cálculo diferencial cuadernillo de trabajo · pdf filecuando se tiene el registro...

43
ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL CUADERNILLO DE TRABAJO EN CLASE ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II TERCER CUADERNILLLO DE CÁLCULO DIFERENCIAL COMPETENCIAS A DESARROLLAR: 1. Interpreta gráficas de funciones continuas y discontinuas analizando el dominio y contradominio; y argumenta el comportamiento gráfico de la variable dependiente (y) en los punto (s) de discontinuidad. 2. Explica e interpreta los valores de una tabla, calcula valores cercanos a un número y analiza el comportamiento en los valores de la variable dependiente en problemas de su entorno social, económico y natural. 3. Argumenta la solución obtenida de un problema económico, administrativo, natural o social, mediante la teoría de los límites. 4. Valora el uso de la TIC´s en el modelado gráfico y algebraico de los límites para facilitar su interpretación y simulación en la resolución de problemas presentes en su contexto. 5. Formula y resuelve problemas, a partir del cálculo de dominio y contradominio de las funciones algebraicas para determinar sus límites, demostrando su habilidad en la resolución de problemas algebraicos. 6. Determina límites para funciones racionales, exponenciales, logarítmicas y trigonométricas. OBJETOS DE APRENDIZAJE: 1. Los límites: su interpretación en una tabla, en una gráfica y su aplicación en funciones algebraicas. 2. El cálculo de límites en funciones algebraicas y trascendentes. 3. Esperando un verdadero aprendizaje significativo. PROBLEMAS DE OPTIMIZACIÓN Y LIMITE DE FERMAT Antecedentes del Cálculo: Las matemáticas existe porque día a día nos encontramos frente a ellas, sin ellas no podríamos hacer la mayoría de nuestra rutina, necesitamos las matemáticas constantemente, en la escuela, en la oficina, cuando vamos a preparar un platillo, etc. En las ciencias las matemáticas han tenido un mayor auge porque representan la base de todo un conjunto de conocimientos que el hombre ha ido adquiriendo. Pero lo más misterioso de todo es que las matemáticas son el único medio que tenemos para entender el mundo que nos rodea. ¿Cuáles son los beneficios de la Matemáticas en tu vida? El cálculo es la rama de las matemáticas que se ocupa del estudio de los cambios en las variables, pendientes de curvas, valores máximos y mínimos de funciones, entre otras la determinación de longitudes, áreas y volúmenes. El cálculo es la rama de las matemáticas que se ocupa del estudio de los cambios en las variables, pendientes de curvas, valores máximos y mínimos de funciones, entre otras la determinación de longitudes, áreas y volúmenes.

Upload: lamkhue

Post on 01-Feb-2018

220 views

Category:

Documents


2 download

TRANSCRIPT

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

TERCER CUADERNILLLO DE CÁLCULO DIFERENCIAL

COMPETENCIAS A DESARROLLAR:

1. Interpreta gráficas de funciones continuas y discontinuas analizando el dominio y contradominio; y argumenta el comportamiento gráfico de la variable dependiente (y) en los punto (s) de discontinuidad.

2. Explica e interpreta los valores de una tabla, calcula valores cercanos a un número y analiza el comportamiento en los valores de la variable dependiente en problemas de su entorno social, económico y natural.

3. Argumenta la solución obtenida de un problema económico, administrativo, natural o social, mediante la teoría de los límites.

4. Valora el uso de la TIC´s en el modelado gráfico y algebraico de los límites para facilitar su interpretación y simulación en la resolución de problemas presentes en su contexto.

5. Formula y resuelve problemas, a partir del cálculo de dominio y contradominio de las funciones algebraicas para determinar sus límites, demostrando su habilidad en la resolución de problemas algebraicos.

6. Determina límites para funciones racionales, exponenciales, logarítmicas y trigonométricas.

OBJETOS DE APRENDIZAJE: 1. Los límites: su interpretación en una tabla, en una gráfica y su aplicación

en funciones algebraicas. 2. El cálculo de límites en funciones algebraicas y trascendentes. 3. Esperando un verdadero aprendizaje significativo.

PROBLEMAS DE OPTIMIZACIÓN Y LIMITE DE FERMAT Antecedentes del Cálculo: Las matemáticas existe porque día a día nos encontramos frente a ellas, sin ellas no podríamos hacer la mayoría de nuestra rutina, necesitamos las matemáticas constantemente, en la escuela, en la oficina, cuando vamos a preparar un platillo, etc. En las ciencias las matemáticas han tenido un mayor auge porque representan la base de todo un conjunto de conocimientos que el hombre ha ido adquiriendo. Pero lo más misterioso de todo es que las matemáticas son el único medio que tenemos para entender el mundo que nos rodea. ¿Cuáles son los beneficios de la Matemáticas en tu vida? El cálculo es la rama de las matemáticas que se ocupa del estudio de los cambios en las variables, pendientes de curvas, valores máximos y mínimos de funciones, entre otras la determinación de longitudes, áreas y volúmenes. El cálculo es la rama de las matemáticas que se ocupa del estudio de los cambios en las variables, pendientes de curvas, valores máximos y mínimos de funciones, entre otras la determinación de longitudes, áreas y volúmenes.

