos o transportadores. Estos ganchos o transportadores deben estar instalados de modo

que: 1) garanticen que las piezas que se vayan a pintar estén conectadas eléctricamente a tierra

con una resistencia de 1 MΩ o menos y 2) se evite que las piezas oscilen.

e) Controles automáticos. Los equipos electrostáticos de pintura deben estar equipados de

controles automáticos que permitan desconectar rápidamente las partes de alta tensión si se

produce alguna de las circunstancias siguientes: 1) parada de los ventiladores o falla del sistema

de ventilación por cualquier causa; 2) parada del transportador en una zona de alta tensión,

excepto si la parada es por una condición del proceso de pintura; 3) excesiva corriente de fuga

en cualquier punto de la instalación de alta tensión; 4) desenergización de la tensión primaria

de entrada de la fuente de alimentación.

f) Puesta a tierra. Todos los objetos eléctricamente conductivos en el área de pintura, excepto

los que, por exigencias del proceso, deban mantenerse a alta tensión, se deben poner a tierra

eficazmente. Este requisito se debe aplicar a los recipientes de pintura, cubos de lavado,

protectores, conectares de las mangueras, abrazaderas o cualquier otro objeto conductor de la

electricidad que pueda haber en la zona.

Page 12: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

g) Separación. Alrededor del equipo, o incorporado al mismo, se deben instalar protectores

como cabinas, vallas, barandillas u otros medios que, bien por su posición, carácter o ambas

cosas, garanticen que se mantiene una separación de seguridad con el proceso.

h) Señales. Se deben instalar señales bien visibles que: 1) indiquen que la zona es peligrosa por

la posibilidad de incendio y accidente; 2) indiquen los requisitos de puesta a tierra de todos los

objetos eléctricamente conductivos en la zona de la cabina y 3) limiten el acceso exclusivamente

a las personas calificadas.

i) Aisladores. Todos los aisladores se deben mantener limpios y secos.

j) Equipos diferentes a los no incendiarios. Los equipos de pintura por rociado que no se puedan

clasificar como no incendiarios, deben cumplir los siguientes requisitos 1) y 2):

1) Los transportadores y ganchos deben estar instalados de modo que mantengan una distancia

de seguridad que sea como mínimo el doble de la distancia que produciría chispas cuando los

productos pintados pasen cerca de los electrodos, cabezales electrostáticos de atomización o

conductores energizados. Debe haber carteles indicadores que señalen esta distancia de

seguridad.

2) El equipo debe tener un medio automático para desenergizar rápidamente los componentes

de alta tensión si la distancia entre los productos pintados y los electrodos o cabezales

electrostáticos es menor a la especificada en el anterior apartado 1). [4, pág. 447-448]

5.3 REGULACION La regulación de tensión en la instalación eléctrica será una variable importante a considerar, y

aunque en las normas anteriores se encuentra información acerca de esto, existe un boletín

técnico creado por Centelsa que facilitará los cálculos y la información necesaria para hallar de

mejor manera esta regulación de tensión [3]. La Norma NTC 2050 en la nota 2 de la tabla 9 del

capítulo 9, establece que “multiplicando la corriente por la impedancia eficaz se obtiene un valor

bastante aproximado de la caída de tensión entre fase y neutro”, adicionalmente define la

impedancia eficaz así:

𝑍𝑒𝑓 = 𝑅𝑐𝑜𝑠∅ + 𝑋 𝑠𝑒𝑛∅ (1)

La caída de tensión se calcula según la tensión y configuración del sistema.

Para sistemas monofásicos:

∆𝑉 = 𝑍𝑒𝑓 . 2 . 𝐿 . 𝐼 (2)

Para sistemas trifásicos:

∆𝑉 = 𝑍𝑒𝑓 . 𝐿 . 𝐼 (3)

Por último, la regulación será:

𝑟𝑒𝑔𝑢𝑙𝑎𝑐𝑖𝑜𝑛% =∆𝑉

𝑉𝑛𝑜𝑚𝑖𝑛𝑎𝑙

(4)

Page 13: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

6. RESULTADOS OBTENIDOS Se obtuvo un esquema general de todo el sistema eléctrico identificando el estado actual y las

inconsistencias observadas de acuerdo a la NTC 2050 y el RETIE junto con una propuesta de

mejora al sistema eléctrico, además medidas de diagnóstico del sistema de puesta a tierra actual

en cuanto a resistividad del terreno y topología empleada. Luego se propuso una alternativa de

mejora con un presupuesto de costos para la implementación de las adecuaciones resultantes

del estudio realizado.

6.1 ESTADO CONDUCTORES PUNTOS DE CONEXION Y SPT

A continuación, se realiza la documentación del estado actual de la instalación eléctrica y del

SPT donde se tiene en cuenta la siguiente información basándonos en el registro para

mantenimiento de SPT del RETIE [[3], pág. 73, artículo 15]; para calificar el estado se maneja un

código de colores a los cuales se les da una valoración siendo verde= Bueno, naranja=Regular

Rojo= Malo:

a. Condiciones generales de los conductores del sistema.

b. Nivel de corrosión.

c. Estado de las uniones de los conductores y componentes.

d. Valores de resistencia.

e. Desviaciones de los requisitos respecto del RETIE.

f. Resultados de las pruebas realizadas.

g. Registro fotográfico

h. Rediseño o propuesta de mejoras del SPT si se requieren

Page 14: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

6.1.1 Circuitos ramales Tabla 1. Evaluación circuitos ramales

Circuitos ramales Estado Observaciones

Condiciones generales de los conductores del sistema.

La instalación no es muy antigua,

los conductores se encuentran en

buen estado

Nivel de corrosión.

Los conductores no están expuestos

a humedad, es por esto que el nivel

de corrosión es casi nulo

Estado de las uniones de los conductores y componentes.

Algunas uniones no se ajustan a los

parámetros dadas por la

normatividad vigente

Valores de resistencia.

Son adecuados para los conductores

de estas características

Desviaciones de los requisitos respecto del RETIE.

Se evidencia tubería a la intemperie

que no cumple la normatividad, así

como componentes eléctricos que

pueden provocar contacto directo en

los trabajadores.

Registro fotográfico

Anexos

Page 15: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

6.1.2 Sistema de Puesta a Tierra

Tabla 2. Evaluación del sistema de puesta a tierra

SPT Estado Observaciones

Condiciones generales de los conductores del sistema.

Visualmente están en buenas

condiciones, no presentan desgaste

fuera de lo común

Nivel de corrosión.

