workshop y la acuicultura. problemas ambientales, o de salud (no asociados al consumo de marisco),...

44
PROCEEDINGS ON THE WORKSHOP Management of recreational waters in relationship with harmful microalgae blooms (HAB)in the Mediterranean Sea Mercedes Masó. Editor 25-26 October 2004 Calvià (Mallorca)

Upload: phungthuan

Post on 04-Nov-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

P RO C E E D I N G S O N T H E

W O R K S H O P

Management o f recreat iona l waters in

re lat ionsh ip with harmfu l microa lgae b looms

(HAB) in the Medi terranean Sea

Mercedes Masó. Editor

25-26 October 2004Calvià (Mallorca)

25-26 October 2004Calvià (Mallorca)

Organized by:European project STRATEGYcoordinated by CSIC

In collaboration with:Calvià Town CouncilConselleria de Medi Ambient (Governde les Illes Balears)IOC-IEO Science and CommunicationCentre on Harmful Algae-VigoCOPEMEDAsociación hotelera Peguera-CalaFornells

Harmful Algal Blooms (HAB) areconsidered nowadays one of the mainrisks that coastal regions have to face ona wor ld scale . Since the 80’s,phytoplankton blooms in theMediterranean were considered rareevents. One significant consequence ofthis situation is that as an emergingphenomenon, there is neither socialtradition nor collective memory.Therefore, we do not have an appropriatesocial response and as a consequence,there is neither norms for action, noreven strategic plans. The list of harmfulspecies in the Mediterranean is growingas rapidly as political concern; however,public awareness and political decisionsare still lacking. This workshop isaddressed to promote effectivecommunication and active par ticipationof all sectors involved.

Problems related with HABs are not onlyassociated with food safety andcommercial shellfish activities.Environmental damage, healthy problems(not associated to shellfish consuming),as allergic reactions, recreationally shellfishhar vesting or even aesthetic issues haveimpor tant social implication and cancommit the use of coastal waters forrecreational purposes, causing evidenteconomical implications.

Diverse Mediterranean areas alreadypresent public health, economic, andpolitical problems associated with noxiousphytoplankton species.

The aim of the workshop is to providea forum for the dissemination andexchange of information, not onlybetween coastal Mediterranean regionsalready affected, but with coastal regionsthat can be affected in the near future.The main outcome of the Europeanproject STRATEGY is to contribute todeveloping a new concept of monitoringand management of quality of recreationalwaters in relationship with phytoplanktonblooms in the Mediterranean basin.Improved information flow between thedifferent regions and sectors in theMediterranean is one of the key aspects.

Management o f recreat iona l waters in

re lat ionsh ip with harmfu l microa lgae b looms

(HAB) in the Medi terranean Sea

W O R K S H O P

S T R A T E G Y

New strategy of monitoring and management of HABs in the Mediterranean Sea

25 - 26 d’octubre de 2004Calvià (Mallorca)

Organitzat per:El projecte Europeu STRATEGYcoordinació CSIC

En col·laboració amb:Ajuntament de CalviàConselleria de Medi Ambient (Governde les Illes Balears)IOC-IEO Science and CommunicationCentre on Harmful Algae-VigoCOPEMEDAsociación hotelera Peguera-CalaFornells

Actualment, les proliferacions algals nocivesestan considerades com un dels majorsriscos a fer front en les zones costaneresa nivell mundial. L’ocurrència en elMediterrani de proliferacions algals nocivesabans dels anys 80 era molt rara. Laconseqüència d’aquesta situació és que,com a fenomen emergent, en elMediterrani no hi ha un coneixement socialni memòria col·lectiva. Per tant, no tenimuna resposta social adequada, ni normesd’acció, ni evidentment, plans estratègics.La llista d’espècies de microalgues nocivesen el Mediterrani està creixent, al mateixritme que la preocupació per par t de lesautoritats. No obstant, les decisionspolítiques i el coneixement públic sónpràcticament inexistents.

Els problemes relacionats amb lesproliferacions de microalgues nocives,Harmful Algae Blooms (HAB) com se lesconeix internacionalment, no estanúnicament relacionades amb la salutalimentària i l’aqüicultura. Problemesambientals, o de salut (no associats alconsum de marisc), com poden serreaccions al·lèrgiques, la recol·lecció demol·luscs en àrees no comercials, oproblemes estètics, com les discoloracionsrecurrents que tenen lloc en determinadesplatges mediterrànies d’alta freqüentació,tenen implicacions socials rellevants ipoden comprometre l’ús de les zones

d’esbarjo afectades, amb les conseqüèncieseconòmiques que això compor ta.

Diverses zones Mediterrànies ja han tingutproblemes tant de salut pública, econòmicso polítics en relació a l’ocurrència deproliferacions de microalgues.

El principal objectiu d’aquest seminari ésproporcionar un fòrum de discussió, iintercanvi d’informació, no tan sols entreles regions i sectors Mediterranis afectats,sinó també en aquells que són susceptiblesde patir-los en un futur pròxim. L’objectiufinal del projecte europeu STRATEGY(2001-2004) és desenvolupar un nouconcepte de control i gestió de les aigüesd’esbarjo en relació a l’ocurrència deproliferacions de microalgues nocives enla conca Mediterrània. Millorar el fluxd’informació entre les diferents regions i sectors és un dels aspectes principals.

Gest ió d ’a igües d ’esbar jo en re lac ió

amb prol i ferac ions de microa lgues

noc ives en e l Medi terran i

W O R K S H O P

S T R A T E G Y

New strategy of monitoring and management of HABs in the Mediterranean Sea

25 - 26 de octubre 2004Calvià (Mallorca)

Organizado por:El proyecto Europeo STRATEGYCoordinado CSIC

En colaboración con:Ayuntamiento de CalviàConselleria de Medi Ambient (Governde les Illes Balears)Agència Catalana de l’AiguaAsociación hotelera Peguera-CalaFornells

Las proliferaciones algales nocivas estánconsideradas en la actualidad como unode los mayores riesgos a los que tienenque hacer frente las zonas costeras a nivelmundial. La ocurrencia en el Mediterráneode proliferaciones algales nocivas antesde los años 80 era muy rara. Laconsecuencia de esta situación es quecomo fenómeno emergente, en elMediterráneo no hay conocimiento social,ni memoria colectiva. Por tanto, notenemos una respuesta social adecuada,ni normas de acción, ni evidentementeplanes estratégicos. La lista de especies demicroalgas nocivas en el Mediterráneo estacreciendo, al mismo ritmo que lapreocupación de las autoridades, sinembargo las decisiones políticas y elconocimiento público son prácticamenteinexistentes.

Los problemas relacionados con lasproliferaciones de microalgas nocivas,Harmful Algae Blooms (HAB) como se lasconoce internacionalmente, no estánúnicamente relacionados con la saludalimentaria y la acuicultura. Problemasambientales, o de salud (no asociados alconsumo de marisco), como reaccionesalérgicas, recolección de moluscos en áreasno comerciales, o incluso los problemasal menos estéticos, como lasdiscoloraciones recurrentes que sucedenen determinadas playas mediterráneas de

alta frecuentación, tienen implicacionessociales relevantes y pueden inclusocomprometer el uso recreacional de laszonas afectadas, con las consecuenciaseconómicas que esto conlleva.

Diversas zonas Mediterráneas ya hantenido problemas tanto de salud pública,económicos o políticos en relación a laocurrencia de proliferaciones demicroalgas.

El principal objetivo de este seminario esproporcionar un foro de discusión, eintercambio de información, no sólo entrelas regiones y sectores Mediterráneosafectados, si no también con aquellossusceptibles de sufrir los en un futuropróximo. El objetivo final del proyectoeuropeo STRATEGY (2001-2004) esdesarrollar un nuevo concepto de controly gestión de las aguas recreacionales enrelación a la ocurrencia de proliferacionesde microalgas nocivas en la cuencaMediterránea. Mejorar el flujo deinformación entre las diferentes regionesy sectores es uno de los aspectosprincipales.

Gest ión de aguas recreac iona les en

relación a prol i feraciones de microalgas

noc ivas en e l Medi terráneo

W O R K S H O P

S T R A T E G Y

New strategy of monitoring and management of HABs in the Mediterranean Sea

INDICE- CONTENTS:

PRESENTACIÓN - PREFACE

CONCLUSIONS

PARTICIPANTS................................................................................................. 7

ABSTRACTS ..................................................................................................... 9

STRATEGY PRESENTATIONS .............................................................................................................9 Factors that determine A. taylori blooms.................................................................................................9 Harmful dinoflagellates distribution in Mediterranean confined waters. Bloom features. ....................10 STRATEGY results in Greek network ..................................................................................................16 The importance of the benthonic phase (cysts). Implications for the management of harmful algae blooms. ..................................................................................................................................................17 Diversidad del género Alexandrium en el Mediterráneo .......................................................................18 Trophic characteristics of Mediterranean coastal waters: are they related to the increase in harmful events? ...................................................................................................................................................19 STRATEGY database. A management tool ..........................................................................................20 Molecular technologies: ready to be used for phytoplankton control? ..................................................22 Interacciones entre HABs y Gestión del Litoral: Problemas emergentes. .............................................23

PRESENTATIONS OF INVATED REPRESENTATIVE MEDITERRANEAN REGIONS AND SECTORS .................................................................................................................................................26

Aspectos en la gestión de aguas portuarias. El puerto de Barcelona .....................................................26 La miticoltura ad Olbia e l’emergenza H.A.B .......................................................................................26 Harmful algae monitoring programme in greek coastal waters .............................................................27 Phytoplankton monitoring in Andalusia ................................................................................................28 Suivi des microalgues potentiellement toxiques dans les zones de production des mollusques bivalves du nord de la tunisie...............................................................................................................................30 Aquaculture industry: Problems and economical implications of HABs. .............................................31 Regional health-hygienic control plan of living shellfish mussels and toxic algae ...............................32 Presentación de un programa de investigación de HABs en la Comunidad Autónoma de Murcia .......33 Note synthétique sur les efflorescences phytoplanctoniques nuisibles au niveau de la lagune de Nador...............................................................................................................................................................34 Ioc-ices harmful algal events database ..................................................................................................35

AGENDA.......................................................................................................... 36

PRESENTACIÓN El proyecto europeo STRATEGY se inició en Septiembre del año 2002 y finalizó en Noviembre del 2004. Financiado por el 5º programa marco de la Comisión Europea (Acción clave 3: Ecosistemas Marinos Sostenibles). El objetivo principal de STRATEGY ha sido proporcionar las claves para abordar uno de los riesgos principales a los que tienen que enfrentarse las regiones costeras a escala mundial, y específicamente el mediterráneo: el incremento en frecuencia e intensidad de Proliferaciones Algales Nocivas (PAN) como posible consecuencia de las actividades humanas. El programa se ha centrado principalmente en estudios in situ en la cuenca Norte Mediterránea, donde las PAN son recurrentes y causan frecuentemente problemas económicos, sociales y de salud pública. Hemos estado trabajando en las regiones con mayor influencia antropogénica, en playas y puertos. Esto ha supuesto al menos dos cosas: contacto estrecho con los usuarios y constatar que la estrecha franja de agua que estamos explotando con fines recreativos, sufre una gran presión que puede provocar cambios no deseados, evidentemente no deseados por los humanos. Uno de los logros principales del proyecto STRATEGY ha sido la fructífera colaboración establecida entre científicos y organismos encargados del control sanitario y/o medioambiental en las diferentes regiones. Me gustaría aprovechar esta ocasión para agradecer a todas aquellas organizaciones que han apoyado nuestra investigación, tanto desde el punto de vista económico como por su entusiasta colaboración. Estoy pensando en muchas personas, sobretodo de Cataluña y Mallorca donde mi trabajo de campo se ha desarrollado principalmente, pero no únicamente. Me gustaría mencionar entre otros, al patrón de la barca facilitada por un club náutico, al guardián del pantalán que vigilo nuestro material, a las personas encargadas de muestrear cada día durante las proliferaciones de verano, a el dueño de una tienda de comestibles o el camarero del chiringito de playa que guardaron nuestras muestras congeladas, los propietarios de los hoteles que permitieron la instalación de equipos, o cedieron sus instalaciones para que montáramos nuestro campamento, a la empresa que nos permitió hacer nuestros experimentos en sus instalaciones, o al chico encargado de las sombrillas en la playa que nos vigiló el campamento durante los experimentos. En ese sentido hicimos un trabajo didáctico, no puedo acordarme de las veces que hemos explicado

PREFACE The European project STRATEGY began in September 2002 and finished in November 2004. Funded by the European Commission Under the 5th framework program (Key Action 3: Sustainable Marine Ecosystems; Priority: Coastal monitoring processes). STRATEGY main goal has been to provide the keys for tackling one of the main risks of coastal regions on a world scale, and specifically along the Mediterranean coastline: the increased frequency of Harmful Algal Bloom (HAB) as the possible consequence of anthropogenic activities. The program has been focused mainly through in situ studies in the North Mediterranean basin where blooms are recurrent and frequently cause public health, economic, and social problems. We have been working in beaches and harbours in regions with the most anthropogenic influence. This means at least two things: a close contact with people and to be conscious that this narrow band of water that we are exploiting for recreational activities suffers a great pressure that can provoke not desirables changes, evidently not desirable for humans. One of the main achievements of STRATEGY project is the fruitful collaboration that has been established between scientists and organisms in charge of sanitary control and/or environmental control in the different regions. In that sense I would really like to thank all the organizations that have encouraged our research, by giving their economic support for sampling and related activities, but also for their enthusiastic collaboration. I am thinking in many people, mostly of the Catalan region and Mallorca where my field work has been mostly developed, but they are not the only ones: I could mention the driver of a small boat facilitated by a nautical club, the guardian of the jetty who take care of our material, people in charge of monitoring each day during summer blooms, the owner of a grocery or the waiter of a bar in the beach who kept our frozen samples, the hotel owners who let us to install our equipment or our camp, the enterprise who permitted us to develop our experiments in its facilities, or the boy in charge of the parasol in the beach that control our camp during the experiments. In that sense we made an educational work, I can not remember the times that we have explained why the colour of the water is green, red or brown. What is a bloom or what is a dinoflagellate. We really have experienced the great lack of knowledge that the Mediterranean population have about the waters where they swim each summer: « The problem

por qué el color del agua es verde, rojo o marrón. Lo que es una proliferación algal o lo que es un dinoflagelado. Durante estos años hemos constatado la falta de conocimiento que la población mediterránea tiene del agua donde nada cada verano: «El problema es un alga. ¡Ah, el alga asesina! He oído algo en la televisión. ¡No! Lo que nosotros estudiamos es una microalga. ¿Una microalga? Sí, un alga porque vive de la luz del sol y de los nutrientes que están en el agua, como un árbol pero puede nadar, puede ir de arriba a abajo todos los días, puede detectar las corrientes y entonces formar proliferaciones. ¿Proliferaciones? Sí, el crecimiento masivo…» .No es fácil de explicar, pero uno de los objetivos principales de STRATEGY has sido precisamente este. El proyecto STRATEGY tiene tres objetivos principales: 1. - Desarrollar una nueva estrategia de monitoreo asociada a áreas confinadas con alto riesgo de ocurrencia de PAN en varias regiones Mediterráneas que comparten el mismo problema y preocupación respecto a la calidad de aguas recreativas 2. - Determinar el papel de las áreas confinadas creadas o modificadas por la actividad humana en la la expansión y diversificación de las proliferaciones algales del genero Alexandrium. Formular principios que expliquen similitudes entre aquellos ecosistemas afectados por los mismos eventos de PAN 3. - Establecer las bases para desarrollar una gestión integrada de la zona costera en relación a las aguas de recreo promoviendo la comunicación efectiva y la participación activa de todos los sectores implicados en los distintos niveles/áreas. El seminario internacional “Gestión de aguas recreacionales en relación a proliferaciones de microalgas nocivas en el Mediterráneo", fue organizado en el marco de este tercer objetivo. Durante los 25 y 26 de octubre de 2004, STRATEGY se llevó a cabo un seminario internacional en Calvià (Mallorca) con la finalidad de proporcionar un foro de discusión entre diversas regiones Mediterráneas afectadas por PAN. El objetivo principal fue compartir experiencias y debatir sobre la relación administración -sociedad y científicos en la gestión costera en relación a la ocurrencia de PAN. Más de 50 expertos asistieron a este seminario (investigadores, gestores medioambientales, y técnicos) Se expusieron las implicaciones sociales y económicas de la ocurrencia de PAN por parte de representantes de los diferentes sectores y regiones

is an algae. Ah, the assassin algae! I have heard something in the TV. No! What we study is a microalgae. A microalgae? Yes, an algae. It lives from the sunlight and the nutrients that are in the water; as a tree but it can swim, can go up and down every day, can detect currents and then form blooms. Blooms? Yes you can have a …». It is not easy to explain, but one of the main objectives of STRATEGY has been precisely that. STRATEGY project has three main objectives: 1. - To develop a new monitoring strategy associated with confined areas of high-risk HAB occurrence in several Mediterranean regions that share the same problem and concern about the quality of recreational waters. 2. - To determine the role of confined areas created or modified by human activity in relationship with the expansion and diversification of Alexandrium blooms. To formulate principles that explain similarities between ecosystems affected by the same HAB events. 3. - To establish the basis from which to develop an integrated coastal zone management in relationship with the coastal recreational waters by promoting effective communication and active participation of all the players involved at different levels and areas The international workshop “Management of recreational waters in relationship with harmful microalgae blooms (HAB)in the Mediterranean Sea”, was organized in the framework of this third objective. During the 25th and 26th of October of 2004, STRATEGY organized an international workshop in Calvià (Mallorca) with the objective of providing a forum for exchange of information, between Mediterranean coastal regions to share experiences and discussing about administration- society and scientists relationship in coastal management, focusing on HABs. More than 50 experts attended to this workshop (researchers, environmental managers, and technicians). The social and economical implications of the occurrence of HABs by representatives of the different sectors and Mediterranean regions affected, as well as the STRATEGY project results with direct implications in an integrated coastal zone management, were exposed. The two afternoon