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Actividad 1. En equipos de 2 integrantes, investiga lo que se te pide a continuación: 1.- Las aportaciones hechas por Newton y Leibniz.(línea del tiempo de matemáticos) 2.-. ¿Cuál es la importancia y aplicaciones del Cálculo? 3.- Investiga el límite de Fermat (movimiento y pendiente de la secante una curva) 4.- Al final se expone frente al grupo de clases. 5.- Elabora una portada para este cuadernillo. En el estudio de la variación, se pueden encontrar diversos tipos de problemas que se representan de diferentes formas, esto es: tablas, gráficas, entre otras. En un problema importante es establecer la dependencia de las variables, es decir, determinar cómo cambia una cantidad cuando varía otra, por ejemplo: El tiempo que tarda un automóvil en recorrer una distancia determinada, depende de la velocidad que lleva.

El volumen que hay en un recipiente expuesto a la intensidad del calor y el tiempo que duraría expuesto. Cuando se tiene el registro numérico de un problema, tal como la velocidad, fuerza, presión temperatura, se pueden analizar varios aspectos (factores), se puede predecir el comportamiento futuro, bosquejar una gráfica o bien, si no se tiene toda la información del problema, se pueden determinar las condiciones iniciales en las que se llevó a cabo

Secuencia didáctica: Materiales a utilizar:

Hojas milimétricas

Pegamento blanco

Regla o escuadra graduada

Hojas blancas

Tijeras escolares

INSTRUCCIONES: A. Dibuja en una hoja milimétrica y localiza en un plano cartesiano los

siguientes puntos:

A(-3,-4) B(3.-4) C(6,0) D(6,5)

E(0,5) F((-3, 2) G(0,0) H(3,2)

B. Ahora debes unir: A con G, A con B, A con F, D con C, D con H, D con E, F

con E, F con H, C con G, E con G, B con H y B con C. C. Recorta lo obtenido y pega esta figura en una hoja en blanco. D. Cuenta cuanto cuadros existen en toda la figura E. Calcula su área y su volumen F. Aplica lo aprendido en la vida real, con un ejemplo práctico.

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

SITUACIÓN DIDÁCTICA 1: Los alumnos de la materia de cálculo realizaran desean elaborar una caja de cartón sin tapa para archivar sus trabajos, a partir de una pieza de cartón de dimensiones 60 por 40 cm, cortando cuadrados iguales de longitud x en cada una de las esquinas y doblando los lados (como se muestra en la figura). Es obvio que el tamaño de la caja va a variar y va a depender del tamaño de los cuadrados que recortemos.

Conflicto cognitivo — ¿Cuál será el tamaño más adecuado de los cortes para obtener la caja más grande?

— ¿Cuál será el modelo matemático para calcular el área de la base de la caja?

— ¿Cuál será el modelo matemático para calcular el volumen de la caja? — Para cada modelo matemático obtenido, ¿podrías hacer una tabla de valores y construir la gráfica?

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Utilizando distintos colores, traza la gráfica del área y volumen con los datos anteriores utilizando la escala que creas conveniente.

Actividad 2. A continuación se muestran ejemplos de diferentes tipos de funciones algebraicas y funciones trascendentes con su respectiva gráfica, solo como recordatorio; puede ser útil a lo largo del curso de Cálculo Diferencial. Después se te presenta una actividad donde tendrás que realizarla de manera individual y socializarla con el resto del grupo para obtener una conclusión. Funciones algebraica:

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Funciones trascendentes:

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Instrucciones: En las siguientes gráficas, identifica las coordenadas donde la función adquiere el valor más alto (máximo) y el valor menor (mínimo) y escríbelo en el espacio correspondiente.

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Actividad 3. Trabajar en equipos de 2 integrantes, con una hoja de papel en la cual el largo sea el doble que el ancho (puedes recortar la hoja). Desarrolla el modelo matemático en función del ancho (x) para determinar el área y contesta lo que se te pide posteriormente.

REGLAS DE DERIVACION Y APLICACIONES CON CÁLCULO

Introducción

Cálculo, rama de las matemáticas que se ocupa del estudio de los incrementos en

las variables, pendientes de curvas, valores máximo y mínimo de funciones y de

la determinación de longitudes, áreas y volúmenes. Su uso es muy extenso, sobre

todo en ciencias e ingeniería, siempre que haya cantidades que varíen de forma

continua.

Evolución histórica

El cálculo se deriva de la antigua geometría griega. Demócrito calculó el volumen

de pirámides y conos, se cree que considerándolos formados por un número

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

infinito de secciones de grosor infinitesimal (infinitamente pequeño), y eudoxo y

arquímedes utilizaron el "método de agotamiento" para encontrar el área de un

círculo con la exactitud requerida mediante el uso de polígonos inscritos. Sin

embargo, las dificultades para trabajar con números irracionales y las paradojas

de zenón de elea impidieron formular una teoría sistemática del cálculo. En el

siglo xvii, francesco b. Cavalieri y evangelista torricelli ampliaron el uso de los

infinitesimales, y descartes y pierre de fermat utilizaron el álgebra para encontrar

el área y las tangentes (integración y diferenciación en términos modernos).

