instituto politecnico nacional es cuela superior de

67
Página 1 DEPARTAMENTO DE INGENIERÍA QUÍMICA INDUSTRIAL T E S I S OBTENCIÓN DE MATERIALES POR EL MÉTODO DE SOL-GEL A BASE DE CeO 2 Y ZrO 2 .” PARA OBTENER EL TÍTULO DE INGENIERIO QUÍMICO INDUSTRIAL P R E S E N T A IVONNE SELENE PÉREZ VARGAS ASESOR: DRA. MARÍA ELENA MANRÍQUEZ RAMÍREZ DIC 2016. ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA E INDUSTRIAS EXTRACTIVAS INSTITUTO POLITECNICO NACIONAL

Upload: others

Post on 14-Jul-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 1

DEPARTAMENTO DE INGENIERÍA QUÍMICA INDUSTRIAL

T E S I S

“OBTENCIÓN DE MATERIALES POR EL MÉTODO DE SOL-GEL

A BASE DE CeO2 Y ZrO2.”

PARA OBTENER EL TÍTULO DE INGENIERIO QUÍMICO INDUSTRIAL

P R E S E N T A

IVONNE SELENE PÉREZ VARGAS

ASESOR: DRA. MARÍA ELENA MANRÍQUEZ RAMÍREZ

DIC 2016.

ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA

E INDUSTRIAS EXTRACTIVAS

INSTITUTO POLITECNICO NACIONAL

Page 2: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

SECRETARIA

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA E INDUSTRIAS EXTRACTIVAS

DEPARTAMENTO DE EVALUACIÓN Y SEGUIMIENTO ACADÉMICO

DE EDUCACIÓN PÚBLICA T-124-15

México, D. F., 01 de diciembre del 2015.

A la C. Pasante: IVONNE SELENE PÉREZ VARGAS

Boleta: 2010320795

Carrera: IQI

Generación: 2010-2014

Mediante el presente se hace de su conocimiento que la Subdirección Académica a través de

este Departamento autoriza que la C. Dra. María Elena Manríquez Ramírez, sea asesora en el tema

que propone usted desarrollar como prueba escrita en la opción Tesis Individual, con el título y

contenido siguiente:

"Obtención de materiales por el método de sol-gel a base de Ce02 y Zr02 ".

Resumen. Introducción.

1.- Generalidades. 11.- Propiedades y técnicas.

111.- Experimental. Conclusiones. Bibliografía .

Se concede un plazo máximo de un año, a partir de esta fecha, para presentarlo a revisión por el Jurado asignado.

Presidente

Jefe del Departamento Evaluación y Seguimiento Académico

c. c. p.-Subdirección Académica

c. c. p.-Evaluación y Seguimiento Académico

c. c. p.- Control Escolar.

GATA/rcr

D" Mada e,Ramice' Directora de Tesis Ced. Prof 2299161

Page 3: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA E INDUSTRIAS EXTRACTIVAS

DEPARTAMENTO DE EVALUACIÓN Y SEGUIMIENTO ACADÉMICO

SECRETARIA DE

EDUCACIÓN PÚBLICA

México, D. F. , 27 de enero del 2016.

A la C. Pasante: JVONNE SELENE PÉREZ VARGAS PRESENTE

Boleta: 2010320795

Carrera: IQI

T-124-15

Generación: 2010-2014

Los suscritos tenemos el agrado de informar a usted, que habiendo procedido a revisar el

borrador de la modalidad de titulación correspondiente denominado:

"Obtención de materiales por el método de sol-gel a base de Ce02 y Zr02"

encontramos que el citado Trabajo de Tesis Individual, reúne los requisitos para autorizar el Examen

Profesional y PROCEDER A SU IMPRESIÓN según el caso, debiendo tomar en consideración las

indicaciones y correcciones que al respecto se le hicieron.

c.c.p.· Expediente GATA/rcr

Atentamente

JURADO

M. en ~:trada Flores 3er. Vocal

Page 4: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 2

RECONOCIMIENTOS INSTITUCIONAL.

Al Instituto Politécnico Nacional:

Es un orgullo para mí pertenecer a esta Institución que ha sido parte de la mejor etapa

de mi vida, en él aprendí a levantarme tras cada caída y que los errores son el mejor maestro.

Llevo grabado en mí ser el lema “La técnica al servicio de la Patria” pues soy

Politécnico por convicción y no por circunstancia.

A la Escuela Superior de Ingeniería Química e Industrias Extractivas:

Porque es un gran orgullo decir “Soy un Ingeniero Químico de la ESIQIE” y por

enseñarme que las cosas buenas de la vida cuestan más trabajo.

Page 5: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 3

AGRADECIMIENTOS.

A mi familia.

Gracias por ese apoyo constante e incondicional en toda mi vida y más aún en mis duros

años de carrera profesional.

A mis padres y hermano.

Con todo mi cariño y mi amor para las personas que hicieron todo en la vida para que yo

pudiera lograr mis sueños, por motivarme y darme la mano cuando sentía que el camino se

terminaba, a ustedes por siempre mi corazón y mi agradecimiento.

A mi hijo.

Hijo, eres mi orgullo y mi gran motivación, me impulsas a cada día superarme en la carrera

de ofrecerte siempre lo mejor. No es fácil, eso lo sé, pero tal vez si no te tuviera, no habría logrado

tantas grandes cosas. Te amo por siempre.

A la Dra. María Elena Manríquez

Muchas gracias por su paciencia, por su apoyo incondicional y por los conocimientos

compartidos.

Page 6: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 4

A la Dra. Carmen Magdalena Reza San Germán.

Por el apoyo brindado y paciencia.

Al Centro de Nanociencias y Micro y Nanotecnologías:

Por el apoyo y la atención brindada para la realización de las Técnicas de Caracterización,

las cuales son parte importante en este trabajo.

Page 7: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 5

ÍNDICE

PÁGINA

CAPITULO 1 GENERALIDADES.

1.1. Introducción a la Nanotecnología. 13

1.1.1. Antecedentes históricos. 13

1.1.2. El término Nanotecnología 13

1.1.3. Nanomateriales formados 14

1.1.4. Usos de las nanoestructuras 15

CAPÍTULO 2 PROPIEDADES Y TÉCNICAS.

2.1. Características y propiedades del Óxido de Zirconio (ZrO2).

17

2.1.2. Propiedades de CeO2 21

2.1.3. Aplicaciones de CeO2 23

2.1.4. Método Sol – Gel 24

2.1.5. Espectroscopía de Impedancia Electroquímica

27

2.1.6. Técnica difracción de rayos- X 28

2.1.7. Técnica espectroscopía Raman 29

2.1.8. Técnica espectroscopía foto electrónica (XPS)

31

2.1.9. Técnica microscopía electrónica de transmisión (SEM).

33

CAPITULO 3 Preparación del Catalizador.

3.1. Preparación del catalizador 36

Page 8: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 6

CAPITULO 4 Discusión de Resultados

4.1. Espectroscopía Raman 40

4.2. Difracción de rayos X (DRX) 42

4.3. Microscopía de Barrido. 44

4.4. Microscopía de Fuerza atómica 47

4.5. Espectroscopía foto electrónica (XPS). 49

4.6. Impedancia de CeO-ZrO2 55

CONCLUSIONES 61

REFERENCIAS BIBLIOGRÁFICAS 63

Page 9: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 7

ÍNDICE DE FIGURAS

FIGURA NOMBRE PÁGINA

II.1 Estructuras cristalinas del óxido de zirconio 18

II.2 Estructuras cristalinas del CeO2 tipo fluorita 22

II.3 Proceso Sol - Gel 26

II.4 Difractómetro Panalytical, modelo X Pert MRD. 29

II.5 Diagrama de Microscopio de Raman 30

II.6 Espectrómetro Raman (LAB-RAM). CNMN-IPN. 31

II.7 La espectroscopía foto electrónica de rayos X (XPS) (CNMN-IPN). 33

II.8 Microscopio Quanta 3D FEG Marca FEI. (CNMN-IPN). 34

III.1 Síntesis de catalizadores CeO2-ZrO2-pH por el método sol-gel 38

IV.1 Espectroscopía Raman de las muestras de CeO2/ZrO2 variando el alcóxido a 1200°C a) 10 CeO/ZrO2butoxi b) 10 CeO2/ZrO propoxi c) 50 CeO/ZrO2 butoxi d) 50 CeO/ZrO2 propoxi

41

IV.2 Difracción de Rayos X de las muestras de CeO2/ZrO2 variando el alcóxido y la temperatura de calcinación. a) 400°C b) 1200°C

43

IV.3 Microscopía de barrido a) 50 butoxi calcinado a 1200 b) 50 propoxi calcinado c) 10 butoxi y d) 10 propoxi.

45

IV.4 EDS de a) 50propoxi b) 50butoxi c) 10propoxi d) 10botoxi 46

IV.5 a) 50 butoxi calcinado a 1200 b) 50propxi calcinado a 1200 c) 10 propoxi calcinado a 1200

48

Page 10: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 8

IV.6 XPS de O2 a) 50 butoxi calcinado a 1200°C b) 50propxi calcinado a 1200°C, c) 10 propoxi calcinado a 1200°C d) 10 butoxi calcinado a 1200°C.

