naturales 5 bonaerense

33
Ciencias naturales Santillana 5 Recursos para el docente Bonaerense

Upload: marcela-lalia

Post on 08-Mar-2016

253 views

Category:

Documents


3 download

DESCRIPTION

Orientaciones didácticas

TRANSCRIPT

Page 1: Naturales 5 bonaerense

Cienciasnaturales

Santillana

5Recursos para el docente

Bonaerense

Page 2: Naturales 5 bonaerense

Santillana

5

Ciencias naturales 5 Bonaerense - Recursos para el docente Santillana

es una obra colectiva, creada, diseñada y realizada en el Departamento Editorial de Ediciones Santillana S.A. bajo la dirección

de Graciela Pérez de Lois por el siguiente equipo:

Elina I. Godoy María Cristina Iglesias Pablo J. Kaczor Ana C. E. Sargorodschi Hilda C. Suárez

Editora: Carolina Iglesias Jefa de edición: Edith Morales

Gerencia de gestión editorial: Mónica Pavicich

Recursos para la planificación, pág. 2 Clave de respuestas, pág. 6 Banco de actividades, pág. 25

Soluciones del banco de actividades, pág. 30

Ciencias naturales 5 Bonaerense : recursos para el docente / Elina I. Godoy ... [et.al.]. - 1a ed. -

Buenos Aires : Santillana, 2011. 32 p. ; 28x22 cm. - (Recorridos Santillana)

ISBN 978-950-46-2374-8

1. Ciencias Naturales. 2. Educación Primaria. 3. Guía Docente. I. Godoy, Elina I.

CDD 371.1

Jefa de arte: Claudia Fano.

Diagramación: Estudio Paola Martini 07.

Fotografía: Daniel Jurjo, Esteban Widnicky

y Archivo Santillana.

Corrección: Marta Castro y Paula F. Smulevich.

Este libro no puede ser reproducido total ni

parcialmente en ninguna forma, ni por ningún

medio o procedimiento, sea reprográfico, fotocopia,

microfilmación, mimeógrafo o cualquier otro sistema

mecánico, fotoquímico, electrónico, informático,

magnético, electroóptico, etcétera. Cualquier

reproducción sin permiso de la editorial viola derechos

reservados, es ilegal y constituye un delito.

© 2011, EDICIONES SANTILLANA S.A.

Av. L. N. Alem 720 (C1001AAP),

Ciudad Autónoma de Buenos Aires, Argentina.

ISBN 978-950-46-2374-8

Queda hecho el depósito que dispone la Ley 11.723

Impreso en Argentina. Printed in Argentina.

Primera edición: enero de 2011.

Este libro se terminó de imprimir en el mes de enero

de 2011, en Grafisur, Cortejarena 2943, Buenos Aires,

República Argentina.

Cienciasnaturales

Recursos para el docente

Page 3: Naturales 5 bonaerense

Recursos para la planificación Semanas1 2 3 4

© Santillana S.A. Prohibida su fotocopia. Ley 11.723

2 2

Propósitos Desarrollar una mirada científica en relación con los seres vivos, los materiales, el mundo físico y la Tierra y el Universo.

Buscar información en diferentes fuentes y sistematizarla de distintas maneras (resúmenes, cuadros sinópticos, mapas conceptuales).

Realizar actividades propias de las Ciencias naturales que incluyan formulación de preguntas, anticipación de resultados, manipulación de instrumental, observación,

registro y discusión de resultados.

Intercambiar y discutir ideas, procedimientos y resultados en Ciencias naturales.

Contenidos

La biodiversidad.

Las características de los seres vivos.

Biodiversidad en un ambiente.

Las células.

Organismos unicelulares y pluricelulares.

El tamaño de las células.

El microscopio: cálculo del aumento.

Tipos de células.

Organización celular: tejidos, órganos y sistemas de órganos.

El mundo microscópico.

Los microorganismos como seres vivos.

Diversidad de microorganismos.

Los microorganismos y el ser humano.

Uso de los microorganismos.

Los microorganismos en la naturaleza.

Las funciones del organismo humano.

El cuerpo humano: sistemas en acción coordinada.

Los sistemas que participan en la nutrición y su integración.

Los sistemas que participan en el sostén, la protección y

el movimiento.

El esqueleto.

Las articulaciones.

Los músculos.

Los sistemas que participan en la reproducción.

Fecundación.

Los sistemas que participan en la relación y el control.

Núcleos y subnúcleos Situaciones de enseñanza

Enumeración de características comunes a todos los seres vivos.

Observación de fotografías de células e identificación de sus componentes.

Distinción entre los organismos unicelulares y pluricelulares.

Estimación de equivalencias entre milímetro y micrón.

Identificación de partes de un microscopio y cálculo del aumento.

Observación con el microscopio.

Elaboración de cuadro comparativo entre tipos de células.

Interpretación de imágenes sobre organización celular en el organismo humano.

Revisión histórica del hallazgo de las células y los microorganismos.

Experimentación para reconocer que las levaduras son seres vivos.

Elaboración de cuadro comparativo entre los principales grupos de

microorganismos.

Distinción entre microorganismos benéficos y patógenos.

Análisis de la función de los microorganismos en la naturaleza.

Identificación en imágenes de las funciones del organismo y su relación con los

sistemas de órganos.

Interpretación de esquema sobre interrelación de los sistemas en la nutrición.

Medición del pulso en reposo y luego de una actividad.

Análisis de la participación de huesos, articulaciones y músculos en la flexión y la

extensión del brazo.

Distinción entre los sistemas reproductores femenino y masculino.

Comparación de actividades controladas por los sistemas nervioso y endocrino.

Reflexión acerca de las medidas de prevención de accidentes.

Los microorganismos

Abril

2

La organización del cuerpo

humano

Abril

Mayo

3

Los organismos unicelulares y pluricelulares

Marzo

Abril

1

Los seres vivos

Page 4: Naturales 5 bonaerense

© Santillana S.A. Prohibida su fotocopia. Ley 11.723

3 3

Contenidos

Los biomateriales.

Los organismos autótrofos y heterótrofos.

La importancia de la alimentación en el ser humano.

La información nutricional.

Los nutrientes y sus funciones.

La proporción de nutrientes en diferentes alimentos.

Tipos de alimentos.

El óvalo nutricional.

Las necesidades energéticas.

Las técnicas de cocina y los alimentos.

Alimentos obtenidos a partir de otros alimentos.

Los microorganismos en la elaboración y la

transformación de los alimentos.

La descomposición de los alimentos.

La conservación de los alimentos.

El calor y la temperatura.

El equilibrio térmico.

