guia de laboratorio nº 1

25
GUIA DE LABORATORIO Nº 1 REGLAMENTO GENERAL DE USO Y SERVICIO DEL LABORATORIO DE ELECTRICIDAD, NORMAS DE SEGURIDAD, USO DE HERRAMIENTAS E INSTRUMENTOS DE MEDICIÓN DE MAGNITUDES ELÉCTRICAS 1. OBJETIVO: Conocer, analizar y difundir en los estudiantes el REGLAMENTO GENERAL DE USO Y SERVICIO DEL LABORATORIO DE ELECTRICIDAD. Revisar, estudiar y aplicar las normas de seguridad en la utilización de la energía eléctrica e instrucciones para la utilización de instrumentos de medición de magnitudes eléctricas. 2. FUNDAMENTO TEORICO CONCEPTO DE MEDIDA Medir es comparar una medida determinada con otra que tomamos como unidad. De acuerdo con la anterior definición, es necesario que las unidades de referencia sean aceptadas de forma general por la comunidad científica internacional. A principios del siglo XX se fueron unificando estos patrones de medidas por la Comisión Internacional de Pesas y Medidas, que estructuraron el Sistema Internacional de Medidas, más conocido como Sistema GIORGI. En el campo de las medidas eléctricas hay que distinguir dos tipos de medidas: medidas de tipo industrial y medidas de laboratorio. Medidas industriales: son aquellas que se realizan directamente sobre el montaje o instalación eléctrica. Para realizarlas se necesitan aparatos que sean prácticos, con la posibilidad de ser tanto fijos como portátiles. Medidas de laboratorio: son aquellas que se realizan en condiciones idóneas y distintas de las ambientales. Se utilizan para verificar el funcionamiento de los aparatos de medida o para el diseño de aparatos y circuitos; estos aparatos suelen tener una mayor precisión que los utilizados en la industria, motivo por el cual son más delicados y costosos.

Upload: michael-gamez

Post on 26-Jun-2015

538 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: GUIA DE LABORATORIO Nº 1

GUIA DE LABORATORIO Nº 1

REGLAMENTO GENERAL DE USO Y SERVICIO DEL LABORATORIO DE ELECTRICIDAD, NORMAS DE SEGURIDAD, USO DE HERRAMIENTAS E

INSTRUMENTOS DE MEDICIÓN DE MAGNITUDES ELÉCTRICAS

1. OBJETIVO: Conocer, analizar y difundir en los estudiantes el REGLAMENTO GENERAL DE USO Y SERVICIO DEL LABORATORIO DE ELECTRICIDAD. Revisar, estudiar y aplicar las normas de seguridad en la utilización de la energía eléctrica e instrucciones para la utilización de instrumentos de medición de magnitudes eléctricas.

2. FUNDAMENTO TEORICO

CONCEPTO DE MEDIDA

Medir es comparar una medida determinada con otra que tomamos como unidad.

De acuerdo con la anterior definición, es necesario que las unidades de referencia sean aceptadas de forma general por la comunidad científica internacional. A principios del siglo XX se fueron unificando estos patrones de medidas por la Comisión Internacional de Pesas y Medidas, que estructuraron el Sistema Internacional de Medidas, más conocido como Sistema GIORGI.

En el campo de las medidas eléctricas hay que distinguir dos tipos de medidas: medidas de tipo industrial y medidas de laboratorio.

• Medidas industriales: son aquellas que se realizan directamente sobre el montaje o instalación eléctrica.Para realizarlas se necesitan aparatos que sean prácticos, con la posibilidad de ser tanto fijos como portátiles.

• Medidas de laboratorio: son aquellas que se realizan en condiciones idóneas y distintas de las ambientales.Se utilizan para verificar el funcionamiento de los aparatos de medida o para el diseño de aparatos y circuitos; estos aparatos suelen tener una mayor precisión que los utilizados en la industria, motivo por el cual son más delicados y costosos.

Page 2: GUIA DE LABORATORIO Nº 1

Cualidades de los aparatos de medida

Podemos decir que un aparato de medida será mejor o peor, atendiendo a las siguientes cualidades:

a) Sensibilidad: se define como el cociente entre la desviación de la aguja indicadora medida en grados y la variación de la magnitud que se está midiendo. Esta cualidad es específica de los aparatos analógicos.b) Precisión: la precisión de un aparato de medida, está íntimamente relacionada con su calidad. Es más preciso un aparato cuanto más parecido sea el valor indicado a la medida real de dicha magnitud.c) Exactitud: es un concepto parecido al de precisión, pero no igual. Un aparato es más exacto cuanto más parecidos sean el valor medido y el valor real por extensión, un aparato exacto es, a su vez, preciso, pero un aparato preciso no tiene por qué ser exacto.d) Fidelidad: cuando al repetir varias veces la misma medida, el aparato da la misma indicación.e) Rapidez: un aparato es rápido cuando se estabiliza en menos tiempo.