50

IV.7 XPS de Ce a) 50 butoxi calcinado a 1200°C b) 50 propxi calcinado a 1200°C, c) 10 butoxi calcinado a 1200°C d) 10 propoxi calcinado a 1200°C

53

IV.8 (a) Espectro XPS de la Zirconia Zr 3d5/2 y 3d3/2 54

IV.9 Representación de Nyquist (componente imaginaria -Z” de la impedancia versus componente real Z´)

56

IV.10 Variación de la corriente AC en función de la frecuencia 57

ÍNDICE DE TABLAS

TABLA NOMBRE PÁGINA

1 Cantidad de óxido Cerio y zirconio utilizado para la obtención de las diferentes mezclas.

37

2 Parámetros de resistencias y capacitores de las muestras de CeO2-ZrO2. 58

Page 11: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 9

RESUMEN.

En el Capítulo uno se hace referencia a los antecedentes de la nanotecnología, su

definición y algunas de las formas en que son aplicadas, toda esa información nos sirve para

tener claro lo que es la nanotecnología y sus aplicaciones, dando a conocer sus propiedades y

características físicas, químicas y estructurales de las nanopartículas, determinando el tamaño

que debe tener las partículas para ser llamadas nanopartículas, que debe de ir de 0.001 a 100

nm. Los óxidos de zirconio y cerio han atraído la atención por su uso potencial como catalizadores

o como soportes, sin embargo, persisten diversos problemas relacionados con las propiedades

texturales, de ellos así como su estabilidad a los cambios de fase cristalina en varias de sus

composiciones. La importancia de usar óxidos mixtos como materiales de soporte para

catalizadores parece atractivo en vista de la posibilidad de cambiar ciertas propiedades

favorables de los óxidos individuales. La tecnología sol-gel es particularmente prometedora para

este propósito, ya que tanto el parámetro químico como estructural de los geles resultantes

pueden influenciarse por el procedimiento de síntesis.

Se sintetizaron materiales de CeO2–ZrO2 variando la relación molar del cerio obtenidos

por sol–gel, es una técnica de preparación que nos brinda la obtención de materiales más

homogéneos con tamaño de partícula a escala nanométrica. Debido que ahora la nanotecnología

busca potencializar las propiedades de los materiales, en este trabajo el sol–gel permite variar el

método de preparación para ver el efecto en estructura, por lo que se sintetizará el material

variando el solvente y se estudiará la estructura por diversas técnicas, de caracterización, como

son Raman para ver enlaces químicos, F.T.I.R, microscopía de barrido para ver morfología , XPS

para ver composición química y estado de oxidación e impedancia electroquímica para el estudio

de las propiedades conductoras.

Page 12: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 10

INTRODUCCIÓN.

Los materiales basados en óxido de cerio (CeO2) están siendo centro de interés de

numerosas investigaciones debido a su potencial aplicación como catalizadores, sensores,

celdas de combustibles y cerámicos. En todas estas áreas, son dos las principales características

del CeO2: la posibilidad de cambiar del estado de oxidación Ce3+ a Ce4+, dependiendo de las

condiciones oxidantes o reductoras, y la fácil formación de vacancias de oxígeno con la

relativamente alta movilidad de las especies oxígeno en el volumen. Para las aplicaciones en

catalizadores, la propiedad redox es sumamente importante ya que da la capacidad de liberar y

captar oxígeno, según la siguiente ecuación reversible: CeO2 CeO2-y + (1/2) O2. Esta capacidad

de almacenamiento de oxígeno (OSC) es útil para ajustar la relación aire/combustible, logrando

altas eficiencias en la conversión de CO, NOx, e hidrocarburos [1, 2]. Si bien en las aplicaciones

prácticas el efectivo funcionamiento requiere de la presencia de un metal noble catalizador (Pd,

Pt), las propiedades mencionadas del CeO2 hacen que su rol sea mucho más que la de un simple

soporte, por ende, el modelado de estos sistemas es complejo.

Para aumentar la estabilidad térmica y beneficiar sus propiedades el CeO2 es dopado con

otros iones de metales de transición formando una solución sólida. Las propiedades finales del

óxido mixto obtenido son fuertemente dependientes de la estructura cristalina, la microestructura,

la composición química y la homogeneidad. Naturalmente las aplicaciones en catálisis requieren

de una microestructura estable, tamaños nanométricos de partículas y una buena dispersión del

metal noble.

Page 13: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 11

El CeO2 posee la estructura cristalina cúbica tipo fluorita, para el caso de Zr como

elemento dopante, a baja temperatura posee la fase tetragonal y con el incremento de la

temperatura la fase monoclínica. Es por ello que este trabajo se presenta la síntesis de CeO2-

ZrO2 vía sol-gel para estudiar su estructura y propiedades del sistema. [3]

OBJETIVOS

General.

Sintetizar y caracterizar materiales de CeO2 y ZrO2 obtenidos por Sol- gel.

Específicos.

Sintetizar materiales CeO2-ZrO2 por el método de Sol-gel

Caracterizar por DRX, Raman, MFA para estudiar su morfología y XPS composición

química y energías de enlace y MEB para estudiar su estructura

Medir el efecto de la morfología y la Impedancia.

Page 14: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 12

Capítulo I. Generalidades

Page 15: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 13

En este Capítulo se hace una referencia de los antecedentes de la nanotecnología, así como su

definición y las aplicaciones que hasta el momento se conocen para tener un panorama más claro

de lo que es la nanotecnología.

1.1. Introducción a la Nanotecnología.

1.1.1. Antecedentes históricos.

Hoy en día, el desarrollo tecnológico de nuevos materiales ha hecho tangible algunas de

las premisas de Feynman. Ejemplos de esto son los discos duros de la reciente generación de

computadoras, capaces de almacenar una gran cantidad de información en películas magnéticas

delgadas; los instrumentos médicos de diagnóstico que, en la actualidad, son más compactos y

rápidos; las técnicas de enfriamiento, así como las de manipulación por láser que hacen más

preciso el confinamiento de átomos y moléculas. Todo esto forma parte de lo que hoy se conoce

como nanotecnología, universo en el que se utilizan las propiedades físicas de los materiales en

escala de nanómetros [4].

1.1.2. El término Nanotecnología.

Se refiere a las estructuras, propiedades y procesos de los materiales con dimensiones

de 1 a 100 nm. Estas dimensiones son mayores a las de un átomo o una molécula, pero menores

que la longitud de onda de la luz visible [5].

Cuando se manipula la materia a la escala tan minúscula de átomos y moléculas, muestra

fenómenos y propiedades totalmente nuevas. Por lo tanto, algunos científicos utilizan la

nanotecnología para crear materiales, aparatos y sistemas novedosos y poco costosos con

propiedades únicas [6].

Page 16: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 14

Se han investigado durante años las nanoestructuras de muchos compuestos

semiconductores de dos o más elementos, ya que muestran varias propiedades electrónicas y

ópticas interesantes, siendo relacionados con su baja dimensionalidad y a los efectos cuánticos.

Se ha señalado que la morfología y distribución de tamaños son factores importantes que

determinan las propiedades de las nanoestructuras. Una gran variedad de nanoestructuras como

nanohojas, nanoagujas, nanobarras, nanopuntos, nanopeines, nanoárboles, los nanotubos de los

nanocables y nanoflores, se han sintetizado por diferentes métodos [7-8].

La mayoría de esas nanoestructuras aún se encuentra en una etapa de investigación y

desarrollo, pero día con día se mejoran o surgen otras nuevas. Por ello es muy difícil identificarlas

[9].

Actualmente, muchos productos generados por la nanotecnología han sido aplicados a la

vida cotidiana de millones de personas, como el uso de materiales más livianos y resistentes,

catalizadores con nanopartículas de platino en los vehículos para hacer más eficiente el consumo

de combustible, hasta tecnología de punta en el desarrollo de proyectos espaciales [6].

1.1.3. Nanomateriales formados.

Respecto a los nanomateriales que se pueden formar, se ha trabajado básicamente sobre

tres tipos: metales, polímeros y cerámicos. El uso de estos materiales está determinado por sus

propiedades mecánicas y químicas, la elasticidad, dureza, facilidad para romperse y

conductibilidad son propiedades importantes. Estos análisis son respaldados por un conocimiento

de las propiedades químicas de los materiales, tal como el análisis elemental y molecular o de la

estructura atómica [9].

Page 17: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 15

1.1.4. Usos de las nanoestructuras.

Mediante la aplicación de técnicas de fabricación en nanomateriales se han podido

realizar distintos materiales, como por ejemplo material de aislamiento, de herramientas

mecánicas, fósforos, baterías, imanes de alta potencia, motores de vehículos, turbinas e

implantes y otros usos médicos.

Las nanoestructuras se usan en la industria para mejorar la fortaleza de los polímeros esto

es, modificar las propiedades mecánicas de los materiales plásticos fundidos. Por otra parte,

cierto tipo de nanoesferas se han empleado para extraer compuestos orgánicos del agua en

forma dispersada y como micropartículas sólidas. Algunas otras nanoestructuras son efectivas

para la dispersión del látex y de las partículas en pigmentos de pintura. Las nanoestructuras

formadas por copolímeros en bloques, funcionando como catalizadores, también se han utilizado

para la producción de dispositivos electrónicos de dimensiones nanométricas [10].