Fermat e isaac barrow tenían la certeza de que ambos cálculos estaban

relacionados, aunque fueron isaac newton (hacia 1660) y gottfried w. Leibniz

(hacia 1670) quienes demostraron que son inversos, lo que se conoce como

teorema fundamental del cálculo. El descubrimiento de newton, a partir de su

teoría de la gravedad, fue anterior al de leibniz, pero el retraso en su publicación

aún provoca disputas sobre quién fue el primero. Sin embargo, terminó por

adoptarse la notación de leibniz.

En el siglo xviii aumentó considerablemente el número de aplicaciones del

cálculo, pero el uso impreciso de las cantidades infinitas e infinitesimales, así

como la intuición geométrica, causaban todavía confusión y controversia sobre

sus fundamentos. Uno de sus críticos más notables fue el filósofo irlandés george

berkeley. En el siglo xix los analistas matemáticos sustituyeron esas vaguedades

por fundamentos sólidos basados en cantidades finitas: bernhard

Bolzano y augustin louis cauchy definieron con precisión los límites y las

derivadas; cauchy y bernhard riemann hicieron lo propio con las integrales, y julius

dedekind y karl weierstrass con los números reales. Por ejemplo, se supo que las

funciones diferenciables son continuas y que las funciones continuas son

integrables, aunque los recíprocos son falsos. En el siglo xx, el análisis no

convencional, legitimó el uso de los infinitesimales. Al mismo tiempo, la aparición

de los ordenadores o computadoras ha incrementado las aplicaciones del cálculo.

Incrementos

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Incremento de la variable independiente. Si se da a la variable independiente x un

valor inicial a y despues un valor final b, se llama incremento de la variable x a al

diferencia b – a.

Notación. El incremento de x se representa x, es decir, la letra griega delta

colocada delante de la variable x.

De esta última igualdad se tiene: b = a + x.

Signo: el incremento puede ser positivo, nulo o negativo, según que, el valor final

sea mayor, igual o menor que el valor inicial.

Ejemplo. 1. Calcular el incremento de una velocidad (v) al pasar de 50 km / h a

95 km / h.

v.= 95 – 50 = 45 km / h.

2. En la siguiente tabla se muestran algunos ejemplos de los incrementos y

signos de algunas variables.

variable Valor inicial Valor final Incremento

X 2 5 3

X 4 -2 -6

U -6 -6 0

V 2

1

3

1

6

1

Incremento de una función. Sea ahora, una función y = f(x). Si x varia de a a b, el

valor inicial de la función es f(a) y el valor final f(b). La diferencia f(b) – f(a) se

llama análogamente incremento de la función.

notación. Se expresa:

Signo: como el caso de la variable independiente el incremento de una función

puede ser positivo, nulo o negativo.

x = b - a

f(x) = y = f(b) – f(a) = f(a + x) – f(a)

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Ejemplo.

Calcular el incremento de la función y = 5x – 3 al pasar x: 1) de 3 a 5.5 2)

de 5 a –3.

1) valor inicial y = f(3) = 15 – 3 = 12

valor final y = f( 5.5 ) = 16.5 – 3 = 13.5

y = 13.5 – 12 = 1.5 .

2) valor inicial y = f(5) = 25 – 3 = 22

valor final y = f( - 3 ) = -15 –3 = -18

y = -18 – 22 = - 40

En la siguiente tabla se muestran los incrementos de algunas funciones para los

valores iniciales y finales de la variable independiente que se indican:

Variable

indepen

diente

Función Valor inicial

de la variable

independient

e.

Valor final

de la

variable

dependiente

.

Valor

inicial

de la

función

Valor

final de

la

función

Increment

o de la

función

X 15x – 1 5 8 74 119 45

X X2 -2 - 6 4 36 32

X x 36 16 6 4 -2

X Log x 100 1000 2 3 1

Si y esta en función de x, tenemos

y = f(x)

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Cuando x recibe un incremento x, corresponde a la función un incremento y.

Gráficamente se expresa así:

Sea el punto b ( x, y ) de una curva cuya ecuación es de la forma y = f(x):

y

b

y

a c

x

o x

Los incrementos de x y de y son:

x = ac : y = bc

Incremento de una función continua, al tender a cero el incremento de la

variable independiente.

Analizaremos mediante algunos ejemplos el comportamiento que presenta el

incremento de una función continua cuando el incremento de la variable

independiente tiende a cero.

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Actividad 5. Forma equipos de 2 integrantes y contesten la siguiente situación. Con un cartón de dimensiones de 20 por 30 cm respectivamente para la elaboración de una caja (como se propuso en la situación didáctica), un galón de leche vacío y otro lleno de arroz. Dibuja cuadrados iguales en las cuatro esquinas, (tienes la libertad de elegir el tamaño(x)) después se recortaran cuatro cuadrados en las esquinas como se muestra en la figura.