ERRORES EN LA MEDIDA

Al realizar medidas, los resultados obtenidos pueden verse afectados. El resultado lleva implícito la posibilidad de errar en la lectura, por ello es necesario conocer con profundidad como se cometen los errores, para poderlos prever y minimizar, de manera que seamos nosotros los que valoremos la

Page 3: GUIA DE LABORATORIO Nº 1

veracidad de la medida realizada. Los errores en medidas eléctricas se pueden clasificar en sistemáticos y accidentales:

a) Error sistemático es el originado por las características del aparato o de la actitud del observador. Entre los más frecuentes se pueden destacar los siguientes:• Metodológicos: por utilizar un método inadecuado para realizar la medida, como por ejemplo la colocación de los aparatos de medida cuando se utiliza el método indirecto, ya que éstos tienen consumo y pueden falsear el resultado obtenido.• Ambientales: son el resultado de la influencia de las condiciones físicas del entorno: temperatura, presión, humedad, campos magnéticos, etcétera.• Personales: los que dependen de la pericia o habilidad del operador al realizar la medida; por ejemplo, la colocación de éste en la lectura.• Instrumentales: son los causados por el desgaste de las piezas del aparato, o bien por el desgaste de la pila o batería que alimenta dicho aparato.b) Accidentales: se producen de una forma aleatoria. No se pueden clasificar dada su gran variedad; aun así, no son de gran importancia en las medidas eléctricas.

Cada vez que realicemos una medida, debemos evitar desconfiar del valor obtenido, pero también razonar si el resultado está en relación con el valor que preveíamos o no se corresponde con éste. En caso de que exista gran diferencia, hemos de pensar que algo raro ocurre y hacer las comprobaciones necesarias.

Entre todos los errores que se pueden cometer al realizar una medida, se encuentran los causados por el operario que la realiza. Se suelen cometer con frecuencia, pero son fáciles de eliminar siendo metódicos. Estos son:

a) Errores de cero: Se dan cuando al iniciar la medida no hemos prestado la suficiente atención a la posición del índice (aguja indicadora). Antes de medir, es conveniente calibrar con el tornillo de ajuste la aguja a cero.b) Error de paralaje: ocurre cuando el operario no encara de forma perpendicular la escala del aparato. Se corrige haciendo coincidir la aguja con su proyección sobre la escala. Algunos aparatos suelen incorporar un espejo sobre la escala para facilitar esta tarea.Estos errores no se suelen dar en los aparatos digitales. Por otro lado, es conveniente conocer la calidad y precisión de los aparatos de medida, de ahí que estudiemos los siguientes conceptos:c) Error absoluto: es la diferencia entre el valor obtenido y el valor real. Como se ha dicho en párrafos anteriores, el valor real es difícil de conocer, por este motivo podemos tomar como valor real el obtenido con un aparato de precisión, o bien, tomar como valor real la media de varias medidas.

ea = Valor leído – Valor real

Este error nos indica cuánto nos hemos equivocado, pero no nos dice nada sobre la calidad de la medida y del aparato con la que se realiza. Se pueden obtener errores tanto positivos como negativos, en el primer caso se entiende que el aparato mide por exceso y en el segundo se entiende que lo hace por defecto.

d) Error relativo: es el resultado de multiplicar por 100 el cociente que resulta de dividir el error absoluto por el valor real. El error relativo se expresa en tanto por ciento.Este error nos da más información sobre la medida, ya que se refiere al error cometido por unidad de medida.Un aparato se puede considerar bueno cuando da un error relativo por debajo del 2%.

Page 4: GUIA DE LABORATORIO Nº 1
Page 5: GUIA DE LABORATORIO Nº 1
Page 6: GUIA DE LABORATORIO Nº 1
Page 7: GUIA DE LABORATORIO Nº 1
Page 9: GUIA DE LABORATORIO Nº 1

VOLTIMETRO

PUENTE DE RESISTENCIAS (PUENTE DE WHEASTONE)

4. PROCEDIMIENTO DE EJECUCIÓN:

Reconocer las herramientas a utilizarse en el laboratorio de electricidad.