Mediterráneas afectados, así como los resultados de proyecto STRATEGY con implicaciones directas para una gestión integrada de la zona costera. Las dos sesiones de la tarde se dedicaron a discutir posibles medidas y planes de acción. Como resultado de estas sesiones de debate se decidió elaborar un documento útil para los gestores y políticos sobre los planes de acción necesarios para un control integrado de aguas de recreo mediterráneas en la relación a las PAN. Dicho documento se incluye en estas actas, así como los resúmenes de las presentaciones orales. Los archivos de PowerPoint y toda la documentación del seminario están disponibles en la página web (http://www.icm.csic.es/bio/wscalvia/) En nombre del grupo STRATEGY quisiera agradecer a todos los asistentes su participación y contribución al desarrollo del seminario, el apoyo del Ayuntamiento de Calvià, IOC_IEO Science and communication centre of harmful algae – Vigo y COPEMED, y al hotel Don Antonio su hospitalidad. Como se debatió extensamente durante el seminario esperamos que reuniones como esta sean mucho mas frecuentes. Mercedes Masó Coordinadora STRATEGY

sessions were devoted to discuss measures and action plans to be proposed. As a result of these debate sessions it has been decided to elaborate a document useful for coastal managers and politicians about the measures for an integrated control of Mediterranean recreational waters in relationship with HAB. This document as well as the abstracts of the oral presentations are included in these proceedings. All PowerPoint files of the oral presentations and abstracts are available through the Workshop web site (http://www.icm.csic.es/bio/wscalvia/). On behalf of the STRATEGY group I would like to thank all the participants for their contributions and fruitful debate, to Calvià Town Council, IOC_IEO Science and communication centre of harmful algae – Vigo and COPEMED for their support and to Hotel Don Antonio for its hospitality. As it was said extensively during the Workshop, we hope that meetings like this one will be more frequent. Mercedes Masó STRATEGY coordinator

Condicionespara el incremento de PAN

Ambientes adecuadospara dinoflagelados

Recurrencia delas proliferaciones

Expansiónde las especies

Uso

rec

reat

ivo

del

lito

ral

·Destrucción de

filtros naturales (Marismas, lagunas)

·Canalización de rieras

·Impermeabilización

·Aguas residuales

(A través de emisarios)

·Aguas confinadas (Espigones,

puertos)

Vectorespotenciales de dispersión·

Causas

Disponibilidad Nutrientes

(permiten el crecimiento de los

organismos)

Áreas bajo hidrodinamismo (bajas

tasas de pérdidas de organismos)

Zonas de acumulación de

quistes en el sedimento

Facilitan dispersión a

escala regional

Introducciónespecies no autóctonas

FactoresAntrópicos

Construcciónmasiva del litoral

Ocupaciónmasiva del litoral en verano

Artificializaciónde la linea de costa

·Embarcaciones de recreo

·Plásticos flotantes

·Aguas de lastre

·Traslado de semillas de moluscos

Incremento

de acceso de los usuarios a los resultados de las redes de vigilancia (páginas

Web institucionales) d) implicación del sector médico, las consecuencias en

la salud pública están infravaloradas, son necesarios estudios epidemiológicos

Complejidad/multidisciplinaridad. Las microalgas tienen estrategias de

vida complejas adaptadas a su medio. Es imprescindible de forma paralela a

la vigilancia, la investigación en los ciclos de vida y su adaptación al medio. La

fase planctónica es la responsable de las proliferaciones y la fase bentónica

(quistes de resistencia) posibilita la recurrencia anual. Se debe incluir el bentos

en la gestión de las PAN. La acumulación, transición entre fases, interacción

con el hidrodinamismo, son factores claves del éxito de una especie y que aún

necesitan una investigación sólida para gestionar el problema en el futuro.

Mitigación /control. Las estrategias de mitigación (reducir el impacto) y

control (eliminarlo una vez ya ha ocurrido) dependerán del organismo causante.

No existen en la actualidad mecanismos de control aplicables y no se deberían

aplicar sin un asesoramiento científico adecuado. La colaboración entre gestores

e investigadores es fundamental en este sentido y en el futuro deberían dirigirse

hacia el desarrollo de experiencias piloto que investiguen conjuntamente

posibles estrategias de mitigación/control

Las PAN estan generando interferencias significativas en el uso recreativo

del litoral, pero es al mismo tiempo este uso masivo del litoral el que esta

generando las condiciones necesarias para el incremento de PAN.

Planes de actuación para un control integradode aguas de recreo en relación con

proliferaciones de microalgas nocivas en elMediterráneo

Conclusiones del seminario: Gestión de aguas de recreo en relación con proliferaciones de microalgas nocivas en el Mediterráneo1.Calvià, Mallorca 2004

1www.icm.csic.es/bio/wscalvia/financiado por el proyecto europeo STRATEGY, Ayuntamiento de Calvià, IOC-IEO Science and Communication

Centre on Harmful Algae, COPEMED

2www.icm.csic.es/bio/projects/strategy/financiado por la Comisión Europea (EVK3-CT-2001-0046), Acciones especiales Plan Nacional I+D+I

(REN2002-10008-E/MAR)

S T R A T E G Y

New strategy of monitor ing andmanagement of HABs in theMediterranean Sea

La ocurrencia cada vez más frecuente y problemática de Proliferaciones Algales

Nocivas (PAN) en aguas de recreo principalmente en verano está teniendo

repercusiones socio-económicas muy significativas. Durante los días 25 y 26

de Octubre de 2004 tuvo lugar un seminario internacional en Calvià con el

objetivo de proporcionar un foro de discusión entre la comunidad científica

y los sectores sociales, administraciones u organismos afectados. Asistieron

más de 50 exper tos (investigadores, técnicos, gestores ambientales), se

expusieron los resultados del proyecto europeo STRATEGY2

, así como la

repercusión social y económica por par te de diversos sectores y áreas

Mediterráneas afectadas. Se presentan las conclusiones, resultado de la discusión

y par ticipación de todos los asistentes.

Impacto socio-económico. Las proliferaciones algales nocivas (PAN) en

el Mediterráneo son un problema extendido que genera problemas de salud

pública, interferencias con el uso recreativo del litoral y perjuicios económicos

significativos tanto en el sector de la acuicultura (1,6 millones ¤ año 2003 en

Olbia-Italia) como en el sector turístico (ej: Palmira, Calvià, Vulcano).

Causas/Prevención. Las PAN son un proceso natural, potenciado por el

uso masivo del litoral; su incremento responde a una determinada gestión del

territorio que conlleva un incremento de hábitats apropiados para los

dinoflagelados, de la posibilidad de recurrencia anual y de expansión de las

especies (ver esquema). Las estrategias de prevención (reducir la incidencia

y extensión de PAN) estarán relacionadas con los diversos factores causantes.

Menos en casos concretos, afrontar la problemática de las PAN es un proceso

a largo plazo y no se deben generar expectativas de éxito a cor to plazo.

Vigilancia/Gestion. Para minimizar los impactos en la salud humana y

actividades económicas, los siguientes elementos se consideran necesarios:

a) redes de vigilancia fiables y bases de datos que permitan el estudio de la

expansión de estos organismos, b) canales de información establecidos entre

científicos y gestores ambientales, c) campañas divulgativas y capacidad

Necessary Conditionsfor the HAB increment

Appropriate habitatsfor dinoflagellates

Bloom recurrence

Species expansion

Rec

reat

ion

al e

xplo

itat

ion

of

the

lito

ral . Destruction of natural filters

(lagoons, wetlands). Channelization of naturalrainwater flows. Impermeabilization

Discharge of wastewater

Confined waters (harbors,

breakwaters)

Potential dispersal vectors

Causas

Nutrient availability

(Allow organism growth)

Areas of low hydrodynamism

(Low loss rates)

Sites of cyst accumulation in the

sediment

Promote dispersion at

regional level

Introductiónof nonautochtonous species

Anthropogenicfactors

Massive urbanizationof the coastline

Intensificationof seasonal tourism

Shoreline artificialization(man-made structures)

·Recreational Yacht

·Floating debris (plastics, etc.)

.Ballast water

.Shellfish translocation

Increase

websistes etc. d) implication of the medical sector as the risks for public

health are underestimated, whereas epidemiological studies are needed.

Complexity/multidisciplinarity. Microalgae have complex life cycles,

well-adapted to their environment. The planktonic stage is responsible for

a bloom itself, whereas the benthonic stage (resting cysts) enhances the

annual recurrence. It is, therefore, necessary to include analysis of the benthos

in the HAB management. This requires solid research of accumulation,

transition between phases, and interaction with the hydrodynamism; key

factors in the success of a species. Research on life cycles and environment

adaptation should be used parallel to routine monitoring.

Mitigation/control. The mitigation (reducing the impact) and control

strategies (terminating the event when it already developed) depend on the

causative organisms. Nowadays there are no commonly applicable control

mechanisms and new measures should not be applied without suitable

scientific assessment. In this sense collaboration between managers and

researchers is essential. Future collaboration should be addressed for

development of pilot experiments investigating possible mitigation/ control

strategies.

HAB are generating significant interferences in the coastal recreational

activities. However, this exploitation for recreational use is promotting the

necessary conditions for the HAB increase in the Mediterrranean.

Action plans and measures for an integratedcontrol of Mediterranean recreational watersin relationship with Harmful Algae Blooms

Conclusions of the workshop: Management of recreational waters in relationship with harmful microalgae blooms in the Mediterranean1 Sea, Calvià, Mallorca 2004

1www.icm.csic.es/bio/wscalvia/supported by the European project STRATEGY, Town Hall of Calvià, IOC- IEO Science and CommunicationCentre of Harmful Algae, COPEMED

2www.icm.csic.es/bio/projects/strategy/suppor ted by the European Commission (EVK3-CT-2001-0046) and Acciones Especiales Plan NacionalI+D+I (REN2002-10008-E/MAR)

S T R A T E G Y

New strategy of monitor ing andmanagement of HABs in theMediterranean Sea

The occurrence of Harmful Algal Blooms (HAB) is becoming more frequent

and problematic in recreational waters of the Mediterranean Sea. Blooms

mainly occur during summer, and cause significant social and economical

impacts. During the 25th and 26th October 2004 an international workshop

was held in Calvià, with the objective of providing a discussion forum between

scientists, social sectors, administration and other affected organizations. The

workshop was attended by more than 50 exper ts (researchers, environmental

managers, and technicians). The results of the European project STRATEGY2

were exposed. In addition representatives of the diverse Mediterranean

sectors and areas affected exposed the HAB social and economical impacts.

The main conclusions derived from the discussion session are outlined below.

Social and economical impacts. Harmful Algal Blooms (HAB) in the

Mediterranean Sea are a widespread problem which generate public health

problems, interfere with the coastal recreational activities, whereas they

induce significant economical loses, either in aquaculture industry (1,6 million year

2003 in Olbia, Italy) or in tourist sector (Palmira, Calvià, Vulcano).

Causes/ Prevention. HABs are a natural phenomenon, enhanced by the

massive exploitation of the coast. The current coastal zone management

entails and increases the occurrence of dinoflagellate habitats, thus allowing

development of recurrent blooms and expansion of the species (see scheme).

Strategies preventing generation and expansion of HABs must primarily

focus on control of the causative factors. Addressing HAB problematic is a

long term process and shor t-term success should not be expected.

Management/monitoring To reduce the impacts of HAB on human health

and economic activities the following elements are considered necessar y:

a) reliable monitoring networks and databases that allow analysis of the

expansion of the organisms, b) establish channels of information exchange

among scientific and environmental managers, c) initiate educational campaigns

and make monitoring network results easily accessible through Institution’s

Participants FIRST NAME SECOND NAME E-MAIL INSTITUTION COUNTRY Joan Salvador Aguilar [email protected] Conselleria de Medi Ambient de Balears Spain Josep Ma Aguiló [email protected] Conselleria de Medi Ambient de Balears Spain Mercedes Alemany [email protected] Conselleria de Sanitat i Consum de Balears Spain Katerina Aligizaki [email protected] Aristotle University of Thessaloniki Greece Sílvia Anglès [email protected] Institut de Ciències del Mar Spain Laura Arqueros [email protected] Conselleria de Medi Ambient de Balears Spain Vittorio Barale [email protected] Joint Research Centre of the European Commission Italy Gotzon Basterretxea [email protected] Institut Mediterrani d’Estudis Avançats Spain Nihayet Bizsel [email protected] Dokuz Eylul University, Institute of Marine Sciences and Technology Turkey Montserrat Boqué [email protected] Conselleria de Medi Ambient de Balears Spain Isabel Bravo [email protected] Instituto Español de Oceanografía Spain Jordi Camp Institut de Ciències del Mar Spain Juan José Cerdán [email protected] Departament de Medi Ambient de l'Ajuntament de Sant Josep, Eivissa Spain Joan Comes [email protected] Departament de Medi Ambient de l'Ajuntament de Pollença, Mallorca Spain

Stefano Congiu [email protected] Assessorato Igiene e Sanità. Servizio Prevenzione. Settore Igiene alimenti origine animale Italy

Eduardo Cozar [email protected] Servei de Medi Ambient de l'Ajuntament de Calvià Spain Mariona De Torres [email protected] Agència Catalana de l'Aigua Spain Faid El Madani [email protected] Institut National de Recherche Halieutique, Centre Régional de Nador Morocco Margarita Fernández [email protected] Centre d'Aqüicultura-IRTA Spain Eva Flo [email protected] Institut de Ciències del Mar Spain Vicenç Fortesa [email protected] Conselleria de Medi Ambient de Balears Spain Santiago Fraga [email protected] Instituto Español de Oceanografía Spain Dolores Furones [email protected] Centre d'Aqüicultura-IRTA Spain Esther Garcés [email protected] Institut de Ciències del Mar Spain Maria Grazia Giacobbe [email protected] Istituto Sperimentale Talassografico Italy

FIRST NAME SECOND NAME E-MAIL INSTITUTION COUNTRY Javier Gilabert [email protected] Universidad Politécnica de Cartagena Spain Jose Mª González [email protected] Conselleria de Medi Ambient de Balears Spain Olympia Gotsis [email protected] Hellenic Center for Marine Research Greece Valentina Grasso [email protected] Istituto Sperimentale Talassografico Italy Mercedes Gumá [email protected] Conselleria de Sanitat i Consum de Balears Spain Josep Hurtado [email protected] Litoral Consult Spain Javier Ibáñez [email protected] Conselleria de Medi Ambient de Balears Spain Lydia Ignatiades [email protected] Hellenic Center for Marine Research Greece Toni Jordi [email protected] Institut Mediterrani d’Estudis Avançats Spain George Kamizoulis [email protected] MED POL Programme of the Mediterranean Action Plan Greece Konstantinos Koukaras [email protected] Aristotle University of Thessaloniki Greece Monica Lion [email protected] IOC-IEO Science and Communication Centre on Harmful Algae Spain Antonella Lugliè [email protected] Dipartimento di Botanica ed Ecologia vegetale Italy Marta Manzanera [email protected] Agència Catalana de l'Aigua Spain Antoni Marc [email protected] Departament de Medi Ambient de l'Ajuntament de Pollença, Mallorca Spain Angel Marcos [email protected] Conselleria de Medi Ambient de Balears Spain Catalina Mariano [email protected] Conselleria de Medi Ambient de Balears Spain Mercedes Masó [email protected] Institut de Ciències del Mar Spain Augusto Navone [email protected] Director of Marine Protect Area of Tavolara - Punta Coda Cavallo Italy Fernando Orozco [email protected] FOA Spain Antonella Penna [email protected] Universidad de Urbino Italy Jose Mari Ribas Departament de Medi Ambient de l'Ajuntament de Sant Josep, Eivissa Spain Javier Romo [email protected] Servei de Medi Ambient- Port de Barcelona Spain Nagore Sampedro [email protected] Institut de Ciències del Mar Spain Cecilia Satta [email protected] Dipartimento di Botanica ed Ecologia vegetale Italy Joaquin Tintoré [email protected] Institut Mediterrani d’Estudis Avançats Spain Souad Turki [email protected] Institut National des Sciences et Technologies de la Mer Tunisia Amalia Vázquez [email protected] Conselleria de Medi Ambient de Balears Spain Lourdes Velo [email protected] Junta de Andalucía Spain Magda Vila [email protected] Institut de Ciències del Mar Spain Guillermo Vizoso [email protected] Institut Mediterrani d’Estudis Avançats Spain

9

ABSTRACTS

STRATEGY PRESENTATIONS Factors that determine A. taylori blooms E. Garcés1 & G. Basterretxea2 1Institut de Ciències del Mar (CMIMA-CSIC), Pg.. Maritim de la Barceloneta, 37-49, 08003 Barcelona, Spain. 2Grupo de Oceanografía Interdisciplinar, IMEDEA (UIB-CSIC), Miquel Marqués 21, 07190 Esporles, Baleares, Spain.