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Contesta lo siguiente: — ¿Cuál es el modelo matemático (en función de x) para determinar el área de la figura? — ¿Cuál es el modelo matemático del volumen? Llena la caja con arroz y vacíala en los galones. Compara los volúmenes de las diferentes cajas con tus compañeros. — ¿Qué equipo obtuvo el máximo volumen? — Si se utiliza la misma pieza de cartón (20 x 30 cm) ¿Qué dimensión varia para obtener los diferentes volúmenes de las cajas? ¿Para qué sirven los valores máximos y mínimos? Los máximos y mínimos de una función de dos variables nos permiten medir las altitudes máximas y mínimas sobre la superficie que integra la gráfica de la función (estas altitudes son similares a las cotas del punto más elevado de una colina o del punto más profundo de una hondonada). Iniciaremos con el cálculo del máximo y del mínimo (valores críticos de la función) aplicando el criterio de la primera derivada, después enunciaremos (sin demostrarlo) el teorema que se conoce como el criterio de la segunda derivada, el cual permite determinar (en ciertos casos) si un punto crítico determinado corresponde a un máximo o a un mínimo relativo. La aplicación de estos procedimientos se observa en todas las áreas; las ciencias naturales, las ciencias sociales y las ciencias exactas.

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

EJERCICIO: Una compañía empacadora de uva de mesa necesita cajas abiertas para almacenar su producto de volumen máximo y se van a construir a partir de un trozo cuadrado de material que tiene 24 pulgadas por lado, cortando cuadrados iguales de las esquinas y doblando los lados hacia arriba. Dibuja cuadrados iguales en las cuatro esquinas, (tienes la libertad de elegir el tamaño(x)) después se recortaran cuatro cuadrados en las esquinas como se muestra en la figura.

a) Escriba el volumen V como función de x

b) Complete analíticamente seis renglones de una tabla como la que sigue. (Se muestran los dos primeros renglones) Use la tabla para hacer una conjetura acerca del volumen máximo. c) Aplica el cálculo para hallar el número crítico de la función del inciso a y encuentre el valor máximo .Use un medio para el efecto con el fin de construir la

gráfica del inciso a y verifique el volumen máximo a partir de esa gráfica.

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

MÁXIMOS Y MÍNIMOS, CRITERIO DE LA PRIMERA DERIVADA.

Estas definiciones están basadas en la siguiente grafica que nos muestra cómo cambia la recta tangente en un punto mínimo y máximo de la curva:

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Con estos conceptos podemos deducir un método para calcular máximos y mínimos para cualquier función: 1er. paso: Se calcula la derivada de la función. 2do. Paso: Se iguala a cero la derivada obtenida y se resuelve la ecuación que la forma, a las soluciones obtenidas las llamaremos valores críticos y probables máximos y mínimos. 3er. paso: Se verifican cada uno de los valores críticos y se calculan los signos de la derivada, empezando con la sustitución de un valor menor y después, se hace lo mismo para otro valor mayor que él. Los resultados numéricos obtenidos NO nos interesan, solo nos importa calcular el signo resultante. Por ejemplo si primero obtenemos un signo (+) y después un signo (–), entonces tenemos un máximo para la función. En caso contrario será un mínimo. Si el signo no cambia entonces la función no tiene ni máximo ni mínimo.

NOTACION DE LA DERIVADA.

Para representar a la derivada para un valor x = a, y la función derivada se pueden

emplear varias notaciones :

Notación de cauchy

[ df(x)] ax = derivada de f(x) para x = a

Df(x) = función derivada de f(x).

Si se tiene y = f(x), la función derivada se simboliza por:

dx y

Que se lee: derivada de y respecto de x.

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Ejemplos:

1.- [d( 6x2 - 7 ) ]x=2 = 24

2.- [ d ( 5x3 + 3 )]x = 5 = 375

Notación de lagrange:

Si la función es y = f(x), la función derivada se representa por y´ o por f´ (x), es decir:

y = f (x)

y´ = f´(x)

Ejemplos:

1.- f(x) = x3+ 3x2 – 5 , para x = 1

f´(1) = 9

2.- f(x) = x2 – 5, para x = 3

f´(3) = 6

Notación de leibnitz.

También recibe el nombre de notación americana. La derivada de una función y = f(x),

se simboliza:

dx

dy o

dx

xdf )(

Esta notación tiene su origen el concepto de la diferencial. Reuniendo los tres

tipos de notación de la derivada de la función, la derivada de una función y =

f(x), puede ser escrita de la siguiente manera.

dx

xdf

dx

dyyxfyDxDf

x

yxx

)()()(lim 0

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

OBTENCION DE LA DERIVADA DE UNA FUNCION.

La derivada de una función la podremos obtener partiendo desde dos puntos que son

muy semejantes, los cuales son:

A.- por medio de la definición ( método de los incrementos o comúnmente

llamado método de los cuatro pasos).

b.- por la utilización de los teoremas. El primer caso para obtener la derivada

de una función es por medio de los siguientes pasos:

A.- método de los cuatro pasos.

1.- se da un incremento a la variable independiente x

2.- se calcula el incremento correspondiente a la función y

3.- se encuentra el cociente entre los incrementos de la variable independiente con

respecto a el de la función y que es: x

y

.

4.- se calcula el x

yx

0lim

Ejemplos:

1.- calcular la derivada de la función y = 8x.