Identificar instrumentos de medición analógicos:

VATIMETRO

El vatímetro es un instrumento electrodinámico para medir la potencia eléctrica o la tasa de suministro de energía eléctrica de un circuito eléctrico dado. El dispositivo consiste en un par de bobinas fijas, llamadas «bobinas de corriente», y una bobina móvil llamada «bobina de potencial».

Las bobinas fijas se conectan en serie con el circuito, mientras la móvil se conecta en paralelo. Además, en los vatímetros analógicos la bobina móvil tiene una aguja que se mueve sobre una escala para indicar la potencia medida. Una corriente que circule por las bobinas fijas genera un campo electromagnético cuya potencia es proporcional a la corriente y está en fase con ella. La bobina móvil tiene, por regla general, una resistencia grande conectada en serie para reducir la corriente que circula por ella.

El resultado de esta disposición es que en un circuito de corriente continua, la deflexión de la aguja es proporcional tanto a la corriente como al voltaje, conforme a la ecuación W=VA o P=EI. En un circuito de corriente alterna la deflexión es proporcional al producto instantáneo medio del voltaje y la corriente, midiendo pues la potencia real y posiblemente (dependiendo de las características de

Page 10: GUIA DE LABORATORIO Nº 1

cargo) mostrando una lectura diferente a la obtenida multiplicando simplemente las lecturas arrojadas por un voltímetro y un amperímetro independientes en el mismo circuito.

Los dos circuitos de un vatímetro son propensos a resultar dañados por una corriente excesiva. Tanto los amperímetros como los voltímetros son vulnerables al recalentamiento: en caso de una sobrecarga, sus agujas pueden quedar fuera de escala; pero en un vatímetro el circuito de corriente, el de potencial o ambos pueden recalentarse sin que la aguja alcance el extremo de la escala. Esto se debe a que su posición depende del factor de potencia, el voltaje y la corriente. Así, un circuito con un factor de potencia bajo dará una lectura baja en el vatímetro, incluso aunque ambos de sus circuitos esté cargados al borde de su límite de seguridad. Por tanto, un vatímetro no sólo se clasifica en vatios, sino también en voltios y amperios.

AMPERIMETRO

El Amperímetro:

Es el instrumento que mide la intensidad de la Corriente Eléctrica. Su unidad de medida es el Amperio y sus Submúltiplos, el miliamperio y el micro-amperio. Los usos dependen del tipo de corriente, ósea, que cuando midamos Corriente Continua, se usara el amperímetro de bobina móvil y cuando usemos Corriente Alterna, usaremos el electromagnético.

El Amperímetro de C.C. puede medir C.A. rectificando previamente la corriente, esta función se puede destacar en un Multimetro. Si hablamos en términos básicos, el Amperímetro es un simple galvanómetro (instrumento para detectar pequeñas cantidades de corriente) con una resistencia paralela llamada Shunt. Los amperímetros tienen resistencias por debajo de 1 Ohmnio, debido a que no se disminuya la corriente a medir cuando se conecta a un circuito energizado.

La resistencia Shunt amplia la escala de medición. Esta es conectada en paralelo al amperímetro y ahorra el esfuerzo de tener otros amperímetros de menor rango de medición a los que se van a medir realmente.

Uso del Amperímetro

Es necesario conectarlo en serie con el circuito Se debe tener un aproximado de corriente a medir ya que si es mayor de la escala del

amperímetro, lo puede dañar. Por lo tanto, la corriente debe ser menor de la escala del amperímetro

Cada instrumento tiene marcado la posición en que se debe utilizar: horizontal, vertical o inclinada. Si no se siguen estas reglas, las medidas no serían del todo confiable y se puede dañar el eje que soporta la aguja.

Todo instrumento debe ser inicialmente ajustado en cero. Las lecturas tienden a ser más exactas cuando las medidas que se toman están intermedias a

la escala del instrumento. Nunca se debe conectar un amperímetro con un circuito que este energizado.