Degradation of coastal water quality by microalgal bloom occurrence has direct economical impact on Mediterranean tourism locations. Most of these problems are enhanced during summer season when tourism occupation reaches its maximum (more ten times the winter population at specific sites) and when, owing to the mild weather conditions, hydrodynamic forcing is low. It is during this time of the year when problems related to the increased nutrient availability and low water renewal, such as oxygen reduction and harmful algal bloom (HAB) occurrence, arise at these locations. The genus Alexandrium is the group of dinoflagellates which causes most HABs in Mediterranean coastal locations, and A. taylori is one of the noxious species. Alexandrium taylori Balech is a phototrophic marine dinoflagellate. The first bloom event described of A. taylori in the literature occurred in 1994 at La Fosca, a pocket beach situated in the Catalan coast (NW Mediterranean). However, it is known that blooms occurred in this and other Northern Mediterranean beaches since the 80’s. This species is non toxin-producing organism but a high-biomass bloom-former. The ability of A. taylori to produce and maintain elevated densities (> 10 5 cell L-1) provokes greenish-brown discoloration of the water during the summer months (June-August), in protected pocket beaches highly frequented during these months and causing an evident water deterioration. Although some factors for bloom formation have been described for other species, specific efforts have been carried out, in the case of A. taylori, during STRATEGY project. The results were obtained by means of: 1) extensive monitoring in the Mediterranean: Catalan-Balear Sea, Sardinia, Sicily and Greece (n= 46 stations) sampled weekly from May to October, 2) molecular analysis, 3) temporal and spatial mapping during bloom conditions and 4) laboratory experiments and 5) circulation patterns of the affected localities.The project delimited the presence and the bloom of this organism in beaches along the Catalan coast, Balearic Islands Sicily coast and Greece. A recent molecular study has demonstrated that A. taylori from Catalan and Tyrrhenian Seas belong to the same population. The organism presents several biological features, which help to develop its high biomass blooms. In addition to a motile vegetative form, A. taylori had two benthic forms, temporary cysts and resting cysts. Temporary cysts may divide to form motile cells. Resting cysts had a thicker wall than the temporary cysts and had a red accumulation body. Among the physiological properties of the temporary cyst of A. taylori outstands its sticky nature which facilitates both the formation of clusters and the attachment to surfaces. Microscopic observations of floating plastic debris collected at several places along the Catalan Coast showed that they were constituted mainly by benthic diatoms and small flagellates (<20 µm) but also dinoflagellates such as temporary cysts and vegetative cells of A. taylori. A. taylori showed in situ diurnal vertical migration with an increase of vegetative cells in the water column in the morning through midday, with concentrations peaking in the afternoon followed by lower levels at night. Dense aggregates of cells are also found near the sediment during afternoon, this representing a way of avoiding advection from the area. The estimated vegetative cell division rate in the field was 0.4-0.5 day-1. This high and constant growth last all the maintenance phase of the bloom. The minimum in situ division rate of the temporary cysts was 0.14 day-1The A. taylori bloom was characterized by very low densities of

10

microzooplankton, the possible predators. At bloom densities, A. taylori are not grazed and therefore this loss term has little effect on dense blooms of this species. The location of the beach at the head of a sheltered Bay and the strong anthropogenic pressure exerted by the tourist industry settled in its vicinity make this beach the archetype of an A. taylori affected beach. The nearshore environment of intensively anthropized Mediterranean coasts provides a nutrient rich environment for massive bloom development. Despite the fact that only the most protected pocket beaches have shown evidences of this phenomenon, this nearshore environment is relatively turbulent and exhibits low turbidity when compared to other systems semi-enclosed systems such as ports and lagoons. Based on in situ data and modeling results, we described the influence of summer breeze conditions in A. taylori bloom generation and maintenance in Paguera, an urban beach in the Bay of Santa Ponça (Mallorca, Spain). Shorewards coastal flow and coupling between physical forces and biological strategies (vertical migration) are critical for reducing population loss rates. Moreover, low water renewal benefits nutrient availability and, possibly, certain position maintenance for species with natation ability which enables them to avoid being washed out to the beach. Harmful dinoflagellates distribution in Mediterranean confined waters. Bloom features.

Magda Vila* and Antonella Lugliè**

* Institut de Ciències del Mar - CSIC (STRATEGY) ** Dipartimento di Botanica ed Ecologia vegetale - DBEV, Università di Sassari (STRATEGY) This report aims to show the prominent aspects of A. minutum and A. catenella blooms, two target species considered in the Strategy Project and known for their blooms in confined water areas e.g. harbours, bays and lagoons. Monitoring these two species was considered essential for the project because:

� A. minutum is the toxic species most widespread in the Mediterranean and recurrent blooms have been described in various harbours and shellfish farms, causing substantial economic losses,

� A. catenella (Whedon & Kofoid) Balech exhibited in the past decade a phase of rapid geographical spread within the Mediterranean and an increase in cell density, becoming a new potential danger in the Mediterranean area.

These species were monitored for two years (2002-2003), by fortnightly samplings from March to October in Spanish and Italian stations. Cruises during their blooms were carried out in specific sites in order to investigate their dynamics on more detailed temporal and spatial scales (inter- and intra-daily, vertical and horizontal distribution). The contemporaneous detection of environmental data was useful to formulate principles that explain similarities between ecosystems and understand how these systems are unique respect to the types of blooms that occur, which is one of the main targets of the project. Comparing sites where those species recurrently bloom will provide further insights into the conditions that make a certain locality susceptible to blooms of those species. Comparative studies will allow us to identify critical processes controlling HAB occurrence and develop consequently prediction capacities (GEOHAB science plan, Glibert and Pitcher, 2001). In particular, this report on the two species illustrates:

� history in the Mediterranean Sea: first detections, first PSP events � spatial-temporal distribution in Spanish and Italian areas, considered in the Strategy Project � study cases: a comparison on the blooms and ecological characteristics of sites with recurrent

blooms.

11

A. minutum

History: first detection, first PSP event

The genus Alexandrium is the group of dinoflagellates causing most of the Harmful Algae Blooms (HAB) in the Mediterranean Sea. The most widespread Alexandrium detected in the Mediterranean Sea is A. minutum. This species was first described in the Alexandria harbour (Halim 1960), but only thirty years later that species was linked to toxicity in Mediterranean waters (Delgado et al. 1990). Since then, numerous PSP outbreaks caused by A. minutum have been detected in the Mediterranean Sea. A. minutum was the unique Alexandrium species related to toxic events in the Mediterranean Sea for several years. It is important to mention that A. minutum blooms have always been described as localised phenomena related to harbours and lagoons (see Vila et al. 2001a, for revision). This species is frequently detected year-round at low concentrations within the Mediterranean basin. However, it only proliferates recurrently in some localities. Spatial-temporal distribution in Spanish and Italian areas considered in the Strategy Project

A. minutum is widespread along the Catalan and Majorca coasts. In the Spain Strategy stations, this species has been detected in all harbours sampled, and occasionally, also in some beaches. The maximum cell densities were recorded in Arenys (up to 1 x 107 cells·l-1) and Porto Petro (up to 6 x 105 cells·l-1), for Catalonia and Majorca respectively. In Arenys, A. minutum densities showed a seasonal trend characterised by winter-late spring peaks. In contrast, maximum cell concentrations were detected in June-July in Estartit and Vilanova harbour. It is important to mention that, in Catalonia, low cell concentrations of A. minutum are detected over all the year cycle. In Majorca this species is only recorded since March to June. Strategy monitoring allowed the detection of A. minutum in a number of Sardinian stations in 2002: Porto Torres (max. 430 cells l-1 in April), Olbia (max. 613 cells l-1 in May), Oristano (max. 90 cells l-1 in May) and Santa Giusta Lagoon (max. 210 cells l-1 in July). In Olbia harbour, it was confirmed in 2003 too, with a maximum of 17833 cells l-1 in April. In Sardinia, observation of this species was more frequent in winter and spring periods and rarer in the other seasons. In Sicily, during 2002 and 2003, A. minutum densities showed a seasonal trend characterized by spring peaks, with high densities in Siracusa and Verde Pond, producing a yellowish-brown discolouration of the waters. In Siracuse, two cruises carried were out on 11 May 2002 and 2 April 2003 in order to outline the horizontal distribution of the species in correspondence with physic-chemical parameters. During 2002, occurrence, as well as blooms at lower proportions, were observed also in other Ionian areas (as Augusta and Priolo) and during 2003 in Portorosa. It is noticeable that A. minutum was identified in several harbours of Majorca, Verde Pond (Marinello Lagoon) and Portorosa in Sicily and in Sardinia for the first time in 2002-2003 by means of Strategy activities, with culture isolations from a number of the areas. Study cases: a comparison on the blooms and ecological characteristics of Arenys (Catalonia) vs. Syracuse (Sicily), two sites with recurrent A. minutum blooms (from: Vila et al., in press). We analysed and compared the occurrence of A. minutum in two human impacted areas of the Mediterranean: the Catalan coast (North-Western Mediterranean) and the Eastern coast of Sicily (Eastern Mediterranean). It is known from the last decade that blooms of A. minutum are recurrent in harbours of these two regions. Two target sites were intensively studied: Arenys de Mar harbour (Catalonia) and Syracuse bay (Sicily), where A. minutum blooms have been described since 1996, and 2001, respectively. In both sites recurrent blooms take place from winter to spring. Surface water temperatures and salinity during A. minutum bloom events were 12 - 14.5 oC and 32 - 38 psu, and 16 - 24 °C and 32-37.7 psu for Arenys and Syracuse respectively. The data obtained from the two Mediterranean regions show the extended distribution of A. minutum in the Mediterranean. However, high-density blooms of this species always occur in confined or semi-enclosed water areas such as harbours, bays or lagoons. This species was recorded in some beach areas of the Catalan and Sicilian coasts, but densities never exceed 103 cells·l-1. In both areas, Catalonia and Sicily, A. minutum blooms occur in localities affected by local freshwater inputs that could be related to the supply of macro and micronutrients. In other reports, riverine inputs of selenium after rainfall were suggested to be a critical trigger factor for blooms of some dinoflagellates such as A. minutum. The association between blooms of A. minutum and freshwater outflow could be related to the formation of density gradients acting as a retention mechanism (e.g. fronts) or inducing water stability. In the both areas examined, the local outflow of continental waters causes the formation of density fronts that could act as a retention mechanism for the phytoplankton population. Obviously, the direct supply of nutrients

12

flowing in a semi-confined area plays a key role in both areas in sustaining high phytoplankton biomass. In the present study, A. minutum bloomed in places that differ markedly in inorganic nutrient concentrations and DIN:PO4 ratios. In fact, Arenys was characterised by high inputs of nitrates and silicates, which are mainly associated with a runoff origin, in contrast to the high concentrations of ammonium and phosphate in Syracuse, which reveal a rather urban origin. However, some common traits can be observed:

1) throughout the two Mediterranean regions, Si:DIN ratios tend to be lower than 1 in harbours indicating a potential limitation for diatom growth, and suggesting a possible advantage for dinoflagellate growth (Justic et al., 1995; Masó et al., 2000; Anderson et al., 2002). In contrast, on beach areas, the Si:DIN ratio was much higher than 1, indicating a potential advantage for diatom growth;

2) neither in Arenys nor in Syracuse there were cases of potential nitrogen or phosphate limitation; 3) in both areas nitrates were usually the dominant nitrogen form. Measures of nitrate and

ammonium uptake during A. minutum proliferations in Penzé River estuary (NW France) indicated nitrate to be the main source of nitrogen, representing up to 75% of the nitrogen uptake (Maguer et al., 2000). The evident decrease in nitrates during the bloom in Arenys (weeks 3-4, 2002) also supports this observation.

A. minutum was dominant in Arenys de Mar harbour, causing water discolouration. The second dominant species was Prorocentrum micans, followed by Dinophysis sacculus and Scrippsiella spp. In contrast, A. minutum never prevailed in Syracuse and P. triestinum and Lyngulodinium polyedrum were the main responsible for water discolourations. A. minutum is described by Smayda and Reynolds (2001) as life-form type I, present in relatively shallow, highly nutrient-enriched habitats, similar to our sites. Also other dinoflagellates such as gymnodinioids and the genera Heterocapsa, Scrippsiella, Prorocentrum are representatives of life-form type I and II. A. minutum and L. polyedrum coexisted in an eutrophicated area on the eastern Adriatic coast with alternating dominance (Marasovic et al., 1995). The last species is, however, adapted to bloom during upwelling relaxations (type V) and therefore able to survive within upwelling habitats (Blasco, 1977). The type V life-form (upwelling relaxation taxa), such as L. polyedrum and G. catenatum (single cells), swim at rates about sixfold faster than they sink, and can readily ascend to avoid sinking (Smayda 2002). A. minutum, L. polyedrum, P. micans and Scrippsiella sp. were the main species of the phytoplankton community in upwelling Atlantic coastal waters of Morocco (Tahri-Joutei et al., 2000). Thus, the lack of L. polyedrum blooms in Catalan waters indicates that Arenys and Syracuse are different habitats. The three cruises carried out (Arenys 18 Februeary 2003, Siracuse 11 May 2002 and Siracuse 2 April 2003), showed that cells were concentrated in the most confined sector of the harbours, characterized by scarce water circulation and where nutrients were maximal, near the freshwater inputs. Arenys is a harbour much smaller and shallower than Syracuse, with reduced water mixing and limited cell dispersion. Inorganic nutrients, basically nitrates, are highly available in Arenys. The increased confinement of this site is particularly noticeable because it could play an important role in the maintenance of a huge cyst bed (Garcés et al., 2004). In contrast, A. minutum cysts in sediments from Syracuse have never been found (Bravo, pers. com.). Thus, there is a potential main role of cyst beds in the outbreaks of A. minutum in water bodies with restricted water exchange such as harbours. A. catenella

History: first detection, first PSP events

A. catenella is a species commonly reported in several productive cold upwelling areas of the world, as the Western Pacific Ocean(1), North America(2), Argentina(3), Western South Africa(4), New Zealand(5). More recently it has been reported in temperate areas as Japan(6) and China(7). Its presence in the Mediterranean was sporadic up to ‘90s, before reported only in 1983 in the Balearic-Catalan Sea(8), while in the past decade it spread rapidly within the Mediterranean and caused the first cases of toxicity in shellfishes(9). The first Mediterranean bloom was reported in 1994 in Valencia harbour (NE Spanish) with a cellular density higher than 104 cells l-1 (10), while the first widespread PSP toxic event was assessed in 1998 and 1999 in the Catalan coast of Spain, along over 100 km(11). Furthermore, its occurrences were confirmed in the NW Mediterranean areas along the Catalan coast, in harbours and open coastal waters every year from 1996(12), in Thau Lagoon in 1995 and 1998(13), Egypt in 1998 (Alexandria harbour) (14), and, eastwards, in the Tyrrhenian Sea (Italy), in the summers 1999 and 2001 in Olbia harbour (15). Spatial-temporal distribution in Spanish and Italian areas, considered in the Strategy Project

During the Strategy two-year study, the spatial distribution of A. catenella was confined to harbours, within the Catalan area (Barcelona, Vilanova, Torredembarra, Tarragona and Cambrils) and in Sardinia

13

(Olbia). The rapid development of the local populations and the temporal range of their presence during these two years were rather variable, with a mean value of about 67 x 103 cells l-1 in the Catalan area and only 243 cells l-1 in Sardinia. Difference was due to the development of this species in the harbour of Tarragona, up to a maximum higher than 26 x 106 cells l-1 (August 2003) compared to a peak of only 12 x 103 cells l-1 (April 2003) in the harbour of Olbia. Blooming densities were detected at Tarragona also during 2002 (max. 9 x 106 cells l-1 end September), producing a reddish-brown discoloration of the waters. This nearly monospecific outbreaks of A. catenella in Tarragona was intensively studied in space and time. In every site, its presence was mainly spring-summery, with the highest number of observations between May and September and peaks of density in these seasons. However, autumnal and winter detection increased in the last years, revealing a possible spread of this species throughout the year.

Sites where Strategy Project showed for the first time its presence

Among the target species of the project, A. catenella was detected in the lowest number of sites along the Spanish and Italian coast. It is due to the fact that this species is, probably, an alien species introduced recently in the Mediterranean Sea (Lilly et al. 2002, Penna et al., submitted). During 2002-2003 this species has shown a rather exclusive preference for harbours. Even, very few concentrations have been detected in the half northern Catalan harbours for the first time. Neither in 2002 nor in 2003, A. catenella has not been detected in Catalan beaches. Study cases: a comparison among sites where A. catenella does or did blooms (Tarragona, Barcelona) or

is present in low density (Olbia).

There are not many ecological data concerning the population dynamics of A. catenella in the Mediterranean, on both regional and yearly and pluriennial scale, because of their recent detection. Thus, data provided by the Strategy Project represent an essential reference ground to formulate hypotheses. The presence of A. catenella was assessed for the first time in Barcelona harbour in 1996. In Tarragona harbour is known to bloom at least since 1998, but we have only a regular control since 2000. In Olbia harbour the species was first detected in August 1999. 1) Tarragona harbour.