1.- se da el incremento a x y obtenemos: x + x

2.-se calcula el incremento en y, por lo que se obtiene y + y:

y + y = 8( x + x) = 8x + 8x

y como: y = = 8x

Haciendo la resta tenemos: y = = 8x

3.- realizamos el cociente de: 88

x

x

x

y

4.- calculando el limite cuando x0, 8lim 0

x

yx

Por lo tanto la función derivada de y = 8x es 8 y se puede expresar de la siguiente

manera:

d 8x = 8

y´ = 8

f´(x) = 8

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

8dx

dy

2.- encontrar la derivada de y = -3x2 + 4

1. Primero se da incremento a x y se tiene: -3(x +x)2 + 4

2. Se obtiene el incremento para y y tenemos: y + y, por lo que :

y + y = -3( x +x)2 + 4 = - 3x2 – 6xx – 3(x)2 + 4

Por lo que: y = = -3x2 + 4

haciendo la resta tenemos: y = = +-6xx - 3(x )2

3.-dividiendo entre x, nos queda:

x

y

=

x

xxx

2)(36 = - 6x - 3x

4.- finalmente calculando el limite:

xxox 36lim -6x

Por lo tanto la derivada de la función y = -6x + 4 nos queda: y´ = - 6x.

3.- calcular la derivada de la función:

y = x

1. Dando el incremento a x, se tiene: )( xx

2.- dando el incremento a y, tenemos: y y

Pro lo tanto: y + y = )( xx

y = x

Haciendo la resta, tenemos: y = )( xx - x

3.dividiendo entre x, tenemos: x

xxx

x

y

)( *

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

4.- calculando el limite x

xxx

x

yx

)(lim 0

multipicamos a el limite por uno tenemos:

xxx

xxx

x

xxx

)(

)(*

)(

realizando las operaciones y simplificando términos tenemos:

))((

)())(( 22

xxxx

xxx

=

))(( xxxx

xxx

))(

1lim 0

xxxx

yx

Como 0x , tenemos:

xxx

yx

1lim 0

xx

yx

2

1lim 0

Por lo que la derivada de y = x es y ’ (x) = x2

1

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

EJERCICIOS PARA CLASE.

1.- y = 2x – 4

2.- y = x + 3

3.- y = 5 + 2x – x2

4.- y = 5x3 - 2

5.- y = 1

4

X

6.- y = 15x2

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

7.- y = ( x + 3 )( x – 5 )

8.- y = 4x

x

9.- y = 25 x

10.- y = 3 2x

Segundo caso para obtener la derivada de una función es por la utilización de los

teoremas de derivación.

Diferenciación es el proceso de calcular derivadas. Si una función f se forma al

combinar dos funciones u y v, su derivada f¨ se puede obtener a partir de u, v y sus

respectivas derivadas utilizando reglas sencillas. Por ejemplo, la derivada de la suma es

la suma de las derivadas, es decir, si f = u + v (lo que significa que f(x) = u(x) + v(x) para

todas las x) entonces f´ = u´ + v´. Una regla similar se aplica para la diferencia: (u - v)´

= u´ - v´. Si una función se multiplica por una constante, su derivada queda multiplicada

por dicha constante, es decir, (cu)´ = cu´ para cualquier constante c. Las reglas para

productos y cocientes son más omplicadas: si f = u v entonces f ´ = u v´ + u´ v, y si f =

v

u entonces f ´ =

2v

vuuv siempre que v ( x ) ≠ 0.

Utilizando estas reglas se pueden derivar funciones complicadas; por ejemplo, las

derivadas de x2 y x5 son 2x y 5x4, por lo que la derivada de la función 3x2 - 4x5 es

(3x2 - 4x5)´ = (3x2)´ - (4x5)´ = 3·(x2)´ - 4·(x5)´ = 3·(2x) - 4·(5 x4) = 6x - 20x4. En

general, la derivada de un polinomio cualquiera f(x) = a0 + a1x + ... + anxn es f´(x) = a1

+ 2a2x + ... + nanxn-1; como caso particular, la derivada de una función constante es 0.

Teoremas

1.- si y = c y´ = 0

2.- si y = x .......................... Y´ = 1

3.- si y = x2 ......................... Y´ = 2x

4.- si y = cx ....................... Y´ = c

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

5.- si y = xn ....................... Y´ = nxn-1

6.- si y = cxn ..................... Y´ = ncxn-1

7.- si y = u v ......................... Y´ = u´ v´

8.- si y = uv ............................ Y´ = uv´+ vu´

9.- si y = v

u ............................. Y´ =

2

´´

v

uvvu

10.- si y = x ............................ Y´ = x2

1

11.- si y = n x ........................... Y´ = n nxn 1

1

Ejemplos:

1.- sea el monomio 2x5. Encontrar la derivada por las reglas anteriores:

y = 2x5 = dx(2x5)

aplicando el teorema 6, tenemos:

y’(x) = d( 2x5 ) = 2 ( 5x4 )

y’(x) = 10x4

2.- sea el binomio 4x3 – 15x . Calcular la derivada.

y = 4x3 – 15x

y’(x) = dx ( 4x3 – 15x ) = dx(4x3) – dx( 15x )

Aplicando los teoremas 6 y 4 respectivamente, tenemos:

y ’(x) = 4 ( 3x2 ) – 15 (1)

y ‘ (x ) = 12x2 – 15

3.- sea el polinomio 5x4 – 25x2 + 36x – 6 . Calcular su derivada.