No se presenta nivel de corrosión

Estado de las uniones de los conductores y componentes.

Las uniones no se ajustan a los

parámetros dadas por la

normatividad vigente.

Valores de resistencia.

Las mediciones para el conductor

de puesta a tierra se realizan en el

numeral 7.4.2

Las mediciones para el terreno se

encuentran en el numeral 7.4.2

Desviaciones de los requisitos respecto del RETIE.

No se ajusta a lo estipulado por el

RETIE articulo 15.1

Registro fotográfico

Anexos

Rediseño o propuesta de mejoras del SPT si se requieren

Se realiza una propuesta de rediseño

en el numeral 9 de este documento.

Page 16: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

6.2 CUADRO DE CARGAS

Tabla 3 Cargas de Pintutecnia sas

Circuito tomas lámparas Descripción P(w) Calibre AWG

Protección (A) 120v 240v 330v

1 5 tomas (equipos)

250 10 30

2 alumbrado 150 10

1 toma (plancha y esmeril)

1000 10

1 alumbrado 150 10

4 alumbrado 150 10

1 toma (solo estufa)

100 10

1 30 10

2 1 tomas (compresor)

5500 10 50 x 3

4 4 tomas 400 10 40 x 3 8 alumbrado 250 10

1 ciclón 4100 10

3 2 extractor, y otra sin uso

200 10 30 x 3

2 motores trifásicos,

otra sin uso

4480 10

6 14 alumbrado 1000 10 20

5 1 Secador 2000 10 2x 30

Page 17: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

A partir de la tabla 3 y el levantamiento de planos, se determina el cuadro de cargas para la

empresa que se evidencia en la ilustración 1. Acá se observa la alimentación trifásica que llega

a los tableros de distribución así como las cargas conectadas a cada fase (fase A, Fase B y Fase

C). Por medio de las diferentes medidas tomadas (tabla 4) se determinan las corrientes

correspondientes a cada fase, esto con el fin de determinar si se encuentra balanceado el

sistema.

Como se puede observar en la ilustración 1 las corrientes están balanceadas, la diferencia entre

cada fase, con respecto a la corriente no supera los 0.3 A

Ilustración 1. Cuadro de Cargas

Page 18: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

6.3 PLANOS

6.3.1 PRIMER PISO

Ilustración 2. Plano primer piso PINTUTECNIA SAS

6.3.2 SEGUNDO PISO

Ilustración 3. Plano segundo piso PINTUTECNIA SAS

Page 19: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

6.4 TOPOLOGIA UTILIZADA PARA EL SISTEMA DE PUESTA A TIERRA

Actualmente la red cuenta con dos sistemas de puesta a tierra independientes ambos del tipo

electrodo vertical uno está asociado a todas las tomas que alimentan todas las cargas de la zona

de producción y el otro exclusivamente a la cabina de aplicación de pintura. El electrodo vertical

consta de una barra de cobre de aproximadamente 2 metros enterrada de forma vertical.

Page 20: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

7. ANÁLISIS DE RESULTADOS Para el análisis se tomó como base los resultados obtenidos en el numeral anterior pero además

en este ítem se realizaron mediciones para realizar un análisis más detallado en cuanto a uso

adecuado de conductores, protecciones y la regulación de tensión en la empresa.

Teniendo en cuenta las indicaciones dadas por la NTC 2050 y el RETIE respecto a la regulación

de tensión, se exponen los resultados de las mediciones a los distintos circuitos con el fin de

cotejar los valores de tensión normalizados para este tipo de instalación eléctrica

7.1 MEDICION DE ALIMENTACION Y EVALUACION PUNTOS DE USO COMUN

7.1.1 Corrientes y voltajes ramales de uso común

Debido a la naturaleza en la que se desenvuelve la producción en Pintutecnia, se encuentran

algunos equipos de gran tamaño que consumen una potencia considerable, es por esto que se

hace necesario la toma de medidas (voltaje y corrientes) de cada uno de los ramales de la

empresa en diferentes condiciones, estas condiciones están dadas a la utilización de los

diferentes equipos grandes, o cargas considerables conectados a la red.

Tabla 4. Corrientes y voltajes de los distintos ramales

Horno Encendido Cabina Encendida Compresor y

horno encendido Cabina y compresor

encendido Cabina y horno

encendido

circuito elemento voltaje corriente voltaje corriente voltaje corriente Voltaje corriente voltaje corriente

Trifásico que alimenta todo el horno, dos

tomas monofásicas y otra trifásica

(30 A x 3)

horno 221 11,34 214 LL 0 7,3 218 0 214 7,1

toma 6 126,6 NA 124,6 NA NA 123,6 NA 126,5 NA

toma 5 126,6 NA 124,6 NA NA 123,6 NA 126,5 NA

Trifásico único que alimenta el compresor .(50A x 3) compresor 220LL 0 216 LL 0 13,95 218LL 14,01 214 0

monofásico iluminación de la Bodega y timbre (20 A) 1267 5,52 123 5,52 5,52 122,5 5,52 123,5 5,52

Monofásico alimentación

oficina(5 tomas,

iluminación), baño(toma e iluminación), almacén( 1

toma e iluminación) e iluminación 2

piso (30 A)

toma 7 122,9 NA 123,3 NA NA 123,2 NA 124,1 NA

toma 8 123,2 NA 124,5 NA NA 123,2 NA 123,8 NA

toma 9 123,2 NA 123,3 NA NA 122,1 NA 124,1 NA

toma 10 123,2 NA 123,3 NA NA 122,1 NA 124,1 NA

toma 11 123,2 NA 123,2 NA NA 122,1 NA 124,1 NA

toma 12 123,2 NA 123,3 NA NA 122,1 NA 124,1 NA

toma 13 123,2 NA 123,3 NA NA 122,1 NA 124,1 NA

Page 21: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

7.1.2 Conductores ramales

Para toda la instalación correspondiente a uso común se tiene en uso cable AWG 10. Diferentes

colores, en algunas situaciones conductores que inician desde su zona de alimentación con un

color y al empalmarse o unirse con otro conductor sufre un cambio de color, es decir que en la

carga final no corresponde el color que inicialmente la alimenta. Para verificar que los

conductores empleados son los adecuados se aplicará la siguiente formula (donde se toma

voltaje como 127 y FP= 0.9 para los cálculos) y se corroborará con la tabla 310-16 de la NTC 2050

(ANEXOS)

𝐼 =𝑃

𝑉 ∗ 𝐹𝑃

(5)

Para el circuito 1 se tiene:

P=1830W

I= 16.08

Este circuito cuenta con un conductor calibre 10 AWG que soporta hasta 35 amperios.