A. catenella bloomed in Tarragona (max. 9x106 cells·l-1, end September 2002) at 22°C, producing a reddish-brown discoloration of the waters. Tarragona is a big commercial harbour that receipts freshwater inflows from the Francolí river. The river discharge is situated near the mouth harbour (inside side). A. catenella was detected in the harbour since mid-May at moderate cell densities (<104 cells·l-1), but it started blooming at the end of September coinciding with a drop in the salinity (32psu) that supplied a high nutrient load, with nitrate, ammonium, silicate and orthophosphate peaks of 40, 18, 37 and 1.8µM, respectively. The nearly monospecific outbreaks of A. catenella in Tarragona was intensively studied in space and time. Three cruises were carried out in a day in order to study horizontal and vertical distribution of this species in time and its relation to the confinement gradient in space. In autumn the coastal sea is warmer than the harbour water. Thus, an increasing gradient in water temperature is evident from the inner part to the mouth of the harbour. The horizontal spatial variability of the organism (and fluorescence) was linked to the water confinement. The highest concentrations of A. catenella were detected inward (around 6·10 6 cells·l-1) and diminished outward (104-105 cells·l-1). That pattern remained the same the whole day. The vertical distribution was characterised by a thick layer of 6 m that contained the bulk of the population. A clear vertical pattern associated with temporal variability was not observed, except for the inner stations. In the three cruises, the average number of single cells was high (about 75%). The relative number of chains increased according to depth and proximity to the mouth of the harbour. From salinity profiles we could see two freshwater inputs. One is located near st. 4, and it is related with the Francolí river discharge, and the other is located near st. 1, at the most confined part of the harbour. Silicate showed an opposite pattern than nitrate and ammonium, being silicate highest concentrations at the inner part. This indicates that the inorganic nutrient input is related with freshwater inputs, and that there is an uptake on the Nitrogen forms by dinoflagellates. Orthophosphate is quite constant, showing their maximum concentrations at stations 2 and 3. 2) Barcelona harbour.

Barcelona is the first place along the Catalan coast where A. catenella was detected and where it started blooming (summer 1996). Now, we start to have a non-negligible time series in Barcelona harbour. The

14

analysis of such time series has allowed us to detect great changes in environmental parameters and species composition by time. Recurrent blooms have been observed annually since 1996 to 1999 during the warm season in this harbour (Vila et al., 2001). Even, since its first detection A. catenella has been recorded at an increasing number of stations along the coast, suggesting a progressive areal expansion. Two toxic, widespread events of this species occurred in non-confined coastal waters along 100 km of coastline during the summers of 1998 and 1999 (Vila et al., 2001). Since 2000 there was a dramatic decrease on the A. catenella concentrations, and dinoflagellate blooms have no more been detected there. Even, the water transparency has increased significantly during lasts summers. The monitoring of this station since 1995 until now offer us a great opportunity to analyse these changes. During the lasts years Barcelona harbour has suffered environmental restoration and building activities: 1) cut off the sewage input from harbour activities (year 2000), 2) building of big pluvial underground deposits in the Barcelona city. Thus, cutting the major freshwater inputs coming from the rain draining through the city (2003), and 3) building of a new mouth harbour (2003). As a result, there has been a radical change on the phytoplankton composition. In summer a substitution on dinoflagellate by small diatoms (e.g. SKeletonema) blooms has been observed. It is associated on a dramatic decrease basically on DIN concentrations. PO4 concentrations have been reduced in a 50%. Silicate has remained more or less constant. 3) Olbia harbour.

The Olbia harbour is situated in the inner part of the Gulf of Olbia (North-Eastern Sardinia). The Gulf of Olbia, is a typical “rias” with slow water exchange and significant freshwater inflow from two municipal sewers and a riverine input (Rio Padrongianus). There, there is one of the most important commercial ports of Sardinia (with urban, tourist and industrial activities) and the largest area of mussel (4000 t y-1) and clam farming. Mariculture also involves an import-trade of shellfish from other Italian and European localities, especially in summer when the market demand increases. This area due to these characteristics, is eutrophic (Sechi et al., 1987; Sannio et al., 1996, 1997) and has been subjecting to a monitoring since 1992, only interrupted for a short period, in order to assess its trophic status and recognise toxic or harmful species. The Olbia harbour has an area of 6.5 km2, a mean depth of about 5 m and a maximum depth of about 10 m, along the channel that allows traffic of big ships. It is longer than 7 km and wide from less than 1 km to about 3 km. A. catenella in Olbia never reaches typical densities of “blooms”: However, it induces PSP-toxicity in mussels. A. catenella was only detected in the inner part of the gulf, for short periods, in both 1999 (only August) and 2001 (from June to August). Their presence in 2002 and 2003 lasted longer periods, respectively ranging from May or March to November. In 1999 the presence of A. catenella suddenly raised to 2.2 x 103 cells l-1 and fell to zero in the following samplings; in 2001 the cell density was lower, about 102 cells l-1, and higher in 2002 (max. 3·103 cells l-1 in May) and 2003 (max. 1·104 cells l-1 in May). In the first two years, presence coincided with temperature higher than 20°C throughout the period of detection and higher than 26°C when the highest densities were detected. However, in spring and autumn 2002 and 2003 its presence coincided with low temperatures (12-18ºC). Autumnal detection of A. catenella was very rare, being observed only at one station and only in November, both in 2002 and 2003. This organism is found in a wide range of salinity (30-38.5 psu) and nutrients. The concentration of dissolved inorganic nitrogen (DIN) ranged between 4-20 µM N with NH4-N as the most abundant component. The reactive phosphorus maximum was quite variable (from 0.22 µM P to 2.27µM P). About phytoplanktonic assemblages, during A. catenella maxima, diatoms were particularly important due to Minidiscus sp., Thalassiosira sp. and Chaetoceros minimum in 1999, Thalassiosira spp. in 2001, Skeletomena costatum (Greville) Cleve, Thalassiosira spp. and Chaetoceros spp. in 2002, Chaetoceros spp. in 2003. Other important associated species were Kephyrion sp. (Chrysophyceae), Carteria sp. and Chlamydomonas sp. (Chlorophyceae) in 1999, Pyramimonas sp. (Prasinophyceae) in 2001, Kephyrion sp. (Chrysophyceae) and Eutreptiella sp. (Euglenophyceae) in 2002, species of Euglenales in 2003. Dinoflagellates, generally, represented a modest part of the phytoplankton assemblage and A. catenella was with Gymnodimiun impudicum Fraga et al. and Cochlodinium polykrikoides Margalef in 1999, C. polykrikoides and Peridinium sp. in 2001, Prorocentrum triestinum Schiller and Scripsiella-like species in 2002, P. triestinum, Scripsiella-like species and other Alexandrium species (also A. minutum) in 2003. In 2002, just after A. catenella presences, there was a G. impudicum bloom. During 2002 and 2003 maximum density periods, PSP contamination of mussels occurred and controls were increased by more frequent samplings (every 2-4 days) and higher number of stations, till values were normal again. It is necessary to point out that, during the previous years, A. catenella showed in Olbia a merely summer presence, with temperature always >26 °C, whereas in 2002 and 2003 this pattern was different. In the previous years, PSP was not detected. On 30th May 2002 cruise, unexpectedly, the

15

highest densities were detected out the harbour area (max. 40 x 103 cells l-1 This distribution was probably determined by cell accumulations induced by winds and currents rather than by in situ growth of A. catenella (according to strong storms that there were a few days before). In order to investigate dynamic blooms on more detailed temporal and spatial scales (inter- and intra-daily, vertical and horizontal distribution), in 2003 a 3-day cruise was done (10-11-12 May 2003), just after the PSP toxicity in mussels (from 24th April). In the days before the cruise, the weather was very variable and it was very warm in May. It was very windy, too! In the same time A. catenella densities decreased from the maximum of 11888 cells l-1 at the end of April to only some hundreds cells l-1, at the beginning of the cruise. So, we have data on phytoplankton dynamic rather than A. catenella bloom dynamics! A. catenella was detected only in the intra-bay stations of the first two days. Density was higher in inner stations (max. 792 cells l-

1), in surface and more often in PM samples rather than at AM samples. A. minutum and other Alexandrium species were more abundant (up to about 5000 cells l-1 as Alexandrium spp.). Water appeared brownish discoloured, and it may be to high densities of Prorocentrum species and Scrippsiella-like species (together, up to more than 20000 cells l-1) and Rhizosolenia, Pseudo-nitzschia, Coscinodiscus and Chaetoceros species (only the Pseudonitzschia species, up to more than 30000 cells l-1). The most important phytoplankton species were overall Dinoflagellates and Diatomeae: the former exhibits a marked preference for the inner stations and the latter for middle and outer stations. In spatial terms, significant variations between inner and outer stations were detected. Salinity values were lower in the inner stations; and temperature, nutrient concentrations and chlorophyll a were higher in the inner stations, according to the greater supply of freshwaters (Fiume Padrongianus, urban wastes from Olbia) and lower hydrodynamism in inner stations (Table 1). Table 1. Physico-chemical parameters (median ranges) for the stations situated inside the Olbia bay vs. those situated outside. Inside OutsideTemp. (ºC) 19.2-20.9 17.6-18.4Sal.: 36.8-37.2 37.4-37.8 DIN (µM N) 0.7-3.2 0.4-0.6 P-PO4 (µM P) 0.09-0.41 ≤0.01 Si-SiO4 (µM Si) 1.9-10.1 0.6-0.9 Chl a (µg l-1 3.2-14.6 0.5-2.5

Within each station, the vertical profile was characterised by nutrient concentrations, which were higher at surface in the most of cases and above all in the inner stations. The shortage of significant vertical difference in some stations can also be due to their low depth and absence of thermal stratification, which was more evident in the inner stations and also determined different concentrations at middle depths. Variations in each station were observed on an intra-daily scale, with higher nutrient availability in the morning and lower in the afternoon, possibly in connection with the consumption by phytoplankton. Conclusion

Confined water areas offers the right conditions for dinoflagellate blooms occurrences because they are rich in nutrients, they have reduced turbulence, low water circulation and high water residence times. The confinement is increased when freshwater inputs form gradient fronts. However, reducing the nutrient input significantly in the Barcelona harbour, water quality was restored. It is important to note that the change in the phytoplankton blooms in Barcelona harbour was detected before the second mouth aperture. However, the effect on the new opening has to be deeply analysed. Based on the Environmental Department in the harbour it has originated a new problem which is the increase in floating debris (e.g. plastics) inside the harbour. The results on A. catenella show that, despite several controls for two years, this species tends to be confined to the inner part of the harbours. During the 2 years studied only in one occasion it was detected outside a harbour (on 30th May 2002, Olbia). Wind conditions and particularly intense currents can aid the removal of cells and their displacement outwards. If the weather conditions are adequate, after the cell exportation, cells can activelly growth outwards. This is, in a likelihood, what happened during the summers 1998 and 1999, when widespread blooms were observed in open nearshore waters along the Catalan coast (Vila et al., 2001). This shows the importance of establish monitoring in beaches in addition to the routine controls (in harbours) when particular weather conditions occur.

16

It has been observed an increase in the annual frequency of A. catenella observations. It was first detected in summer, and now is detected since spring to autumn, indicating a “time invasion”. This is not surprising as the species is widespread in cold waters. Thus, once the species has been successfully introduced in the Mediterranean there is no reason to do not growth at low temperatures. STRATEGY results in Greek network Gotsis-Skretas O.1, Ignatiades L.2, Pavlidou A.1 , Papadopoulos A.1, Metaxatou A2. 1Institute of Oceanography, National Centre for Marine Research, 19013 Anavyssos Attikis, Greece 2Institute of Biology, National Research Centre Demokritos, Ag. Paraskevi, Athens, Greece E-mail: [email protected] The biomass and species composition of phytoplankton, with particular regard to the toxic dinoflagellate genus Alexandrium, were currently investigated in coastal areas of the eastern Mediterranean, within the framework of the EEC Project “STRATEGY”. The samplings were carried out monthly from April to October 2002 and 2003 at 23 stations of five Greek gulfs, located from the South-West Aegean Sea (Saronikos Gulf) to the North Aegean Sea (Kavala Gulf). The lowest water surface temperature (13.7 oC) was recorded in April and the highest one (27.2 oC) in July. The surface salinity ranged from 22.0 spu in areas affected by river inputs to 38.5 spu in Saronikos Gulf. The average over the 2 years sampling periods values of chemical and biological parameters in the areas under investigation were as follows: 1) Saronikos Gulf: dissolved inorganic nitrogen (DIN): 9.6 µM; phosphate (P-PO4): 0.26 µM; silicate (Si-SiO4): 4.44 µM; chlorophyll a (chl a): 0.82 mg.m-3; total phytoplankton (phy): 3.7x105 cells.l-1. 2) Evoikos Gulf: DIN: 6.5 µM; P-PO4: 0.24 µM; Si-SiO4: 5.77 µM; chl a: 0.52 mg.m-3; phyt: 1.2x105 cells.l-1. 3) Pagassitikos Gulf: DIN: 17.31 µM; P-PO4: 0.36 µM; Si-SiO4: 24.21 µM; chl a: 0.82 mg.m-3; phyt:1.4x105 cells.l-1. 4) Thermaikos Gulf: DIN: 3.28 µM; P-PO4: 0.66 µM; Si-SiO4: 5.56 µM; chl a: 2.25 mg.m-3; phyt: 1.1x106 cells.l-1. 5) Kavala Gulf: DIN: 2.46 µM; P-PO4: 0.23 µM; Si-SiO4: 0.88 µM; chl a: 0.44 mg.m-3; phyt: 1.1x105 cells.l-1. Greatest phytoplankton densities and chlorophyll a concentrations were found at stations in the Thermaikos Gulf and lowest ones in the Evoikos and Pagassitikos Gulf.

During the sampling period, at most sampling stations, phytoplankton was dominated by diatoms (average value over the sampling periods and sampling areas: 72.9%). The most numerous diatom genera were: Chaetoceros, Nitzschia, Leptocylindrus, Rhizosolenia, Skeletonema, Thalassionema. Other important taxa were dinoflagellates and coccolithophores. Alexandrium species, although recorded in most gulfs, did not exhibit important blooms.Their concentrations in the entire area ranged from 8x10 to 2x105 cells.l-1, with the highest abundance found in late spring and summer. Among Alexandrium species, the most frequent and abundant was the toxic species A. minutum that was for the first time recorded in Greek waters, reaching maximum values of 2x105 cells.l-1. This species was also for the first isolated from Greek gulfs and grown in laboratory cultures under various growth conditions. The results of the laboratory experiments show that the Nitrogen/Phosphorus ratios seem to play an important role in the growth of this species. Temperature also affects the growth of Alexandrium species, since they proliferated from April to September.

17

The importance of the benthonic phase (cysts). Implications for the management of harmful algae blooms.

Isabel Bravo (IEO Centro Oceanográfico de Vigo) The importance of the benthonic phase. Despite being a lesser known aspect of Harmful Algal Blooms (HABs), the benthonic phase of phytoplankton often constitutes a key to understanding how and why these phenomena appear. Phytoplankton live suspended in the photic layer of the water column, that is to say, where the light necessary for growth is available. By benthonic phase of phytoplankton we refer to that or those states making up part of the life cycle and which generally, as they do not have any capacity to float or swimming ability, settle on the seabed. It is important to highlight that, in addition to there being known many planktonic or pelagic species with benthonic stages or viceversa, the constant interaction between benthos and plankton is essential for the development of phytoplanktonic production in the most productive parts of the planet. Put another way, phytoplanktonic growth is possible when the limitations imposed by the vertical dimension of the seas and oceans are, in some way, overcome. The study of the life cycle of microalgae provides numerous examples clearly illustrating the plankton/benthos coupling. There are many species of microalgae with a benthonic phase in their life cycle during which they are deposited on the seabed where they generally remain as dormant stage. In dinoflagellates, the microalgae producing the most important HABs, it is most common that the benthonic phase is made up of resting cysts which are the product of sexual reproduction. These cysts may remain in the sediment for months or even years before the environmental conditions are suitable for their germination. It is in this way, through sexual reproduction, that dinoflagellates hold a fundamental instrument for the development of their ecological strategy, upon adding to the genetic recombination other advantages, such as their capacity to disperse and also to adjust their life cycle to the environmental factors which are optimal to their growth. Except for sexual recombination, the significance of these important functions is dependent on each species germination characteristics, mainly the duration of the dormancy period and the germination pattern. So, through their life cycles the different species have developed different strategies depending on the environment they are adapted to. And if the conditions allow, they may multiply to form the intense and recurrent proliferations that seem so unpleasant to us, but which are often a clear indication that the cycle works to perfection, as occurs in many species on land with the spontaneous appearance of blooms. We have an example of this in the three species of Alexandrium which form massive proliferations in the Mediterranean. The life strategy of A. taylori shows a highly intense relationship between the benthonic and the planktonic phases, with a daily exchange taking place between them. This species presents a strategy that has shown itself to be extraordinarily effective, as made evident by their well known summer blooms. It is based on the formation of immobile phases which spend the night deposited on the seabed and are able to return to the planktonic phase after only a few hours. That is a highly perfected plankton/benthos coupling. Nevertheless, this such a fast exchange is not the most common in dinoflagellates. Other species such as A. minutum and A. catenella follow cycles seasonally or over longer periods. Whatever the case, the characteristics of the marine environment provide these cysts or benthonic phases with very particular behavioral patterns, which in turn characterise their blooms in a particular way. The first very patent characteristic in the sea affecting the plankton/benthos coupling is the vertical dimension, that is to say, depth. Thus, the dispersion/accumulation factor has here a variable not available on land and which bloom forming species must overcome. Those species in which resting cysts play an important role, gain an advantage from factors favouring the accumulation of cysts in a sediment with certain characteristics. The sedimentation sites must be suitable for the cysts to germinate (non-anoxic sediments, suitable temperature, suitable nutrients, etc.) and the cells easily access an area where their growth is supported. In the STRATEGY project the distribution of cysts of Alexandrium species were studied in the sediment of several harbours along the Catalonian coast, where A. minutum and A. catenella bloom with the highest concentrations in the Mediterranean. These species produce PSP toxins. They are considered dangerous