La dilatación térmica.

La transferencia del calor.

Los termómetros.

Medición de la temperatura.

Los materiales sólidos.

Los materiales líquidos.

Los materiales gaseosos.

Efectos del calor sobre los materiales.

Los cambios de estado.

La temperatura y los cambios de estado.

Núcleos y subnúcleos Situaciones de enseñanza

Lectura de las etiquetas de distintos alimentos e identificación de la información.

Comparación de la información nutricional de diferentes alimentos.

Recolección e interpretación de datos sobre detección de almidón en los

alimentos.

Lectura y análisis de gráfico de óvalo nutricional.

Análisis de los factores que influyen en los requerimientos energéticos.

Identificación de ejemplos de transformaciones físicas y químicas en los alimentos.

Elaboración de manteca y análisis de las transformaciones.

Análisis de ejemplos de producción de alimentos usando microorganismos.

Reconocimiento de las condiciones que favorecen la descomposición por los

microorganismos.

Reflexión sobre la importancia de la información de las etiquetas de los alimentos.

Elaboración de cuadro comparativo sobre los métodos de conservación.

Análisis de transferencia de calor en ejemplos de situaciones cotidianas.

Distinción entre las diferentes formas de transferencia del calor.

Comparación entre materiales conductores y aislantes del calor.

Reconocimiento de las partes de un termómetro.

Comparación entre termómetro clínico de bulbo y termómetro de laboratorio.

Establecimiento de relaciones entre la escala Celsius y los puntos de fusión y

ebullición del agua.

Realización y puesta en funcionamiento de un termómetro de aire.

Caracterización de los estados de la materia a partir de la observación directa.

Reconocimiento de algunas propiedades de los sólidos.

Comparación entre transformaciones reversibles e irreversibles de la materia e

identificación en ejemplos cotidianos.

Análisis e interpretación de diagrama relativo a los cambios de estado.

Ejemplificación de la evaporación y la ebullición como formas de vaporización.

Realización de experiencia sobre cambios de estado del agua.

La importancia de los alimentos

Mayo

4

Las transformaciones de los alimentos

Junio

5

El calor y las transformaciones de los materiales

7

Los materiales

El calor y los materiales

Junio

6

Julio

Page 5: Naturales 5 bonaerense

Recursos para la planifi cación Semanas1 2 3 4

© Santillana S.A. Prohibida su fotocopia. Ley 11.723

4 4

La Tierra y el Universo

El mundo físico

Contenidos

Las fuentes sonoras.

Vibración y sonido.

La generación del sonido.

La acústica y los factores que la mejoran.

El sonido en el aire.

La dirección del sonido.

El eco.

La reverberación.

La ecolocalización.

El sonido en otros medios.

La barrera del sonido.

Sonidos a larga distancia.

El volumen del sonido.

La amplifi cación del sonido.

La altura y el timbre.

Los sonidos musicales.

La resonancia y los armónicos.

El oído.

El límite de lo audible.

La salud de nuestros oídos.

Las frecuencias y la audición humana.

Los infrasonidos y los ultrasonidos.

La forma de la Tierra.

La forma de la Tierra para los pueblos antiguos.

La redondez de la Tierra.

El horizonte.

La forma de la Tierra desde el espacio.

La gravedad.

La gravedad y el peso.

Núcleos y subnúcleos Situaciones de enseñanza

Producción de sonidos por vibración de diferentes objetos.

Análisis de los modos de producción de sonidos en los seres vivos.

Construcción de un teléfono con latas y piolín, y análisis de su funcionamiento.

Análisis de producción de diferentes sonidos con un monocordio.

Identifi cación de factores que mejoran la acústica.

Refl exión acerca de cómo evitar la producción de ruidos molestos.

Anticipaciones sobre el fenómeno del eco.

Análisis de la propagación del sonido en diferentes medios.

Representación gráfi ca de propagación de las ondas sonoras.

Interpretación de la generación y la emisión de sonidos a larga distancia (radio,

teléfono).

Reconocimiento de las cualidades del sonido.

Identifi cación de la producción de sonidos en diferentes instrumentos musicales.

Fabricación de un monocordio y un trombón caseros, y análisis de la variación de

los sonidos que se producen.

Identifi cación de la estructura del oído y del camino de las ondas sonoras.

Elaboración de un modelo del funcionamiento del oído.

Comparación de rangos de frecuencia de diferentes instrumentos musicales.

Análisis de texto sobre emisión y percepción de infrasonidos y ultrasonidos en

algunos animales.

Refl exión acerca de la importancia de la realización de ecografías durante el embarazo.

Revisión histórica de las ideas sobre la forma de la Tierra.

Análisis de diferentes evidencias sobre la forma de la Tierra.

Representación gráfi ca del horizonte de un determinado lugar.

Observación de imágenes satelitales de la Tierra.

Establecimiento de relaciones entre la gravedad y el peso de los objetos.

Las fuentes del sonido

Agosto

8

La esfericidad de la Tierra

Octubre

12

La propagación del sonido

Agosto

9

La diversidad de sonidos

Septiembre

10

La audición

Septiembre

11

Page 6: Naturales 5 bonaerense

© Santillana S.A. Prohibida su fotocopia. Ley 11.723

5 5

Contenidos

El cielo visto desde la Tierra.

Astros iluminados y astros luminosos.

El cielo diurno: movimiento aparente del Sol.

El gnomón y el reloj de sol.

El cielo nocturno.

La Vía Láctea.

Las constelaciones.

Cambios de posición de las estrellas y de la Luna.

Los días y las noches.

El movimiento de rotación.

Las estaciones del año.

Cambios en el número y duración de las horas de luz solar.

El movimiento de traslación.

Una explicación para las estaciones del año.

Las estaciones astronómicas.

El cielo nocturno.

El Universo en nuestros días.

Medidas de los objetos del cielo.

Medidas astronómicas.

El Sistema Solar.

Los planetas del Sistema Solar.

El día y el año en los planetas.

Órbitas planetarias.

Núcleos y subnúcleos Situaciones de enseñanza

Interpretación de gráfico de la bóveda celeste.

Caracterización y reconocimiento de astros luminosos e iluminados.

Lectura e interpretación de gráfico de movimiento aparente del Sol.

Construcción de un gnomón y análisis de la relación entre las sombras que

produce y la posición del Sol.

Ubicación del punto cardinal sur a partir de la posición de la Cruz del Sur.

Establecimiento de relaciones entre las fases de la Luna y las posiciones relativas

de la Tierra, la Luna y el Sol.

Reflexión acerca de las dificultades que genera la excesiva iluminación en las

grandes ciudades.

