fourier trans 2

31
TRANSFORMADAS DE FOURIER fx ( )= a j i 2π ba jx e j =−∞ a j = 1 L i 2 π L jx e f ( x ) dx a b = 1 L i 2π L jx e f ( x ) dx L 2 L 2 k = 2 π L j ; a j = 2 π L ˆ f 2 π L j ˆ f 2 π L j ⎟ = L 2 π a j ˆ f k ( )= L 2 π a Lk 2 π

Upload: elias-esteban

Post on 25-Dec-2015

219 views

Category:

Documents


0 download

DESCRIPTION

Xd

TRANSCRIPT

Page 1: Fourier Trans 2

TRANSFORMADAS DE FOURIER

f x( ) = aj i 2πb−a

jxej=−∞

aj =1L

−i2π

Ljxe f(x)dx

a

b

∫ =1L

−i2π

Ljxe f (x)dx

−L2

L2

k =2πL

j ; aj =2πL

ˆ f 2πL

j⎛ ⎝ ⎜

⎞ ⎠ ⎟

ˆ f 2πL

j⎛ ⎝ ⎜

⎞ ⎠ ⎟ =

L2π

aj ⇔ ˆ f k( )=L2π

aLk2π

Page 2: Fourier Trans 2

f x( ) = aj i 2πb−a

jxej=−∞

∑ =12π

ˆ f 2πL

j⎛ ⎝ ⎜

⎞ ⎠ ⎟

i2πL

jxej=−∞

∑ 2πL

K K

L → ∞

f x( ) =12π

ˆ f (k)ikxe dk

−∞

ˆ f k( ) =12π

f (x)−ikxe dx

−∞

Page 3: Fourier Trans 2

f x( ) =12π

12π

f(x' )−ikx'e dx'

−∞

∫⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

ikxe dk−∞

ˆ f k( ) =12π

f (x)−ikxe dx

−∞

f x( ) =12π

ˆ f (k)ikxe dk

−∞

f x( ) = dx' f (x')1

2πik(x−x')

dk e−∞

∫⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

−∞

(x’-x)

=

(x-x’)

Page 4: Fourier Trans 2

Ortogonalidad de las funciones ikxe2π

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪ :“ “

ikxe2π

, ik' xe2π

⎜ ⎜

⎟ ⎟ =

−ikxe2π

ik'xe2π−∞

∫ dx=1

2πi(k'−k) xe

−∞

∫ dx=δ(k'−k) =δ(k−k')

k ↔ ω

x↔ t

=δ(k'−k) =δ(k−k')

iωte2π

, iω'te2π

⎜ ⎜

⎟ ⎟

=δ(ω'−ω)=δ(ω −ω' )

Page 5: Fourier Trans 2

Ejemplos:

1. Onda plana: ↔ f x( ) =ik0xef t( )=

iω0te

ˆ f ω( )=12π

f(t)−iω te

−∞

∫ dtˆ f (ω) =12π

iω0te −iω te−∞

∫ dt=12π

i(ω0−ω)te−∞

∫ dt

ˆ f (ω) = 2π δ(ω−ω0)

ˆ f (ω) = 2π δ(ω−ω0)

2. Función pulso: f t( )=

0 , t<0

1 , 0≤t ≤T

0 , T <t

⎨ ⎪

⎩ ⎪

ˆ f ω( )=12π

f(t)−iωte dt

−∞

ˆ f ω( )=12π

−iωTe −1( ) → Re ˆ f ω( )[ ] =12π

sen(ωT)ω

=12π

−iωte dt0

T

∫T

T

Page 6: Fourier Trans 2

f t( )=

0 , t<−T2

1 , −T2

≤t≤T2

0 , T2

<t

⎪ ⎪ ⎪

⎪ ⎪ ⎪

→ ˆ f ω( ) =12π

f (t)−iωte dt

−∞

ˆ f (ω) =12π

−iωte dt−

T2

T2

∫ =12π

−iω T2e −

iω T2e

⎛ ⎝ ⎜

⎞ ⎠ ⎟

ˆ f (ω) =22π

sen(ωT2

)

ω=

T2π

sen(ωT2

)

ωT2

Page 7: Fourier Trans 2

f t( )=

0 , t<−T2

1 , −T2

≤t≤T2

0 , T2

<t

⎪ ⎪ ⎪

⎪ ⎪ ⎪

−T2

T2

T2π

2πT

−2πT

→ ˆ f (ω) =T2π

sen(ωT2

)