18

agents throughout the world, whose toxins may be accumulated by marine organisms and reach man through the trophic chain causing serious illness and even death. A. minutum cysts were observed in high concentrations (up to 3000 cysts cm-3 of wet sediment) in the harbours of Vilanova and Arenys de Mar and in less concentrations in Cambrils harbour (no more than 300 cysts cm-3). The harbour where A. catenella cysts were observed in the highest concentrations was Tarragona harbour (up to 3000 and 4000 cysts cm-3) while in the Barcelona harbour maximum concentrations were of no more than 300 cysts cm-3. If we compare the cyst distribution of A. minutum and A. catenella and their bloom occurrence in the different harbours, we observe that in the locations where the largest amount of cysts are found, the more intense A. minutum and A. catenella blooms also occur. From these results it can be drawn that, for these species, harbours function as cyst accumulation sites and therefore they promote the formation of recurrent blooms in the future. Implications for management The importance of the study of the benthonic phases deposited in sediments is considerable and must form part of a global phytoplankton study. The mechanisms of management and control of HABs must consist of a system integrating the potential which the presence and accumulation of benthonic phases in the sediment or other substrata can exert. Knowledge of the plankton/benthos system as a whole including its interactions becomes a strict necessity. A very important part of the management of these proliferations is the understanding of the factors favouring them. It is important to point out that among these factors are those which act at the benthos level as well as those acting on the plankton, and they must be taken into account in any management measures adopted. In addition to the natural factors (transport due to wind, currents, nutrients due to upwelling events, rivers, etc) that must be considered, there are also anthropogenic factors which may favour the appearance or intensification of these phenomena. In recent decades, recreational activities have led to an increase in the number of harbours, breakwaters and semi-enclosed beachs. This has been the source of new micro-habitats with modified natural conditions (increased water stability and nutrients) which are known to favour the development of dinoflagellate blooms. Furthermore, the cyst results from the Catalonian harbour sediment prove that harbours play an important role as reservoirs where cysts can accumulate. In consequence, those artificial constructions not only promote vegetative growth of cells and avoid cell diffusion, for those species in which resting cysts play an important role they also act as pools of seeds for future blooms. Diversidad del género Alexandrium en el Mediterráneo Santiago Fraga

Instituto Español de Oceanografía, Vigo Las floraciones algales son un fenómeno llamativo que ocurre en todo el mundo, y que recibe multitud de nombres locales aunque se generalizó el muy poco afortunado de "mareas rojas" ("red tides"). Pueden producir efectos indirectos como el mucílago que producen algunas diatomeas en el Mar Adriático, conocido como "mare sporco" o coloraciones llamativas en puertos o en playas. Los organismos que las producen pertenecen a muy diversos grupos biológicos aunque los dinoflagelados, son mayoría. Algunas especies causan daño a través de sus toxinas que pueden afectar directamente a las personas o a través de la cadena trófica contaminando moluscos o peces. El proyecto STRATEGY se ha centrado en dinoflagelados del género Alexandrium, aunque algunas de sus conclusiones podrán ser aplicadas a otros grupos. A primera vista las especies del género Alexandrium son muy parecidas, y se tardó muchos años en describir muchas de ellas que se confundían con otras. Aún queda mucho trabajo por hacer, y en los próximos años se describirán nuevas especies que poco a poco irán clarificando el género. Para distinguir morfológicamente una especie de otra hay que recurrir a la forma y disposición de unas placas de celulosa que cubren las células. Según la disposición relativa de unas pocas de ellas, ya se puede hacer una subdivisión del género que resulta útil pues las especies tóxicas solamente se encuentran en uno de los subgéneros.

19

En esta presentación pondré sólo algunos ejemplos de especies de este género. La especie más ampliamente distribuida en el Mediterráneo tal vez sea A. minutum, que es la que dio nombre al genero pues fue descrita con muestras de Alejandría en Egipto. Es una especie tóxica que se encuentra por todo el Mediterráneo e incluso el Mar Negro. También ha sido encontrada en ambas costas del Atlántico norte, las costas asiáticas y Australia. Hay algunas diferencias morfológicas que parece que no tienen importancia. Una especie que causa gran preocupación es A. catenella. Ha sido observada en muchos lugares del Mediterráneo occidental y parece que es cada vez más frecuente. Mediante estudios genéticos se ha llegado a la conclusión de que fue introducida accidentalmente desde el Pacífico. Debido a que el Mediterráneo occidental es menos oligotrófico que el oriental, la dispersión de esta especie será fácil por medios naturales. Sin embargo, su dispersión natural en la cuenca oriental será más difícil aunque debido al intenso tráfico marítimo es de esperar que en pocos años sea transmitida a todo el Mediterráneo mediante el agua de lastre. Esta es una especie muy tóxica que puede causar graves problemas a la salud pública y a la acuicultura. Sin embargo no ha causado problemas en las aguas recreacionales ya que cuando forma floraciones masivas, suele hacerlo en puertos. La que si causa problemas en las aguas recreacionales es A. taylori pues forma floraciones persistentes en playas que los turistas esperan que sean de aguas límpidas y transparentes y de la que ya se ha hablado ampliamente en presentaciones anteriores a esta. Aunque está ampliamente distribuida por el Mediterráneo, hasta ahora y fuera de él, solamente fue observado en la costa atlántica francesa.

Como muestra de la riqueza en especies del género Alexandrium en el Mediterráneo hay varias especies endémicas que todavía no han sido observadas en otros mares del mundo, como por ejemplo, A. tamutum o A. foedum.

Los estudios genéticos están ayudando a clarificar la taxonomía de este género, algo fundamental para poder afrontar su estudio en aras de una eventual mitigación de sus efectos nocivos. Hay un grupo de especies descritas en base a su morfología, que no concuerdan con la genética. Es de esperar que en pocos años esté clarificado. Por desgracia para el Mediterráneo, este es el lugar del mundo donde mayor diversidad hay de especies del género Alexandrium, pues mientras en regiones equivalentes hay solamente dos o tres especies, aquí hay, al menos catorce, y debemos contar con que la cifra aumente. Trophic characteristics of Mediterranean coastal waters: are they related to the increase in harmful events? Maria Grazia Giacobbe Istituto per l’Ambiente Marino Costiero, Consiglio Nazionale delle Ricerche (IAMC-CNR)

The expansion of phytoplankton blooms and their negative consequences have become a key worldwide problem in the last years. Where formerly a few regions were affected in scattered locations, now virtually every coastal area is threatened. Harmful Algal Blooms have gained scientific and public interest for several reasons, such as the recognition of the negative impact on the biological economy of the sea – mariculture, fishery, tourism, biodiversity, and ecosystem stability. The number of toxic blooms, the economic losses from them, the types of resources affected, and the number of toxins and toxic species have all increased dramatically (Anderson, 1989). Suggested explanations for this expansion include: 1) species dispersal through natural mechanisms; 2) nutrient enrichment of coastal waters by human activities, leading to a proliferation of harmful algae; 3) increased aquaculture operations; 4) transport and dispersal of exotic HAB species via ship’s ballast water or shellfish seeding activities; 5) climatic changes; 6) improved analytical capabilities, leading to the discovery of new toxins and toxic events (see ECOHAB, Ecology and Oceanography of HABs). In the framework of the Strategy EU Project (EVK3-CT-2001-00046), HAB problematics were studied in five Mediterranean localities (Greece, Catalonia, Majorca, Sardinia, and Sicily) throughout 2002-2003. All target areas were compared each other from a trophic viewpoint. Coastal waters of the Mediterranean Sea, appeared in general to be sufficiently rich in nutrients,

20

especially the Catalan area (Spain) – affected by important HAB problematics. There, a relevant nutrient supply can be found in semi-enclosed areas subject to freshwater inputs - as, for instance, Arenys de Mar harbour, with amounts of dissolved inorganic nitrogen reaching occasionally 900 �M. The input of excessive nutrients - primarily nitrogen - results in an overabundance of phytoplankton and toxic species, see the A. minutum blooms at Arenys, Spain (nitrates and silicates inputs from freshwater runoff) and at a lower extent at Syracuse, Sicily (high amounts of ammonium and phosphates of urban origin). In these sites, especially Arenys, water and nutrient residence times are high, in relation to a poor circulation due to the peculiar topographic features. Thus, confinement is suggested to play a key role in the maintenance of A. minutum cyst beds and bloom events (Garcés et al., 2004). A significant positive correlation between DIN (i.e. nitrates) and cell density of A. minutum was also evidenced in some Greek gulfs and bays. Nutrient supply to coastal waters by human activities may be delivered in proportions that differ from naturally occurring ratios, so that algal species composition may be altered by favouring certain groups (e.g. HAB groups, Justic et al. 1995). The general shift in nutrient ratios towards silicate limitation could favour growth of dinoflagellates over diatoms. This seems to be the case of La Fosca (Catalonia) and Paguera (Majorca, Balearic Islands) – two protected pocket beaches subject to A. taylori blooms and evident water deterioration – where 69 to 48% of SiO4 limitation cases was observed, respectively. In other A. taylori areas at high touristic pressure (Vulcano, Sicily), a 18% of PO4 limitation cases was encountered vs. 82% of no nutrient limitation. The occurrence of A. catenella in Spain - Tarragona and Barcelona, and Italy - Olbia, Sardinia - also seems to be connected to human activities, such as the construction of new harbours and beaches in relation to the recreational use of the coast. These areas are subject to a number of human-induced stresses due to urban, tourist, industrial, and mariculture activities. The Tarragona harbour (A. catenella blooms) is one of the biggest harbours in the Mediterranean with considerable commercial and fishing activities. It is characterized by riverine inputs, resulting in nutrient peaks (mainly nitrates). The high water residence times, e.g. 20d approximately (Vila et al. 2001) in such nutrient-enriched, semi-enclosed sites allow the species to attain high cell densities in a few days (the Spanish study case). Finally, it is postulated that the Mediterranean coastal area is subject to an increasing anthropogenic eutrophication that, coupled to other concauses, leads to harmful events. This would take account of all the three parts of the European Commission definition of eutrophication: - the enrichment of water by nutrients especially compounds of nitrogen and phosphorus - nutrient concentrations in some Mediterranean localities increase as salinity decreases. This implies a source of freshwater - including in some cases urban wastewater - especially in Arenys (Spain) and Syracuse (Italy); - causing an accelerated growth of algae and higher forms of plant life – data obtained from the Mediterranean show large blooms of phytoplankton in nutrient-enriched localities rather than in pristine waters, as well as sustained and rapid growth of some target HAB species; - to produce an undesirable disturbance to the balance of organisms and the quality of the water concerned - there have been several harmful algal blooms in the studied Mediterranean areas, and in some cases water was supersaturated in oxygen, reasonably as a result of the excessive phytoplankton growth. STRATEGY database. A management tool Sílvia Anglès (Institut de Ciències del Mar-CSIC)

The STRATEGY database is a relational database which includes phytoplankton community, physico-chemical conditions and meteorological data (provided by the National services). It has been developed as a complementary research tool. The rationale is to have a device to find general responses by comparing areas with the same HAB events. Harmful microalgae species are wide distributed in the Mediterranean basin, but they present massive proliferations in some particular places. To find the key

21

factors (physical, biological or chemical) and their interaction is essential in order to identify possible solutions. The aim is to provide an easily accessible tool to extract whatever information related with the presence or absence of a specific species in the different areas (affected or not by noxious microalgae species ). The structure of the database is presented in figure 1. Data available 1st year: 3.334 records, 100 species, 79 stations. Data available 2nd year: 5362 records, 120 species, 407 stations.

Structure of the database

In the following table is presented the information relative to the files that comprise the database. The data has been received from each STRATEGY region in Excel format (each region had their own files), and we decided that the easiest way to introduce the data into the database was to homogenise the excel files and not to have a new formulary to fill. In fact, the database is a system to homogenise the data and to extract relational information.

Table Data Types

Data-bio Each record is a single sample. The original data is incorporated to the data-bio table by the import process starting from the standardised files received from each STRATEGY area in Excel format

stations General information regarding the sampling stations

data_meteo Meteorological data of the different meteorological stations close to the sampling areas (provided by the national services or similar)

meteo_stations General information regarding the meteorological stations

meteostat_stat Relationship between the tables stations and met_stations, to allow having more than a meteorological station related with a sampled station

data_sensor Data generated by the sensors (temperature sensors or CTD) installed in the sampled stations

species List of the species included in the system. The species (spec_code) are the same that the ones in the standardised Excel file

1 A list of species was establish in agreement of all the partners and a standardised file was created. The species included has been modified along the development of the STRATEGY project.

22

An application tool is available to facilitate the possible queries required (see figure below), and an export option permitting to extract the information in different formats for further analysis and graphical requirements.

Selection can be made by station, area, species and also concrete ranges of the physico-chemical variables included. The strategy data-base has been an useful tool during the project. Data included in the data-base are until know from the 5 strategy regions during years 2002 -2003. A question to discuss is if it will be useful to maintain a data-base (this or another) in the mediterranean basin. The expansion of a harmful species and its causes is really difficult to asses due to the scarcity of data available. Moreover, most bloom descriptions are in grey literature and in most cases, only the first detection in one specific area is described in written literature. The comparison between regions subject to with similar hab events is strictly necessary, as this is the only way to answer the general questions by finding the common and differential aspects. Co-operation between mediterranean regions with similar problems is urgent if we want to anticipate possible future problems. Molecular technologies: ready to be used for phytoplankton control?

Dr. Antonella Penna and Prof. Mauro Magnani

Centro Biologia Ambientale, Centro Biotecnologie, University of Urbino, Italy Harmful phytoplankton outbreaks along many localities of coastal areas are often characterized by a broad range of phenomena, including high biomass density blooms, toxin – producer occurrences with shellfish contamination of aquaculture sites, fish killing, production of foam or mucilage that can aggregate in dense patches. These events contribute to disturb the marine ecosystems, human health and several economic activities linked to the exploitation of the marine resources, as tourism, fishing and aquaculture activities. In this last decade, the Harmful Algal Blooms (HABs) are an increasing problem; this can due to many reasons, as well as, the increased utilization of coastal waters for aquaculture, eutrophication and/or unusual climatological conditions, movement of resting cysts either by ships’ ballast water or translocation of shellfish stocks, overfishing and also an increased scientific attention to the harmful species. The most responsible of the HAB events are species belonging to the dinoflagellate group, and in particular, species belonging to the genus Alexandrium. In our EU Project Strategy EVK3-CT-00046-2001, the major attention was given to A. minutum, A. catenella, A. tamarense and A. taylori, which are species responsible for the toxic and high biomass outbreaks along the coasts of NW Mediterranean basin. In this framework, the molecular techniques are the topic for an open discussion: why the molecular methods have to be applied to the harmful phytoplankton or the molecular technologies are ready to be used for phytoplankton control in the monitoring programs?

23

Molecular techniques can be used for detecting and characterizing several harmful species. They are innovative tools to be applied together with traditional methods or constitute alternative methodologies to traditional ones. In which way the molecular techniques can be alternative to the traditional methods? The molecular tools can have many favourable characteristics as, 1) they are rapid tests: two or three hours for processing phytoplankton material, 2) they are specific tests: specific at the species and population level, 3) they require a minor level of expertise in the routine laboratory procedures respect to expertise to discriminate key morphological features indicative of HAB species, 4) they can be applied in the screening of numerous field samples. New Zealand is the country that has inserted in the monitoring phytoplankton analyses the molecular techniques – gene probes a new technique – for finding toxic algae in the marine coastal waters. Gene probes are unique pieces of synthetic DNA that will attach to matching genetic material in a particular toxic microalga. If the matching genetic material isn’t there, the probe doesn’t attach (“bind”). A fluorescent tag can be attached to the probe, so that the alga will light up under certain light conditions if the probe binds. Special microscope, epifluorescent microscope, PCR machine or sandwich hybridization makes easy to see the target algae when they have “lit up”. The principles of based molecular techniques are: 1) In situ hybridization assays. This assay uses fixed and intact target phytoplankton cells, which are labeled with the species-specific probes; they are visualized by the epifluorescent microscopy. 2) Sandwich hybridization assays. This assay uses the cellular lysate to bind cellular nucleic acids (rRNA) to the target probe; this matching is visualized by a colorimetric-enzymatic driven reaction. 3) PCR (Polymerase Chain Reaction) amplification assay. This assay is a multiple nucleic-acid replication events in a test tube rather within a cell. The process targets only a fragment of the genome, based on the use of oligonucleotide primers that define the size of the fragment as well as the taxonomic specificity of the reaction. Molecular-based methods for detecting HAB species are used routinely in many laboratories around the world. No single type of molecular probe or assay strategy appears as the “best”. Indeed, some HAB species can be detected using a variety of probes. The choice of probe for a given species in a region seems to follow personal references, technical background and available laboratory equipment. In our Laboratories, University of Urbino, Italy, qualitative and quantitative PCR techniques are routinely applied for screening field phytoplankton species from different areas of the Mediterranean Sea. Further, new PCR detection kits for the genus Alexandrium are now available from our laboratories. This molecular - kit-ready to use - approach is going to the increased demand and use of the probes for routine monitoring.Thus, some molecular technologies applied to the environmental problematic, developed by EU financial Project supports, are ready to be used; other new ones can be developed and implemented by following the same goals. Interacciones entre HABs y Gestión del Litoral: Problemas emergentes. Jordi Camp Institut de Ciencias del Mar (CSIC) El fenómeno de las HABs presenta ciertas similitudes con el del cambio climático: No hay evidencias que demuestren una tendencia al incremento de HABs más allá de ciclos temporales de periodo corto o mediano, pero si que hay evidencias de aumento de factores de riesgo ligados a actividades humanas. El incremento de aguas confinadas favorables al ciclo vegetativo de los dinoflagelados, y también a la acumulación y viabilidad de sus fases resistentes hace que ciertos litorales como el mediterráneo se conviertan en una gran área ecológica en mosaico, antes inexistente. La facilidad de transporte a cortas, medias y larga distancia de las formas resistentes (e incluso de vegetativas) por plásticos, embarcaciones de recreo, productos de la maricultura o aguas de lastre contribuye a globalizar el problema. La sensibilización de la sociedad en temas medioambientales y el aumento en la percepción de los mismos, actúa de caja de resonancia retroalimentando un proceso que incrementa el número de registros y la magnitud aparente del problema. Desde el punto de vista de la gestión, la discusión de si hay más HABs o se perciben más es ociosa; se dice en política que si la sociedad percibe un problema, hay un problema, aunque el problema sea a veces convencer a la sociedad que el problema no existe.