Análisis de esquemas sobre los efectos de la rotación terrestre.

Lectura de gráficos de incidencia de los rayos solares en la Tierra.

Interpretación de la relación entre la traslación de la Tierra, la sucesión de

estaciones y la cantidad de horas de luz en diferentes lugares.

Elaboración de modelos de los movimientos de rotación y traslación de la Tierra.

Reflexión acerca de la utilidad de trabajar con unidades astronómicas.

Análisis de unidades empleadas en la medición de distancias terrestres y

astronómicas.

Enumeración de los componentes del Sistema Solar.

Elaboración de cuadro comparativo con las características de los planetas.

Comparación de la duración del día y del año entre los planetas.

Construcción de un modelo a escala del Sistema Solar.

Evaluación Participación dialogada en clase.

Respuesta a preguntas y consignas.

Elaboración de síntesis y cuadros.

Participación en realización de experiencias.

Presentación de informes.

Realización de actividades de autoevaluación.

Evaluación mediante actividades integradoras.

Los movimientos aparentes de los

astros

Octubre

13

Los movimientos reales de la Tierra

Noviembre

14

El Sistema Solar

Noviembre

15

Page 7: Naturales 5 bonaerense

Clave de respuestas

© S

antil

lana

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

66

Los organismos unicelulares y pluricelulares

Página 8 A ver qué sé…

a) Seguramente los alumnos ya tienen conocimiento acer-

ca del microscopio pero puede ser que no conozcan esta

historia. Es posible que la forma redondeada de la ima-

gen que representa el dibujo hecho por Hooke los oriente

a pensar que este científico diseñó un microscopio.

b) Los alumnos podrían responder que Hooke observó un

“pedacito” de algo que no es posible ver a simple vista.

De todas maneras la respuesta dependerá de los conoci-

mientos que puedan retomar de años anteriores. Mirando

la imagen podrán describir lo que ven.

c) Si lograron identificar que el instrumento diseñado es un

microscopio y que con este se pueden observar peque-

ñas muestras de seres vivos, podrán responder que ese

es su uso más habitual. Se puede orientarlos para que

respondan las consignas.

a) y b) Con estas preguntas se busca recuperar temas traba-

jados anteriormente. Los alumnos podrán mencionar que

los seres vivos presentan características comunes como

la nutrición, la relación con el entorno, etc. Y por otro lado,

pueden pensar que las diferencias son el tamaño o la ali-

mentación, es decir, mencionar diferencias visibles.

c) El objetivo de esta pregunta es que los alumnos formulen hi-

pótesis acerca de cómo están formados los seres vivos por

dentro y así introducirlos en el tema a trabajar en el capítulo.

Página 13 Ciencia a la vista

a) Es importante que no piensen en lo que “deberían” ver, sino

en lo que efectivamente vieron. También, con esta actividad

se busca que todos puedan aprender a observar a través del

microscopio. Es importante que retomen el concepto del au-

mento estudiado cuando se presentó el microscopio.

b) Si los preparados se pudieron realizar en forma adecuada y

el microscopio funciona correctamente, los alumnos deberían

poder identificar las células y los límites celulares (es importan-

te aclarar que con el microscopio óptico no se ve la membrana

celular). Es posible que sea más difícil observar los núcleos ce-

lulares. Si no pudieran identificarlos, el docente podría guiarlos

para que igualmente enumeren qué deberían ver y dónde de-

berían buscarlo y, posteriormente, marcarlo en su dibujo.

c) Los organismos observados son pluricelulares, excepto los

que se pueden encontrar en el agua del florero. En este caso,

es posible que encuentren microorganismos unicelulares

como los paramecios.

d) Las células del tallo del puerro tienen forma alargada, las de

la mucosa bucal son redondeadas, y en el caso del prepara-

do con agua del florero podrían identificar distintas formas.

e) Los alumnos podrán calcular el aumento total con el que ob-

servaron multiplicando el aumento del ocular por el aumento

del objetivo. Si observan todos los preparados con el mismo

aumento, por comparación pueden estimar qué células son

más grandes y cuáles, más pequeñas.

Página 14 A ver cómo voy…

Se espera que los alumnos puedan reflexionar sobre la im-

portancia de contar con el microscopio. Gracias a este ins-

trumento, en la actualidad podemos saber que todos los

seres vivos estamos conformados por células e incluso en-

terarnos de que existen organismos que antes no conocía-

mos. Es decir que la tecnología colabora en los avances de la

ciencia.

a) La foto de la ameba corresponde a un organismo unice-

lular y la del caballo, a uno pluricelular.

b) Todos los seres vivos tienen en común que están forma-

dos por células, con los mismos componentes básicos:

membrana celular, citoplasma, material genético, así como

las funciones vitales que estas realizan. Las diferencias que

pueden mencionar podrían relacionarse con la forma y ta-

maño de las células y cómo se disponen los componentes

celulares en cada uno de esos organismos.

Con esta consigna se apunta a que los alumnos, además de

completar el cuadro, puedan ver que, si bien hay unidad (por-

que todos los seres vivos están formados por células), tam-

bién hay diversidad celular.

Respuesta abierta. Esta pregunta es metacognitiva y propo-

ne reflexionar sobre el proceso de aprendizaje.

Páginas 16 y 17 A ver qué aprendí…

Repaso

1. a) Los seres vivos estamos formados por células.

b) Los componentes básicos de una célula son la membra-

na plasmática, el citoplasma y el material genético.

c) En las células eucarióticas el material genético se en-

cuentra dentro del núcleo.

d) En los organismos pluricelulares, las células con función

similar forman tejidos.

2. Los epígrafes pueden ser:

Imagen A: corresponde a un ser vivo. Se trata de un organismo

unicelular. La célula contiene el material genético.

Imagen B: en ella se puede ver una parte de un organismo

pluricelular, que podría ser un tejido cuyas células poseen

material genético.

3. Las definiciones que redacten los alumnos podrían ser:

Célula: “es la unidad más pequeña que conforma todos los

seres vivos”. I Citoplasma: “es un material gelatinoso que se

encuentra en el interior de todas las células”. I Material gené-

tico: “es la información acerca de su aspecto y función que

contienen las células en su interior y que se transmite de una

célula a otra”. I Unicelular: “organismo que está formado por

una única célula”. I Pluricelular: “organismo que está formado

por más de una célula”.