y = 5x4 – 25x2 + 36x – 6

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

y ’ (x ) = dx(5x4 – 25x2 + 36x – 6 )

y ‘ (x) = dx(5x4) – dx(25x2) + dx(36x) – dx(6)

Aplicando los teoremas 6,4 y 1, tenemos:

y ‘(x)= 5 ( 4x3 ) – 25 ( 2x ) + 36 (1 ) – 0

Efectuando las operaciones indicadas.

y ´ (x) = 20x3 – 50x + 36

4.- sea el polinomio x

xxx1

33 4 . Calcular su derivada.

y (x ) = x

xxx1

33 4

y ’ (x) = d (x

xxx1

33 4 )

y ’ ( x )= d ( )1

()3()() 3 4

xDxDxDx

aplicamos los teoremas 10,11 y 6

y ’ (x) = )1

(2

3

3

4

2

12

3

xx

x

x

Simplificando las operaciones, nos queda:

y ’ (x) = 2

3 1

2

3

3

4

2

1

xx

x

x

5.- derivar:

y(x) = (2x – 4x2 )( 6x – 8x3 )

aplicando el teorema de un producto 8 , tenemos:

y’(x) = (2x – 4x2 ) dx (6x – 8x3 ) + (6x – 8x3) dx (2x – 4x2 )

Efectuando la derivada por el teorema 6 y 4, tenemos:

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Y’(x) = (2x – 4x2 ) ( 6 – 24x2 ) + (6x – 8x3 ) ( 2 – 8x )

Realizando las operaciones indicadas y simplificando, nos queda:

y ’(x) = 160x4 –64x3 – 72x2 + 24x

6.- derivar:

y = 164

542

3

x

xx

Por el teorema del cociente de funciones 9, tenemos:

y ’ (x) = 22

2222

)164(

)164()54()54()164(

x

xDxxxxDx

Aplicando el teorema 6 y 4, nos queda:

y ‘ (x) =22

22

)164(

)8)(54()58)(164(

x

xxxxx

y ‘ (x ) = 22

2

)164(

8012820

x

xx

Derivadas de funciones trascendentes, logarítmicas y exponenciales.

Y = sen u y’(x) = cos u dx

du

Y = cos u y’(x) = -sen u dx

du

Y = tang u y’(x) = sec2 u dx

du

Y = cotg u y’ (x) = - csc2 u dx

du

Y = sec u y’(x) = tang u secu dx

du

Y = csc u y’(x) = - csc u ctg u dx

du

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Y = au y’(x) = auln a dx

du

Y = eu y’(x) = eu

dx

du

Y = ln u y’(x) = dx

du

u

1

Ejercicio 1.

Y = 3sen x

y ’(x) = 3 dx(sen x)

Por el teorema de derivación 1. Tenemos:

y ’ (x) = 3 cos x

Ejercicio 2

Y = tg x + ctg x

y ’ (x) = dx(tang x) + dx(ctg x)

Por los teoremas de derivación 3 y 4, tenemos:

y ’(x) = sec2 x + (-csc2 x )

Finalmente nos queda:

y ’(x) = sec2 x - csc2 x

Ejemplo 3

G(x) = x sen x + cos x

g’(x) = d( x sen x) + d (cos x )

Aplicamos el teorema 8 alg. Y 2, tenemos:

g ’(x) =[ x (d (sen x )) + sen x d ( x)] + d ( cos x)

g’(x) = [ x cos x + sen x (1) ] + (-sen x )

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

g’(x) = x cos x + sen x – sen x

Simplificando términos , nos queda:

g ’(x) = x cos x

Ejercicio 4.

F ( x ) = 3 sec x tang x

Aplicando los teoremas de derivación algebraicos 8, nos queda:

f ’(x) = 3(sec x)d( tang x) + 3 tang x d ( sec x) + (secx ) (tang x) d (3)

Aplicamos los teoremas 3 y 5, tenemos:

f ’(x) = 3 (sec x ) (sec2 x) + 3(tang x ) (sec x tang x) + ( sec x) (tang x) ( 0 )

Simplificando:

f ’(x) = 3 sec3 x + 3 tang2 x sec x

Finalmente factorizando, tenemos:

f ’(x) = 3 sec x ( sec2 x + tang2 x )

Ejercicio 5.

y = 2csc

1csc2

t

t

Aplicando el teorema del cociente v

u, tenemos:

y ’(x) =2)2(csc

)2(csc)1csc2()1csc2()2(csc

t

tDttDt xx

y’(x) = )2(csc

)csc)(1csc2()csc2)(2(csc

t

ctgtttctgttt

y’(x) =2

22

)2(csc

csccsc2csc4csc2

t

ctgttctgttctgttctgtt

Simplificando términos semejantes, nos queda:

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

y ’ (x)= 2)2(csc

csc5

t

ctgtt

Ejercicio 6.

Y = e-x

Y ’( x ) = dx( e-x )

Por medio del teorema 8, tenemos:

y ’ ( x ) = e-x dx(-x )

y ’ (x) = e-x(-1)

y ’(x) = -e-x

Ejercicio 7.