ωT2

Page 8: Fourier Trans 2

f t( )=

0 , t<−T2

1 , −T2

≤t≤T2

0 , T2

<t

⎪ ⎪ ⎪

⎪ ⎪ ⎪

→ ˆ f (ω) =T2π

sen(ωT2

)

ωT2

f t( )=1

T ∞

→ ˆ f ω( ) =12π

−iωte dt−∞

∫ = 2π δ(ω)

T ∞

Page 9: Fourier Trans 2

3. Función coseno:

f t( )=cos(ω0t) → ˆ f ω( ) =12π

f (t)−iωte dt

−∞

ˆ f ω( )=12π

cos(ω0t)−iωte dt

−∞

∫ =12π

−iωtiω0te + −iω0te2( )e dt

−∞

ˆ f (ω) =1

2 2π−i(ω−ω0 )te +

−i(ω+ω0 )te( )−∞

∫ dt

ˆ f (ω) =2π

2 2πδ(ω −ω0)+δ(ω +ω0)[ ]

ˆ f (ω) =π2

δ(ω −ω0)+δ(ω +ω0)[ ]

Page 10: Fourier Trans 2

Transformadas de Fourier de funciones pares, f(t) = f(-t):

ˆ f ω( )=12π

f(t)−iωte dt

−∞

∫ =12π

f(t)−iωte dt+ f (t)

−iωte dt0

∫−∞

0

∫⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

ˆ f (ω) =12π

f(t)iωte dt+ f (t)

−iωte dt0

∫0

∫⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

=12π

f (t)iωte +

−iωte( )dt0

ˆ f ω( )=2π

f(t)cos(ωt)dt0

Page 11: Fourier Trans 2

ˆ f (ω) =12π

−f(t)iωte dt+ f (t)

−iωte dt0

∫0

∫⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Transformadas de Fourier de funciones impares, f(t) = -f(-t):

ˆ f ω( )=12π

f(t)−iωte dt

−∞

∫ =12π

f(t)−iωte dt+ f (t)

−iωte dt0

∫−∞

0

∫⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

=12π

f (t)iωt

−e +−iωte( )dt

0

ˆ f ω( ) =−i2π

f(t)sen(ωt)dt0

Page 12: Fourier Trans 2

Propiedades de las transformadas de Fourier:

1. Linealidad:

f (t) F .T .← → ⏐ ⏐ ˆ f ω( )

g(t) F .T .← → ⏐ ⏐ ˆ g ω( )

⎫ ⎬ ⎪

⎭ ⎪ ⇒ f(t) +g(t) F .T .← → ⏐ ⏐ ˆ f ω( )+ˆ g ω( )

f (t) F .T .← → ⏐ ⏐ ˆ f ω( )⇒ (a+ib) f (t) F .T .← → ⏐ ⏐ (a+ib) ˆ f ω( )

2. : f (t) =f *(t) ⇒ ˆ f ω( )= ˆ f * −ω( )

Re ˆ f (ω)[ ] =Re ˆ f (−ω)[ ]

Im ˆ f (ω)[ ]=−Im ˆ f (−ω)[ ]

⎧ ⎨ ⎪

⎩ ⎪

Page 13: Fourier Trans 2

Propiedades de las transformadas de Fourier:

3. :ˆ f 0( ) =

12π

f (t)dt−∞

f 0( ) =12π

ˆ f (ω)dω−∞

4. Identidad de Parseval : f *(t)g(t)dt−∞

∫ = ˆ f *(ω)ˆ g (ω)dω−∞

12π

ˆ f * (ω)−iωte dω

−∞

∫⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

−∞

∫12π

ˆ g (ω' )iω'te dω

−∞

∫ '⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟ dt=

= dω ˆ f * (ω) dω' ˆ g (ω')−∞

∫1

2π−i (ω −ω't)

dt e−∞

∫⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

−∞

∫ δ(ω'−ω)

f (t) =g(t)⇒ f(t) 2

dt−∞

∫ = ˆ f (ω) 2

dω−∞

Teorema de Rayleigh

Page 14: Fourier Trans 2

Propiedades de las transformadas de Fourier:

5. : f (t) F .T .← → ⏐ ⏐ ˆ f ω( )⇒ f(t +a) F .T.← → ⏐ ⏐ iωae ˆ f ω( )

ˆ g ω( ) =12π

g(t)−iωte dt

−∞

∫ =12π

f(t+a)−iωte dt

−∞

ˆ g ω( ) =12π

f(u)−iω(u−a)e du

−∞

∫ =iωae2π

f(u)−iωue du

−∞

ˆ g ω( ) =iωae ˆ f (ω)

f (t+a)=g(t)

Page 15: Fourier Trans 2

Teorema de convolución:

Se define la integral de convolución de dos funciones f(t) y g(t)del siguiente modo:

f ∗g( )(t) =12π

f(u)−∞

∫ g(t−u)du

2π f ∗g( )(t)= du12π

ˆ f (ω)iωue dω

−∞

∫⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

−∞

∫12π

ˆ g (ω')iω'(t−u)e dω'

−∞

∫⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

= dω ˆ f (ω)iω't

dω' ˆ g (ω') e −∞

∫12π

i (ω−ω')ue du−∞

∫⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎣ ⎢ ⎢

⎦ ⎥ ⎥

−∞

∫ ’

2π f ∗g( )(t)= dω ˆ f (ω) ˆ g (ω)−∞

∫ iωtef ∗g( )(t) =

12π

ˆ f (ω) ˆ g (ω)−∞

∫ iωte dω

Page 16: Fourier Trans 2

ˆ f ∗ˆ g ( )(ω) =12π

ˆ f (ω')−∞

∫ ˆ g (ω −ω')dω'

2π ˆ f ∗ˆ g ( )(ω)= dω'12π

f (t)−iω'te dt

−∞

∫⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

−∞

∫12π

g(u)−i (ω−ω')ue du

−∞

∫⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

= dt f (t)−iωu

du g(u) e −∞

∫1

2π−iω' (t−u)e dω'

−∞

∫⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎣ ⎢ ⎢

⎦ ⎥ ⎥

−∞

∫ t-u

2π ˆ f ∗ˆ g ( )(ω)= dt f(t) g(t)−∞

∫ −iωteˆ f ∗ˆ g ( )(ω) =

12π

f(t)g(t)−∞

∫ −iωte dtˆ f ∗ˆ g ( )(ω) =

12π

f(t)g(t)−∞

∫ −iωte dt ˆ f ∗ˆ g = fg

Page 17: Fourier Trans 2

f (t) =0 , t >

T2

cos(ω0t) , t <T2

⎨ ⎪ ⎪

⎩ ⎪ ⎪

Ejemplo de aplicación del teorema de convolución:

Calcular la transformada de Fourier de la siguiente función:

→ ˆ f ω( ) =12π

f (t)−iωte dt

−∞

ˆ f ω( )=12π

cos(ω0t)−iωte dt

−T2

T2

∫ =12π

−iωtiω0te + −iω0te2( )e dt

−T2

T2

ˆ f (ω) =1

2 2π−i (ω−ω0 )te +

−i(ω+ω0 )te( )−

T2

T2

∫ dt

ˆ f (ω) =1

2 2π

−i (ω −ω0 )tieω −ω0

+−i (ω+ω0 )t

ieω +ω0

⎣ ⎢ ⎢

⎦ ⎥ ⎥

−T2

T2

Page 18: Fourier Trans 2

ˆ f (ω) =1

2 2πi(−2i)ω −ω0

sen(ω −ω0)T2

⎡ ⎣ ⎢

⎤ ⎦ ⎥ +

i(−2i)ω +ω0

sen(ω +ω0)T2

⎡ ⎣ ⎢

⎤ ⎦ ⎥

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪

ˆ f (ω) =12π

T2

sen(ω −ω0)T2

⎡ ⎣ ⎢

⎤ ⎦ ⎥

ω−ω0( )T2

+sen(ω +ω0)

T2

⎡ ⎣ ⎢

⎤ ⎦ ⎥

ω +ω0( )T2

⎨ ⎪ ⎪

⎩ ⎪ ⎪

⎬ ⎪ ⎪

⎭ ⎪ ⎪

Page 19: Fourier Trans 2

f (t) =0 , t >

T2

cos(ω0t) , t <T2

⎨ ⎪ ⎪

⎩ ⎪ ⎪

→ f t( ) =h(t)g(t)

h(t) =0 , t >

T2

1 , t <T2

⎨ ⎪ ⎪

⎩ ⎪ ⎪

; g t( ) =cos(ω0t)

ˆ g (ω)=π2

δ(ω−ω0)+δ(ω+ω0)[ ]ˆ h (ω)=

T2π

sen(ωT2

)

ωT2

Page 20: Fourier Trans 2

ˆ h ∗ˆ g ( )(ω) =12π

h(t)g(t)−∞

∫ −iωte dt

ˆ f =hg= ˆ h ∗ˆ g

ˆ h ∗ˆ g ( )(ω) =12π

ˆ h (ω' )−∞

∫ ˆ g (ω −ω')dω'=

=12π

T2π

sen(ω'T2

)

ω'T2

−∞

∫π2

δ(ω −ω'−ω0)+δ(ω −ω'+ω0)[ ]dω'