Clasificación de los Amperimetros

Magnetoeléctrico

Para medir la corriente que circula por un circuito tenemos que conectar el amperímetro en serie con la fuente de alimentación y con el receptor de corriente. Así, toda la corriente que circula entre esos dos puntos va a pasar antes por el amperímetro. Estos aparatos tienen una bobina móvil que está fabricada con un hilo muy fino (aproximadamente 0,05 mm de diámetro) y cuyas espiras, por donde va a pasar la corriente que queremos medir, tienen un tamaño muy reducido. Por todo esto, podemos decir que la intensidad de corriente, que va a poder medir un amperímetro cuyo sistema de

Page 11: GUIA DE LABORATORIO Nº 1

medida sea magnetoeléctrico, va a estar limitada por las características físicas de los elementos que componen dicho aparato. El valor límite de lo que podemos medir sin temor a introducir errores va a ser alrededor de los 100 miliamperios, luego la escala de medida que vamos a usar no puede ser de amperios sino que debe tratarse de miliamperios. Para aumentar la escala de valores que se puede medir podemos colocar resistencias en derivación, pudiendo llegar a medir amperios (aproximadamente hasta 300 amperios). Las resistencias en derivación pueden venir conectadas directamente en el interior del aparato o podemos conectarlas nosotros externamente.

Electromagnético

Están constituidos por una bobina que tiene pocas espiras pero de gran sección. La potencia que requieren estos aparatos para producir una desviación máxima es de unos 2 vatios. Para que pueda absorberse esta potencia es necesario que sobre los extremos de la bobina haya una caída de tensión suficiente, cuyo valor va a depender del alcance que tenga el amperímetro. El rango de valores que abarca este tipo de amperímetros va desde los 0,5 A a los 300 A. Aquí no podemos usar resistencias en derivación ya que producirían un calentamiento que conllevaría errores en la medida. Se puede medir con ellos tanto la corriente continua como la alterna. Siendo solo válidas las medidas de corriente alterna para frecuencias inferiores a 500 Hz. También se puede agregar amperímetros de otras medidas eficientes.

Electrodinámico

Los amperímetros con sistema de medida "electrodinámico" están constituidos por dos bobinas, una fija y una móvil.

Utilización

Utilidad del Amperímetro

Su principal, conocer la cantidad de corriente que circula por un conductor en todo momento, y ayuda al buen funcionamiento de los equipos, detectando alzas y bajas repentinas durante el funcionamiento. Además, muchos Laboratorios lo usan al reparar y averiguar subidas de corriente para evitar el malfuncionamiento de un equipo

Se usa además con un Voltímetro para obtener los valores de resistencias aplicando la Ley de Ohm. A esta técnica se le denomina el “Método del Voltímetro - Amperímetro”

Para efectuar la medida es necesario que la intensidad de la corriente circule por el amperímetro, por lo que éste debe colocarse en serie, para que sea atravesado por dicha corriente. El amperímetro debe poseer una resistencia interna lo más pequeña posible con la finalidad de evitar una caída de tensión apreciable (al ser muy pequeña permitirá un mayor paso de electrones para su correcta medida). Para ello, en el caso de instrumentos basados en los efectos electromagnéticos de la corriente eléctrica, están dotados de bobinas de hilo grueso y con pocas espiras.

En algunos casos, para permitir la medida de intensidades superiores a las que podrían soportar los delicados devanados y órganos mecánicos del aparato sin dañarse, se les dota de un resistor de muy pequeño valor colocado en paralelo con el devanado, de forma que solo pase por éste una fracción de la corriente principal. A este resistor adicional se le denomina shunt.Aunque la mayor parte de la corriente pasa por la resistencia de la derivación, la pequeña cantidad que fluye por el medidor sigue siendo proporcional a la intensidad total por lo que el galvanómetro se puede emplear para medir intensidades de varios cientos de amperios.

Page 12: GUIA DE LABORATORIO Nº 1

La pinza amperimétrica es un tipo especial de amperímetro que permite obviar el inconveniente de tener que abrir el circuito en el que se quiere medir la intensidad de la corriente.

Figura 1.- Conexión de un amperímetro en un circuito

MULTIMETRO

Un multímetro, también denominado polímetro, tester o multitester, es un instrumento de medición que ofrece la posibilidad de medir distintos parámetros eléctricos y magnitudes en el mismo dispositivo. Las funciones más comunes son las de voltímetro, amperímetro y óhmetro. Es utilizado frecuentemente por personal en toda la gama de electrónica y electricidad.

MULTÍMETRO ANALÓGICO

Las tres posiciones del mando sirven para medir intensidad en corriente continua(D.C.), de izquierda a derecha, los valores máximos que podemos medir son:500μA, 10mA y 250mA (μA se lee microamperio y corresponde a 10 − 6A=0,000001A y mA se lee miliamperio y corresponde a 10 −

3 =0,001A).