24

Trataremos aquí cuatro problemas emergentes que afectan ya a los habitantes y usuarios del litoral mediterráneo, y por tanto a sus gestores y señalaremos sugerencias de actuación como base para un posterior debate. Problema 1: Pérdida de calidad aparente de aguas de baño por proliferaciones recurrentes de especies, en principio inocuas. Fenómeno bien conocido en el litoral mediterráneo y uno de los objetivos principales de Strategy. No hay evidencias de que sea un fenómeno anterior a los últimos 20 años, pero tampoco de lo contrario. Se origina como siempre por la intersección de un nicho ecológico adecuado con un especie capaz de explotarlo. Parece probable que las especies aprovechen habilidades potenciales que se manifestaban muy poco por escasez de nichos. Es un fenómeno frecuente en al naturaleza, por ejemplo: las gaviotas y otras aves que han aprendido a alimentarse en los vertederos urbanos ya nidificar en los edificios de las ciudades, las plantas nitrófilas que proliferan en las rutas del ganado, las cotorras del hemisferio sur que se multiplican en jardines de ciudades del hemisferio norte, etc.). Actuación: Hay que calibrar el nivel de molestia y el coste de erradicación; en muchos casos lo mejor es aprender a convivir con el fenómeno y se sugiere utilizarlo e con fines de educación ambiental, por ejemplo para recordar que el mar no es una piscina y tiene unos procesos propios coherentes con el uso que hacemos de él y del territorio circundante. También puede utilizarse el fenómeno para informar a la sociedad de la problemática de las HABs cuyo peligro principal reside en formas menos aparentes y más nocivas. Problema 2: Procesos inhabituales que originan toxicidades en productos marinos de consumo no comercial. Caso de proliferaciones extensas de especies fuertemente tóxicas que producen niveles altos de toxicidad en marisco del litoral (Mytillus, Tellina, etc.) capturado y consumido por usuarios de las playas o recolectores casuales. Existe el ejemplo bien referenciado de las extensas proliferaciones de A. Catenella en la costa catalana (NW Mediterráneo) en 1998 y 1999. El control de estas situaciones puede escapar a los protocolos habituales de vigilancia por parte de los Departamentos de Pesca y Sanidad, estructurados para vigilar la salubridad del marisco comercial. Actuación: En Catalunya se resuelve mediante al interconexión habitual de las redes de vigilancia ambiental de la Agència Catalana de l’Aigua (Departament de Medio Ambient y Habitatge) con la del Institut de Recerca i Tecnologia Agroalimentària (Departament d’Agricultura, Ramaderia i Pesca) y del Departament de Sanitat. En caso de fenómeno extenso y de alto riesgo las actuaciones pertinentes se canalizan a través de la Direcció General d’Emergències i Seguretat Civil. Pensamos que es un buen modelo de actuación para el Mediterráneo en donde las repercusiones de las HABs trascienden el ámbito puramente alimentario. Problema 3: Procesos habituales que dan lugar a toxicidad de organismos marinos de comercialización prohibida que aparecen en el mercado con cierta frecuencia por canales irregulares (a veces conocidos...). Caso concreto de mejillones de ciertas zonas portuarias o industriales, recolectados ilegalmente y que se venden directamente a particulares o a establecimientos de restauración, bajo denominaciones engañosas (mejillón de roca por ejemplo). Actuación: Las actuaciones propuestas pasan por intensificar la vigilancia sobre todo en situaciones de alto riesgo (por ejemplo proliferación tóxica en puerto), juntamente con la información del riesgo potencial de la situación mediante carteles in situ. Conviene explicar, con efectos informativos y disuasorios que, en estas situaciones, una irregularidad que habitualmente sería considerada como infracción administrativa se convierte en delito de atentado a la salud pública con implicaciones penales. Problema 4: Síndromes de afectación de vías respiratorias, irritación de mucosas o piel, dolores de cabeza, etc. en bañistas o usuarios del litoral. Fenómeno ampliamente estudiado a nivel mundial; registrado frecuentemente en el sur-este de EUA y que empieza a tener incidencia en el Mediterráneo. Existen ejemplos en Italia y España. Tradicionalmente la prensa los relaciona con posibles fenómenos de contaminación puntual de origen diverso, pero en la mayoría de los casos la explicación más plausible es un origen relacionado con productos bióticos de origen marino. Se han hallado coincidencias de algunas de estas situaciones con la presencia de elevadas concentraciones de dinoflagelados del género Ostreopsis, o también de diatomeas del género Pseudonitschia. No existen evidencias del agente causante. Actuación: Es necesario el establecimiento de protocolos que permitan, tras la detección de estas situaciones, la toma inmediata de muestras de agua y la obtención de buenos datos epidemiológicos sobre los afectados (síntomas, número, distribución, etc.), entre otras medidas que hagan posible el cruce de información necesario para orientar la búsqueda. Hay que hacer notar que, en general en estos temas, hace falta un mayor contacto entre los conocedores de las HABs y los sectores responsables de la salud pública, ya que en nuestra opinión se pierde información potencialmente valiosa por desconocimiento mutuo. Esto, que sucede en todo el mundo, es más acusado en el Mediterráneo, donde no existe tradición en esta fenomenología (recordemos que hasta hace pocos años el Mediterráneo era considerado, tradicionalmente, como territorio libre de HABs). En Catalunya se han iniciado conversaciones entre la Agència Catalana de l’Aigua y el Departament de Sanitat para establecer protocolos de colaboración.

25

26

PRESENTATIONS OF INVATED REPRESENTATIVE MEDITERRANEAN REGIONS AND SECTORS Aspectos en la gestión de aguas portuarias. El puerto de Barcelona Javier Romo García Biólogo, técnico medio ambiente Dep. Seguretat Industrial i Medi Ambient Autoritat Portuària de Barcelona El puerto de Barcelona, uno de los más importantes del mediterraneo, abriga entre sus muelles una masa de agua fuertemente antropizada. Cerca de 9.000 buques mercantes pasan por sus aguas cada año, con sus operaciones de carga, descarga y aprovisionamiento de combustible. Además, por su situación de final de cuenca, recibe gran cantidad de aguas continentales procedentes del sistema unitario de saneamiento de la ciudad. Existen, por tanto, muchos aspectos a considerar en la gestión de esa zona del litoral catalán pero destacan 4 que tienen relación con las floraciones algales:

• La calidad de las aguas, que están fuertemente relacionadas con los aportes del sistema unitario de saneamiento de la ciudad y las aguas residuales producidas en el propio puerto. Una serie de infraestructuras e inversiones en el puerto y, sobre todo, en el sistema de saneamiento urbano ha tenido como consecuencia una mejora en la calidad ambiental de las aguas.

• Las comunidades bentónicas, en concreto el macrobentos de sustrato blando, son un gran indicador de las perturbaciones de la columna de agua. En los estudios técnicos de seguimiento se manifiesta la relación entre el bentos y las floraciones algales, así como el gradiente de perturbación dentro del propio puerto.

• El agua de lastre de los buques mercantes es un medio de entrada clásico en la introducción de especies. En 1999 se cuantíficó el total de lastre vertido, su procedencia y el tiempo de residencia en los tanques.

• Las operaciones de dragado en los puertos son vitales, tanto durante la construcción de muelles como en las operaciones de mantenimiento del calado, ya en fase de explotación. La APB es (previo informes de otras administraciones) la responsable final de los dragados que se realizan en sus aguas y cuyo material es vertido en aguas portuarias abiertas. Para minimizar el impacto se caracterizan según la concentración de contaminantes y ello determina el destino de los materiales de dragado.

La miticoltura ad Olbia e l’emergenza H.A.B Dott. Augusto Navone Direttore A. M. P. di Tavolara Punta Coda Cavallo Consulente del Comune di Olbia (SS) per La miticoltura ad Olbia, dopo le prime esperienze dei primi del ‘900, negli ultimi anni ha visto una crescita esponenziale della produzione passando da circa 1.200 tonnellate della stagione ’91/92 alle quasi 5.000 tonnellate della stagione non ancora conclusa. La tecnologia impiegata per l’allevamento del mitilo è quella del "long-line", impianti semisommersi con filari di lunghezza variabile da 200 a 500 m. con profondità da un minimo di 3 ad un massimo di 7 m. Su ogni filare vengono inserite le "calze", reti tubolari di polipropilene con lunghezza variabile e una maglia di 4 cm, entro e sulle quali crescono i mitili.

27

Negli allevamenti la raccolta dei mitili avviene praticamente tutto l’anno. Il prodotto locale viene raccolto da maggio a ottobre; nei restanti mesi viene raccolto un prodotto proveniente da altre piazze che viene rifinito nelle acque del Golfo e immediatamente commercializzato. Dati economici: Attualmente gli addetti al settore della mitilicoltura nel Golfo di Olbia sono circa 200 ma questo dato, se si considera anche il personale a terra e soprattutto le numerose attività che ruotano attorno alla commercializzazione del prodotto (stabulari, spedizione, ecc.), risulta quasi raddoppiato. Gli allevatori di Olbia lamentano l’inadeguatezza della regolamentazione del commercio dei molluschi che praticamente privilegia i prodotti d’importazione rispetto a quelli nazionali. Questo fatto li costringe a commercializzare con frequenza prodotti non locali per combattere la concorrenza che può contare su costi più bassi a svantaggio della qualità del prodotto. Depurazione: I molluschi, prima di essere commercializzati, devono subire un processo di depurazione in appositi impianti e non devono avere alcuna contaminazione da coliformi, salmonelle e altri agenti tossici. Autocontrollo: Ogni impianto di depurazione è munito di un laboratorio microbiologico per effettuare i test di autocontrollo sul prodotto destinato al commercio. Tali controlli sono limitati alla ricerca di agenti patogeni di origine organica. Nell’ impianto di depurazione viene effettuato il confezionamento del prodotto con appositi macchinari. In questa fase viene inserita anche l’etichettatura attraverso il “bollo sanitario” che attesta l’avvenuta depurazione. Le anossie e le alte temperature estive che interessano soprattutto gli allevamenti situati in zone poco profonde del golfo possono portare ad una moria di quasi il 100% dei molluschi allevati. Fenomeno Herbs (Harmful Algal Blooms) Fattori predisponenti:

• basso idrodinamismo • elevata trofia • attività acquacoltura

PSP ad Olbia nel 2002

• formazione di cisti durature nel sedimento marino • forme vegetative (fioritura algale) • produzione di tossine • accumulo di tossine nei molluschi bivalvi • riscontro tossicità nei mitili in n. 5 siti di prelievo

Piano di contenimento dei danni: l’utilizzo di aree esterne al golfo di Olbia turn-over degli impianti. 2004 dati sotto soglia e non è scattato il piano d’emergenza. Harmful algae monitoring programme in greek coastal waters Aligizaki K., Koukaras K. & Nikolaidis G. Department of Botany, P.O. Box 109, School of Biology Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece In order to ensure the bivalve mollusks safety, as far as marine biotoxins are concerned, a national monitoring programme, according to the EU regulations, has been established. This programme fully operates since 1999. The major supervisor of the national monitoring programme on marine biotoxins is the Ministry of Rural Development and Food, which coordinates the actions of the Local Authorities (Veterinarian and Fisheries Directions). The examinations that take place under the frame of this programme concern i) identification-quantification of toxic/potentially toxic microalgae and ii) toxicity analyses (for DSP, PSP, ASP and other toxins) on bivalve tissues, which are conducted by the Laboratory of Marine Toxic Microalgae (Department of Botany, School of Biology, Aristotle University of Thessaloniki) and the National Reference Laboratory on Marine Biotoxins, respectively.

28

The Harmful Algae Monitoring Programme is applied to nine (9) bivalve mollusks fishing and/or farming coastal areas, where 42 sampling stations have been appointed. On a weekly basis, intergraded water samples from the above stations are examined for the presence of toxic or potential toxic microalgae. The examinations results are reported within 1-2 days from the delivery date to the Veterinarian and Fisheries Authorities, which have the responsibility to decide the further actions for the public health safety (e.g. zones restriction). The first toxic episode (DSP) in Greek coastal waters (Thermaikos Gulf) was recorded in winter 2000, caused by the dinoflagellate Dinophysis cf. acuminata, with economical impact in the mussel culture industry estimated around 5 millions €. D. cf. acuminata blooms in Thermaikos Gulf recurred the subsequent years (2000-2004) during the same period, lasting from late winter until late spring. Maximum abundances of D. cf. acuminata were recorded in February 2004 (610,000 cells/L, surface sample). Species of the genus Dinophysis are the most common toxic dinoflagellates in the Greek monitoring areas. Until now, 10 more Dinophysis species have been identified, from which only two (D. sacculus, D. caudata) have been recorded in relatively high abundance levels (1,000-3,000cells/L). Moreover, potentially toxic epiphytic assemblages comprising the genera Ostreopsis, Prorocentrum, Coolia and Amphidinium, which have impact not only in mollusks safety but in touristic activities as well, were recently recorded in Greek coastal waters. In summer 2003, Ostreopsis sp. blooms on macroalgae (up to 164x103 cells/gr wwa), accompanied with Prorocentrum spp., Amphidinium spp. and Coolia monotis, were observed in N. Aegean Sea. Positive DSP results were found in mussels in the vicinity of Ostreopsis blooms, while palytoxin analysis is in progress. Fortunately, so far no pathological consequence (such as dermatopathy etc) in swimmers has been reported. Potentially toxic species of the genera Alexandrium (such as A. minutum) and Pseudo-nitzschia (P. delicatissima, P. seriata, P. cf. pungens) have been recorded in the monitored areas (sometimes in high abundance levels - Pseudo-nitzschia spp. 1.8x106 cells/L), without causing any (PSP/ASP) intoxication. Additionally, blooms of the non toxic species Alexandrium insuetum (26x106 cells/L) and A. taylori (6x105 cells/L) have caused surface water discolorations in Amvrakikos Bay and Porto Lagos lagoon, respectively. In order to be able to conduct further investigation on taxonomy, life cycles and toxicity of microalgae species, a culture collection (with the acronym HELCCAUTH, Hellenic Culture Collection of Aristotle University of Thessaloniki) has been established and presently 40 microalgae, isolated from Greek waters, are kept under culture conditions. Moreover, a database, that includes data concerning microalgae (potentially toxic/toxic, non toxic species) presence and abundance, physico-chemical (temperature, salinity, pH, transparency, nutrient concentrations) and biological parameters (chl-α) from each region was constructed in December 2003. Phytoplankton monitoring in Andalusia Lourdes Velo (Laboratorio de Control de Calidad de los Recursos Pesqueros

Junta de Andalucía)

ANTECEDENTES

La entrada en vigor de la Directiva 91/492, por la que se fijan las normas sanitarias aplicables a la producción y puesta en mercado de moluscos bivalvos vivos, y su transposición al ordenamiento jurídico español mediante el Real Decreto 345/1993 implica, entre otras cuestiones, la obligatoriedad de la Junta de Andalucía de realizar un control y seguimiento de las condiciones sanitarias en las zonas de producción de moluscos bivalvos de nuestro litoral, declaradas por la Consejería de Agricultura y Pesca en la Orden del 15 de julio de 1993 (BOJA num. 85, de 5 de agosto de 1993) y actualizadas en la Orden de 25 de marzo de 2003 (BOJA num. 65, de 4 de abril de 2003). Existien en la actualidad 45 zonas de producción declaradas que corresponden en su mayoría a bancos naturales de moluscos. Tras la declaración de las zonas de producción, en el año 1994 se inició el programa de control y seguimiento de las condiciones sanitarias de las mismas, aunque es a partir del 1 de noviembre de 1996

29

cuando se habilita un laboratorio propio en el Centro de Investigación y Cultivo de Especies Marinas (CICEM) “Agua del Pino” en Huelva, finalizándose en el año 2003 la construcción de un centro específico para el desarrollo de este programa de control: el Laboratorio de Control de Calidad de los Recursos Pesqueros.

EL PROGRAMA DE CONTROL

El muestreo de control incluye por un lado muestreos sobre el agua para vigilar la variación de la contaminación fecal, el plancton tóxico de la zona, y por otro sobre los moluscos, en los que se controla fundamentalmente la posible contaminación por salmonella, coliformes fecales, metales pesados, compuestos órgano-halogenados y biotoxinas (PSP, DSP y ASP).