1

Bacteria Célula de la piel Neurona

Material genético Sí Sí Sí

Núcleo No Sí Sí

Membrana plasmática Sí Sí Sí

Citoplasma Sí Sí Sí

Page 8: Naturales 5 bonaerense

Clave de respuestas©

San

tilla

na

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

77

4. Se presenta un modelo a modo de ejemplo: el tamaño de

las células es muy pequeño. Entonces, para poder verlas,

tuvimos que hacer una experiencia de observación con el

microscopio. Vimos organismos pluricelulares. Estos tienen

diferentes tipos de células, cuya forma se relaciona con la

función que cumple cada una.

5. a) Esta pregunta tiene por objetivo que los alumnos puedan

evidenciar que este organismo presenta características

semejantes a las de otro ser vivo, podría ser una araña, y

que esto los puede hacer pensar que son organismos ob-

servables a simple vista.

b) Aquí se apunta a que los alumnos puedan recuperar el

concepto de que los organismos microscópicos o las cé-

lulas son extremadamente pequeños, lo que haría impo-

sible observarlos a simple vista.

c) Siguiendo con el punto anterior, la idea es que puedan

identificar el microscopio como el instrumento que per-

mite visualizar células u organismos que a simple vista

no se ven.

d) En este punto se intenta recuperar la idea de “aumen-

to”. Cuando se hacen observaciones, es necesario tener

siempre presente el aumento que se utiliza para saber

cuántas veces está “agrandada” la imagen que vemos.

6. a) En este punto se pretende simplemente que comparen

las medidas. Al hacerlo verán que los Volvox son más pe-

queños que las células presentadas en las imágenes de

la página 11, y de un tamaño similar al de las bacterias

mencionadas en el texto. De esta manera podrán notar

que existen organismos unicelulares (cuya única célula

realiza todas las funciones celulares) muy pequeños. Es-

tos se alimentan, se reproducen, crecen, etc. como cual-

quier ser vivo.

b) Si bien se trata de organismos unicelulares, en el artícu-

lo se menciona esto porque, al formar colonias, estas

cooperan en una función. Es decir que colaboran entre sí

y llevan a cabo una función, pero esto no es lo mismo que

ser un organismo pluricelular. La idea propuesta apunta a

poder relacionarlo con la organización celular que existe en

los mamíferos, por ejemplo. En estos últimos se forman te-

jidos, y estos forman órganos y sistemas de órganos en los

cuales los órganos están especializados en una función y

actúan relacionados entre sí.

Organizo mis ideas

Los microorganismos

Página 18 A ver qué sé…

a) En relación con las características que las levaduras com-

parten con los demás seres vivos, pueden mencionar que

se alimentan, que se reproducen, tal vez que necesitan

energía. Es menos probable que mencionen que reaccio-

nan ante estímulos y que planteen que intercambian ma-

teria y energía con el ambiente.

b) Se espera que los alumnos asocien el azúcar con el ali-

mento de la levadura. Entonces, que puedan pensar que

sin alimento tal vez no pueda realizar la “función” que tie-

ne con respecto a aumentar el volumen de la masa.

c) Se espera que, tal vez a partir del conocimiento prácti-

co que puedan tener, planteen que la masa sin levadura

no va a aumentar de volumen. Tal vez no asocien ese au-

mento de volumen con la formación de burbujas de dióxi-

do de carbono al respirar las levaduras, pero pueden ser

interesantes las diferentes ideas que surjan para retomar-

las más adelante en el experimento de la página 20.

La foto del nene lavándose las manos pueden relacionar-

la con que los microorganismos están en todas partes, por

eso podemos tenerlos en las manos y es importante lavarlas

para no llevarnos microorganismos a la boca. La foto del fru-

to pueden asociarla con que los microorganismos descom-

ponen o pudren los alimentos. La foto del nene en cama, con

que algunos microorganismos nos provocan enfermedades.

En este punto, la intención es que expliciten la idea general

de que todos los microorganismos nos enferman, para luego

poder deducir que solo algunos son patógenos.

Página 20 Ciencia a la vista

El cuadro debe completarse de la siguiente manera:

a) Con la formación de las burbujas se pone de manifiesto la

respiración, ya que esas burbujas contienen el dióxido de

carbono que liberan las levaduras.

b) El agregado de azúcar tiene la finalidad de actuar como

alimento para las levaduras.

c) Es posible que se noten diferencias en la cantidad de bur-

bujas, más en el frasco 2 que en el frasco 1. Esto se debe

al agregado del azúcar, aunque sin ella las levaduras tam-

bién respiran, si bien un poco menos que con más ali-

mento disponible.

d) En el vaso 3 no hay levaduras, por lo tanto no se espera

que se formen burbujas. Se prepara para descartar que

se puedan formar burbujas por otra causa que no sea la

respiración de las levaduras.

muchas células

tejidos órganos sistemas de órganos

PluricelularesUnicelulares

pueden ser

formados por

organizadas en

formados por

Seres vivos

una célula

realiza todas las funciones

Vaso Agua tibia Levadura Azúcar Burbujas

1 ¼ de vaso 2 cucharadas ------- Sí

2 ¼ de vaso 2 cucharadas 1 cucharada Sí

3 ¼ de vaso ------- 1 cucharada No

2

Page 9: Naturales 5 bonaerense

Clave de respuestas

© S

antil

lana

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

88

Página 21 A ver cómo voy…

El cuadro debe completarse de la siguiente manera:

La organización de la información en un cuadro permite iden-

tificar y comparar la información más fácilmente que en texto.

a) Verdadera.

b) Falsa. No todos los microorganismos son acuáticos. Al-

gunos viven fuera del agua pero en ambientes húmedos.

También pueden vivir dentro de otros seres vivos.

c) Verdadera.

Páginas 24 y 25 A ver qué aprendí…

Repaso

1.

2. a) En la secuencia de imágenes la ameba se está alimentan-

do del paramecio.

b) Los seudópodos de la ameba también le permiten des-

plazarse. El paramecio realiza esa misma función por me-

dio de cilios.

c) La ameba y el paramecio pertenecen al grupo de los pro-

tozoos. Estos tienen las siguientes características: viven

en el agua o en lugares húmedos. Se alimentan de otros

seres más pequeños, o viven como parásitos de los ani-

males y del ser humano. Algunos se trasladan cambian-

do de forma, o por medio de flagelos y cilios.

3. a) La única diferencia entre ambos frascos es la temperatura

del agua; en el frasco A es tibia y en el frasco B, hirviente.

b) Los alumnos trataron de matar a las levaduras con una

elevada temperatura, por eso en el frasco B, hirviente en

lugar de agua tibia.

c) Para reconocer si las levaduras están vivas o no, preten-

den observar la formación de burbujas, ya que estas indi-

carían que están respirando.

d) Los globos que colocaron en los frascos permiten conte-

ner el gas que liberan las levaduras al respirar. Cuando el

globo se infla indica la presencia de gas.

e) El frasco A es el de la izquierda y el B, el de la derecha.