Page 13: GUIA DE LABORATORIO Nº 1

Vemos 5 posiciones, para medir tensión en corriente continua (D.C.= Direct Current), correspondientes a 2.5V, 10V, 50V, 250V y 500V, en donde V=voltios.

Para medir resistencia (x10Ω y x1k Ω); Ω se lee ohmio. Esto no lo usaremos apenas, pues observando detalladamente en la escala milimetrada que está debajo del número 6 (con la que se mide la resistencia), verás que no es lineal, es decir, no hay la misma distancia entre el 2 y el 3 que entre el 4 y el 5; además, los valores decrecen hacia la derecha y la escala en lugar de empezar en 0, empieza en (un valor de resistencia igual a significa que el circuito está abierto). A veces usamos estas posiciones para ver si un cable está roto y no conduce la corriente.

Como en el apartado 2, pero en este caso para medir corriente alterna (A.C.:=Alternating Current). Sirve para comprobar el estado de carga de pilas de 1.5V y 9V.

Escala para medir resistencia. Escalas para el resto de mediciones. Desde abajo hacia arriba vemos una de 0 a 10, otra de 0 a 50 y una última de 0 a 250

Generar y detectar la frecuencia intermedia de un aparato, así como un circuito amplificador con altavoz para ayudar en la sintonía de circuitos de estos aparatos. Permiten el seguimiento de la señal a través de todas las etapas del receptor bajo prueba

Sincronizarse con otros instrumentos de medida, incluso con otros multímetros, para hacer medidas de potencia puntual (Potencia = Voltaje * Intensidad).

Utilización como aparato telefónico, para poder conectarse a una línea telefónica bajo prueba, mientras se efectúan medidas por la misma o por otra adyacente.

Comprobación de circuitos de electrónica del automóvil. Grabación de ráfagas de alto o bajo voltaje.

Un multimetro analógico genérico o estándar suele tener los siguientes componentes: Conmutador alterna-continua (AC/DC): permite seleccionar una u otra opción dependiendo de la tensión (continua o alterna).

Interruptor rotativo: permite seleccionar funciones y escalas. Girando este componente se consigue seleccionar la magnitud (tensión, intensidad, etc.) y el valor de escala. Ranuras de inserción de condensadores: es donde se debe insertar el condensador cuya capacidad se va a medir.

Orificio para la Hfe de los transistores: permite insertar el transistor cuya ganancia se va a medir.

Entradas: en ellas se conectan las puntas de medida.

Habitualmente, los multimetros analógicos poseen cuatro bornes (aunque también existen de dos), uno que es el común, otro para medir tensiones y resistencias, otro para medir intensidades y otro para medir intensidades no mayores de 20 amperios.

Como medir con el multímetro digital

Midiendo tensiones

Para medir una tensión, colocaremos las bornas en las clavijas , y no tendremos mas que colocar ambas puntas entre los puntos de lectura que queramos medir. Si lo que queremos es medir voltaje absoluto, colocaremos la borna negra en cualquier masa (un cable negro de molex o el chasis del ordenador) y la otra borna en el punto a medir. Si lo que queremos es medir diferencias de voltaje entre dos puntos, no tendremos mas que colocar una borna en cada lugar.

Page 14: GUIA DE LABORATORIO Nº 1

Midiendo resistencias

El procedimiento para medir una resistencia es bastante similar al de medir tensiones. Basta con colocar la ruleta en la posición de ohmios y en la escala apropiada al tamaño de la resistencia que vamos a medir. Si no sabemos cuántos ohmios tiene la resistencia a medir, empezaremos con colocar la ruleta en la escala más grande, e iremos reduciendo la escala hasta que encontremos la que más precisión nos da sin salirnos de rango.

Midiendo intensidades

El proceso para medir intensidades es algo más complicado, puesto que en lugar de medirse en paralelo, se mide en serie con el circuito en cuestión. Por esto, para medir intensidades tendremos que abrir el circuito, es decir, desconectar algún cable para intercalar el tester en medio, con el propósito de que la intensidad circule por dentro del tester. Precisamente por esto, hemos comentado antes que un tester con las bornas puestas para medir intensidades tiene resistencia interna casi nula, para no provocar cambios en el circuito que queramos medir.