Se han definido un total de 44 puntos de muestreo, en los cuales se extraen muestras de agua y de la especie de molusco indicadora definida previamente para cada zona que depende fundamentalmente de la actividad marisquera que se desarrolle en cada una de ellas. Se establecen también un mínimo de 15 estaciones de muestreo de parámetros oceanográficos, para la obtención de perfiles de salinidad, temperatura y clorofila fluorométrica que están localizadas uniformemente por el litoral andaluz. La periodicidad de toma de muestras se ha establecido de la siguiente forma: Frecuencia de muestreo y análisis

Control analítico Zonas de producción Frecuencia de muestreo y análisis

Total de análisis

AND 17,19,20,25 y 26 MENSUAL

AND 14-16,18,39y 41-43 QUINCENAL PLANCTON TOXICO

AND 01-12,21-24.27-38, 40 y 44 SEMANAL (4 al mes)

1724

OCEANOGRAFÍA T ,S, Ch

15 ESTACIONES DE MUESTREO SEMANAL (4 al mes)

720

ANÁLISIS DE FITOPLANCTON TÓXICO

Las muestras de agua destinadas al análisis de fitoplancton tóxico se recogen atendiendo a un doble objetivo. Las muestras para análisis cualitativo proceden de arrastres verticales con manga con el objeto de detectar presencia en las zonas de las especies potencialmente tóxicas y/o nocivas y las muestras destinadas al análisis cuantitativo son tomadas mediante sistemas de mangueras de tramos de 5 metros (Lindahl, 1986), dependiendo el número de tramos de la estación de muestreo. El análisis cuantitativo tiene como objeto la estimación de la concentración de las especies potencialmente tóxicas y o nocivas y otros grupos acompañantes.

En primer lugar se realiza el análisis de la muestra cualitativa, donde se identifican las especies potencialmente tóxicas y los principales géneros del fitoplancton acompañante. A continuación, a partir de la muestra cuantitativa integrada, se hace el recuento de las especies nocivas así como de los grupos de fitoplancton representados (diatomeas, dinoflagelados, cocolitoforidos y silicoflagelados).

Los resultados de los análisis se introducen en un programa informático específico de gestión que abarca todos los aspectos del trabajo: planificación de los muestreos, registro de entrada en el laboratorio, boletines analíticos y transmisión de datos para consulta. Esta aplicación pertenece a la red corporativa de la Consejería de Agricultura y Pesca, lo que permite a las diferentes Delegaciones de Pesca disponer en tiempo real de toda la información necesaria para conocer la situación sanitaria de las zonas de producción, así como las previsiones de muestreo existentes o las muestras que se encuentran en el laboratorio pendientes de analizar. Si en alguna de las zonas alguna/s especies tóxicas superan ciertas concentraciones consideradas de riesgo potencial se alerta via fax a las Delegaciones provinciales responsables con los datos de la especie, su toxicidad y la zona en la que se ha detectado. A partir de este momento se pone en marcha un muestreo intensivo sobre los moluscos de las zonas afectadas.

30

Los resultados del análisis de fitoplancton tóxico no implican la toma de medidas como la prohibición de la actividad pesquera a no ser que superen concentraciones muy altas y se proceda al cierre de la zona de producción como medida cautelar. Se considera que existe una probabilidad elevada de presencia de biotoxinas en el molusco a estas concentraciones que son 10.000 cls/l para Gymnodinium catenatum, Dinophysis acuminata, Dinophysis acuta y Alexandrium spp y 500.000 para Pseudonitzschia spp.

Suivi des microalgues potentiellement toxiques dans les zones de production des mollusques bivalves du nord de la tunisie Souad Turki

INSTM, centre La Goulette. Port de pêche. 2060 La Goulette. Tunisia.

En Tunisie, la détection des microalgues toxiques dans les zones de production des mollusques bivalves est un impératif à l’écoulement de ces produits à l’état vivant vers les pays de la CEE. Depuis 1995, l’INSTM assure ce suivi dans le cadre d’une convention avec la Direction Générale des Services Vétérinaires (Ministère de l’Agriculture) suivant une procédure qui permet de prévenir et d’alerter l’autorité Compétente afin de prendre les mesures nécessaires pour les analyses des biotoxines qui sont réalisées par l’Institut Pasteur de Tunis. Au Nord de la Tunisie, les zones de production des mollusques bivalves sont localisées dans les milieux lagunaires (complexe lac Nord de Tunis - canal de Tunis et la lagune de Bizerte) ainsi que sur la côte occidentale du golfe de Tunis à l’affluent de l’oued Medjerda. La fréquence des prélèvements est hebdomadaire pendant la campagne de collecte et par quinzaine en dehors de la récolte des coquillages. Les résultats sont relatifs à la détection des microalgues productrices des toxines diarrhéiques : Dinophysis spp et Prorocentrum lima ainsi qu’aux tests de toxicité positifs effectués sur les palourdes en provenance des zones de production T1, T2, B1 et B2 (Turki, 2003, sous-presse). Les espèces du genre Dinophysis sont au nombre de 6 parmi lesquelles : D. sacculus principalement et D. acuminata secondairement sont les espèces dominantes alors que D. caudata, D. rotundata, D. fortii et D. acuta sont très rares. La répartition spatio-temporelle de ces microalgues toxiques est limitée au lac de Tunis particulièrement et secondairement dans le canal de Tunis. Dans la lagune de Bizerte, l’apparition des espèces de Dinophysis avec la présence prépondérante des espèces : D. sacculus et D. caudata a lieu principalement au printemps dans la zone de production de Menzel Jmil. Dans le cas des eaux côtières du golfe de Tunis (stations A1 et A2), nous avons rarement détecté la présence de Dinophysis. Nous avons signalé dans la station de Raoued (A1) la présence de D. sacculus à une concentration ≥ 500 cellules/l, une seule fois au cours du mois d’août. Nous pouvons noter deux périodes critiques d’apparition de Dinophysis spp à des concentrations ≥ 500 cellules par litre : de septembre à décembre et de mai à juin. Au cours de la période allant d’avril 2001 jusqu’en avril 2002, nous avons enregistré le plus grand nombre de périodes d’abondance liées à la présence des espèces du genre Dinophysis dans le lac Nord de Tunis . La détection de Prorocentrum lima à des concentrations supérieures à 500 cellules par litre coïncident de près, avec celles de Dinophysis spp, ceci durant les périodes de septembre - octobre et secondairement aux mois de juin et août. Les concentrations de P. lima inférieures à 500 cellules par litre affectent presque toutes les stations de prélèvement étant donné que c’est une espèce surtout littorale et à large distribution géographique. De 2000 à 2002, nous avons noté une contamination des palourdes en février après 3 semaines d’apparition des microalgues (Dinophysis spp et/ou P. lima) à une concentration supérieure à 500 cellules/l, puis de manière concomitante en mars dans T1. Les tests de toxicité sont positifs au cours du mois de septembre dans les stations T1, B1 et B2, suivie secondairement d’une autre période de contamination qui a lieu au mois de décembre suite à de longues périodes d’apparition des microalgues toxiques dans les différentes zones de production. Au cours de l’année 2002-2003, les analyses de biotoxines effectuées tous les 15 jours, nous ont permis de relever qu’il y a absence de contamination des palourdes par les biotoxines dans les zones T1 & T2. Dans la zone B1, la contamination des palourdes par les biotoxines a lieu en octobre simultanément à la

31

présence de microalgues à une faible concentration, en février et en mai, qui serait associée à une concentration élevée de ces microalgues. Dans la zone B2, une seule période a été signalée en février, malgré une absence totale des microalgues associées à la production des toxines DSP dans le plancton. Nous résumons dans le tableau suivant, les différentes périodes de contamination des palourdes par les biotoxines marines dans les zones de production T1, T2, B1 et B2.

Tableau I. Temps de séjour des biotoxines dans les zones de production des palourdes du Nord de

la Tunisie.

Année Zone de production Temps de séjour des biotoxines Période de contamination 2000-2001

T1 T2 B1 & B2

1-2 semaines 1 semaine 1 semaine

Février-mars Octobre-mars Octobre-janvier-juin

2001-2002

T1 T2 B1 B2

1-4 semaines 1-2 semaines 4 semaines 1-3 semaines

Sep.-nov.-déc.-jan.-mars-mai décembre-février-mars Septembre Septembre-octobre-novembre

2002-2003 B1 B2

1-2 semaines 1 semaine

Octobre-février-mai Février

Cas du suivi des espèces du genre Alexandrium (sept. 2003 – sept. 2004)

Depuis le démarrage du réseau de surveillance des zones de production des mollusques bivalves, il n’a pas été signalé de contaminationdes palourdes de type PSP. En effet, les espèces associées à la production des toxines PSP (espèces du genre Alexandrium) n’ont pas été détectées, ni à des quantités élevées, ni de manière continue, leur présence étant très sporadique dans les eaux littorales tunisiennes. Durant la période allant de 2002 à 2003, Nous avons noté la présence des espèces suivantes : A. margalefi, A. pseudogonyaulax et A. leei presqu’exclusivement dans les eaux de la lagune de Bizerte où les concentrations d’A. pseudogonyaulax ont atteint des concentrations maximales de 8750 cells/l. Nous avons enregistré une succession de ces espèces dans le temps : l’apparition de A. margalefi (100-2100 cells/l) a lieu de mars jusqu’en avril, celle de A. pseudogonyaulax (50-8750 cells/l) a lieu d’avril à juin et finalement celle d’A. leei (250 cells/l) à partir du mois de septembre.

REFERENCES

Turki S., 2003 (sous-presse) - Suivi des microalgues planctoniques toxiques dans les zones de production, d’élevage des mollusques bivalves et d’exploitation des oursins du Nord de la Tunisie. Bulletin de l’INSTM, Salammbô.

Aquaculture industry: Problems and economical implications of HABs. Margarita Fernández Tejedor, M Dolores Furones, Jorge Diogene

Centre d’Aqüicultura-IRTA Harmful algal blooms may affect the aquaculture industry producing fish and shellfish mortalities, fish stress and transfer of toxins into shellfish. Many countries have established monitoring programmes for harmful algae and toxins to protect consumers’ health. In regions where shellfish production maybe moderate the design of monitoring programmes for HABs may consider aquaculture as well as

32

recreational sectors. Routine monitoring is practised at fish-culture facilities in some countries but in general there aren’t regulated monitoring programmes to detect HABs implicated in fish and shellfish killing. These can cause the mortality of all the stock from a fish farm in few hours if the industry is not prepared for the management of HABs. Site selection is also one of the most important criteria for successful finfish aquaculture. When the presence of toxins above regulatory levels is detected in shellfish, the result is the closure of the production area and that means the prohibition of shellfish extraction from this area during the closure (Directive 91/492/EEC). In addition to sanitary issues the design of a monitoring programme will have to be adapted to the specific production sites and their characteristics. Measures to reach these objectives can be for example the selection of representative bivalve species, and intensification of the sampling frequency to detect early toxin dynamics and take appropriate management actions. Regional health-hygienic control plan of living shellfish mussels and toxic algae Dott. Stefano Congiu

Assessorato dell'Igiene e Sanità, Regione Autonoma della Sardegna EEC Directive 91/492 which sets Health and Hygiene rules for the production and marketing of Live Bivalve Shellfish, in Italy has been applied by means of Legislative Decree n. 530 dated 30th December 1992. This decree, and the mentioned Directive, provides for the establishment of a regular surveillance system in the areas of production and relaying of Live Bivalve Shellfish and as a consequence the establishment of a Health-Hygienic Control and Monitoring System of the Live Bivalve Shellfish Sector from, production to marketing and consumption. On the basis of the general principles included in the Ministerial Decree and its appendixes, Sardinia, like the other Italian regions has drawn up two distinct plans:

1. Regional Plan for regular surveillance of production and relaying areas of Live Bivalve Shellfish;

2. Regional Plan for Health-Hygienic Control and Monitoring of Live Bivalve Shellfish from production to the market.

Since 1999 both plans have allowed the Sardinia region to implement standard procedures to control Hygiene and Sanitary conditions of production and relaying areas of Shellfish as well as the presence of toxic phytoplankton in growing waters thus ensuring microbiological and biotoxicological safety of the shellfish released on the market. The two plans were drawn up in cooperation with the Ministry of Health, Local Health Authorities, Department of Botanics and Plant Ecology of Sassari University and the Experimental Zooprophylaxis Institute of Sassari. Both Plans have been implemented according to national provisions which have been adapted to the Sardinian environment to ensure the best results. The plans are regularly updated to address new issues and adapt to changing circumstances; usually every three years the first plan or whenever deemed necessary; every year the second or more frequently if necessary. The aims of The Regional Plan for regular surveillance of production and relaying areas of Live Bivalve Shellfish are.

• To avoid any violations related to provenance and destination of Live Bivalve Shellfish; • To assess whether microbiological and biotoxicological criteria established for harvest areas of

Live Bivalve Shellfish are met; • To assess the presence of toxic phytoplankton in growing and relaying waters and keep the

eventual presence in check; • To assess the presence of chemical contaminants in the shellfish and growing waters

To implement the Regional Plan for regular surveillance of production and relaying areas of Live Bivalve Shellfish, the Sardinia Region, according to criteria established by National Regulations and the EEC directive has classified the production and relaying areas for Live Bivalve Shellfish. Seventeen areas of

33

aquaculture have been identified and classified as “A” or “B” according to the regulations issued on the basis of microbiological and bio-toxicological criteria.. The quality of water in Sardinia is very good and no area has been classified as “C”. Most areas have been classified as “A”. As stated in the Plan, all classified areas undergo regular checks to ensure that initial parameters are maintained or improved. For each area sampling stations have been established and means and frequency of water and shellfish sampling defined. To ensure efficiency and rapid implementation, the Plan itself has established who does what and when. In other words, the role of the different authorities has been defined: Sardinia Regional Offices of Environmental Protection and Public Health and Hygiene, Local Health Authorities, Local Public Health Laboratories, Department of Botanics and Plant Ecology of the Univesity of Sassari and the Experimental Zooprophylaxis Institute of Sassari. These authorities work with one another and form a network to ensures the sector is kept under control and to manage eventual health emergencies. The plan infact contains procedures for managing emergencies, production areas with parameters which fail to meet the requirements, mcrobiological and/or biotoxicological non-compliant products, so that measures may be rapidly imlemented by each authority involved. This sort of regional alert network is connected to the national alert network and thus to the European Community. The aim of the Regional Plan for Health-Hygienic Control and Monitoring of Live Bivalve Shellfish from production to the market is:

• Coordinate and rationalize monitoring and Health-Hygiene control procedures of Live Bivalve Shellfish from production to the market to human consumption

To ensure complete control throughout the whole process, the Plan involves depuration centres, shipping centres; the food service industry (hotels, restaurants); dealers (supermarkets, hypermarkets, warehouses and wholesalers, retailers), canteens.

The Plan contains those inspection and control procedures considered necessary to maintain Health-Hygienic requirements. An operating protocol sets the frequency of sampling, numbers of samples and sampling technique and involves Regional Authorities, Local Public Health Authorities and Laboratories and the Experimental Zooprophylaxis Institute of Sassari.

As mentioned, the number of samples to be analysed for each centre is established on a yearly basis. Theses samples undergo microbiological tests (Escherichia coli, Fecal Coliforms and salmonellae), biotoxicological tests (biotoxins PSP, DSP, ASP) and Chemico-Physical tests (Mercury, Lead, Cadmium and Arsenic).

This Plan too, has an operating procedure to manage emergencies, non compliant products or centres where health-hygiene conditions are poor.

Presentación de un programa de investigación de HABs en la Comunidad Autónoma de Murcia Javier Gilabert

Universidad Politécnica de Cartagena -Departamento de Ingeniería Química y Ambiental Uno de los objetivos del programa consiste en establecer los criterios técnicos para la transposición de la directiva europea (Directiva 2000/60/CE del Parlamento Europeo y del Consejo de 23 de octubre de 2000) a la legislación regional. En los 300 Kms de litoral existen zonas sensibles que requieren de un sistema de monitorización y alerta temprana de HABs. Entre ellos destacan ecosistemas como el Mar Menor; los 21 puertos - 16 de ellos deportivos - y las 6 concesiones para el cultivo de peces en jaulas flotantes - incluyendo tres grandes polígonos para la concentración de la actividad de engrase de atún -. Con el presente programa se ha iniciado una toma sistemática de muestras para la identificación de especies potencialmente HAB.