Y = xx

xx

ee

ee

Por el teorema del cociente v

u, tenemos:

y ‘(x) = 2)(

)()()()(xx

xx

x

xxxx

x

xx

ee

eeDeeeeDee

Por el teorema 8, tenemos:

y ’( x ) =2)(

))1()1(()())1()1()((xx

xx

x

xxxxxx

ee

eeeeeeee

Simplificando, nos queda:

Y’ (x) = 2)(

))(())((xx

xxxxxxxx

ee

eeeeeeee

Y’(x) = 2

222

)(

)2()2(xx

xxxxxxxxx

ee

eeeeeee

Y’(x) = 2

2222

)(

22xx

xxxxxxxx

ee

eeeeee

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

y ’(x) = 2)(

4xx ee

Ejercicios propuestos.

1.- f(t) =( sen t ) ( tang t )

2.- f(x) = 4x2 cos x

3.- f(y) = y3 – y2 cos y + 2ysen y + 2cos y

4.- f(x) = x sen x + cos x

5.- f( t ) =

2csc

1csc2

t

t

6.- f ( x ) =x

xsec

7.- f(x) = (cos x + 1 ) ( x sen x - 1 )

8.- f(x) = x sen x

9.- f(x) = x

senx

cos1

10.- f(x) = x2 tang x.

11.- f(x) = x ln x

12.- f(x) = ex + 5 ln

3

2

x

x

13.- f ( x ) = ln( sen 3x)

14.- g(x) = ecos4x

15.- g(x) = 4cos x - ln 5x2

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Derivada de una función compuesta.

( regla de la cadena ).

En algunos casos al aplicar las formulas de derivación que se indican en seguida, y

está en función de x por intermedio de u, de v o de ambas, a esto se la llama función de

funciones.

1.- dx

duv

dx

dvuuv

dx

d)(

2.- dx

dunuu

dx

d nn 1)(

3.- 2v

dx

dvu

dx

duv

v

u

dx

d

Si y = u(z) y z = v(x), de manera que y es una función de z y z es una función de x,

entonces y = u(v(x)), con lo que y es función de x, que se escribe y = f(x) donde f es la

composición de u y v; la regla de la cadena establece que dx

dy =

dx

dz

dz

dy* , o lo que es lo

mismo, f´(x) = u´(v(x))·v´(x). Por ejemplo, si y = ez en donde e = 2,718... Es la constante

de la exponenciación, y z = ax donde a es una constante cualquiera, entonces y = eax;

según la tabla, dz

dy= ez y

dx

dz = a, por lo que

dx

dy = aeax. Muchos problemas se pueden

formular y resolver utilizando las derivadas. Por ejemplo, sea y la cantidad de material

radiactivo en una muestra dada en el instante x. Según la teoría y la experiencia, la

cantidad de sustancia radiactiva en la muestra se reduce a una velocidad proporcional

a la cantidad restante, es decir, dx

dy = ay con una cierta constante negativa a. Para

hallar y en función de x, hay que encontrar una función y = f(x) tal que dx

dy = ay para

cualquier x. La forma general de esta función es y = ceax en donde c es una constante.

Como e0 = 1, entonces y = c para x = 0, así es que c es la cantidad inicial (tiempo x

=0 ) de material en la muestra. Como a<0, se tiene que eax → 0 cuando x crece, por lo

que y → 0, confirmando que la muestra se reducirá gradualmente hasta la nada. Este

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

es un ejemplo de caída exponencial que se muestra en la figura 2a. Si a es una

constante positiva, se obtiene la misma solución,

Y = ceax, pero en este caso cuando el tiempo transcurre, la y crece rápidamente (como

hace eax si a>0).

Esto es un crecimiento exponencial que se muestra en la figura 2b y que se pone de

manifiesto en explosiones nucleares. También ocurre en comunidades animales donde

la tasa de crecimiento es proporcional a la población.

Derivadas sucesivas de una funcion.

(derivadas de orden superior).

Es conveniente recordar que para estudios superiores, entre otros, de máximos y

mínimos relativos, sentido de la concavidad en un punto, y para determinar los

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

Puntos de inflexión de una curva, es necesario obtener las derivadas sucesivas de una

función.

dx

dy es la primera derivada

dx

dy

dx

d la derivada de la primera derivada es la segunda derivada, que se expresa:

2

2

dx

yd

2

2

dx

yd

dx

d la derivada de la segunda derivada es la tercera derivada, que se

Expresa: 3

3

dx

yd

asi sucesivamente, hasta la enésima derivada.

Notación:

ydx

dy ´´´

3

3

ydx

yd

´´2

2

ydx

yd

ivydx

yd

4

4

Derivada de funciones implícitas.

Como ya se comento que existen funciones de forma implícita y de forma explicita.

Por ejemplo, la función y = )5( 2x esta expresada en forma explicita; la misma

expresión en forma implícita quedaría de la siguiente forma y2+x2 = 5.

Hemos estudiado las formulas para derivar las funciones explicitas, pero sucede a

veces que debemos derivar una función implícita porque no es posible o resulta muy

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

complicado despejar a la y. Esto lo resolvemos con el método de derivación implícita,

que constituye una aplicación de la derivación de una función de funciones.