Para el circuito 2 se tiene:

P=5500W

I=25 Amperios

El conductor se debe calcular con el 125% de la In por ser un motor lo que da igual a 31,25

amperios y este circuito cuenta con un conductor calibre 10 AWG que soporta hasta 35

amperios.

Para el circuito 3 se tiene:

La potencia de un motor trifásico 4480W y de dos tomas 200W

La corriente del motor sería 20.36A más la corriente que puede sumar las tomas 1.57 serían 21.9

amperios con lo que el conductor actual de 10 AWG es suficiente ya que soporta hasta 35

amperios.

Para el circuito 5:

Este circuito está alambrado y corresponde al secador, sin embargo, se hace claridad en que no

se encuentra en funcionamiento actualmente. Este es un elemento altamente resistivo por

tanto la corriente sería: I= 2000W/220 lo que igual a 9 Amperios para lo que el conductor actual

Page 22: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

de 10 AWG estaría sobre dimensionado. Sin embargo; no se recomienda cambiarlo ya que

generaría un gasto innecesario.

Para el circuito 6:

Este circuito comprende una carga correspondiente a iluminación por lámparas fluorescentes

con una magnitud total de 1000W la corriente para este tipo de cargas se calcula con un factor

de potencia de 0,6. Entonces: I=1000/(120*0,9)= 9.25 Amperios. Con lo que el conductor actual

de 10 AWG es suficiente ya que soporta hasta 35 amperios.

7.1.3 Protecciones asociadas a los ramales

Se cuenta con 6 circuitos ramales identificados y nombrados en el numeral 6.2 del documento

en donde encontramos el cuadro de cargas (el circuito 4 por estar asociado directamente con la

cabina de pintado se expone en el numeral 7.2.3).

Las protecciones usadas para los ramales o circuitos son las siguientes:

Circuito 1: De acuerdo al cálculo de corriente anterior el interruptor termomagnético de 30

amperios marca luminex es más que suficiente. El estado físico de esta protección es bueno.

Circuito 2: Tres interruptores termomagnéticos de 50 amperios marca luminex. El estado de

estas protecciones es bueno, pero se encuentran de manera individual, es decir no es un

termomagnético trifásico. Este circuito está asociado a un motor trifásico que consume 25A la

forma para calcular el termomagnético se realizó con la formula Ip= C * In, donde Ip es la

corriente de protección C la constante de protección que se tomó como 2 e In la corriente

nominal dando un valor de 50A que se ajusta al termomagnético actual.

Circuito 3: Pacha de 3 interruptores termomagnéticos de 30 amperios marca luminex. El estado

de esta protección es un poco deficiente, sin embargo, el valor es el adecuado según los cálculos

del numeral anterior

Circuito 5: Dos interruptores termomagnéticos de 30 amperios marca luminex. El estado de esta

protección es poco deficiente uno de ellos está completamente dañado.

Circuito 6: interruptor termomagnetico de 20 amperios marca luminex, Aunque su valor es

adecuado según los cálculos de corriente el estado de esta protección es muy malo, se evidencia

un importante deterioro físico

Page 23: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

7.2 MEDICION DE ALIMENTACION Y EVALUACION CABINA

7.2.1 Corrientes y voltajes del ramal que energiza la cabina

La alimentación que debe tener la cabina debe ser muy buena para garantizar el óptimo

funcionamiento de cada uno de sus componentes, es por esto que se toman medidas para el

ramal que alimenta esta de forma independiente, pero en las mismas condiciones que se

tomaron las medidas para los ramales de uso común.

Tabla 5. Corrientes y voltajes del circuito de la cabina

Horno Encendido Cabina Encendida Compresor y horno

encendido

Cabina y compresor encendido

Cabina y horno encendido

voltaje corriente voltaje corriente voltaje corriente voltaje corriente voltaje corriente

Trifásico Alimentación cabina (dos

tomas monofásicas e iluminación)

ciclón y 2 tomas externas.(40 A x

3)

ciclón 220 LL 0 12,65 0 218 10,85 214 10,42

Toma 4c 126 NA 124,4 NA NA 122,4 NA 122,2 NA

Toma 3c 126,5 NA 124,4 NA NA 122,3 NA 122,4 NA

Toma 1 126,5 NA 123,9 NA NA 122,5 NA 122,6 NA

Toma 2 126,5 NA 123,9 NA NA 122,3 NA 122 NA

7.2.2 Conductores alimentación cabina

Los Conductores que le suministran energía eléctrica a la cabina tienen un calibre AWG 10 están

en un excelente estado, y cumple con los colores que determina la norma para este tipo de

instalación.

La corriente que fluirá a través de este circuito será: la corriente del ciclón 4100/(330*0.9) =

19.22 A más la de las tomas 650/120=5.416 A para un total de 24.63 Amperios con lo que el

calibre actual es suficiente.

7.2.3 Protección asociada a la cabina

El circuito que alimenta la cabina identificado en el cuadro de cargas, mencionado en el numeral

6.2 del documento, como circuito 4 tiene la siguiente protección asociada:

Circuito 4: Interruptor termomagnético trifásico de 40 amperios marca luminex. El estado de

esta protección es bueno, presenta desgaste normal por el uso, y según los cálculos del numeral

anterior y calculando la corriente de arranque de ese motor como del 150% la corriente sería de

34.24 Amperios con lo cual la protección de 40 sería la adecuada.

Page 24: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

7.3 REGULACION

En la zona de producción y oficinas de Pintutecnia se encuentran 6 circuitos ramales que

suministran la energía eléctrica necesaria para todo el funcionamiento de la planta, algunos de

estas ramas tienen cargas puntuales, otras tienen muchos tomacorrientes asociados, es por esto

que se realiza la regulación de tensión con la ayuda de la aplicación online que tiene la página

de Procables y las medidas reales tomadas, sin embargo se presentan los cálculos realizados

utilizando las ecuaciones (1) ,(2), (3) y (4)