Page 18: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 16

Capítulo II. Características

Page 19: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 17

2.1. Características y propiedades del óxido de zirconio (ZrO2).

La zirconia (ZrO2) es uno de los materiales más importantes hoy en día, a nivel industrial

y científico debido a su naturaleza refractaria, buenas propiedades mecánicas, conductividad

iónica, resistencia a los álcalis y al calor, resistencia a la oxidación y existencia de cuatro

variedades cristalinas (polimorfos).

Sin embargo, la elaboración requiere de la producción de polvos de composición química

perfectamente controlada y cada vez más puras. De hecho la mayoría de las propiedades físicas

interesantes de estos materiales pueden ser modificadas por completo debido a la presencia de

pequeñas cantidades de impurezas.

La búsqueda de nuevas cerámicas tecnológicas o la mejora en la calidad de los materiales

actualmente manufacturados ha promovido la utilización de nuevas técnicas de elaboración de

polvos cerámicos capaces de producir partículas de óxidos, carburos y nitruros. Las técnicas

químicas llamadas de vía húmeda (precipitación, procesos sol-gel, síntesis hidrotérmica, etc.)

permiten la preparación de polvos cerámicos con características especiales. Las características

más deseadas incluyen alta pureza, composición química controlada, homogeneidad química a

escala atómica y tamaño de partícula nanométrico.

Actualmente gran parte de la investigación sobre materiales potenciales útiles en una

formulación catalítica, gira en torno a estudios de síntesis y caracterización de diversos óxidos

entre los que se incluye: TiO2, CeO2, LaO, y ZrO2. Esta última especialmente, ha mostrado un

uso potencial en diferentes reacciones, bien sea como parte activa, como promotor o como

soporte.

Page 20: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 18

El óxido de zirconia (ZrO2) se encuentra muy distribuido en la naturaleza. Su mineral más

importante, es el silicato (ZrSiO4), que se conoce ya desde los tiempos más antiguos con el

nombre de Jacinto y más tarde como Jargón. El nombre más reciente es el de zircón, se cree

que es de origen árabe y puede derivarse de Zerk cuyo significado es piedra preciosa o gema; o

de Zargun que significa color de oro.

El óxido de zirconia exhibe tres tipos de estructuras cristalinas (Figura II.1): (1) estructura

monoclínica en su forma estable a temperaturas menores de 110°C, (2) estructura tetragonal

obtenida a 1200°C, y (3) estructura cúbica a 2300°C [11], pudiendo esta última transformarse en

simetría ortorrómbica.

Figura II.1. Estructuras cristalinas del óxido de zirconio

La estructura tetragonal no se obtiene a temperatura ambiente, sin embargo existe una

forma tetragonal metaestable a temperatura ambiente si se prepara por precipitación a partir de

una solución acuosa, o por calcinación de sales a baja temperatura. Esta estructura cristalina

Page 21: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 19

preparada por estos métodos es estable entre 450-500°C. Por otro lado, el tamaño de partícula

de la fase tetragonal metaestable depende del pH de precipitación del hidróxido de zirconia [12].

La transformación de la fase tetragonal meta estable a la fase monoclínica es sensible a

la presencia de impurezas o aditivos y, al obtener esta última estructura, se pierde área específica

conforme se incrementa la temperatura [13]. La forma tetragonal metaestable es una estructura

de tipo fluorita (CaF2) deformada, siendo frecuentemente descrita como una celda centrada en el

cuerpo, en la cual cada átomo de zirconia está rodeado por ocho átomos de oxígeno, cuatro a

una distancia de 2.065 Å en un tetraedro aplastado y cuatro a 2.455Å en un tetraedro [14]. En la

estructura monolítica de la zirconia esta heptacoordinado y en la forma cúbica todos los átomos

de oxígeno se encuentran tetraédricamente coordinados por un catión Zr4+, el cual ocupa todos

los sitios tetraédricos, cada Zr4+ se encuentra coordinado por ocho oxígenos equidistantes.

Por otra parte el óxido de zirconia como soporte presenta propiedades extraordinarias las

cuales han sido investigadas por largo tiempo. Este óxido es bastante insoluble a bajo y alto valor

de pH. Es también anfotérica y además presenta propiedades oxidantes y deductivas. La

cristalización y sintetización de los cristales en la calcinación son determinantes para su uso como

soportes de catalizadores.

El óxido de zirconia y compuestos que contienen zirconia están siendo altamente reconocidos

como materiales catalíticos útiles. En particular, el ZrO2 es un soporte muy importante para la

catálisis, ya que posee propiedades ácidas y básicas débiles, las cuales algunas veces muestran

intrínsecamente catálisis bi funcionales ácido-base. Debido a estas propiedades, se emplea como

catalizador ambiental, en reacciones químicas, de polimerización y petroquímica.

Page 22: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 20

El ZrO2 es activo en procesos químicos tales como, síntesis de metanol, deshidratación de

alcoholes, hidrogenación de CO, de olefinas y de dienos [15]. Sin embargo, la acidez del ZrO2

puro es muy débil para catalizar reacciones químicas más demandantes en donde los ácidos

fuertes son necesarios. En la síntesis de Fischer-Tropsch de hidrocarburos pesados a partir de

gas de síntesis (CO + H2), la adición de ZrO2 sobre catalizadores que contienen cobalto y sílice

produce una excelente actividad y selectividad para la obtención de hidrocarburos de cadena

larga, los cuales pueden después ser hidratados para dar combustibles sintéticos. La

incorporación del ZrO2 dentro del catalizador trimodal automotriz, aumenta la estabilidad térmica

y reduce la migración del rodio dentro de la matriz de la alúmina.

Se ha demostrado que mediante la incorporación de grupos sulfato en la superficie del

ZrO2 se incrementa la acidez. Este ZrO2 sulfatado actúa como catalizador activo en reacciones

de alquilación e isomerización esqueletal de parafinas [16], lo cual es un proceso que exige la

existencia de centros ácidos fuertes. La adición del sulfato al ZrO2 mejora su estabilidad térmica.

Sin embargo, muchos resultados de la literatura sugieren que el funcionamiento de este

catalizador ácido de SO42-/ZrO2 está relacionado con las características del soporte. Por ejemplo,

altas áreas específicas de geles precipitados microcristalino ocasionan una mejoría en la

actividad catalítica.

Con respecto a las propiedades cerámicas del óxido de zirconia, éste presenta una

combinación de fuerza y resistencia mecánica, alto punto de fusión e inerte al ataque químico, lo

que permite la aplicación de este material a una gran variedad de condiciones de trabajo 17,

como aislantes y componentes estructurales en motores diesel adiabáticos en la industria

automotriz, la fabricación de materiales de corte, refractarios, fibras y recubrimientos aislantes,

en la industria del vidrio se utiliza como agente nucleante para la obtención de vitrocerámicos, en

Page 23: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 21

la industria de la fabricación de esmaltes y pigmentos como opacante y para obtención de

cerámicos. En el campo de la cerámica avanzada se han aprovechado las propiedades eléctricas,

como electrolitos sólidos, catalizadores sólidos, celdas de combustible y cerámicas

piezoeléctricas.

El óxido de zirconia presenta propiedades ácido-base, de las cuales se reportan mediciones de

adsorción de CO2 y NH3 sobre ZrO2 calcinado a 600oC, el número de sitios ácidos y básicos se

encontraron cerca de 0.6 mol/m2 y 4 mol/m2 respectivamente, se ha encontrado que el ZrO2

alrededor de 2700oC es estable bajo condiciones de reducción y contiene dos tipos de grupos

hidróxidos terminales (t-OH) y puente (b-OH) presentes en la ZrO2, que corresponden a las

especies químicas metóxidos terminales y puente formados a partir de la adsorción del alcohol y

durante la hidrogenación del CO. Por otro lado las propiedades básicas y ácidas de los grupos t-

OH, b-OH y las correspondientes vacancias o huecos presentes en la ZrO2 han sido plenamente

investigadas a través de absorción de piridina, CO2, HCOOH (formaldehído) y CH3OH,

demostrando que los grupos t-OH en presencia de la molécula ácida CO2 actúan como una base.

El general la zirconia posee propiedades acido- base débiles, pudiendo actuar como un

catalizador acido o bien básico.

2.1.2. Propiedades de CeO2.

Los materiales basados en óxido de cerio (CeO2) están siendo centro de interés de

numerosas investigaciones debido a su potencial aplicación como catalizadores, sensores,

celdas de combustibles y cerámicos. En todas estas áreas, son dos las principales características

del CeO2: la posibilidad de cambiar del estado de oxidación Ce3+ a Ce4+, dependiendo de las

condiciones oxidantes o reductoras, y la fácil formación de vacancias de oxígeno con la

relativamente alta movilidad de las especies oxígeno en el volumen. Para las aplicaciones en

Page 24: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 22

catalizadores, la propiedad redox es sumamente importante ya que da la capacidad de liberar y

captar oxígeno, según la siguiente ecuación reversible: CeO2 CeO2-y + (y/2) O2. Esta capacidad

de almacenamiento de oxígeno (OSC) es útil para ajustar la relación aire/combustible, logrando

altas eficiencias en la conversión de CO, NOx, e hidrocarburos [4, 5]. Si bien en las aplicaciones

prácticas el efectivo funcionamiento requiere de la presencia de un metal noble catalizador (Pd,

Pt), las propiedades mencionadas del CeO2 hacen que su rol sea mucho más que la de un simple

soporte. Por ende, el modelado de estos sistemas es complejo.