Para medir una intensidad, abriremos el circuito en cualquiera de sus puntos, y configuraremos el tester adecuadamente (borna roja en clavija de amperios de más capacidad, 10A en el caso del tester del ejemplo, borna negra en clavija común COM).

Una vez tengamos el circuito abierto y el tester bien configurado, procederemos a cerrar el circuito usando para ello el tester, es decir, colocaremos cada borna del tester en cada uno de los dos extremos del circuito abierto que tenemos. Con ello se cerrará el circuito y la intensidad circulará por el interior del multímetro para ser leída.

MEGÓHMETRO

El término megóhmetro hace referencia a un instrumento para la medida del aislamiento eléctrico en alta tensión. Se conoce también como "Megger", aunque este término corresponde a la marca comercial del primer instrumento portátil medidor de aislamiento introducido en la industria eléctrica en 1889. El nombre de este instrumento, megóhmetro, deriva de que la medida del aislamiento de cables, transformadores, aisladores, etc se expresa en megohmios ( MΩ ). Es por tanto incorrecto el utilizar el término "Megger" como verbo en expresiones tales como: se debe realizar el megado del cable... y otras similares.

En realidad estos aparatos son un tipo especial de óhmetro en el que la batería de baja tensión, de la que normalmente están dotados estos, se sustituye por un generador de alta tensión, de forma que la medida de la resistencia se efectúa con voltajes muy elevados.

VOLTIMETRO

El Voltímetro:

Es el instrumento que mide el valor de la tensión. Su unidad básica de medición es el Voltio (V) con sus múltiplos: el Megavoltio (MV) y el Kilovoltio (KV) y sub.-múltiplos como el milivoltio (mV) y el micro voltio. Existen Voltímetros que miden tensiones continuas llamados voltímetros de bobina móvil y de tensiones alternas, los electromagnéticos.

Sus características son también parecidas a las del galvanómetro, pero con una resistencia en serie. Dicha resistencia debe tener un valor elevado para limitar la corriente hacia el voltímetro cuando circule la intensidad a través de ella y además porque el valor de la misma es equivalente a la conexión paralela aproximadamente igual a la resistencia interna; y por esto la diferencia del potencial que se mide (I2 x R) no varía.

Page 15: GUIA DE LABORATORIO Nº 1

Ampliación de la escala del Voltímetro

El procedimiento de variar la escala de medición de dicho instrumento es colocándole o cambiándole el valor de la resistencia Rm por otro de mayor Ohmeaje, en este caso.

Uso del Voltímetro

Es necesario conectarlo en paralelo con el circuito, tomando en cuenta la polaridad si es C.C.

Se debe tener un aproximado de tensión a medir con el fin de usar el voltímetro apropiado

Cada instrumento tiene marcado la posición en que se debe utilizar: horizontal, vertical o inclinada.

Todo instrumento debe ser inicialmente ajustado en cero.

CLASIFICACIÓN

Voltímetros electromecánicos

Estos voltímetros, en esencia, están constituidos por un galvanómetro cuya escala ha sido graduada en voltios. Existen modelos para corriente continua y para corriente alterna.

Voltímetros electrónicos

Añaden un amplificador para proporcionar mayor impedancia de entrada (del orden de los 20 megaohmios) y mayor sensibilidad. Algunos modelos ofrecen medida de "verdadero valor eficaz" para corrientes alternas. Los que no miden el verdadero valor eficaz es porque miden el valor de pico a pico, y suponiendo que se trata de una señal sinusoidal perfecta, calculan el valor eficaz por medio de la siguiente fórmula:

Voltímetros vectoriales

Se utilizan con señales de microondas. Además del módulo de la tensión dan una indicación de su fase. Se usa tanto por los especialistas y reparadores de aparatos eléctricos, como por aficionados en el hogar para diversos fines; la tecnología actual ha permitido poner en el mercado versiones económicas y al mismo tiempo precisas para el uso general. Son dispositivos presentes en cualquier casa de ventas dedicada a la electrónica.

Voltímetros digitales

Dan una indicación numérica de la tensión, normalmente en una pantalla tipo LCD. Suelen tener prestaciones adicionales como memoria, detección de valor de pico, verdadero valor eficaz (RMS), autorrango y otras funcionalidades.

El sistema de medida emplea técnicas de conversión analógico-digital (que suele ser empleando un integrador de doble rampa) para obtener el valor numérico mostrado en una pantalla numérica LCD.

El primer voltímetro digital fue inventado y producido por Andrew Kay de "Non-Linear Systems" (y posteriormente fundador de Kaypro) en 1954.