ˆ f (ω) =(ˆ h ∗ˆ g )(ω)=12π

T2

sen(ω−ω0)T2

⎡ ⎣ ⎢

⎤ ⎦ ⎥

ω−ω0( )T2

+sen(ω +ω0)

T2

⎡ ⎣ ⎢

⎤ ⎦ ⎥

ω +ω0( )T2

⎨ ⎪ ⎪

⎩ ⎪ ⎪

⎬ ⎪ ⎪

⎭ ⎪ ⎪

Page 21: Fourier Trans 2

Ejercicios:

1. Encontrar la transformada de Fourier de la función seno:

f(t) = sen(0t)

2. Encontrar la transformada de Fourier de la función:

f(t) = e-a|t| ; (a>0)

3. Encontrar la transformada de Fourier de la (t):

4. Encontrar la transformada de Fourier de la función:

f (t) =−

tae , t >0

0 , t<0

⎧ ⎨ ⎪

⎩ ⎪ ; (a>0)

Page 22: Fourier Trans 2

Ejercicios:

1. Encontrar la transformada de Fourier de la función seno:

f t( )=sen(ω0t) → ˆ f ω( ) =12π

f (t)−iωte dt

−∞

ˆ f ω( )=12π

sen(ω0t)−iωte dt

−∞

∫ =12π

−iωtiω0te − −iω0te2i( )e dt

−∞

ˆ f (ω) =1

2i 2π−i (ω−ω0 )te −

−i(ω +ω0 )te( )−∞

∫ dt

ˆ f (ω) =2π

2i 2πδ(ω −ω0)−δ(ω +ω0)[ ]

ˆ f (ω) =iπ2

δ(ω +ω0)−δ(ω −ω0)[ ]

Page 23: Fourier Trans 2

2. Encontrar la transformada de Fourier de la función:

f t( )=−ate ; (a>0) → ˆ f ω( ) =

12π

f (t)−iωte dt

−∞

∫ˆ f ω( )=

12π

−ate −iωte dt−∞

∫ =22π

−ate cos(ω0t)dt0

u=cos(ω0t) ; du=−ω0 sen(ω0t)

dv= −ate dt ; v=−ate

−a

−ate cos(ω0t)dt0

∫ =1a

−ω0

a−ate sen(ω0t)dt

0

∫ =

u=sen(ω0t) ; du=ω0 cos(ω0t)

dv= −ate dt ; v=−ate

−a

1a

−ω0

a−

−ate sen(ω0t)a

⎣ ⎢ ⎢

⎦ ⎥ ⎥

0

+ω0

a−ate cos(ω0t)dt

0

∫⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪ =

−ate cos(ω0t)dt0

∫ =

1a

1+ω0

a

⎛ ⎝ ⎜

⎞ ⎠ ⎟

2 =a

a2 +ω02

−−ate cos(ω0t)

a

⎣ ⎢ ⎢

⎦ ⎥ ⎥

0

−ω0

a−ate sen(ω0t)dt

0

∫ =1a

−ω0

a

⎛ ⎝ ⎜

⎞ ⎠ ⎟

2−ate cos(ω0t)dt

0

∫ˆ f (ω) =

aa2 +ω0

2

Page 24: Fourier Trans 2

3. Encontrar la transformada de Fourier de la (t):

f t( )=δ(t) → ˆ f ω( ) =12π

f (t)−iωte dt

−∞

∫ˆ f ω( )=

12π

δ(t) −iωte dt

−∞

∫ =12π

ˆ f (ω) =2π2π

Page 25: Fourier Trans 2

=12π

a1+iωa

4. Encontrar la transformada de Fourier de la función:

f (t) =−

tae , t >0

0 , t<0

⎧ ⎨ ⎪

⎩ ⎪ ;(a>0)→ ˆ f ω( ) =

12π

f (t)−iωte dt

−∞

ˆ f ω( )=12π

−tae −iωte dt

0

∫ =12π

− 1a

+iω⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟ te dt

0

ˆ f ω( )=12π

−1a

+iω⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟ te

−1a

+iω⎛ ⎝ ⎜

⎞ ⎠ ⎟

⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥

0

=12π

11a

+iω

1−iωa1−iωa

ˆ f ω( )=2π

2πa

1+ω2a2 −iωa2

1+ω2a2

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Page 26: Fourier Trans 2

5. Encontrar la transformada de Fourier de la función:

f (t) = e−t

a cos(ω0t) , t >0

0 , t <0

⎧ ⎨ ⎪

⎩ ⎪ ; (a>0)