Para aumentar la estabilidad térmica y beneficiar sus propiedades el CeO2 es dopado con

otros iones de metales de transición formando una solución sólida (SS). Las propiedades finales

del óxido mixto obtenido son fuertemente dependientes de la estructura cristalina, la

microestructura, la composición química y la homogeneidad (Figura II.2). Naturalmente las

aplicaciones en catálisis requieren de una microestructura estable, tamaños nanométricos de

partículas y una buena dispersión del metal noble.

Figura II.2. Estructuras cristalinas del CeO2 tipo fluorita

Page 25: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 23

El CeO2 posee la estructura cristalina cúbica tipo fluorita. Para el caso de Zr como

elemento dopante, esta estructura se mantiene [5, 6] en la Ce1-xZrxO2 para x ≤ 0,15 aunque los

efectos de tamaño pueden extender este rango hasta x = 0,5. La correlación entre la estructura y

las propiedades redox es aún un tema abierto pero y actualmente ha enfocado mucho el interés

de las investigaciones, sobre todo en cuanto al estudio de la formación de estructuras deficientes

en oxígeno [5, 6].

La síntesis de las SS puede ser por vía húmeda o mediante reacción sólido-sólido. Dentro

de estos últimos, la molienda mecánica de alta energía ha sido aplicada para sintetizar SS en el

sistema CeO2-ZrO2. [18]

2.1.3. Aplicaciones de CeO2.

Los óxidos de cerio son usados como catalizadores para reducir las emisiones de gas de

los automóviles. Cuando escasea el óxido de cerio (IV), se reduce mediante el monóxido de

carbono (CO) del vehículo a óxido de cerio (III):

Cuando hay un exceso de oxígeno, el proceso es invertido y el óxido de cerio (III) se

convierte en óxido de cerio (IV):

También es empleado en las paredes de hornos autolimpiadores como catalizador de

hidrocarburos a altas temperaturas.

Page 26: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 24

El ciclo óxido de cerio (III)-óxido de cerio (IV) es un ciclo termoquímico de dos pasos que

permite la descomposición del agua para la obtención de hidrógeno.

A causa de su absorción de la radiación ultravioleta, así como por su baja

acción catalizadora, podría convertirse en un suplente del óxido de zinc (ZnO) y el dióxido de

titanio (TiO2) en las cremas solares. Sin embargo, sus propiedades termales catalíticas deberían

disminuirse mediante la cobertura de sus partículas con silicona amorfa o con nitruro de boro.

[19].

2.1.4. Método Sol – Gel.

Un proceso que ha ganado, en los últimos años, una gran notoriedad en el campo de los

vidrios y los cerámicos es el método sol-gel. Este método produce una gran variedad de

estructuras inorgánicas a partir de precursores alcóxidos metálicos monoméricos. SOL-GEL es

el nombre dado a un gran número de procesos para la elaboración de sólidos que involucran una

suspensión coloidal o sol, el cual es transformado a gel.

Este método consiste en producir una solución de polímeros (oligómeros) inorgánicos de

compuestos organometálicos adecuados que se hidrolizan controladamente en una secuencia

de reacciones de hidrólisis y poli condensación (Figura II. 3). En esta etapa, en que los polímeros

precursores de la red inorgánica están en solución, es posible adicionar los compuestos

orgánicos. Las reacciones de entrecruzamiento entre los polímeros inorgánicos contenidos en el

sol, dan lugar a una red tridimensional hinchada por el solvente retenido en su interior (GEL) [20].

Aunque este proceso fue descubierto a finales de 1800s, fue estudiado más

profundamente desde los inicios de 1930, a principios de 1970s un interés mayor se originó

cuando monolitos de geles inorgánicos fueron formados a temperaturas bajas y convertidos a

Page 27: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 25

vidrios. Por medio de este proceso óxidos inorgánicos homogéneos con propiedades deseables

de resistencia, transparencia óptica, durabilidad química, porosidad diseñada, y resistencia

térmica, pueden producirse a temperaturas bajas, en contraste con las elevadas temperaturas de

fusión requeridas en la producción de vidrios inorgánicos convencionales. Muchas aplicaciones

de estos materiales incluyen, películas protectoras y porosas, capas ópticas, capas dieléctricas y

electrónicas, superconductores a elevadas temperaturas, refuerzo de fibras, y en catálisis [21-

22].

Entre las motivaciones para usar el proceso sol-gel están la alta pureza, el tamaño

pequeño y homogéneo de las partículas y la baja temperatura de preparación asociadas con los

materiales obtenidos, comparado con los métodos tradicionales en la preparación de polvos. La

meta del procesamiento sol-gel y el procesamiento ultra-estructural, es en general controlar las

superficies e interfaces de los materiales desde las etapas iniciales de la preparación.

Page 28: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 26

Figura II.3. Proceso Sol-Gel

La aplicación del concepto de manipulación molecular en la producción de cerámicas,

vidrios, compósitos y soportes catalíticos, requiere de una aplicación de sistemas multi-

componentes homogéneos mediante la mezcla de las soluciones de los precursores

correspondientes.

Los soles son dispersiones de partículas coloidales en un medio diferente al de las

partículas (sólido-líquido, sólido-gas y líquido-gas). Un coloide es una suspensión en donde el

tamaño de partículas de la fase dispersa está entre 1 a 1000 nm y se mantiene mediante fuerzas

electrostáticas y de Vander Waals. Este sol puede ser desestabilizado por medio de diferentes

procesos (evaporación, reacciones de condensación, etc.) incrementando la concentración y

Page 29: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 27

agregación del coloide para formar un gel el cual es una red sólida desordenada y ramificada,

con poros de dimensiones sub-micrométricas y cadenas poliméricas, en las cuales la longitud

promedio es más grande que 1 micrón. El punto de gelación es el tiempo (ó grado de reacción)

en el cual se forma el último enlace que completa esta molécula gigante, cambiando del estado

líquido (sol) a un estado semi-sólido (gel), dando lugar este procedimiento al método sol-gel .

Las principales reacciones involucradas en esta técnica son: hidrólisis (formación del sol)

de un alcóxido metálico mediante la adición de agua o una solución de agua/alcohol obteniéndose

especies MOH sumamente reactivas y la condensación de estas especies mediante los

mecanismos en competencia de alcoxolación, oxolación y olación (formación del gel), seguido

por el añejamiento y secado de los geles a temperatura ambiente, y finalmente su tratamiento

térmico [23].

2.1.5. Espectroscopía de Impedancia Electroquímica.

La espectroscopía de impedancias, también conocida como EIS (Electro chemical

Impedance Spectroscopy) es una técnica relativamente moderna, ya que se comenzó a aplicar

en los años setenta. Debe su existencia a la aparición de circuitos electrónicos suficientemente

rápidos y sensibles para generar y analizar una señal de frecuencia y fase variable. Es un método

electroquímico utilizando en estudios de corrosión, el cual se basa en el uso de una señal de

corriente alterna (CA) que es aplicada a un electrodo (metal en corrosión) para determinar la

respuesta correspondiente. En el procedimiento experimental más comúnmente usado, se aplica

una pequeña señal de potencial (E) a un electrodo y se mide su respuesta en corriente (I) a

diferentes frecuencias. No obstante, en ciertas circunstancias, es posible aplicar una señal

pequeña de corriente y medir la respuesta en potencial del sistema.

Page 30: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 28

Así, el equipo electrónico usado procesa las mediciones de potencial-tiempo y corriente-

tiempo, dando como resultado una serie de valores de impedancia correspondientes a cada

frecuencia estudiada. Esta relación de valores de impedancia y frecuencia se denomina “espectro

de impedancias”.

En el caso de los estudios de corrosión que utilizan la técnica de EIS, los espectros de

impedancia obtenidos suelen ser analizados mediante circuitos eléctricos, compuestos por

componentes tales como resistencias (R), capacitancias (C), inductancias (L), etc. Combinados

de tal manera que reproduzcan los espectros de impedancia medidos, estos circuitos eléctricos

son denominados “circuitos eléctricos equivalentes”.

2.1.6. Técnica difracción de rayos X.

Aunque la difracción de rayos x (DRX) no es una caracterización superficial, es

indispensable en el estudio y caracterización de catalizadores ya que los catalizadores están

generalmente compuestos por una mezcla de fases que no pueden separase por su análisis sin

perturbar la naturaleza de la fase activa. La DRX se utiliza normalmente para determinar la

estructura de las fases cristalinas contenida en el seno del catalizador.