Para identificarlos tienen que tener en cuenta cuál de los

dos se infló, ya que eso indica que las levaduras del fras-

co A respiran y por lo tanto están vivas.

4. a) Las imágenes de las termitas y de la naranja se relacio-

nan con funciones de los microorganismos en la natura-

leza, y la imagen del yogur, con el uso que el ser humano

hace de los microorganismos.

b) Los protozoos benefician a las termitas, ya que les permi-

ten digerir la madera.

c) Las bacterias fermentan la lactosa de la leche transfor-

mándola en ácido láctico; cambian la consistencia de la

leche haciéndola más espesa, y también le dan el sabor

característico del yogur.

d) La naranja, al igual que los restos de todos los seres vi-

vos, les sirve a las bacterias como alimento.

Organizo mis ideas

En el caso de la mujer que estornuda, el texto podría incluir

que algunos microorganismos, si ingresan a nuestro cuerpo

y se multiplican en su interior, pueden causarnos enfermeda-

des. Además, esos microorganismos pueden salir de nuestro

cuerpo e ingresar al de otras personas sanas, lo que provo-

caría el contagio de la enfermedad.

En el caso de la foto en la que se lavan las frutas el texto

podría incluir que los microorganismos están en todas par-

tes; entonces, si están en los alimentos que consumimos,

podrían ingresar en nuestro cuerpo al comerlos. Por eso es

importante lavar bien los alimentos que comemos crudos.

En el caso de la foto de las uvas, el vino y el queso el texto po-

dría incluir que el ser humano aprovecha algunos microorganis-

mos para elaborar diferentes productos. Por ejemplo, los que se

encuentran en la piel de las uvas y que, durante la fabricación del

vino, producen el alcohol que contiene. También se usan diferen-

tes bacterias en la fabricación de los distintos tipos de quesos.

La organización del cuerpo humano

Página 26 A ver qué sé…

a) La joven está haciendo gimnasia artística y el señor está

jugando al pool. En cuanto a las partes del cuerpo que in-

tervienen, los alumnos tendrán en cuenta aquellas que

están en movimiento. Es posible que solo hagan refe-

rencia al sistema muscular y al óseo, mientras quedan

relegados otros como, por ejemplo, el nervioso, el circu-

latorio, el respiratorio, etcétera.

b) Los alumnos explicarán las relaciones que conocen entre

los órganos del cuerpo humano. La pregunta anterior po-

dría usarse como puntapié inicial, pero también pueden

surgir algunos otros ejemplos. Es posible que mencionen

los órganos de los sentidos y su relación con el cerebro,

o bien el estómago y la boca, etcétera.

L A C T O B A C I L O

W E C A I P R O V U P

E U V A D I A R E S A

A G O A N O S L I N R

D L L F D L L U G A A

H E T O R U U B R A M

O N E J O L R R I M E

M A E N U N B A C O C

Y E V T I T N E T R I

V O R T I C E L L A O

P E N I C I L L I U M

3

Caracte-rísticas

BacteriasHongos

unicelularesProtozoos

Algas unicelulares

AlimentaciónHeterótrofas

y algunas autótrofas

HeterótrofosAutótrofos y heterótrofos

Autótrofas

Locomoción No NoSí, por medio de flagelos, cilios o

cambios de formaNo

AmbienteEn todos los ambientes

En lugares húmedos

En el agua o en lugares húmedos

En ambientes acuáticos, de agua

dulce y marinos

Page 10: Naturales 5 bonaerense

Clave de respuestas©

San

tilla

na

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

99

c) En este caso se espera ver qué conocimientos tienen los

alumnos en cuanto a la función del corazón y los pulmo-

nes. Es posible que puedan relacionar la realización de

este tipo de actividades con un aumento de la frecuencia

cardíaca o respiratoria en el caso de la gimnasta. Para el

caso del jugador de pool, podrían asociar esta actividad

con algo que requiere “mantener” la respiración.

d) Se trata de recuperar los saberes que los alumnos po-

seen en cuanto a las formas de relación con el ambiente

que tiene el ser humano. Por ejemplo, ambos respiran e

intercambian sustancias con el medio, o bien transpiran y

eliminan agua al ambiente.

e) Es posible que encuentren una relación entre la actividad

física de la gimnasta y la buena alimentación, pero por

otra parte, puede que no consideren la nutrición en el se-

gundo caso. La intención es que luego de leer este capí-

tulo, los alumnos logren identificar la nutrición como una

función vital para todos los seres vivos.

Páginas 28 y 29 Temas en imágenes

1. Sistema locomotor: sostén, protección y movimiento. I Sis-

tema reproductor: reproducción. I Sistema circulatorio: nu-

trición. I Sistema respiratorio: nutrición. I Sistema nervioso:

relación y control. I Sistema urinario: nutrición. I Sistema di-

gestivo: nutrición.

2. La respuesta es abierta y depende del ejemplo de actividad

elegida por los alumnos. Para el caso propuesto de cepillar-

se los dientes:

a) Es posible que, como sistemas involucrados, mencionen

locomotor y nervioso.

b) El sistema locomotor aporta el movimiento para cepillar-

se los dientes, y el sistema nervioso, el control de esos

movimientos.

Página 31 Ciencia a la vista

a) El pulso antes de bailar o saltar es menor que luego de

hacerlo. Esto se debe a que el corazón late más veces

por minuto al realizar una actividad intensa.

b) Se espera que en la conclusión los alumnos asocien esa

diferencia con un mayor gasto de energía al bailar o sal-

tar, y con una necesidad mayor de aporte de nutrientes y

de oxígeno, que se logra con una circulación más rápida

de la sangre por el cuerpo.

c) Es importante hacer ambas mediciones con el mismo

compañero para poder compararlas, ya que puede haber

diferencias en el pulso entre una persona y otra.

Página 33 A ver cómo voy…

a) Los órganos agrupados y coordinados forman sistemas.

b) Las principales funciones del cuerpo son: nutrición, protec-

ción, sostén y movimiento, reproducción, y relación y control.

c) Los alimentos son importantes porque contienen nutrien-

tes, que nos aportan energía y nos permiten reparar los te-

jidos del cuerpo. Para que lleguen a todas las células, los

alimentos se transforman en el sistema digestivo, y luego

pasan a la sangre, que los transporta a todo el cuerpo.

Páginas 36 y 37 A ver qué aprendí…

Repaso

1. a) Respiración, b) Circulación, c) Digestión, d) Excreción.