Page 16: GUIA DE LABORATORIO Nº 1

Utilización

Utilidad del Voltímetro

Conocer en todo momento la tensión de una fuente o de una parte de un circuito. Cuando se encuentran empotrados en el Laboratorio, se utilizan para detectar alzas y bajas de tensión. Junto el Amperímetro, se usa con el Método ya nombrado

Para efectuar la medida de la diferencia de potencial el voltímetro ha de colocarse en paralelo; esto es, en derivación sobre los puntos entre los que tratamos de efectuar la medida. Esto nos lleva a que el voltímetro debe poseer una resistencia interna lo más alta posible, a fin de que no produzca un consumo apreciable, lo que daría lugar a una medida errónea de la tensión. Para ello, en el caso de instrumentos basados en los efectos electromagnéticos de la corriente eléctrica, estarán dotados de bobinas de hilo muy fino y con muchas espiras, con lo que con poca intensidad de corriente a través del aparato se consigue el momento necesario para el desplazamiento de la aguja indicadora.

Figura 1.- Conexión de un voltímetro en un circuito

En la actualidad existen dispositivos digitales que realizan la función del voltímetro presentando unas características de aislamiento bastante elevadas empleando complejos circuitos de aislamiento.

En la Figura 1 se puede observar la conexión de un voltímetro (V) entre los puntos de a y b de un circuito, entre los que queremos medir su diferencia de potencial.

En algunos casos, para permitir la medida de tensiones superiores a las que soportarían los devanados y órganos mecánicos del aparato o los circuitos electrónicos en el caso de los digitales, se les dota de una resistencia de elevado valor colocada en serie con el voltímetro, de forma que solo le someta a una fracción de la tensión total.

A continuación se ofrece la fórmula de cálculo de la resistencia serie necesaria para lograr esta ampliación o multiplicación de escala:

,

Donde N es el factor de multiplicación (N≠1)

Ra es la Resistencia de ampliación del voltímetro

Rv es la Resistencia interna del voltímetro

Page 17: GUIA DE LABORATORIO Nº 1

PUENTE DE RESISTENCIAS (PUENTE DE WHEASTONE)

Un puente de Wheatstone es un instrumento eléctrico de medida inventado por Samuel Hunter Christie en 1832, mejorado y popularizado por Sir Charles Wheatstone en 1843. Se utiliza para medir resistencias desconocidas mediante el equilibrio de los brazos del puente. Estos están constituidos por cuatro resistencias que forman un circuito cerrado, siendo una de ellas la resistencia bajo medida.

Descripción

Figura 1.-Disposición del Puente de Wheatstone.

La Figura 1 siguiente muestra la disposición eléctrica del circuito y la Figura 2 corresponde a la imagen real de un puente de Wheatstone típico.

En la Figura 1 vemos que, Rx es la resistencia cuyo valor queremos determinar, R1, R2 y R3 son resistencias de valores conocidos, además la resistencia R2 es ajustable. Si la relación de las dos resistencias del brazo conocido (R1/R2) es igual a la relación de las dos del brazo desconocido (Rx/R3), el voltaje entre los dos puntos medios será nulo y por tanto no circulará corriente alguna entre esos dos puntos C y B.

Para efectuar la medida lo que se hace es variar la resistencia R2 hasta alcanzar el punto de equilibrio. La detección de corriente nula se puede hacer con gran precisión mediante el galvanómetro A.

La dirección de la corriente, en caso de desequilibrio, indica si R2 es demasiado alta o demasiado baja. El valor de la F.E.M. (E) del generador es indiferente y no afecta a la medida.

Cuando el puente esta construido de forma que R3 es igual a R2, Rx es igual a R1 en condición de equilibrio.(corriente nula por el galvanómetro).

Asimismo, en condición de equilibrio siempre se cumple que:

Si los valores de R1, R2 y R3 se conocen con mucha precisión, el valor de Rx puede ser determinado igualmente con precisión. Pequeños cambios en el valor de Rx romperán el equilibrio y serán claramente detectados por la indicación del galvanómetro.

Page 18: GUIA DE LABORATORIO Nº 1

De forma alternativa, si los valores de R1, R2 y R3 son conocidos y R2 no es ajustable, la corriente que fluye a través del galvanómetro puede ser utilizada para calcular el valor de R x siendo este procedimiento más rápido que el ajustar a cero la corriente a través del medidor.