La DRX también se utiliza para estimar el tamaño de cristalitos de las fases presentes en

los catalizadores mediante el análisis del ensanchamiento de las bandas de difracción. En la

Figura 4 se observa el equipo de difracción de rayos X. Para el estudio de los materiales se utilizó

una radiación Cu K (=1.54 Å) con foco lineal, con 40 KV y 15 mA. En el haz incidente se colocó

una rendija soller con filtro Ni y rendija de 0.5 nm. En la óptica se utilizó un detector Dtx de alta

velocidad para obtener los patrones de difracción. Se realizó un barrido de 10-80° con un tamaño

de paso de 0.01 y una velocidad de 1 grado/nim.

Page 31: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 29

En la Figura II.4 se presenta el equipo de rayos X utilizado.

Figura II.4. Difractómetro Panalytical, modelo X Pert MRD.

2.1.7. Técnica espectroscopía Raman.

La espectroscopía Raman se basa en el fenómeno de dispersión inelástica de un haz de

radiación monocromática. La radiación utilizada para la excitación de las moléculas puede

escogerse desde el ultravioleta cercano hasta el infrarrojo cercano. Generalmente se utilizan

láseres en el rango de luz visible, infrarrojo cercano o ultravioleta cercano.

En general los fotones absorbidos por la muestra son re-emitidos sin cambio de frecuencia

en todas direcciones, lo que constituye la dispersión elástica. Sin embargo en algunos casos la

dispersión se da como resultado de una colisión inelástica entre fotón y molécula, lo que produce

un ligero cambio en la frecuencia de la radiación emitida, a esto se le llama el efecto Raman. Si

Page 32: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 30

el fotón sale con menor energía de la que tenía se produce una dispersión Raman Stokes; si la

molécula se encontraba en un estado excitado y como resultado de la interacción con el fotón

regresa a su estado basal, el fotón saldrá con mayor energía, lo que se denomina dispersión

Raman anti-Stokes.

En la Figura II.5 se muestran los componentes del microscopío Raman.

Figura II.5. Componentes del microscopio de Raman

Entre las ventajas de la espectroscopía Raman está el que la muestra que se analiza,

puede ser líquida, sólida o gaseosa y requiere de muy poca o nula preparación.

Una de las desventajas de la espectroscopía Raman es que algunos materiales presentan

el fenómeno de fluorescencia causado en muchos casos por la presencia de impurezas. Esta

señal es muy intensa y cubre señales asociadas al material que se analiza. Cambiando el tipo de

láser es posible, en algunos casos, evitar el problema. La Figura II.6 presenta el

espectrofotómetro Raman utilizado en la medición.

Page 33: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 31

Figura II.6. .Espectrómetro Raman (LAB-RAM). CNMN-IPN.

2.1.8. Técnica espectroscopía foto electrónica (XPS).

La espectroscopía fotoelectrónica de rayos X (XPS), es una de las técnicas más

socorridas en el caso de la caracterización de catalizadores ya que puede aportar información

sobre qué tipo de átomos están presentes en la superficie, cuál es su concentración y su estado

de oxidación.

La espectroscopía de fotoelectrones inducida por rayos x es una de las técnicas

espectroscopicas que por la baja penetración del material por los rayos x suaves (200-2000 eV)

utilizados, es sensible a la superficie y a los niveles electrónicos de valencia de los átomos

Page 34: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 32

presentes en la superficie. Así pues, esta técnica proporciona información sobre la concentración

y el estado de oxidación de los átomos superficiales.

La tecnología se basa en que los fotones pueden inducir la emisión de electrones de un

sólido siempre y cuando la energía de los fotones sea mayor que la función trabajo, definida como

la energía para remover un electrón del nivel de energía ocupado más alto hacia el nivel de vacío,

que es el del electrón en reposo con cero energía cinética y libre de interacciones con otros

átomos o moléculas.

Los análisis se realizaron empleando un espectrómetro K-Alpha de Thermo Scientific equipado

con un ánodo de Al K monocromado (1478 eV) como fuente de excitación de rayos X. El área

de análisis fue de 400 m2 y fue necesario hacer uso del compensador de carga.

Montaje de la Muestra: El polvo de catalizador fue montado sobre película de In y el conjunto se fijó en

porta muestras mediante cinta adhesiva de Cu de doble cara. Permanecieron en la pre-cámara por un

periodo ≥ 1hr. La Figura II.7 presenta el equipo espectroscopía fotoelectrónica de rayos X.

Page 35: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 33

Figura II. 7. La espectroscopía fotoelectrónica de rayos X (XPS) (CNMN-IPN).

2.1.9. Técnica Microscopía Electrónica de Barrido (meb).

El microscopio de barrido (SEM) opera con el mismo principio que un microscopio óptico

pero usa electrones en lugar de luz. En la parte alta del microscopio un filamento emite electrones

que viajan a través de la columna del microscopio sometida a vacío. Mediante el uso de lentes

electromagnéticos los electrones se enfocan en un haz muy fino que se hace incidir sobre la

muestra en estudio. Los electrones no dispersados pasan a través del material y llegan a una

pantalla fluorescente donde, dependiendo de la densidad del material, se forma una imagen de

sombras de diferente intensidad.

El utilizar electrones en vez de luz visible incrementa enormemente la resolución.

Page 36: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 34

Las micrografías se obtuvieron de un microscopío Microscopio Quanta 3D FEG Marca FEI,

con una distancia de trabajo (WD) de 4mm, una aceleración de voltaje de 5kV y una presión de

vacío de 1.3 bar. El equipo posee tres detectores de electrones secundarios SE, así como un

detector de electrones electrodispersos (BED) y que a su vez tiene la opción de Modo

Composición, o modo topografía. El micreoscopío tiene acoplado un detector para realizar

análisis de dispersión de rayos X modelo Apollo X.

Figura II.8. Microscopio Quanta 3D FEG Marca FEI. (CNMN-IPN).

Page 37: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 35

Capítulo III.

Preparación del catalizador

Page 38: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 36

3.1. Preparación del catalizador.

Los precursores empleados en la preparación de los geles fueron butóxido de titanio (IV)

(98% Aldrich) y butóxido de zirconia (99%, Aldrich). El solvente utilizado fue n-butanol (Baker,

99%).

La relación de los óxidos molar está dada en la tabla 1. En alguno de los caso se usó una

relación de óxido de titanio 50 y 10 en peso en CeO2 (Ce (NO3)2 6H2O 98% Aldrich) con HNO3

utilizado para hidrólisis alcóxido y zirconio respectivamente. El procedimiento general de síntesis

se describe a continuación (ver Figura 3.4)

ZrO2. La zirconia usada como referencia se preparó de la siguiente manera: 3.3 moles de

H2O y 3.0 moles of n-butanol son puestos con agitación constante a baja temperatura (0ºC).

El pH fue ajustado a pH=3 con HNO3, posteriormente se adicionan gota a gota 0.5 mol de

butóxido de ZrO2 a la mezcla por dos horas. Por último se adiciona el agua en relación ¼ molar

con respecto al ZrO2. La formación del gel es observado después de la adición de agua.

Posteriormente se baja la temperatura a 0°C, una vez que la temperatura se encuentra

estable, se adiciona el óxido de cerio y se deja mezclar por 15 minutos, posteriormente se ajusta

el pH a 3 con ácido nítrico y se procede a adicionar gota a gota el agua (también ajustada a 3 con

ácido nítrico) y con el resto del alcohol utilizado como disolvente. Una vez formado el gel se deja

secar a 70°C y posteriormente se calcina a 800 y 1200 °C. En la figura III.1 se presenta un

diagrama de la preparación de los materiales.

Page 39: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 37

Tabla 1. Cantidad de óxido de cerio y zirconia utilizado para la obtención de las diferentes mezclas.

Muestra óxido cerio butóxido de zirconio

%mol %mol

CeO2-ZrO2 (10-90-%mol) 0.10 0.9

CeO2-ZrO2 (50-50 % mol) 0.5 0.5

CeO2-ZrO2 (10-90-%mol)) 0.10 0.9

CeO2-ZrO2 (50-50-%mol) 0.5 0.5

Page 40: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 38

Figura III.1 Síntesis de catalizadores CeO2-ZrO2-pH por el método sol-gel.

Zr (OC4H9)4+n-

butanol

PH=3 con

HNO3 a 70°C

Adición

de

H2O

Formación

Del gel.

Secado a 100ºC

Calcinado a 800 y 1200°C

Posteriormente

0°C y adición

Oxido de Cerio+

Page 41: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 39

Capítulo IV. Discusión de

Resultados

Page 42: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 40

Discusión de resultados

4.1. Espectroscopía Raman.

La espectroscopía Raman algunas veces tiene la posibilidad de identificar diferentes fases

cristalinas en los sólidos. En otras ocasiones sólo es posible identificar señales debidas a la

interacción de los enlaces de los componentes del material. En la Figura IV.1 se muestra los

espectros Raman de los sólidos de CeO2–ZrO2 variando la cantidad de CeO2 y el alcóxido.