34

Note synthétique sur les efflorescences phytoplanctoniques nuisibles au niveau de la lagune de Nador Faid EL MADAN Laboratoire de Surveillance de la Salubrité du Littoral –CR–INRH–Nador 13, Bd Zerktouni, Nador - Maroc Tel/ Fax : 00 212 56 60 38 28 é-mail : [email protected] Depuis que l'INRH mène le suivi de la salubrité des zones conchylicoles de la lagune de Nador, des épisodes à PSP ont été enregistrés dont le premier fut en 1998. En effet, des taux de PSP, parfois dépassant 400 US, seuil requis pour la mise sur le marché des produits conchylicoles, ont été enregistrés au niveau de Crassostria gigas, Ruditapes decussatus et Solen marginatus. Cependant les toxines de types DSP et ASP n'ont jamais posé de problème au niveau de cette lagune quoique les espèces phytoplanctoniques productrice de telles toxines y sont présentent de façon quasi-permanente. Les espèces productrices de la PSP Essentiellement Alexandrium minutum. Cette espèce a été identifié et associée à la contamination de coquillages, provenant de la lagune de Nador, pour la première fois, en janvier 2002. Sa systématique a été vérifiée et confirmée lors d'un stage de formation organisé en décembre 2003 par l'IOC-UNESCO à l'INSTM -Tunisie. Cette espèce est connue, à travers le monde, par la dangerosité des toxines qu'elle produit et la récurrence de sa prolifération dans les zones côtières comme c'est le cas de la lagune de Nador. En effet, cette dernière renferme un stock de kyste d'Alexandrium minutum qui se développe en période hivernale et printanière, induisant ainsi la contamination des coquillages en PSP. Cette contamination peut atteindre des taux très élevés sans qu'il y ait formation d'eaux rouges. Les conditions favorables au développement de cette espèce phytoplanctonique, au niveau de la lagune, notamment nutritionnelles, ne sont pas encor élucidées. Toutefois, le suivi entrepris depuis 2001 permis d’affirmer que la température optimale pour le bon développement d' A. minutum est comprise entre 15 et 17°C, surtout quand les apports en éléments nutritifs par les eaux pluviales sont importantes. Ces conditions peuvent être observées au niveau de la lagune de Nador entre le mois de décembre et le mois avril. En dehors de la période à risque que l'on peut situer entre le mois de décembre et le mois d'avril, A. minutum peut être rencontrée au niveau de la lagune à de faibles concentrations et ne constitue aucun risque de contamination des coquillages en PSP. Sur le plan "santé humaine", les problèmes de toxicités des moules contaminées par la PSP lors d'épisodes à A. minutum n'ont affecté aucune personne. Ceci est dû au faite que le suivi du développement d'A. minutum ainsi que l'accumulation de la PSP par les coquillages se fait d'une façon très serrée dans le temps, en période à risque, ce qui permet de prévenir tout risque d'intoxication. Sur le plan socio-économique, A. minutum constitue un véritable obstacle pour le développement de la conchyliculture au niveau de la lagune de Nador. En effet, l'interdiction de la commercialisation des moules prononcée chaque année coïncide avec la période de forte demande du marché en coquillage. Les moules non vendues prennent du poids et finissent par chuter sur le fond. A ces pertes s'ajout également les mortalités, que l'on peut qualifier de catastrophiques, qui surviennent en période estivale quand la température des eaux de la lagune devient excessivement élevée (+30°C). Aussi, les coquillages qui échappent à la mort et à la chute ont une mauvaise qualité organoleptique à cause du vieillissent. La perte est alors double, d'une part la non commercialisation et d'autre part les pertes des moules. A côté d'Alexandrium minutum, on trouve également Gymnodinium catenatum qui pourrait constitué un danger potentiel pour les activités conchylicoles dans zones côtières ouvertes. Au niveau de la lagune de Nador, cette espèce est rencontré de façon sporadique à des concentrations très faibles ne dépassant pas quelques centaines de cellules par litre. En effet, contrairement à Alexandrium minutum, qui est une espèce intrinsèque de la lagune de Nador, Gymnodinium catenatum est une espèce qui se développe en dehors de cet écosystème lagunaire. Sa présence au niveau de la lagune, milieu paralique par excellence,

35

est due aux mouvements de marée. Les conditions environnementales offertes par ce type de milieux ne favorisent pas développement de ce dinoflagellé. Les espèces productrices de la DSP Dan la lagune on note la présence quasi-permanente de deux espèces productrices de la DSP : Dinophysis sacculus et Prorocentrum minimum. Pour Dinophysis sacculus, les densités observées sont de l'ordre de quelques dizaines à quelques centaines de cellules par litre. D'une année à l'autre ses fluctuations n'ont pas de tendances bien claire. Aussi, cette espèce n'a jamais provoqué de contamination des coquillages présentent dans la lagune de Nador. Pour Prorocentrum minimum, espèce décrite dans la littérature comme productrice de la DSP, sa présence au niveau de la lagune est plus importante que celle de Dinophysis sacculus que se soit pour la densité ou la fréquence. Cependant, quoiqu' a des densités de l'ordre de dizaine de milliers, sa présence n'a jamais engendré de contamination des coquillages. Les espèces productrices de l'ASP Seules figures les espèces du genre Pseudonitzschia dont la détermination est très délicate et nécessite le recoure à la microscopie électronique. La présence des Pseudonitzschia ssp est fréquente dans la lagune de Nador à des concentrations parfois très importantes, pouvant atteindre des centaines de milliers par litre. Cependant, elles n'ont jamais constituées une source de contaminations des coquillages de la dite lagune en ASP. Ioc-ices harmful algal events database Monica Lion IOC-IEO Science and Communication Centre on Harmful Algae

The ICES-IOC Working Group on Harmful Algal Bloom Dynamics has recorded harmful microalgae related events since 1987. Since then, a National Report form has been implemented by national representatives in order to organize, on an annual basis, data on harmful algae events in different countries. Increasing interest in data analysis led to a proposal in 1997 to create a computer data base of these events: the Harmful Algae Event Data Base (HAEDAT). This proposal considered the recent advances in computer software that allow fast and easy flow of information (Internet) and powerful data analysis. The main purpose of creating HAEDAT is to develop a structure for data storage that allows easy integration of data, efficient search tools, and the possibility of conducting powerful data analysis.

Since October 1999 HAEDAT is available on line at the IOC web site: http://ioc.unesco.org/hab/data3.htm#1 running under the Access 97 program. Any report contains general information on the nature, location and date of the event, microalgae involved, environmental conditions and complementary information.

HAEDAT has undergone different modifications aiming to improve data quality and make them easier to analyze. During the last years an effort to establish a new electronic format was made. This allows HAEDAT to be on-line searchable in a user-friendly environment. HAEDAT has been recently transformed into a MySQL database, which also allows the computerized production of maps.

At the same time and trying to achieve the ambition of HAEDAT of becoming a true global database on HAB events, several agreements with countries outside ICES has been signed, as the ones with PICES (North Pacific Marine Science Organization), ANCA (Grupo COI sobre Algas Nocivas en el Caribe) and FANSA (Grupo COI sobre Floraciones Algales Nocivas en Sudamérica) and is the intention of IOC-ICES to continue the spreading of HAEDAT across the rest of the coastal countries in the next future.

36

Gestión de aguas recreacionales en relación a proliferaciones de microalgas nocivas en el Mediterráneo

25 - 26 de Octubre de 2004

Hotel Don Antonio, Peguera- Calvià, Mallorca

AGENDA 25 de Octubre 2004 Documentación - Inscripciones

Sesión Inaugural Antoni Gómez, Director General de caza, protección de especies y educación medioambiental Isidre Cañellas, Teniente Alcalde de comercio, economia y hacienda del

Ayuntamiento de Calvià Alberto León, Teniente Alcalde de urbanización y medioambiente

Coordinadora STRATEGY (Mercedes Masó- CSIC) Sesión 1:

Proliferaciones de microAlgas Nocivas (PAN) en zonas costeras Mediterráneas: un fenómeno emergente

Objetivos del seminario cas Mercedes Masó (Institut de Ciències del Mar- CSIC) STRATEGY Coordinator Problemática de las discoloraciones del agua en las playas durante el verano

cas Eduardo Cozar (Departamento Ambiental Ayuntamiento de Calvià) Pausa- café

Factores que determinan la proliferación recurrente de Alexandrium taylori en las playas Mediterráneas

cas Gotzon Basterretxea (Institut Mediterrani d’Estudis Avançats- CSIC) STRATEGY cas Esther Garcés (Institut de Ciències del Mar- CSIC) STRATEGY

Puerto de Barcelona. Servicio de Medio Ambiente cas Javier Romo (Técnico Ambiental del Servicio Medio Ambiente de la Autoridad Portuaria de Barcelona)

Puerto de Olbia. Implicaciones sociales y económicas de les PAN it Augusto Navone (Pragma Ambiente & Sicurezza- Sardinia) Distribución de dinoflagelados potencialmente tóxicos en aguas

confinadas en el Mediterráneo. Características de las proliferaciones cas Magda Vila (Institut de Ciències del Mar- CSIC) STRATEGY it Antonella Lugliè (Dipartimento di Botanica ed Ecologia vegetale) STRATEGY

Sistema de control calidad ambiental en el litoral catalán cas Mariona de Torres (Jefa de Unidad de Aguas Marinas de Agència Catalana de l’Aigua)

Debate Las PAN: Interacción administración - sociedad y científicos Moderador: Joaquim Tintoré (Institut Mediterrani d’Estudis Avançats- CSIC)

37

26 de Octubre 2004 Sesión 2 Implicaciones socio-económicas, gestión y control integrado de las PAN

Resultados de la red STRATEGY en Grecia ing Olympia Gotsis-Skretas (Hellenic Centre for Marine Research) STRATEGY

Importancia de la fase bentónica (quistes)- Implicaciones para la gestión

cas Isabel Bravo (Instituto español de Oceanografía) STRATEGY

Diversidad del género Alexandrium en el Mediterráneo cas Santiago Fraga (Instituto español de Oceanografía) STRATEGY

Características tróficas del litoral Mediterráneo. Están relacionadas con el aumento de eventos nocivos? it Maria Grazia Giacobbe (Istituto Sperimentale Talassografico) STRATEGY

Monitoreo de fitoplancton tóxico de aguas litorales en Grecia ing K. Aligizaki, K. Koukaras y G. Nikolaidis (Universidad de Thessaloniki) Pausa- café

Monitoreo de fitoplancton en Andalucía Lourdes Velo (Laboratorio de Control de Calidad de los Recursos Pesqueros, cas Junta de Andalucía)

Monitoreo de algas tóxicas en Túnez fr Souad Turki (Institut National des Sciences et Technologies de la Mer)

Incidentes debidos a las PAN y esfuerzos de monitoreo en Turquía ing Nihayet Bizsel (Dokuz Eylul University, Institute of Marine Sciences and Technology)

Sector Acuicultura. Problemas y implicaciones económicas cas Margarita Fernández (Centre d'Aqüicultura-IRTA. Sant Carles de la Ràpita- Spain) Plan regional de control de higiene y salud en mejillones y algas tóxicas

it Stefano Congiu (Assessorato dell'Igiene e Sanità, Regione Autonoma della Sardegna)

Programa de investigación de PAN en Murcia cas Javier Gilabert (Universidad Politécnica de Cartagena)

Algas tóxicas en Marruecos

fr Faid El Madani (Institut National de Recherche Halieutique)

Tecnologías moleculares: ¿ya se pueden aplicar en el control del fitoplancton? it Antonella Penna (Universitat d’Urbino) STRATEGY

IOC-ICES Base de datos de eventos y especies de microalgas nocivas cas Monica Lion (Centre Coordinator- IOC-IEO Science and Communication Centre on

Harmful Algae)

STRATEGY database. Una herramienta para la gestión cas Sílvia Anglès (Institut de Ciències del Mar-CSIC) STRATEGY Interacción proliferaciones de microalgas nocivas y la gestión del litoral. Vacíos

legales cas Jordi Camp (Institut de Ciències del Mar-CSIC) STRATEGY

Debate Planes de acción y medidas para un control integrado. Moderador: Jordi Camp (ICM-CSIC)

38

Management of recreational waters in relationship with harmful microalgae blooms (HAB) in the Mediterranean Sea

25 – 26th October 2004

Hotel Don Antonio, Peguera- Calvià, Mallorca

AGENDA 25th October 2004 Documentation - Inscriptions

Opening Session Antoni Gómez, Director General de caza, protección de especies y educación medioambiental Isidre Cañellas, Teniente Alcalde de comercio, economia y hacienda del

Ayuntamiento de Calvià Alberto León, Teniente Alcalde de urbanización y medioambiente Coordinadora STRATEGY (Mercedes Masó- CSIC)

Coffee break Session 1: Harmful Algal Blooms (HABs) in the Mediterranean coastal areas as an emerging problem

Objectives of the workshop spa Mercedes Masó (Institut de Ciències del Mar- CSIC) STRATEGY Coordinator Problems related with water discolorations in beaches during the summer

spa Eduardo Cozar (Environmental Department Calvià Town Council)

Triggering factors of recurrent Alexandrium taylori blooms in Mediterranean beaches

spa Gotzon Basterretxea (Institut Mediterrani d’Estudis Avançats- CSIC) STRATEGY spa Esther Garcés (Institut de Ciències del Mar- CSIC) STRATEGY

Barcelona Harbour. Environmental Service spa Javier Romo (Environmental Technic of Environmental Service of Harbour Autorithy of Barcelona)

Olbia Harbour. Social and economical impacts of HAB it Augusto Navone (Director of Marin Protect Area Tavolara - Punta Conda cavallo) Harmful dinoflagellates distribution in Mediterranean confined waters.

Bloom features spa Magda Vila (Institut de Ciències del Mar- CSIC) STRATEGY it Antonella Lugliè (Dipartimento di Botanica ed Ecologia vegetale) STRATEGY

Environmental Control in the Catalan Coast spa Mariona de Torres (Cap de la Unitat d’Aigües Marines de Agència Catalana de l’Aigua)

Discussion HABs: Interactions administration- society and scientists. Chair: Joaquim Tintoré (Institut Mediterrani d’Estudis Avançats- CSIC)

Contributions to the final document

39

26th October 2004 Session 2 Socio- economic implications, management and integrated control of HABs

STRATEGY results in Greek Network eng Olympia Gotsis-Skretas (Hellenic Centre for Marine Research) STRATEGY

The importance of the benthonic phase (cysts)- Implications in management

spa Isabel Bravo (Instituto español de Oceanografía) STRATEGY

Diversity of genus Alexandrium in the Mediterranean spa Santiago Fraga (Instituto español de Oceanografía) STRATEGY

Throphic characteristics of the Mediterranean near coastal waters. Are they related with the increase of harmful events? it Maria Grazia Giacobbe (Istituto Sperimentale Talassografico) STRATEGY

Harmful Algae monitoring in Greek coastal waters eng K. Aligizaki, K. Koukaras and G. Nikolaidis (University of Thessaloniki)

Phytoplankton monitoring in Andalusia spa Lourdes Velo (Laboratorio de Control de Calidad de los Recursos Pesqueros, Junta de Andalucía)

Monitoring of harmful microalgae in northern Tunisian waters. fr Souad Turki (Institut National des Sciences et Technologies de la Mer) Coffee break

HABs incidents and monitoring efforts in Turkey eng Nihayet Bizsel (Dokuz Eylul University, Institute of Marine Sciences and Technology)

Aquaculture enterprise. Problems and economical implications spa Margarita Fernández (Centre d'Aqüicultura-IRTA. Sant Carles de la Ràpita- Spain) Regional health-hygienic control plan of living shellfish mussels and toxic algae.

it Stefano Congiu (Assessorato dell'Igiene e Sanità, Regione Autonoma della Sardegna)

HAB Research Program in Múrcia spa Javier Gilabert (Universidad Politécnica de Cartagena)

Harmful Algae in Morocco fr Faid El Madani (Institut National de Recherche Halieutique)

Molecular technologies: ready to use for phytoplankton control? it Antonella Penna (Universitat d’Urbino) STRATEGY

IOC-ICES Events and harmful microalgae species database spa Monica Lion (Centre Coordinator- IOC-IEO Science and Communication Centre on

Harmful Algae)

STRATEGY database. A management tool spa Sílvia Anglès (Institut de Ciències del Mar-CSIC) STRATEGY HABs and coastal management. Emerging problems and normative gaps

spa Jordi Camp (Institut de Ciències del Mar-CSIC) STRATEGY

Discussion Action plans and measures for an integrated control Chair: Jordi Camp (ICM-CSIC)

S T R AT E G Y

New strategy of monitoring and management of HABs in the Mediterranean Sea

The consor t ium comprises e ight d i f ferent

organizations belonging to four Mediterranean

European Countries and the End-User Group

of STRATEGY (EUGS) .

CSIC:

CSIC-ICM ( Inst i tut Ciencies del Mar,

Barcelona, Spa in)

CSIC-IMEDEA. (Physical Oceanography Group,

Mal lorca , Spa in)

SAFEGE CETI IS (France)

FOA AMBIENTAL S .L . , (Mal lorca , Spa in)

IST ( Ist i tuto Sper imenta le Talassograf ico,

Mess ina , I ta ly)

DBEV (D. d i Botanic a ed Ecolog ia Vegeta le ,

Sassar i , I ta ly)

CBA. (C . B io log ia Ambienta le , univers i ty of

Urbino, I ta ly. )

IEO-COV (Centro Oceanográf ico de Vigo,

Spa in)

Nat iona l Centre for Mar ine Research

(N.C .M.R.) Greece

EUGS (END USER GROUP OF STRATEGY):

the EUGS includes more than 15 organisations

( from town counci l s , pr ivate enterpr ises or

neighbors associat ions to environmenta l

agencies) . I ts involvement in strategy is at

dif ferent levels, some have the promising task

of sampl ing suppor t , other provide usefu l

faci l i t ies. We wil l be del ighted to include new

organizat ions interested in the results of

strategy.

P lease contact us for fur ther in format ion

www.icm.cs ic .es/b io/projects /strategy

Funded by the European

Commission Under the

5th framework program

Key Action 3:

Sustainable Marine

Ecosystems.

Priority: Coastal

monitoring processes

Coordinator :

Dra. Mercedes Masó

Institut de Ciencias

del Mar, CSIC-ICM

Barcelona, Catalunya.

(Spain)

[email protected] .es

DE

SIG

N:

NR

DE

SIG

N

PH

OT

OS

: J.

CA

MP

, M

.DE

LG

AD

O,

E.G

AR

S,

M.M

AS

Ó,

M.V

ILA

(IC

M),

MG

GIA

CO

BB

E (

IST

), A

ER

IAL

PH

OT

OS

PR

OV

IDE

D B

Y T

HE

AG

EN

CIA

CA

TA

LA

NA

DE

L A

GU

A.

INSTITUTOESPAÑOL DEOCEANOGRAFIA

ConsiglioNazionale delleRicercheIstitutoSperimentaleTalassografico

C. Biologia AmbientaleUniversity of Urbino, Italy

National Centre for

Marine Research

N.C.M.R. Greece