Rama 1

Zef = 0,00394 ∗ 0.9 = 0,003546

∆𝑉 = 0,003546 ∗ 2 ∗ 3,44 ∗ 7,45 = 0.1817

Regulación % =0.1817

123,3= 0.147%

Rama 2

Zef = 0,00394 ∗ 0.9 = 0,003546

∆𝑉 = 0,003546 ∗ 13,95 ∗ 6,22 = 0,3076

Regulación % =0.3076

220= 0,1398%

Rama 3

Zef = 0,00394 ∗ 0.9 = 0,003546

∆𝑉 = 0,003546 ∗ 7,3 ∗ 19,26 = 0,4985

Regulación % =0.4985

221= 0,225%

Rama 4

Zef = 0,00394 ∗ 0.9 = 0,003546

∆𝑉 = 0,003546 ∗ 10,85 ∗ 7,30 = 0.2808

Regulación % =0.2808

220= 0.127 %

Rama 5

Zef = 0,00394 ∗ 0.9 = 0,003546

∆𝑉 = 0,003546 ∗ 2 ∗ sin 𝑐𝑎𝑟𝑔𝑎 ∗ 3,77 = 𝑁/𝐴

Regulación % =𝑁/𝐴

123,3= 𝑁/𝐴

Page 25: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

Rama 6

Zef = 0,00394 ∗ 0.9 = 0,003546

∆𝑉 = 0,003546 ∗ 2 ∗ 5,52 ∗ 20,65 = 0.8084

Regulación % =0.8084

126,7= 0.638%

Page 26: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

7.4 EVALUACIÓN DE PUESTA A TIERRA

7.4.1 MEDICION DE PUESTA A TIERRA GENERAL

Para la medición de este numeral y el 7.4.2 se usó el equipo ERASMUS ERT100 el cual funciona

con el método de la caída de potencial, éste método se realiza con tres puntas de prueba o

electrodos separados, las cuales se conectan a los tres terminales del instrumento para medición

de la resistencia a tierra como se muestra en la ilustración 3. Éste basa su funcionamiento

básicamente en dos electrodos C1 Y C2 a los cuales se les aplica una tensión para que fluya una

corriente y un tercer electrodo P2 que mide la caída de potencial y mediante la relación V/I se

obtiene el valor de resistencia, el electrodo P2 se puede mover a lo largo de la distancia D

arrojando diferentes valores de resistencia tal como lo muestra la ilustración 4 que tiende a

nivelarse desde el 60% de D, por esta razón y según lo estipulado en el artículo 15.5.2 del RETIE

tomamos el valor de R que corresponde al 62% de la distancia D.

Los parámetros de nuestra medición fueron: D=15mts distancia del electrodo P2=9.3 con lo que

se obtuvo una resistencia de 10.2 ohmios (con los electrodos de prueba a 35cm de profundidad).

Teniendo en cuenta lo estipulado por el RETIE en el artículo 15.4 comprobamos que el valor

medido está por debajo de los 25 ohmios reglamentarios para instalaciones de baja tensión.

Ilustración 4. Tipo de conexión del telurómetro para medición de resistencia del terreno

Page 27: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

Ilustración 5. Principio de funcionamiento del método de medición: caída de potencial

7.4.1.1 Electrodo caja tablero general

Se tiene un electrodo de puesta a tierra con una longitud de 2.50m de la cual 2.40m se

encuentran enterrados, éste electrodo tiene un diámetro de 3/4” y está hecho en cobre. Este

presenta un valor de resistencia medido con el multímetro de 3.0 Ohmios el cual está dentro de

los valores establecidos para este tipo de electrodo.

7.4.2 MEDICION Y EVALUACION DE PUESTA A TIERRA CABINA Para la medición y evaluación de la resistencia de puesta a tierra de la cabina se hizo el mismo

procedimiento que en el numeral 7.4.1 solo cambiaron los parámetros así: D=10mts distancia

del electrodo P2=6.2 con lo que obtuvimos una resistencia de 36.4 ohmios (con los electrodos

de prueba a 35cm de profundidad). Este valor se encuentra por encima de los 25 Ω mínimos

para este tipo de instalación.

Para el valor de resistencia de la cabina se tomó como guía la sección 516-5 de la NTC 2050

(Equipo manual de rociado electrostático). Se evidenció que la empuñadura de la pistola no

cumple con el literal C de esta sección ya que no cuenta con un una conexión metálica que sea

sujetada íntimamente por el operario, respecto al literal D todos los objetos eléctricamente

Page 28: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

conductivos la zona de pintura tales como el riel están conectados a tierra adecuadamente, en

cuanto al literal E los elementos que se utilizan para el soporte de los objetos a pintar son

ganchos finos tal como dice la norma y mediante mediciones se comprobó que el valor de

resistencia medido desde el punto de sujeción hasta el electrodo de puesta a tierra es mucho

menor a 1MΩ dando cumplimiento a la norma.

7.4.2.1 Electrodo de puesta a tierra cabina

Para la cabina se tiene un electrodo de puesta a tierra con una longitud de 1,80 de la cual 1,35

se encuentras enterrados, este electrodo tiene un diámetro de 3/4" y está hecho en cobre. El

cual posee un valor de resistencia medido con el multímetro de 3.4 Ohmios el cual está dentro

de los valores establecidos para este tipo de electrodo.

7.5 PROYECCION DE INVERSION

Es necesario después de realizar toda la evaluación y las mediciones necesarias para determinar

el estado en el que se encuentra la red, desarrollar las correcciones necesarias que conlleven a

la mejora de cada uno de los ítems evaluados. Estas correcciones realizadas en el numeral 8 de

este trabajo están diseñadas bajo cada una de las normativas mencionadas, es por esto que su

puesta en marcha asegurara un mejoramiento en cada una de las etapas de producción de la

empresa. No obstante, se tiene que determinar los costos que tienen estas mejoras, ya que

realizando esto, se podrá intuir si la relación beneficio costo del proyecto de mejora es positivo

y lo suficientemente alto para la implementación.

Durante todo el documento se ha tratado por separado la red de alimentación con el sistema

de puesta a tierra, esto debido a la importancia que tiene esta última, sin desmeritar la otra,

para el proceso de producción de Pintutecnia, es por esto que la proyección de inversión se hará

de la misma manera.

7.5.1 Red de alimentación

7.5.1.1 Canalizaciones

De acuerdo a las recomendaciones hechas en el numeral 9.1.1 se debe cambiar la tubería actual

de PVC por una de acero galvanizado para los ramales 2,3,4,5. Esta tubería presenta un costo de

$13.590 X 3mts con lo cual se requieren 16 tubos.