5. CUESTIONARIO

5.1 ¿Por qué es necesario en reglamento de uso del laboratorio?

Ya que esta nos permitirá que llevemos a cabo un buen trabajo dentro del laboratorio para no correr riesgos ya que también nos enseñaron las medidas d seguridad que debemos tomar para que no causemos ni nos pase ningún accidente cuando estemos en el funcionamiento del laboratorio desarrollando nuestra practica

5.2 ¿Qué tecnologías se aplican en la construcción de elementos digitales y cuáles son las ventajas de cada una de ellas?

5.3 ¿Cuál es la ventaja de los instrumentos analógicos frente a los instrumentos digitales?

Están indicados para la medición directa o indirecta mediante el uso de los accesorios correspondientes.

Clase de precisión 1,5 (0,5 para frecuencímetro). Tolerancia ± 20% de la tensión nominal. Temperatura de funcionamiento -25ºC a + 75ºC garantizado clase de precisión entre +10ºC y +30ºC. Consumo interno entre 0,3 VA y 4 VA. Montaje vertical y horizontal.

5.4 ¿Por qué es necesario la presencia de la línea de tierra en la estructura de un circuito digital?

Sirve para descargar cualquier tensión indeseable, como las que provocan los cortocircuitos. Es imprescindible para un correcto funcionamiento del diferencial. El diferencial es un dispositivo de protección sirve para proteger a las personas cuando inadvertidamente toquen un cable con corriente. Para que funcione como debe es imprescindible una buena toma de tierra.

5.5 ¿Cuáles son las ventajas de usar opto acopladores en los circuitos de control de potencia digitales?

La razón fundamental para llevar a cabo acoplamiento óptico y aislamiento eléctrico es por protección de la etapa o sistema digital ya que si ocurre un corto en la etapa de potencia, o cualquier otro tipo de anomalía eléctrica, el OPTOACOPLADOR protege toda la circuitería digital de control.

Alta tensión de aislamiento Alta resistencia de aislamiento Baja capacidad de aislamiento Baja potencia de excitación No tiene partes mecánicas ni contactos móviles Elevado número de maniobras No genera interferencia electromagnética. Transmite señales entre 0 y 10 MHz Resistencia a las vibraciones Temperatura de funcionamiento elevada (100º C)

Page 19: GUIA DE LABORATORIO Nº 1

Bajo costo Menor tamaño y preso. Mo influyen condiciones ambientales.

6. OBSERVACIONES Y CONCLUSIONES:

En el Laboratorio, necesitaremos conocimiento y Uso de los instrumentos que nos servirán para corregir, rectificar y mantener circuitos eléctricos que construiremos más adelante.

Es importante conocer de qué forma vamos a usar los instrumentos como el Multimetro, pues si le damos un Uso indebido, podemos dañar dicho instrumento u obtener cálculos inexactos que a la larga puedan dañar el trabajo que estemos haciendo.

Debemos además de conocer ciertas formulas y Leyes en las que tengamos que vaciar los Datos de Medición para obtener resultados confiables y por consiguiente, un optimo trabajo.

Se estableció los pasos que debe realizar para elaborar una medición correcta y segura, además de reconocer la estructura de un circuito eléctrico básico.

En un Vatímetro la inclinación resultante de la bobina móvil depende tanto de la corriente como del voltaje y puede calibrarse directamente en vatios, ya que la potencia es el producto del voltaje y la corriente.

En un puente de wheatstone se utilizan puentes de este tipo para medir la inductancia y la capacitancia de los componentes de circuitos. Para ello se sustituyen las resistencias por inductancias y capacitancias conocidas.

7. BIBLIOGRAFIA

Boylestad Robert y Nashelsky Louis. Electrónica. Teoría de Circuitos. Editorial Prentice Hall Hispanoamericana, México, 1998Tecnología Electrónica. Adolfo F. Gonzaleshttp://es.wikipedia.org/wiki/Optoacopladorhttp://eupt.unizar.es/asignaturas/ittse/sistemas_electronicos_digitales/Cuatrimestre1/02tema/02teoria.pdf.http://es.wikipedia.org/wiki/Electricidad#Mediciones_el.C3.A9ctricashttp://www.monografias.com/cgi-bin/search.cgi?query=mediciones%20electricashttp://es.wikipedia.org/wiki/Amper%C3%ADmetrohttp://es.wikipedia.org/wiki/Ohmetrohttp://es.wikipedia.org/wiki/Volt%C3%ADmetro