Cada alumno elaborará sus propias definiciones, por ejemplo:

Respiración: “A través de la respiración ingresa oxígeno a

nuestro cuerpo, que las células utilizan para obtener energía”.

2. a) Pulmones, b) Nutrición, c) Relación, d) Esqueleto,

e) Sistema, f) Hormonas, g) Pulso, h) Corazón.

3. Corazón: sistema circulatorio. I Riñones: sistema urinario. I Pulmones: sistema respiratorio. I Vasos sanguíneos: sistema

circulatorio. I Estómago: sistema digestivo. I Cerebro: siste-

ma nervioso. I Intestino: sistema digestivo. I Útero: sistema

reproductor. I Vejiga: sistema urinario. I Tráquea: sistema res-

piratorio. I Glándula hipófisis: sistema endocrino.

4. a) Falsa. No todas las articulaciones son móviles, también

hay articulaciones inmóviles como las que unen los hue-

sos del cráneo.

b) Verdadera.

c) Verdadera.

d) Falsa. Los sistemas de órganos se relacionan entre sí y

funcionan de manera coordinada. Eso permite que se lle-

ven a cabo las diferentes funciones del organismo.

e) Falsa. Las hormonas cumplen funciones de relación con

el ambiente.

5. a) La mamá de Juan José se puede referir a los sistemas

locomotor, respiratorio, circulatorio y nervioso. Es impor-

tante aclarar en la corrección de la respuesta que todos

los sistemas están involucrados de una forma u otra, ya

que todos trabajan de manera integrada.

b) El sistema locomotor se relaciona con el movimiento. El

sistema nervioso actúa controlando los movimientos que

se realizan. El sistema respiratorio incorpora oxígeno, que

es necesario para obtener energía, y libera dióxido de

carbono. El sistema circulatorio lleva el oxígeno y los ma-

teriales a todos los lugares del cuerpo, lo que permite la

obtención de energía. Además lleva los desechos a los lu-

gares necesarios para su liberación.

c) Juan José intercambia gases a partir del sistema respira-

torio: ingresa oxígeno y libera dióxido de carbono. Tam-

bién intercambia materiales al transpirar. Por último, libera

energía en forma de calor.

6. La imagen A representa la función de sostén y movimiento; la

B, la función de relación con el ambiente; la C, la función de

nutrición; la D, la función de reproducción.

Se espera que cada alumno pueda ofrecer nuevos ejem-

plos para hacer referencia a las funciones trabajadas en el

capítulo.

Sistema digestivo

Sistema circulatorio

Sistema locomotor

Sistema urinario

Sistema respiratorio

Sangre

Alimentos

Oxígeno

Desechos

Músculos

Page 11: Naturales 5 bonaerense

Clave de respuestas

© S

antil

lana

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

1010

Organizo mis ideas

La importancia de los alimentos

Página 38 A ver qué sé…

a) y b) La respuesta es abierta y depende de las comidas

que les gusten a los alumnos. Con respecto a por qué los

adultos insisten en que los chicos coman algunas cosas

que no les gustan, es probable que planteen que se debe

a que algunas cosas alimentan más que otras o que al-

gunas cosas alimentan y otras no, sin aclarar demasiado

qué significa esto. Se puede aprovechar para que antici-

pen qué tendrán los alimentos, y vincularlo con que nos

dan energía, nos permiten crecer.

a) Es probable que entre los más saludables los alumnos ubi-

quen la carne, la lechuga y las zanahorias (en la escala del 1

al 5 estos alimentos tendrían un 5), entre los menos saluda-

bles, la manteca y los caramelos (estos alimentos tendrían

un 1), y en una ubicación intermedia, el pan (podría tener un

2 o un 3). Esto se justifica, por ejemplo, por las vitaminas que

tienen las verduras, por la gran cantidad de dulces de los ca-

ramelos y de grasas de la manteca, asociando ambas ca-

racterísticas con que pueden afectar la salud, por ejemplo,

el exceso de dulces provoca caries en los dientes.

b) La respuesta es abierta, según las diferentes elecciones

de los alumnos.

Página 42 A ver cómo voy…

a) Los alumnos podrán contestar que es importante leer

las etiquetas porque aportan información sobre los ali-

mentos, como la composición, es decir, el tipo y cantidad

de nutrientes que contienen, la cantidad de energía que

aportan y también la fecha de vencimiento. Al conocer la

composición podemos elegir los alimentos que vamos a

consumir de acuerdo con nuestras necesidades.

b) En este caso, los alumnos podrán decir que si bien no hay

que consumir lípidos en exceso, eso no significa que no

haya que consumirlos en absoluto, ya que se almacenan

como reserva de energía en el organismo, y podemos

aprovecharlos cuando no tenemos energía disponible

que provenga de los hidratos de carbono.

a) Calcio. b) Proteínas.

Esta respuesta es abierta. Su objetivo es que los alumnos to-

men conciencia de lo que aprendieron hasta ahora y cómo

se modifica su postura frente a algunas actividades de la vida

cotidiana.

Página 43 Ciencia a la vista

Parte A:a) Las papas fritas y la manteca contienen lípidos; las galletitas

“de agua”, la manzana y el pan lactal, no (en realidad, los con-

tienen en ínfimas cantidades que no se pueden detectar).

b) Entre los alimentos que dejaron mancha traslúcida en el papel,

y que por lo tanto contienen lípidos, se podría reconocer cuáles

contienen más cantidad por la mayor intensidad de la mancha en

el papel. Por eso es importante mantener los alimentos envueltos

en el papel el mismo tiempo, para que la mancha no sea más in-

tensa por estar más tiempo el alimento en contacto con el papel.

Parte B: a) El reactivo de Lugol tiene color caramelo. Al agregarlo en los tu-

bos de ensayo comienza a aclararse hasta que finalmente des-

aparece su color y queda solo el color que originalmente tenía

cada muestra. Esto se debe a que se pone en contacto con la vi-

tamina C que contienen.

b) Es interesante analizar con los alumnos la posibilidad de agre-

gar diferentes cantidades de reactivo de Lugol a la muestra.

Si se van agregando gotas de este reactivo hasta que deja de

desaparecer el color, se puede comparar la cantidad de go-

tas agregadas en cada caso. Cuanto mayor es la cantidad de

gotas que se decoloran, mayor es la cantidad de vitamina C

presente en la muestra.

c) Preparar un tubo con agua y reactivo de Lugol permitiría des-

cartar la posibilidad de que, por ejemplo, simplemente con el

paso del tiempo, el reactivo cambie de color, y no por el con-

tacto con la vitamina C.

Páginas 46 y 47 A ver qué aprendí…

Repaso

1.