7.5.1.2 Toma corrientes

De acuerdo con las recomendaciones dadas en el numeral 9.1.2 se deben comprar

tomacorrientes con polo a tierra y tapa protectora para reemplazar el 2,5, 13 y ciclón: 3

tomacorrientes dobles con polo a tierra ($20.000) y uno sencillo ($15.000). Para el baño se debe

usar una toma GFCI ($63.900)

Page 29: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

7.5.1.3 Conductores

Como se pudo observar en el numeral 7.1.2 y 7.2.2 los conductores de cada circuito ramal son

aptos para las corrientes que circulan por ellos. Por tanto, no se contempla el reemplazo de

ninguno de ellos.

7.5.1.4 Protecciones

De acuerdo con el numeral 8.1.4.2 Y 8.1.4.3 se requiere cambiar los 3 interruptores monopolares

de 50 Amperios por uno trifásico de la misma capacidad ($ 107.900) y el segundo también por

deterioro. De acuerdo con el numeral 8.1.4.6 se requiere cambiar dicho termomagnético

monopolar de 20 Amperios ($8.900)

7.5.2 Sistema de puesta a tierra Para el mejoramiento del SPT se planten dos escenarios de inversión, uno tiene que ver con el

numeral 9.2.4 donde se contempla la conexión de los dos sistemas, esto se debe realizar con

alambre de cobre 10 AWG y se deben comprar 3,30 metros de cable, esto mejoraría el valor de

resistencia en un 20% además si cambia el electrodo por uno del doble de la longitud se podría

llegar a una reducción del 40% del valor. Para esto se recomienda una varilla de 3 metros de

longitud por valor de $120.000.

7.5.3 Uniones y empalmes Teniendo en cuenta la recomendación del numeral 9.2.1 se debe realizar la conexión del

electrodo y el conductor de puesta a tierra mediante soldadura exotérmica por valor de $90.000

7.5.4 Reubicación del electrodo de puesta a tierra y realización de caja de inspección La ubicación actual del electrodo del sistema de puesta a tierra de la cabina no es correcta, ya

que se encuentra alejada de la cabina y esto provoca que el alambre utilizado para la conexión

de todo el SPT esté instalado incorrectamente al estar a 2,10 metros de altura pasando por

encima de un área de trabajo, potencializando así el riesgo para los trabajadores y equipos.

Se debe correr 1,3 metros el electrodo en dirección a la cabina, y retirar el conductor aéreo

utilizado para la conexión de la cabina con el electrodo a tierra que se necesita reubicar.

Tabla 6. Presupuesto de materiales

Elemento Cantidad Precio X unidad Total

Tubería metálica 16 8.700 (3m) 139.200

Tomacorriente sencillo 1 15.000 15.000

Tomacorriente doble 3 20.000 60.000

Tomacorriente GFCI 1 63.900 63.900

Breaker tripolar (Schneider)

2 95.000 190.000

Breaker monopolar (luminex)

1 8.900 8.900

Soldadura exotérmica 1 90.000 90.000

Caja de inspección 1 220.000 220.000

Varilla cobre 1 120.000 120.00

Alambre tierra 17 1.600(1m) 27.200

TOTAL $934.200

Nota: Los precios son válidos hasta enero de 2019.

Page 30: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

8. EVALUACION Y CUMPLIMIENTO DE OBJETIVOS

Inicialmente se plantearon unos objetivos que conllevarían a cumplir con el propósito general y

final de la pasantía, gracias al desarrollo y cumplimiento de cada uno de estos se pudo terminar

satisfactoriamente el proyecto. A continuación, se evidencia cuáles fueron los objetivos, de qué

manera se cumplieron y finalmente una evaluación cuantificada en porcentaje, obtenido por

unos factores ya preestablecidos en conjunto con el director externo de la pasantía.

Factores a tener en cuenta:

Cumplimiento del objetivo: se evaluará si el objetivo fue cumplido en su totalidad.

Cumplimiento del tiempo: se evaluará si el objetivo se realizó en el tiempo establecido

en el cronograma de actividades.

Optimización de recursos: se evaluará el uso eficiente de los recursos entregados por la

empresa para la ejecución de las actividades.

Tabla 7. Evaluación y cumplimiento de los objetivos de la pasantía

EVALUCION POR FACTORES

OBJETIVOS CUMPLIMIENTO DEL OBJETIVO

CUMPLIMIENTO DEL TIEMPO

OPTIMIZACION DE RECURSO

EVALUACION FINAL

Realizar un diagnóstico energético en la planta de producción de la empresa y en las zonas destinadas a la parte administrativa determinando falencias según la normatividad vigente.

Inicialmente los trabajadores colaboran para el reconocimiento de todas las zonas que componen la empresa y también puntos eléctricos más relevantes, lo que permiten empezar con el diagnóstico de la planta, terminándolo luego en la etapa de toma medidas. (100%)

El reconocimiento de la planta y puntos eléctricos se realiza en el tiempo estipulado, el diagnostico toma un poco más del tiempo previsto debido a la funcionalidad de la empresa en su zona de producción. (70%)

Los recursos asignados para esta actividad inicialmente fueron elementos de seguridad y algunos elementos de medida (voltímetro, amperímetro, metro, etc.). Luego se destinó material y pintura, así como recurso humano para repetir algunas medidas con la planta en funcionamiento, se gasta más material de lo asignado para esta actividad. (80%)

83,33%

Describir detalladamente todo el proceso de producción

Se indaga y se conoce todo el proceso de producción,

Al finalizar el estudio de la normativa, se inicia el

Los recursos designados para esto básicamente fueron elementos

Page 31: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

de la empresa y la relación directa que tiene con la calidad de energía que se tiene en la planta.

logrando identificar puntos críticos de alimentación así mismo como cargas importantes, fue necesario tener bastante claro los distintos procesos. (100%)

acercamiento a la planta de producción, logrando describir detalladamente cada elemento concerniente al estudio, en el tiempo indicado en el cronograma. (100%)

de seguridad además de un computador con acceso a internet. Se usaron únicamente esos recursos de manera adecuada. (100%)

100%

Determinar cada una de las adecuaciones para la red eléctrica con la que cuenta la empresa de manera clara, acogiéndose estrictamente a la normatividad vigente.