Procedimiento para derivar una funcion implícita.

Primero derivamos término a término y se toma a y como función de x. En la expresión

resultante se despeja a dx

dy como se hace en cualquier ecuación.

Ejemplo.

Deriva la función implícita:

X2 + y2 = 5

Realizamos la derivación término a término con respecto a x:

xxdx

d2)( 2

dx

dyyy

dx

d2)( 2

Aplicando las formulas fundamentales, calcular la derivada de diversas funciones

algebraicas.

En los siguientes ejemplos demostrativos, se presentan diferentes modelos matemáticos,

los cuales se explican paso a paso con el fin de que el estudiante tenga una mayor

comprensión y entendimiento del proceso; también se les recomienda el uso y manejo del

formulario, mientras se logra la “ memorización “ de las mismas; por último se les indica

que en la mayor parte de los problemas de los ejemplos dados se hace uso de las

operaciones algebraicas fundamentales.

Ejercicios propuestos.

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

1.- y = x3 + 7

2.- y = 2x2 + 4x

3.- y = ( 3 – x2 )7

4.- y = 22 ax

5.- y = 3x2 12 x

6.- y =2

2

4

4

x

x

7.- y = 3 29 x

8.- y = 2

2

2

2

ax

ax

9.- y = x

x

21

21

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

10.- y = t

t1

2

11.- y = 4x3 – x2 + 5x – 1

12.- y = 2

1

2

1

3 xx

13.- y = 9x7 – 3x4

14.- y = 1032

3

xx

Carácter creciente y decreciente de una funcion.

La gráfica de una función continua facilita claramente dónde o en que intervalos la

función es creciente, constante o decreciente; por ejemplo, en la figura tenemos que:

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

decreciente

creciente

creciente constante

-4 -3 -2 -1 0 1 2 3 4 5

a) De x = - hasta x = 0, la función es creciente

b) De x = 0 hasta x = 1, la función es decreciente

c) De x = 1 hasta x = 3, la función es constante

d) De x = 3 hasta x = , la función es creciente.

Lo anterior, nos permite obtener las siguientes definiciones:

Funcion creciente.- una función y = f(x) es creciente si al aumentar algebraicamente “

x “ , también “ y “ aumenta, es decir, la función es creciente en un intervalo si es

creciente en todos los valores del intervalo.

Funcion decreciente.- una función y = f(x) es decreciente si al aumentar

algebraicamente “x”, la “y” disminuye, es decir, la función es decreciente en un

intervalo si es decreciente en todos los valores del intervalo.

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

ejemplos gráficos.

y

y = f(x)

y = f(x) y

x

y

x

0 x x’ 0

función creciente función decreciente

Criterio para indicar el carácter creciente o decreciente de una función.

Al analizar el comportamiento de una función si es creciente o decreciente en un intervalo

dado, la derivada de la función es importante ya que si la derivada es positiva, la tangente

forma un ángulo agudo con el eje x y tiene pendiente positiva (función creciente); si la

derivada es negativa, la tangente forma un ángulo obtuso con el eje x y tiene pendiente

negativa (función decreciente); por lo anterior resulta el siguiente criterio para determinar

si una función es creciente o decreciente:

Ejemplos:

“Una función es creciente cuando su derivada es positiva; es decreciente

cuando su derivada es negativa.”

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

1.- hallar los intervalos en los que y = x3 – 6x2 + 9x es creciente o decreciente.

solución: graficando la función dada, tenemos:

y = x3 – 6x2 +9x

y’ = 3x2 –12x + 9

y’ = (3x – 3) ( x – 3)

Igualando a cero cada uno de los factores de la derivada, tenemos:

3x – 3 = 0 y x – 3 = 0

3x = 3 x = 3

x = 3

3

x = 1 y x = 3

Por lo que los intervalos que tendremos que analizar serán:

X Y

-2 -50

-1 -16

0 0

1 4

2 2

3 0

4 4

5 20

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II

a) (- , 1 ) b) ( 1, 3) c) (3, )

De (- , 1 ) tomamos un número entre el intervalo x = 0 y evaluamos a y’, resultando:

y’ = 3(0)2 –12 (0) + 9 = 9

Por lo tanto

y’ > 0, por lo que la función es creciente.

De ( 1, 3 ) tomando un valor del intervalo x = 2 y evaluando a y’, tenemos:

y’ = 3(2)2 – 12(2) + 9 =

y’ = 3(4) – 12(2) + 9 =

y’ = 12 – 24 +9 = -3

Por lo tanto:

y’ < 0, por lo que la función es decreciente.

De ( 3 , ) tomando un valor del intervalo x = 5 y evaluando a y’, tenemos:

y’ = 3(5)2 – 12(5) + 9 =

y’ = 3(25) – 60 + 9 =

y’ = 75 – 60 +9 =24

Por lo tanto:

y’ > 0, por lo que la función es creciente.

ESCUELA PREPARATORÍA OFICIAL No. 16 CÁLCULO DIFERENCIAL

CUADERNILLO DE TRABAJO EN CLASE

ELABORÓ: JULIO CRISPÍN JIMÉNEZ RAMÍREZ GRUPOS: 3°I Y 3°II