Los seis alimentos que no pueden faltar son: VERDURAS,

FRUTAS, LECHE, CARNES, HARINAS, HUEVOS.

Los tres alimentos que no deben consumirse en exceso son:

DULCES, FRITURAS, GRASAS.

4

X F Z I O H S M

V E R D U R A S

D N J E A C S A

E V V H T A A N

H O C C G R R I

S W R E U N G R

Q D U L C E S A

F R U T A S N H

F R I T U R A S

Funciones

Sistema digestivo

Sistema respiratorio

Sistema circulatorio

Sistema urinario

Nutrición

Sistema nervioso

Sistema endocrino

Relación y control

Sistema locomotorSostén, protección

y movimiento

femenino

masculino

Sistema reproductor

Repro- ducción

Organismo

Page 12: Naturales 5 bonaerense

Clave de respuestas©

San

tilla

na

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

1111

2. a) Falsa. La actividad física consume energía y las calorías

expresan la cantidad de energía que aporta un alimen-

to. Entonces, si hacemos mucha actividad física, consu-

mimos mucha energía y debemos ingerir alimentos que

aporten más calorías, en comparación con lo que sucede

cuando no hacemos actividad física.

b) Falsa. Los hidratos de carbono y los lípidos aportan ener-

gía, pero las proteínas no. Tampoco aportan energía los

minerales, ni las vitaminas ni el agua.

c) Verdadera.

d) Falsa. Lo importante es no incorporar lípidos en grandes

cantidades y muy seguido, pero sí hay que incorporar lípi-

dos porque aportan reserva de energía.

3.

4. a) Teniendo en cuenta el aporte de energía de los diferentes

nutrientes: 9 kcal los lípidos, 4 kcal los hidratos de carbo-

no y 4 kcal las proteínas, primero hay que calcular cuán-

tas kcal aportan 100 gramos de frutas frescas. Ese valor

se calcula multiplicando las kcal que aporta cada nutrien-

te por la cantidad de ese nutriente en los 100 g de frutas

frescas. Entonces, los hidratos de carbono aportan 68 kcal

(17 x 4) y las proteínas, 4 kcal (1 x 4). En total, 100 g de fru-

tas frescas aportan 72 kcal. Para alcanzar las 4.000 kcal

necesarias en un día, un jardinero que solo se alimenta-

ra de frutas frescas debería consumir 5.555 g de frutas

(4.000 x 100 = 400.000; 400.000/72 = 5.555).

b) De manera similar al caso anterior, primero se calcula

cuántas kcal aporta cada uno de los nutrientes que con-

tienen 100 g de frutas secas. Los hidratos de carbono

aportan 80 kcal (20 x 4), las proteínas aportan 60 kcal

(15 x 4) y los lípidos aportan 540 kcal (60 x 9). En total,

los 100 g de frutas secas aportan 680 kcal. Para alcan-

zar las 4.000 kcal un jardinero que solo se alimentara

de frutas secas debería consumir 588 g de frutas secas

(4.000 x 100 = 400.000; 400.000/680). Por lo tanto, ten-

dría que comer más cantidad de frutas frescas que de

frutas secas, ya que 100 g de las primeras aportan me-

nos energía que 100 g de las segundas.

5. a) Los alimentos light son aquellos que tienen un 30% me-

nos de calorías que el producto normal y son ideales para

hacer dietas. Los alimentos diet son los que no fueron

creados para ser utilizados en dietas de control de peso,

sino en dietas de personas con enfermedades como dia-

betes (alimentos con poca azúcar), hipertensión (alimen-

tos con poca sal). Los primeros se consumen para bajar

de peso, y los segundos, para evitar incorporar sustan-

cias que pueden afectar al organismo en función de la en-

fermedad que se padece.

b) La principal diferencia que se podría encontrar entre la

leche descremada y la entera es que la primera aporta

menos calorías. La leche descremada, entonces, es un

ejemplo de alimento light.

c) El nutriente más abundante en la manteca y el aceite son

los lípidos; en la carne, las proteínas y en la miel, los hidra-

tos de carbono.

6. a) Lucas debería preparar cada día el jugo de naranjas y

consumirlo en el momento.

b) Para comprobar que con el correr de los días el jugo va

perdiendo la vitamina C podría exprimir naranjas y distribuir

el jugo en varios tubos. Luego, agregarle cada día unas

gotas de reactivo de Lugol a un tubo y observar si va per-

diendo el color o no. Se espera que cuando el jugo no con-

tenga vitamina C, no varíe el color del reactivo de Lugol.

Organizo mis ideas

Las transformaciones de los alimentos

Página 48 A ver qué sé…

a) Los alumnos podrán nombrar el amasado, el mezclado y

la cocción, entre otros procedimientos de elaboración.

b) Se espera que puedan homologar el procedimiento de fa-

bricación de fideos con otras pastas y que evidencien sus

saberes en cuanto a este tipo de procesos.

c) Como se trata de pastas frescas, la conservación es en

heladera y durante menos cantidad de días que las pastas

5

Comidas Alimentos que se usan como ingredientes

Principales nutrientes que

aporta

Función que cumple

Bife con ensalada de zanahoria y huevo duro

Carne Proteínas Plástica

Zanahoria Vitaminas, minerales

Permite que se realicen los

procesos vitales y forma parte de estructuras

corporales.

Huevo Proteínas, lípidos

Forma estructuras corporales y reserva de energía.

Helado de vainilla

Leche Proteínas, hidratos de carbono, lípidos

Forma estructuras corporales,

aporta energía de uso inmediato

y reserva de energía.

Clara de huevo Proteínas Forma estructuras

corporales.

Crema de leche Hidratos de

carbono y lípidos

Aporta energía de uso inmediato

y reserva de energía.

Azúcar Hidratos de

carbonoAporta energía de

uso inmediato.

ComposiciónCalidad

Cantidad

Alimentos

Valorenergético

Agua

Vitaminas

Proteínas

Lípidos

Minerales

Hidratos de carbono

NutrientesPlan alimentario Información

nutricional

Aportan energía

Page 13: Naturales 5 bonaerense

Clave de respuestas

© S

antil

lana

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

1212

secas. Esta discusión podría plantearse en el grupo total

como indicador para establecer el grado de conocimien-

to que los alumnos poseen acerca de los métodos de

conservación.

a) Cuando se cortan galletitas lo que cambia es el tamaño

de los trozos, pero no dejan de ser lo que son.

b) Cuando se calienta el azúcar y se forma caramelo cambia

el color (se vuelve marrón) y la consistencia (el caramelo

caliente es líquido y cuando se enfría se endurece).