A partir del diagnóstico físico y eléctrico de la red, y el reconocimiento de la funcionalidad de la empresa se establecieron las adecuaciones necesarias para el mejoramiento en la zona de producción, esto se puede evidenciar en el numeral 9 del documento. (100 %)

El tiempo usado para el desarrollo de este objetivo fue más de lo previsto, 3 días más fueron necesarios para culminar esta parte, esto debido a algunas adecuaciones que se tenían que tener en cuenta por requerimiento de espacios necesarios para la funcionalidad en la zona de producción. (90%)

Los recursos designados para esto básicamente fueron elementos de seguridad además de un computador con acceso a internet. Luego fue asignado un espacio para poder desarrollar de mejor manera la pasantía. Se usaron únicamente esos recursos de manera adecuada (100%)

96,66 %

Diseñar el sistema de puesta a tierra a partir de mediciones obtenidas que permitan el mejoramiento en la eficiencia para el proceso de recubrimiento de pintura.

El diseño de puesta a tierra se enfocó en rediseñar lo que ya había Debido a la dificultad que conlleva la implementación de un sistema de puesta a tierra total mente nuevo. Se evidencia en el numeral 9 del

Debido a la los imprevistos y demoras en las actividades anteriores no se realiza en la fecha establecida en el cronograma inicial, pero se usa el tiempo que se determinó en el mismo. (85%)

Los recursos designados para esto básicamente fueron elementos de seguridad además de un computador con acceso a internet. Se usaron únicamente esos recursos de manera adecuada. Se mantiene el espacio asignado. (100%)

95%

Page 32: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

documento. (100 %)

Analizar los resultados obtenidos enfocándose en la viabilidad técnica y financiera

Finalmente se hacen los análisis respectivos para los resultados obtenidos, agregando una parte de presupuesto de materiales para determinar de tan viable seria la implementación de los resultados del proyecto. (100%)

Para esta etapa se usa el tiempo determinado en el cronograma, pero debido a los contratiempos en actividades anteriores no se realiza en la fecha establecida. (85%)

Se destina algún recurso humano y físico para realizar un análisis en conjunto. El uso de catálogos adquiridos por la empresa fue utilizado para consultar precios y generar así el presupuesto. Se mantienen elementos de seguridad. (100%)

95%

Page 33: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

9. MODIFICACIONES Y RECOMENDACIONES

9.1 Generales En cuanto a la sujeción de las piezas se recomienda que los ganchos utilizados sean limpiados

de manera más profunda de pintura y oxido ya que estos residuos aumentan la resistencia a

tierra disminuyendo la adherencia de la pintura esto evidenciado tras varias pruebas realizadas

con diferentes ganchos.

9.1.1 Canalizaciones Las canalizaciones son conductos cerrados, de sección circular, rectangular o cuadrada, de

diferentes tipos (canaletas, tubos o conjunto de tubos, prefabricadas con barras o con cables,

ductos subterráneos, entre otros) destinadas al alojamiento de conductores eléctricos de las

instalaciones. También se constituyen en un sistema de cableado.

Se recomienda que las partes de canalizaciones que estén expuestas o a la vista, deban marcarse

en franjas de color naranja de al menos 10 cm de anchas para distinguirlas de otros usos.

En la escogencia e instalación del tipo de canalización, se deben evaluar las condiciones

particulares de la instalación y su ambiente y aplicar los elementos más apropiados teniendo en

cuenta los usos permitidos y las prohibiciones, de los elementos disponibles en el mercado. [[3],

pág. 97, artículo 20]

Se recomienda para los circuitos 2, 3, 4 y 5 que tienen canalizaciones en tubos no metálicos

expuestas aplicar el artículo 20.6.1.2 donde menciona los requisitos de instalación y hace énfasis

en :

No deben instalarse tuberías no metálicas en lugares expuestos a daños físicos o a la luz solar

directa, si no están certificadas para ser utilizadas en tales condiciones.

9.1.2 Tomacorrientes Debido a la gran irregularidad que se presenta en la zona de producción de la empresa es

necesario realizar unas modificaciones dadas a continuación:

En primer lugar se deben cambiar los tomacorrientes que están en evidentemente estado de

desgaste al igual que los que no tienen todos sus elementos (tomacorrientes 2, 5, 13 y ciclón)

como está estipulado en el RETIE.

Los tomacorrientes deben suministrarse e instalarse con su respectiva placa, tapa o cubierta

destinada a evitar el contacto directo con partes energizadas, estos materiales deben ser de alta

resistencia al impacto.

Se deberá tener en cuenta que los tomacorrientes polarizados y con polo a tierra, deben tener

claramente identificados mediante letras, colores o símbolos, los terminales de neutro y tierra

y si son trifásicos los terminales donde se conectan las fases también se deben marcar con letras.

En los tomacorrientes monofásicos el terminal plano más corto debe ser el de la fase

(tomacorrientes 3c, 9). [[3], pág. 107, artículo 20]

En los tomacorrientes (tomacorrientes 13 y baño) se presenta algunas irregularidades en la

forma de conexión y debido a que la conexión de los conductores eléctricos a los terminales de

los tomacorrientes y clavijas debe ser lo suficientemente segura para evitar recalentamientos

de los contactos [[3], pág. 108, articulo 20] se debe realizar nuevamente la conexión de estos.

Page 34: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

El tomacorriente instalado en el baño no tiene una ubicación adecuada y además de esto está

cerca de una zona húmeda debido a que los tomacorrientes instalados en lugares húmedos

deben tener un grado de encerramiento IP (o su equivalente NEMA), adecuado para la aplicación

y condiciones ambientales que se esperan y deben identificar este uso [[3], pág. 108, artículo

20] en necesario reubicar éste y utilizar una toma doble monofásica GFCI la cual nos garantizará

una protección por falla a tierra.

Para finalizar tenemos que los tomacorrientes (tomacorrientes 3c, 4c, 7, 9, 10, 11, y 13) están

instalados de forma incorrecta, deben desconectarse y cuando los tomacorrientes se instalen

de forma horizontal, el contacto superior debe corresponder al neutro. Cuando exista un arreglo

de varios tomacorrientes en un mismo producto, el contacto superior debe ser el neutro. [[3],

pág. 108, artículo 20]

9.1.3 Conductores Aunque el color actual de los conductores en los circuitos ramales no tienen incidencia alguna

en el funcionamiento de los equipos el reglamento técnico de instalaciones eléctricas (RETIE) en

el artículo 6.3 si establece que para los conductores de neutro se debe usar un color blanco y

para la fase negro, o el color correspondiente a la fase alimentadora, esto con el fin de identificar

fácilmente los conductores asociados a cada carga para posibles mantenimientos o detección

de fallos, sin embargo como se pudo observar en el numeral 7.1.2 y 7.2.2 los conductores de

cada circuito ramal son aptos para las corrientes que circulan por ellos. Por tanto, no se

contempla el reemplazo de ninguno de ellos.