La Figura IV.1 se muestra sólo a los materiales tratados a 1200°C, se puede apreciar en

la región de 100 a 900 cm-1 señales a 140, 260, 315, 458, 600, y 633 cm-1 correspondientes los

picos son asignados a la zirconia, el pico a 458 cm-1 y el pico a 315cm-1 son asignados a la

zirconia tetragonal, mientras que el pico asignado a 315 cm-1, también es debido a la fase cúbica

de la zirconia. Se puede ver sólo un pequeño cambio en la intensidad de los picos cuando se

utilizó diferente alcóxido en los sólidos preparados con 10% de CeO2 la intensidad de las señales

se muestra disminuida. Los sólidos preparados con 50% de CeO2 no muestran ninguna diferencia,

sólo se observa la mezcla de la fase tetragonal y cúbica. Otra zona de interés es un pequeño

hombro localizado 598 cm-1 esta región es muy sensitiva con el CeO2 contenido y con el oxígeno

estequiométrico, que refleja principalmente las vibraciones de oxígeno unido al cerio y que

distorsionan la estructura cúbica. A 462 cm-1 es asignado el modo simétrico de los átomos de

oxígeno cercanos a cada catión de Ce+4(también el modo Raman simétrico de F2g para óxidos

metálicos con estructura cúbica tipo fluorita corresponde a la estructura CeZr. También a 242 y

1170 cm-1 se observa en el espectro Raman el CeO2 en su forma cúbica. La banda a 605 cm-1 es

asignada a especies de pequeñas partículas de CeO2 y es relativo a la presencia de la cantidad

Page 43: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 41

de vacancias oxígeno. Sin embargo la asignación de estas bandas es difícil debido a que se

traslapan con las de ZrO2.

Se puede ver que todos los espectros presentan las mismas señales debido a que se

tienen los mismos componentes en las preparaciones [24-26].

100 200 300 400 500 600 700 800 9000

400

800

1200

1600

2000

d)

c)

b)

Inte

nsid

ad (u

.a)

Desplazamiento Raman cm-1

a)

Zirconia tetragonal

Zirconia monoclinica

CeO2

Figura IV.1. Espectroscopía Raman de las muestras de CeO2/ZrO2 variando el alcóxido a 1200°C

a) 10 CeO/ZrO2 butoxi b) 10 CeO/ZrO2 propoxi c) 50 CeO2/ZrO2 butoxi d) 50 CeO2/ZrO2 propoxi

Page 44: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 42

4.2. Difracción de rayos X (DRX)

El espectro de difracción mostrado en la Figura IV.2 presenta las diferentes fases de los

sólidos de CeO2/ZrO2 variando el alcóxido, preparadas por sol-gel y variando también la

temperatura de calcinación.

A baja temperatura se observa la fase cristalina correspondiente a la cúbica tipo fluorita

del CeO2, los picos están asignados a 2θ~ 29.66°, 34.12°, 49.1° y 58.28 Å. respetivamente [27-

29]. Se puede ver la misma fase, a baja temperatura. Señales más intensas son observadas

cuando se tiene 50% CeO2. La fase formada a esta temperatura fue comparada con la obtenida

por SC Sharma et al [30.] A baja temperatura no se observan las fases de la zirconia.

Los diferentes sólidos calcinados a 1200°C (Figura IV.2, marcados con HT) muestran claramente

una mezcla de la fase tetragonal y cúbica como ya fue discutido por espectroscopía Raman, a

baja región por ejemplo, se pueden observar los planos (111) t y (111) c de la zirconia, y a

2=28.57°, 33.00°, 47.60° respectivamente, correspondientes a los planos (111), (200), (220) de

la ceria cúbica con fase fluorita (JCPDS número de carta 34-394). Picos mas intensos son

mostrados tambien con mayor concetración de CeO2. Los espectros obtenidos a 1200°C para la

mezcla de estos óxidos se compararon con los obtenidos por D.G Laman et al [31].

Page 45: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 43

20 30 40 50 60 70 80

(311

)

(220

)

(200

)(1

11)

(220

)Ce

(200

)Ce

(111

)Ce

(111

)t

i-But50

i-But10i-Prop50

Inte

nsid

ad (

u.a)

2 Theta

i-Prop10

i-Prop10 HT

i-But10 HT

i-Prop50 HT

i-But50 HT(111

)c

Figura IV.2. Difracción de Rayos X de las muestras de CeO2/ZrO2 variando el alcóxido y la

temperatura de calcinación. a) 800°C b) 1200°C.

Page 46: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 44

4.3. Microscopía de Barrido.

Por Microscopía de Barrido (MEB) fue posible medir el tamaño de partícula, en la Figura

IV.3 se observa la evolución microestructural con 10% y 50% de cerio en las cuatro preparaciones

se presenta una microestructura de granos equiaxiales pequeños. Un hecho importante a resaltar

es que el tamaño de partícula aumenta ligeramente cuando se usa butoxi como solvente, también

en las cuatro preparaciones se puede apreciar una morfología similar con un tamaño de partícula

que va en un rango de 60 a 160 nm, es observado también cierta formación de huecos en las

preparaciones, sin embargo mayor cantidad de huecos son obtenidos cuando se usa propóxido

como solvente y cuando aumenta también la cantidad de CeO2 en la muestra. Se puede observar

que cuando se usa butóxido como alcóxido el tamaño de partícula es menor comparado con el

propoxi usado como alcóxido. En las preparaciones donde se usó propoxi se muestra también un

contraste de fases, debido a que es observable una fase más oscura y otra más clara. Este

estudio es cualitativo y describe la región observada.

Page 47: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 45

Figura IV.3. Microscopía de barrido a) 50 butoxi calcinado a 1200 b) 50 propoxi

calcinado c) 10 butoxi y d) 10 propoxi.

Page 48: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 46

Figura IV.4 EDS de a) 50 propoxi b) 50 butoxi c) 10 propoxi d) 10 botoxi

Page 49: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 47

La Figura IV.4 muestra el EDS de las preparaciones mostrando CeO y ZrO2 presente en

todas las composiciones. La intensidad varía y es independiente de la composición preparada,

debido a que EDS sólo toma una pequeña área de material sin embargo nos da información de

la composición química en cada imagen y se puede constatar la presencia de especies de CeO2

y ZrO2.

4.4. Microscopía de Fuerza atómica. (MFA)

Por Microscopía de fuerza atómica (Figura IV.5) es posible medir el tamaño de partícula,

y topografía de las muestras en todas las preparaciones, es posible observar partículas de forma

semiesférica, se puede observar el efecto cuando cambia el alcóxido en la síntesis, por ejemplo

partículas más pequeñas cercanas a la escala manométrica son obtenidas cuando se usa

propoxi como alcóxido en la síntesis, también se muestra una disminución del tamaño de partícula

cuando se incrementa la cantidad de CeO2. MFA nos permite un acercamiento de la topografía y

se puede confirmar lo visto por microscopía de barrido, pero además con esta técnica se pudo

tener un acercamiento mejor en los huecos. En la Figura IV.5b la preparación CeO2-ZrO2 con 50

de CeO2 se observan aglomerados de partículas con tamaños que van desde 100 nm hasta 500

nm (ver histograma). La preparación 50 CeO2-ZrO2 preparadas con propoxi presentó una

disminución en el tamaño de partícula. Los histogramas de las preparaciones muestran partículas

a escala nanométrica. 50 butoxi presenta un histograma con un máximo de partículas de 30 nm

y 50 propoxi presenta un máximo de 80 nm, 10 propoxi presenta un histograma con un tamaño

de partícula de 350 nm respectivamente.

Page 50: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 48

Figura IV.5. a) 50 butoxi calcinado a 1200 b) 50 propoxi calcinado a 1200 c) 10 propoxi

calcinado a 1200

Page 51: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 49

4.5. Espectroscopía de fotoelectrones emitidos por rayos X

(XPS).

En la Figura IV.6 se presenta el estudio de los materiales por XPS, en la Figura IV.6 se

muestra la energía del oxígeno, para las cuatro preparaciones se puede observar un pico máximo

en 531.8 eV, el cual corresponde a la interacción del oxígeno con la zirconia de la estructura esta

banda se presenta intensa en todas las preparaciones. Cuando se adiciona CeO2 (ver Figura

IV.6) se observa un pequeño hombro a 529 eV el cual corresponde a la interacción de los átomos

de oxígeno con el CeO2, la intensidad de esta banda se muestra débil en todas las preparaciones.

Dos picos más son observados a 532.4 y 534 eV respectivamente y son debidos al oxígeno del

alcóxido remanente y a los oxígenos de OH.