6. Encontrar la transformada de Fourier de la función:

f (t) =h(1−at) , t >

1a

0 , t <1a

⎨ ⎪ ⎪

⎩ ⎪ ⎪

; (h,a>0)

7. Usando el teorema de Rayleigh, calcular:

sen2 tt2 dt

−∞

Page 27: Fourier Trans 2

5. Encontrar la transformada de Fourier de la función:

f (t) = e−t

a cos(ω0t) , t >0

0 , t <0

⎧ ⎨ ⎪

⎩ ⎪ ; (a>0)

f t( )=h(t)g(t)

h(t) =−

tae , t >0

0 , t <0

⎧ ⎨ ⎪

⎩ ⎪ ;(a>0)

g t( ) =cos(ω0t) F.T . ⏐ → ⏐ ˆ g (ω) =π2

δ(ω −ω0)+δ(ω +ω0)[ ]

F.T . ⏐ → ⏐ ˆ h ω( ) =2π

2πa

1+ω2a2 −iωa2

1+ω2a2

⎝ ⎜ ⎜

⎠ ⎟ ⎟

Page 28: Fourier Trans 2

ˆ f (ω)

=

ˆ f =hg= ˆ h ∗ˆ g ˆ h ∗ˆ g ( )(ω) =12π

h(t)g(t)−∞

∫ −iωte dt

ˆ h ∗ˆ g ( )(ω) =12π

ˆ h (ω' )−∞

∫ ˆ g (ω −ω')dω'=

=12π

2π2π

a1+ω'2 a2 −i

ω'a2

1+ω'2 a2

⎝ ⎜ ⎜

⎠ ⎟ ⎟

−∞

∫π2

δ(ω −ω'−ω0) +δ(ω −ω'+ω0)[ ]dω'

=1

2 2πa

1+(ω−ω0)2a2 +

a1+(ω +ω0)

2a2 −i(ω−ω0)a

2

1+(ω −ω0)2 a2 +

(ω −ω0)a2

1+(ω −ω0)2a2

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Page 29: Fourier Trans 2

6. Encontrar la transformada de Fourier de la función:

f (t) =h(1−at) , t >

1a

0 , t <1a

⎨ ⎪ ⎪

⎩ ⎪ ⎪

; (h,a>0)

ˆ f ω( )=12π

f(t)−iωte dt

−∞

∫ =2π

f(t)cos(ωt)dt0

=2π

h(1−at)cos(ωt)dt0

1a

=h2π

cos(ωt)dt−a tcos(ωt)dt0

1a

∫0

1a

∫⎡

⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥

Page 30: Fourier Trans 2

tcos(ωt)dt0

1a

∫ =

u=t ; du=dt

dv=cos(ωt)dt ; v=sen(ωt)

ω

tsen(ωt)ω

⎡ ⎣ ⎢

⎤ ⎦ ⎥

0

1a−

sen(ωt)ω0

1a

∫ dt

tcos(ωt)dt0

1a

∫ =

1a

sen(ωa

)

ω+

cos(ωt)ω2

⎡ ⎣ ⎢

⎤ ⎦ ⎥

0

1a

1a

sen(ωa

)

ω+

cos(ωa

)−1

ω2

ˆ f (ω) =h2π

−a( )cos(

ωa

)−1

ω2

ˆ f (ω) =ha

1−cos(ωa

)

ωa

⎛ ⎝ ⎜

⎞ ⎠ ⎟

2

Page 31: Fourier Trans 2

7. Usando el teorema de Rayleigh, calcular:

sen2 tt2 dt

−∞

f t( )=

0 , t<−T2

1 , −T2

≤t≤T2

0 , T2

<t

⎪ ⎪ ⎪

⎪ ⎪ ⎪

→ ˆ f (ω) =T2π

sen(ωT2

)

ωT2

f t( )=0 , t >

T2

1 , t ≤T2

⎨ ⎪ ⎪

⎩ ⎪ ⎪

→ ˆ f (ω) =T2π

sen(ωT2

)

ωT2

f t( )=0 , t >

T2

2πT

, t ≤T2

⎨ ⎪ ⎪

⎩ ⎪ ⎪

→ ˆ f (ω) =sen(ω

T2

)

ωT2

→ ˆ f (ω) =senω

ωf t( )=

0 , t >1π2

, t ≤1

⎧ ⎨ ⎪

⎩ ⎪

=sen2 ω

ω2 dω−∞

∫ = ˆ f (ω)2dω

−∞

∫ = f (t)2dt

−∞

Rayleigh

= f (t)2dt

−∞

∫ =π2

dt−1

1

∫ =π

sen2 tt2 dt

−∞

∫ =π