9.1.4 Protecciones

9.1.4.1. Protección asociada al circuito 1

Está en buen estado no requiere cambios y de acuerdo con los cálculos del numeral 7.1.2 el

valor de protección es el adecuado.

9.1.4.2. Protección asociada al circuito 2

Los contactos móviles de todos los polos de los interruptores multipolares deben estar

acoplados mecánicamente, de tal modo que abran y cierren conjuntamente, bien sea manual o

automáticamente, incluso si la sobrecarga se presenta solamente en un polo protegido. . [[3],

pág. 113, artículo 20]. Debido a que la protección asociada a este circuito no cumple lo

mencionado anteriormente se debe cambiar la protección por un interruptor de 50 amperios

que esté acoplado mecánicamente.

9.1.4.3. Protección asociada al circuito 3

Se recomienda cambiar éste Breaker tripolar por desgaste.

9.1.4.4. Protección asociada al circuito 4

Esta protección presenta un desgaste normal por el uso el cual no afecta su funcionamiento,

por tanto, no se aconseja cambiarlo aún.

9.1.4.5. Protección asociada al circuito 5

Se recomienda un cambio inmediato de los termomagnéticos asociado a este circuito debido a

su estado tan precario, además, se recomienda disminuir el valor del termomagnético de 30 a

20 Amperios para garantizar la protección del equipo.

Page 35: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

9.1.4.6. Protección asociada al circuito 6

Se recomienda un cambio inmediato del termomagnético asociado a este circuito debido a su

estado tan precario.

9.1.5 Regulación Según los cálculos realizados en el numeral 7.3 del presente documento, no es necesario

tomar algún tipo de medida con respecto a la distribución de circuitos, o a cualquier otro

factor que modifique los valores de regulación.

9.1.6 Planos En cuanto a los planos se deben usar los realizados para el numeral 6.3 con la salvedad que

ahora las canalizaciones o tubería debe ser de tipo EMT de ½"

9.2 sistema puesta tierra

9.2.1 Uniones Las conexiones que van bajo el nivel del suelo (puesta a tierra), deben ser realizadas con

soldadura exotérmica o conector certificado para enterramiento directo conforme a la norma

IEEE 837 o la norma NTC 2206. Para verificar que las características del electrodo de puesta a

tierra y su unión con la red equipotencial cumplan con el presente reglamento, se deben dejar

puntos de conexión accesibles e inspeccionables al momento de la medición. Cuando para este

efecto se construyan cajas de inspección, sus dimensiones internas deben ser mínimo de 30 cm

x 30 cm, o de 30 cm de diámetro si es circular y su tapa debe ser removible, no aplica a los

electrodos de líneas de transporte.

9.2.2 Conductores

Calibre de los conductores de puesta a tierra de los equipos. El calibre de los conductores de

puesta a tierra de los equipos, de cobre, aluminio o aluminio recubierto de cobre, no debe ser

menor al especificado en la Tabla 8. Cuando haya conductores en paralelo en varios conductos

o cables, como lo permite el Artículo 310-4, el conductor de puesta a tierra de los equipos,

cuando exista, debe estar instalado en paralelo. Cada conductor de puesta a tierra de equipos

instalado en paralelo debe tener un calibre determinado sobre la base de la corriente nominal

del dispositivo de protección contra sobrecorriente que proteja los conductores del circuito en

el conducto o cable, según la Tabla 8.

Cuando se instalen conductores de varios calibres para compensar caídas de tensión, los

conductores de puesta a tierra de los equipos, cuando deban instalarse, se deberán ajustar

proporcionalmente según su sección transversal. Cuando un conductor sencillo de puesta a

tierra de equipos vaya con circuitos múltiples en el mismo conducto o cable, su calibre se debe

determinar de acuerdo con el mayor dispositivo de protección contra sobrecorriente que

proteja a los conductores del mismo conducto o cable. [[5], pág. 123, capítulo 2]

Page 36: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

Tabla 8. Calibre mínimo de los conductores de puesta a tierra de equipos para puesta a tierra

Corriente nominal o ajuste máximo del dispositivo automático de protección contra sobrecorriente en el circuito

antes de los equipos, tubos conduit, etc. (A)

Sección Transversal

Alambre de cobre Alambre de aluminio o de aluminio revestido de cobre *

〖𝑚𝑚〗^2 AWG o kcmil 〖𝑚𝑚〗^2 AWG o kcmil

15 2,08 14 3,3 12

20 3,3 12 5,25 10

30 5,25 10 8,36 8

40 5,25 10 8,36 8

60 5,25 10 8,36 8

100 8,36 8 13,29 6

200 13,29 6 21,14 4

300 21,14 4 33,62 2

400 26,66 3 42,2 1

500 33,62 2 53,5 1/0

600 42,2 1 67,44 2/0

800 53,5 1/0 85,02 3/0

100 67,44 2/0 107,21 4/0

1200 85,02 3/0 126,67 250 kcmil

1600 107,21 4/0 177,34 350kcmil

2000 126,67 250 kcmil 202,68 400kcmil

2500 177,34 350kcmil 304,02 600kcmil

3000 202,68 400kcmil 304,02 600kcmil

4000 253,25 500kcmil 405,36 800kcmil

5000 354,69 700kcmil 608,04 1200kcmil

6000 405,36 800kcmil 608,04 1200kcmil

El calibre utilizado actualmente en el sistema de puesta a tierra según la corriente nominal en

cada circuito cumple con lo establecido por la norma en la tabla 8, se recomienda limpiarlo

constantemente debido a los residuos de pintura en polvo que este adquiera al estar muy cerca

de la cabina de aplicación.

Por medio de un cable de 17m AWG 10 se deben unir los electrodos que se encuentran

independientes, es recomendable que este cable vaya por tierra de un electrodo a otro, de no

ser posible esto, debe ir a nivel del suelo, esto con el fin de evitar tensiones y efectos eléctricos

indeseados.

9.2.3 Equipotencializar Según lo evidenciado en el numeral 7.4.2 Los operadores deben mantener contacto piel-metal

entre sus manos y los mangos de la pistola para evitar descargas mientras se trabaja con pistolas

de spray electrostáticas manuales (Según NTC2050, sección 516-5). Si se utilizan guantes,

recorte la palma o dedos, utilice guantes conductores o póngase muñequera de tierra conectada

al mango de la pistola u otra toma de tierra.