Page 52: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 50

528 530 532 534 536 538 540

20000

30000

40000

50000

60000

In

tens

idad

(u.a

)

Energia de enlace (eV)

O-propanol

CeO-O

O-ZrO2

H2O adsorbida

530 535 540

20000

30000

40000

50000

CeO-O H2O adsorbida

O-propanol

Energia de enlace (eV)

Inte

nsid

ad (u

.a)

b)

Page 53: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 51

528 530 532 534 536 538 540

20000

30000

40000

50000

60000

In

tens

idad

(u.a

)

Energia de enlace (eV)

O-propanol

CeO-O

O-ZrO2

H2O adsorbida

530 535 540

20000

30000

40000

50000

60000

70000

Inte

nsid

ad (u

.a)

Energia de enlace (eV)

O-ZrO2

CeO-OO-propanol

H2O Adsorbida

Figura IV.6. XPS de O2 a) 50 butoxi calcinado a 1200°Cb) 50 propoxi calcinado a 1200°C, c) 10 propoxi calcinado a 1200°C d) 10 butoxi calcinado a 1200°C

Page 54: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 52

La Fig. IV.7 presenta los espectros de XPS del Ce 3d en todas las muestras de este

trabajo: Los espectros de XPS de Ce 3d en el Ce (IV) del óxido muestra seis picos (tres pares de

dobletes de spin- orbital). El estado fundamental de CeO2 es una mezcla de con figuración multi-

electrónicos 4f 0 y 4f1 L, donde L denota el orbitales 2p del oxígeno [32]. Los dímeros 3 d5/2 y 3

d3/2 se refieren generalmente al rango de 880-920 eV. Para CeO2, estados finales de la

fotoemisión derivados del nivel Ce 3d originan seis picos correspondientes a tres pares de

dobletes spin-órbita (3 d5/2 y 3 d3/2), se derivan de las distintas ocupaciones en el estado final de

4f Ce fuertemente hibridado con los orbitales 2p del oxígeno. Los picos se asignan a los estados

v y v’’ correspondientes antiligantes y ligantes respectivamente y que representan las

configuraciones electrónicas 3d9 4f2 (O2 p 4) y 3d9 4f1 (O2 p5) de Ce (IV) y v’’ al estado final 3d9 4f

0 (O 2 p 6) de Ce (IV). En la Figura IV.7 se muestra el espectro de XPS para la especie del CeO2

y se observan las señales ya indicadas con un incremento en la intensidad cuando se aumenta

la cantidad de CeO2 en la muestra

Page 55: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 53

870 880 890 900 910 920

14000

16000

Energia de enlace (eV)

inte

nsid

ad(u

.a)

a)

12000

14000

16000

18000

20000

Energia de enlace (eV)

Inte

nsid

ad (u

.a)

c)

926.28 916.28 906.28 896.28 886.28 876.28

14000

16000

18000

20000

Energia de enlace (eV)

b)

Inte

nsid

ad (u

.a)

880 900 92010500

11000

11500

12000

12500

13000

Energia de enlace (eV)

Inte

sida

d (u

.a)

d)

Figura IV.7. XPS de Ce a) 50 butoxi calcinado a 1200°C b) 50 propoxi calcinado a

1200°C, c) 10 butoxi calcinado a 1200°C d) 10 propoxi calcinado a 1200°C

Page 56: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 54

175 180 185 190

0

10000

20000

30000

40000

50000

60000

Energia de enlace (eV)

Inte

sida

d(u.

a)

a)

175 180 185 190

0

10000

20000

30000

40000

50000

60000

Energia de enlace (eV)In

tens

idad

(u.a

)

c)

175 180 185 190

0

10000

20000

30000

40000

50000

60000

70000

80000

Energia de enlace (eV)

b)

Inte

nsid

ad (u

.a)

175 180 185 190

0

10000

20000

30000

40000

50000

60000

Energia de enlace (eV)

d)

Inte

nsid

ad(u

.a)

Figura IV.8. (a) Espectro XPS de la zirconia Zr 3d5/2 y 3d3/2.

El XPS de la Zirconia mostrado en la Figura IV.8 presenta a la zirconia 3d mostrando en

todas las preparaciones a la zirconia Zr 3d5/2 centrada a 182.1 eV, y a la zirconia Zr 3d5/2

Page 57: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 55

centrado a 181.5 eV con bajo estado de oxidación. Picos más intensos son mostrados cuando

se usa propoxi como alcóxido [33-34].

4.6. Impedancia de CeO-ZrO2.

Este método es altamente indicado para la obtención de la conductividad de los materiales

cerámicos conductores iónicos de O2- o mixtos y permite identificar las distintas contribuciones a

la conductividad total que existen en el propio material, a través de los diferentes procesos de

transporte que en él se manifiestan. Consiste en la aplicación de un campo eléctrico alterno de

frecuencia variable y amplitud muy pequeña sobre la muestra.

Los resultados de las diferentes preparaciones se muestran en la Figura IV.9. Es una

representación de Nyquist ( componente imaginaria -Z” de la impedancia versus componente real

Z´). Las mediciones muestran una respuesta resistiva compuesta por un semicírculo deprimido

más un incremento lineal de la impedancia en el rango de bajas frecuencias.

La que presenta una menor resistividad es la muestra (50 butoxy), pero la más resistiva

es la muestra (50 propoxy). Las muestras (10 propoxy) y la (10 butoxy) parecieran tener una

resistividad similar, pero como puede verse en la segunda Figura IV. 10 puede hacer un análisis

más claro.

Page 58: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 56

Figura IV.9 Representación de Nyquist ( componente imaginaria -Z” de la impedancia

versus componente real Z´)

La Figura IV.10 muestra la variación de la corriente AC en función de la frecuencia para

las muestras en forma de pastilla. Es otra manera de presentar los resultados de la evolución de

la impedancia de Nyquist, pero explica con más claridad la variación de las propiedades eléctricas

de los materiales y es más sensible al ajuste teórico. Los datos experimentales son los puntos y

las líneas punteadas corresponden al ajuste teórico, éste se hizo usando la ecuación general de

impedancia Z como una función de la frecuencia, y parámetros derivados de las curvas de Nyquist

(frecuencia máxima, Rs, Rp y Cd).

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

1.40E+07

1.60E+07

1.80E+07

-1.00E+06 1.00E+06 3.00E+06 5.00E+06 7.00E+06 9.00E+06 1.10E+07 1.30E+07 1.50E+07

-Z"

muestra 3 10 butoxy muestra 4 10 propoxy

muestra 1 50 butoxy muestra 2 50 propoxy

Page 59: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 57

Para los cálculos teóricos se realiza una simulación un software Autolab Nova 1.10 considerando

la unidad en Ohm’s y utilizando la siguiente expresión

= + 1 +

Donde Re es el resistor independiente de la frecuencia Rn y Cn representa la resistencia de los

elemento y Cn es la capacitancia dicho ajuste se tiene elementos físicos para poder representar

un circuito.

Figura IV.10 la variación de la corriente AC en función de la frecuencia.

-2.00E-09

1.00E-22

2.00E-09

4.00E-09

6.00E-09

8.00E-09

1.00E-08

0 2000 4000 6000 8000 10000

I (A)

Freq (Hz)

muestra 4 10 propoxy muestra 1 50 butoxymuestra 2 50 propoxy m3 10butoxy teormuestra 3 10 butoxy m4 10 propoxy teoricam1 50butoxy teorica m2 50 propoxy

Page 60: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 58

Del ajuste teórico se obtienen los parámetros de resistencias y capacitancia permiten

proponer una representación de circuitos eléctricos que a su vez simulan el comportamiento de

la variación de las propiedades eléctricas los materiales (Tabla 2):

Tabla 2. Parámetros de resistencias y capacitancia de las muestras de CeO2-ZrO2.

Muestra 10 propoxy

Muestra 10 butoxy

Muestra 50 butoxy Muestra 50 propoxy

s= 0.596 MΩ

s= 0.502MΩ s= 0.55MΩ s= 0.801 MΩ

p1

9.11 MΩ p1

8.71 MΩ p1 1.04 MΩ p1 41.4 MΩ

d1

0.105 nF d1

0.16 nF d1 0.36 nF d1 40.5 pF

p2

73 MΩ p2

45 MΩ p2 47 MΩ p2 173 MΩ

d2

5.5 nF d2

2 nF d2 2.93 nF d2 0.226 nF

Page 61: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 59

Con los datos de la tabla 2 se propone para las muestras el circuito RC siguiente:

Donde Rs, Rp1, Cd1 describen como es el transporte de carga en el material y ajustan

gráficamente al semicírculo en las curvas de Nyquist. Rp2 y Cd2 simulan la componente lineal de

la impedancia y están relacionadas con efectos de impedancia inherentes a los contactos

colocados en la pastilla.

En resumen, los cambios de resistividad que presenta el material son ocasionados por la

diferencia morfológica y tamaño de grano observado por microscopía electrónica de barrido. De

un material que presente una morfología muy variada en su partícula, así como una composición

de fases muy heterogénea se espera que tenga una mayor resistividad.

La porosidad aumenta también la resistividad, se observa que la resistividad se puede

presentar de dos maneras, en los diagramas de impedancia: a través de aumento en el diámetro

del semicírculo, un semicírculo o como frecuencia intermedia correspondiente. El primer tipo de

bloqueo puede ser observado preferentemente en relación con la porosidad intragranular,

mientras que el segundo está asociado con porosidad intergranular. Así, la porosidad

intragranular, debe tener mayor resistividad eléctrica en comparación con una muestra con la

misma composición, sin embargo dando lugar a un semicírculo adicional en el diagrama de

impedancia. Las grietas y microfisuras también pueden generar un bloqueo de carga.

Page 62: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 60

Dicha convergencia es debida a que la conductividad de grano de los materiales no sigue

un comportamiento lineal, sino que se produce una variación en las pendientes de las curvas.