Page 37: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

Teniendo en cuenta los sistemas de puesta tierra independientes en el numeral 6.4 se

recomienda aplicar el RETIE en su artículo 15.1 que mediante la ilustración 5 es muy claro al

dictar que: Para un mismo edificio, quedan expresamente prohibidos los sistemas de puesta a

tierra que aparecen en la ilustración 6 y 7, y que se deben interconectar todas las puestas a tierra

de un edificio, es decir, aquellas partes del sistema de puesta a tierra que están bajo el nivel del

terreno y diseñadas para cada aplicación particular.

Ilustración 6. Sistemas de puestas a tierra dedicadas o interconectadas

Ilustración 7. Una sola puesta a tierra para todas las necesidades

Ilustración 8. Puestas a tierra separadas o independientes

9.2.4 Resistencia y electrodo de puesta a tierra Se podrían plantear dos alternativas de mejora en cuanto al sistema de puesta a tierra de la

cabina una es duplicar la longitud del electrodo de puesta a tierra, ya que de esta manera es

posible reducir el nivel de resistencia en un 40 % adicional, y la segunda es el aumento del

diámetro del electrodo de puesta a tierra, tiene muy poco efecto en disminuir la resistencia. Por

ejemplo, es posible duplicar el diámetro de un electrodo de puesta a tierra, pero la resistencia

solo disminuiría en un 10 %. Sin embargo, se podría asegurar una disminución del 20% de la

resistencia de puesta a tierra solo con aplicar la recomendación del numeral 9.2.3 de conectar

físicamente los dos electrodos del sistema.

Page 38: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

10. CONCLUSIONES

Debido a lo expuesto en este trabajo queda claro que para instalaciones relativamente antiguas

no se tiene en cuenta la normatividad en cuanto instalaciones y sistemas de puesta a tierra,

restándole importancia a los beneficios que se podrían obtener con simplemente hacer uso de

los conductores específicos, o un sencillo estudio de la resistencia del terreno, que para este

tipo de industria (pintura electrostática) en particular representa la mejor opción para mejorar

el proceso de recubrimiento.

Como se pudo observar la empresa no contaba con un levantamiento de planos y cuadro de

cargas de su instalación eléctrica, lo que dificultó realizar el diagnóstico.

De acuerdo a los resultados de medición de resistencia de puesta a tierra dedicada a la cabina

se pudo observar que no se requieren grandes esfuerzos para mejorar la resistencia del terreno

ya que de por si las condiciones propias del terreno son favorables.

La limpieza de toda la zona de producción es fundamental, ya que las partículas de pintura en

polvo pueden afectar de manera negativa el desarrollo normal de las actividades diarias. La

investigación y la toma de medidas en el riel de la cabina con respecto al electrodo a tierra

demostraron lo importante de la limpieza en los ganchos donde se coloca el material dispuesto

a recibir el recubrimiento en polvo y de igual manera el riel que transporta este material hacia

el interior de la cabina, de no hacer una limpieza periódica de estos, la pintura forma una capa

en estos elementos, dejándolos aislados del sistema de puesta a tierra, lo que evidentemente

llevara un producto de calidad muy deficiente.

Es necesario pensar en futuras intervenciones a la red eléctrica de cualquier edificación, ya sea

por mantenimiento o por crecimiento en la edificación, es por eso que es de vital importancia

respetar los colores establecidos por la norma para cada uno de los hilos que componen la red.

Conocer el principio de funcionamiento de la pintura electrostática y poder explicarlo desde la

ingeniera detalladamente a los gerentes de la empresa conllevó a que replantearan la

instalación eléctrica y el SPT como actores importantes en el proceso de producción.

Teniendo en cuenta el proceso de mejora continua y la intención de posicionar a Pintutecnia

como una empresa de altos estándares y amplio reconocimiento se planteó una proyección de

inversión que sin duda aportará a mejorar la seguridad de los operarios, de los equipos y

también a mejorar la calidad del proceso en general.

Page 39: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

11. BIBLIOGRAFÍA

[1] j. f. e. ramirez, «Estudio de Factibilidad para Renovación de Tecnología en

Hornos de Curado de Pintura Electrostática en la Industria de Elevadores,»

2009. [En línea]. Available:

https://repository.eafit.edu.co/bitstream/handle/10784/4353/JuanFelipe_Esc

obarRamirez_2009.pdf?sequence=1&isAllowed=y.

[2] E. p. d. Ejercito, Diseño, Construcción y Automatización de un Horno para el curado de Pintura

Electrostática para el centro de producción e.s.p.e sede latacunga, Latacunga, 2010.

[3] M. d. m. y. energía, «Ministerio de minas y energía, Reglamento Técnico de instalaciones

Electricas,» 30 agosto 2013. [En línea]. Available:

https://www.minminas.gov.co/documents/10180/712360/Anexo+General+del+RETIE+2013.p

df/14fa9857-1697-44ed-a6b2-f6dc570b7f43.

[4] CENTELSA, «Regulación de tensión en instalaciones eléctricas,» Cables y tecnología, pp. 1-16,

2005.

[5] ICONTEC, Norma técnica Colombiana, NTC 2050, Bogotá, 1998.

[6] voltimum, «Voltimum,» 2014. [En línea]. Available: https://www.voltimum.es/articulos-

tecnicos/resistencia-puesta-tierra.

[7] g. rojas, «Gedisa,» 2010. [En línea]. Available:

https://hugarcapella.files.wordpress.com/2010/03/manual-de-puesta-a-tierra.pdf. [Último

acceso: junio 2018].

[8] Nordson, «Sistema de control de pistola modular Sure coat,» ohio,USA, 2000.

Page 40: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

12. ANEXOS

Registros fotográficos durante el desarrollo de la pasantía en la empresa Pintutecnia SAS

Registro 1. Tubo PVC externo alimentando el horno

Registro 2 Ubicación Caja de distribución para equipos grandes e iluminación bodega

Page 41: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

Registro 4 Tierra usada exclusivamente para la cabina de pintado

Registro 5. Caja de Distribución (estado actual)

Registro 6. Tubería en PVC externa que sale de la caja de distribución hacia cada una de las cargas

Registro 3. Inconsistencias en el alambrado en la iluminación del almacén

Page 42: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

Registro 7. Tubería PVC externa que alimenta la iluminación y el secador.

Registro 8. Tubería PVC externa que alimenta el compresor

Registro 9.Telurómetro erasmus ERT100

Page 43: MEJORAMIENTO DEL PROCESO DE PINTURA ELECTROSTÁTICA …

Registro 10. TABLA 310-6 NTC2050