Las diferencias entre estos comportamientos indican que las interacciones entre las distintas

especies cargadas afectan a la conductividad iónica del material. [35-39].

Las aplicaciones más importantes son propiedades fotoactivas y propiedades eléctricas y

ópticas. Finalmente debido a la formación de huecos genera un efecto sinérgico entre el CeO2 y

el soporte ocasionando ciclos redox los cuales pueden ser utilizados en dualidad de sitios acido-

base.

Page 63: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 61

CONCLUSION.

Los diferentes materiales de CeO-ZrO2 fueron preparados por el método sol gel

obteniendo materiales nanométricos, con similar estructura, sólo ligeras diferencias en el tamaño

de las partículas, a baja temperatura por DRX se pudo obtener la fase sólida de CexZr1−xO2 y a

alta temperatura se pudo observar la zirconia tetragonal y cúbica, la fase tipo fluorita para la ceria.

Por Raman a alta temperatura se pudo corroborar la fase tetragonal y cúbica de la zirconia y picos

de la ceria tipo fluorita.

Por espectroscopía de barrido fue posible el estudio de morfología encontrado, cuando se

usa como butóxido o como alcóxido el tamaño de grano es menor comparado con el propoxi

usado como alcóxido. En las preparaciones donde se usó propoxi se verifica también un

contraste de fases, debido a que es observable una fase más oscura y otra más clara. EDS nos

permitió obtener la composición química detonando la presencia de oxígeno, Zr y Ceria en todas

las composiciones. Por esta técnica se observó la presencia de huecos, Por microscopía de

fuerza atómica se corroboró lo visto por microscopía de barrido e incluso se tuvo un acercamiento

más claro en la formación de los huecos. Ambas técnicas muestran la formación de partículas

esféricas bien definidas. Otra técnica que nos permitió conocer la composición química fue XPS

con ella se pudo ver las diferentes especies y la energía de enlace y la posible interacción entre

las especies dando mayor información del material.

Para CeO2, estados finales de la fotoemisión derivados del nivel Ce 3d originan seis picos

correspondientes a tres pares de dobletes spin-órbita (3 d5/2 y 3 d3/2), se derivan de las distintas

ocupaciones en el estado final de 4f Ce fuertemente hibridado con los orbitales 2p del oxígeno.

Page 64: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 62

La impedancia se midió en las muestras preparadas. En resumen, los cambios de

resistividad que presenta el material son ocasionados por la diferencia morfológica y tamaño de

grano observado por microscopía electrónica de barrido. De un material que presente una

morfología muy variada en su partícula, así como una composición de fases muy heterogénea se

espera que tenga una mayor resistividad.

Page 65: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 63

Referencias bibliográficas.

[1] Trovarelli, A., Catal. Rev. Sci. Eng. 38. 439 (1996).

[2] Farrauto, R. J.,and Heck, R. M., Catal. Today51., 351 (1999).

[3] Kaspar, J.,Fornasiero,P., and Graziani, M., Catal.Today50, 285 (1999).

[4] Quintana Ruiz, Mildred, Et Al, “Nanopartículas: principios y aplicaciones”, en “Revista Ciencia

y Desarrollo”, Vol. 34, no. 221, Julio 2008.

[5] Vázquez, Olmos, A., Et Al., Semiconductores magnéticos nanoestructurados. En la búsqueda

de nuevos materiales para spin electrónica, Recuperado de

www.cio.mx/3_enc_mujer/files/posters/.../ING13.doc, el 25/02/10.

[6] Gómez Michel, La nanotecnología, recuperado de:

http://mikegomez.blogspot.com/2006/12/la-nanotecnologa-introduccion- el.html, el 24/02/2010

[7] Serena Domingo Pedro Amalio, Nanociencia y Nanotecnología: aspectos generales,

recuperado de:

http://www.encuentrosmultidisciplinares.org/Revistan%C2%BA12/Pedro%20Amalio%20Serena

%20.pdf el 17/08/10.

[8] Mendoza Felipe Carlos, Et Al, Morphology of nanostructured GaP on GaAs: Synthesis by the

close-spaced vapor transport technique, en revista “Materials Chemistry and Physics”, No. 439 4

Mayo 2007.P. 127.

[9] Cerecedo Núñez Héctor Hugo, et al, Nanociencia y nanotecnología, en revista La Ciencia y

el Hombre No.2 Vol. XXIII Mayo-Agosto de 2010.

[10] Juárez, Ramírez, Isaías, Et Al “Ciencia UANL”, Vol. XI N° 4, Octubre-Diciembre 2008. P. 411

[11] Rocchiccioli-Deltcheff, M. Amirouche, G. Herve, M. Fournier, M. Che, J. M. Tatibouet, J.

Catal., 126 (1990) 591.

[12] G. Y. Kapustin, T. R. Brueva, A. L. Klyachko, M. N. Timofeeva, S. M. Kulikov, I. V.

Kozhevnikov, Kinet. Katal., 31 (1990) 1017. b) T. Okuhara, N. Mizuno, M. Misono, Appl. Catal. A:

General 222 (2001) 63

[13]A.F.Wells, “Structural inorganic chemistry”; University Press; (1975).

[14] B.Denuse, P. A. Sneeden, Appl. Catal.28 (1986) 235.

Page 66: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 64

[15] P. J. Moles, J. Adhesión Sci. Technol. 6 (1992) 61.

[16] F. Farnworth, S. L. Jones, I. McAlpine, “Speciality Inorganic Chemicals”, Special Publication 40, Royal Society of Chemistry, London 19.

[17] D. Tichit, D. El Alami, F. Figueras, Appl. Catal. A General 145 (1996) 195.

[18] Andrade Gamboa J.J y Gennari FC. (2007) modificaciones estructurales y estabilidad térmica

de mezclas ceo2-zro2 obtenidas por molienda mecánica. PAG 986 a 990

[19] http://boletines.secv.es/upload/199736353.pdf

[20] U. B. Saxena, A. K. Rai, V. K. Mathur and R. C. Mehrotra, Journal of the Chemical Society,

Vol. A, 1970, p. 904.

[21] R. Brenter and A. Gagnaire, “Densification and Aging of ZrO2 Films Prepared by Sol-Gel,”

Thin Solid Films, Vol. 392, No. 1, 2001, pp. 142-148. Doi: 10.1016/S0040-6090(01)01009-4

[22] Gazala Ruhi, O. P. Modi, I. B. Singh. Journal of Surface Engineered Materials and Advanced

Technology, 2013, 3, 55-60

[23] Q. F. Quinson, G. Chino, M. D. Becdelievre, L. Guizar and H. Brunel, Journal of Materials Science, Vol. 31, 1996, p. 5.

[24] Soria, J., Coronado, J. M., and Conesa, J. C., J. Chem. Soc. Faraday Trans. 92, 1619 (1996).

[25] YashimaM.,MorimotoK., Ishizawa N., Yoshimura M., J. Am. Ceram. Soc., 76 (1993), 2865.

[26] Yashima M.,Morimoto K., Ishizawa N., Yoshimura M., J. Am. Ceram.Soc., 76 (1993), 1745.

[27] Meriani S., Spinolo G., PowderDiffract. 2 (1987), 255.

[28] Kaspar J., Fornasiero P., Balducci G., DI Monte R., Hickey N., Sergo V., Inorg. Chim. Acta,

349 (2003), 217.

[29] Escribano V.S., Lopez E.F., Panizza M., Resini C., Amores J.M.G., Busca G.,

SolidStateScience, 5 (2003), 1369.

[30] S C Sharma*, N M Gokhale, Rajiv Dayal And Ramji Lal Synthesis,. J. Materials Science Letters 20, 2001, 1447 – 1449

[31] E.M. Larsson, C. Langhammer, I. Zorić, B. Kasemo, Nanoplasmonic Probes of Catalytic

Reactions. Science, 3262009 1091–1094.

Page 67: INSTITUTO POLITECNICO NACIONAL ES CUELA SUPERIOR DE

Página 65

[32] F. Rodríguez-Reinoso, J. Roquerol, K.S.W. Sing, K. K. Unger (Eds.), “Characterization of

Porous Solids II”, Elsevier, Amsterdam (1991).

[33] Misun Chun, Myung-JunMoon, Juyun Park, and Yong-Cheol Kang. Bull. Korean Chem. Soc.

2009, Vol. 30, No. 11 2729

[34] M. Alifanti, B. Baps, N. Blangenois, J. Naud, P. Grange, and B. Delmon. Chem. Mater. 2003, 15, 395-403.

[35] C. Leach, J. Mater.Sci. Lett. 11 (1992) 306.

[36] L.Dessemond, R. Muccillo, M. Hénault, M. Kleitz, Appl. Phys. A57 (1993) 57.

[37] M.Kleitz, L.Dessemond, M. C. Steil, Solid State Ionics 75 (1995) 107.

[38] J. R. Mc Donald, Impedance Spectroscopy-emphasizing solid materials and systems, John

Wiley & Sons (1987) p.201.

[39] Martin Trejo-Valdez, Hugo Sobral, Hugo Martínez-Gutiérrez, Carlos Torres-Torres. Thin

Solid Films xxx (2015) xxx–xxx