Página 51 Ciencia a la vista

a) Se espera que los alumnos puedan identificar que la crema

de leche es un alimento elaborado. Es posible que nombren

la sal como natural. Esta es una buena oportunidad para dis-

cutir si la sal es o no considerada alimento. Se pueden reto-

mar discusiones de otros capítulos.

b) Los procedimientos que pueden nombrar son: batir, colar, enfriar.

c) En este caso los alumnos deberán analizar si era indispensa-

ble poner sal o no. En realidad, la producción de manteca no

necesita sal, sino que se la adiciona como condimento úni-

camente. Es posible que se suscite alguna investigación en

cuanto al tema. Los alumnos podrán averiguar que en algunos

casos se usa la sal como forma de conservar mejor la mante-

ca. Es posible que esta investigación sirva como puntapié ini-

cial para los contenidos relacionados con la conservación de

alimentos que se trabajan a continuación en el capítulo.

d) El dibujo del centro representa el agrupamiento de las gotas de

grasa en la crema de leche, y el dibujo de la derecha, el agru-

pamiento en la manteca. Se espera que los alumnos puedan

reconocer cada representación, ya que en la manteca las go-

tas de grasa se encuentran más agrupadas que en la crema.

e) En este caso las gotitas de grasa no cambian en cuanto a su

composición, solo se agrupan. Por lo tanto, se trata de una

transformación física.

Página 52 A ver cómo voy…

a) La cocción permite procesos químicos en los alimentos.

b) Rallar chocolate es una transformación física en la cual la

sustancia no experimenta cambios.

c) Los alimentos naturales se consumen tal como se obtie-

nen de la naturaleza.

d) La manteca es un alimento elaborado y derivado de la leche.

e) El yogur se obtiene gracias a la acción de bacterias sobre

la leche.

Páginas 54 y 55 Temas en imágenes

1. Los alumnos podrán armar dos cuadros similares a estos:

2. Algunas consideraciones que los alumnos pueden incluir en el

decálogo son: no dejar los alimentos fuera de la heladera por mu-

cho tiempo, mantener los alimentos en lugares secos, lavar y es-

terilizar los frascos que se vayan a usar para guardar alimentos.

3. Las personas que preparan mermeladas para vender em-

plearán el método de esterilización, tanto del alimento al

calentarlo como de los envases, para matar a los posibles

microorganismos que presenten.

Páginas 56 y 57 A ver qué aprendí…

Repaso

1. Provienen de otros alimentos: manteca, queso, pochoclo y

caramelo.

2. Las relaciones que se pueden establecer son: A-2, B-4, C-1, D-3.

3. Los procedimientos que se mencionan para la preparación

de milanesas son: batir, rallar, cortar, embeber, mezclar, ca-

lentar, freír. Son transformaciones químicas: batir y freír.

4. a) Falsa. El moho no es beneficioso para los alimentos, ya

que provoca su descomposición.

b) Verdadera.

c) Falsa. La esterilización es un método en el que se usan

elevadas temperaturas para matar a los microorganismos

que provocan la descomposición de los alimentos.

d) Falsa. El salado es uno de los métodos de conservación

de alimentos.

e) Verdadera.

5. Las latas no deben estar golpeadas. Debe controlar las fe-

chas de vencimiento tanto en la carne como en la leche.

6. Si se cortara el suministro eléctrico en la casa, deben tener

en cuenta que los alimentos que se encuentren en la helade-

ra no tienen que perder la cadena de frío, por lo tanto, si el

corte es prolongado, no deben consumirlos. Si no se toma

en cuenta esto, es posible que afecten su salud, porque los

alimentos podrían estar contaminados por microorganismos

que comiencen a crecer debido al aumento de temperatura.

7. a) No. b) Sí. c) Sí. d) No. e) No. f) Sí. g) No. h) No. i) Sí. j) Sí.

Organizo mis ideas

Métodos de conservación primitivos

Salado Congelamiento Ahumado Desecación

Eliminar agua de los alimentos

por agregado de sal.

Disminuir la actividad de los microorganis-mos congelando los

alimentos.

Eliminar agua de los alimentos al exponerlos al

humo.

Eliminar agua de los alimentos

manteniéndolos en un lugar aireado.

Métodos de conservación actuales

Refrige-ración

Enlatado Termoesta-bilización

Pasteuri-zación

Esteriliza-ción

Liofiliza-ción

Mante-ner los

alimentos a 4 ºC.

Mantener los alimen-tos fuera

del contacto con el aire, dentro de

envases de metal.

Similar al enlatado pero en envases flexibles.

Calentar los alimentos y luego

enfriarlos rápidamen-

te.

Calentar los alimentos a 100 ºC y a presión elevada.

Congelar los alimen-tos y luego eliminar el

agua.

ALIMENTOS

Transformaciones

Químicas

Ej: rallar chocolate

Ej: preparar caramelo

Físicas

Naturales

Ej: tomate

Elaborados

Ej: manteca

Page 14: Naturales 5 bonaerense

Clave de respuestas©

San

tilla

na

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

1313

El calor y los materiales

Página 58 A ver qué sé…

a) El Sol envía parte de su calor y lo transmite a personas y

objetos sobre la Tierra, la taza se calienta cuando servi-

mos en ella algo caliente, la lata de gaseosa fría se calien-

ta cuando la sacamos de la heladera, con el termómetro

clínico se mide la cantidad de calor (temperatura) que tie-

ne un cuerpo en un determinado momento.

b) El calor viene de un objeto que se encuentra a mayor tempe-

ratura. En el caso de la taza, proviene de la bebida caliente.

c) En ambos hay transferencia de calor: la taza se calienta

porque la bebida caliente le transmite parte de su calor;

la lata de gaseosa se calienta al estar en contacto con el

aire, porque este le transmite su calor.

d) La cantidad de calor de nuestro cuerpo o de un objeto se

puede medir con el instrumento llamado termómetro.

Se podría fabricar una olla con un material que fuera capaz de

conducir bien el calor hasta la comida, si no, esta nunca se coci-

naría. En este caso elegiría las latas metálicas de conservas. Como

abrigo debería buscar materiales que no conduzcan bien el calor,

de modo que el calor del cuerpo no salga fácilmente al exterior.

Página 60 A ver cómo voy…

Las flechas se deben dibujar indicando que el calor se transfiere

de un cuerpo más caliente a otro más frío. El pasaje de calor cesa

cuando ambos objetos se encuentran a la misma temperatura.

a) Al calentarse, el gas del interior del globo se dilata y lo

hace explotar.

b) Con el calor los pies se dilatan y esto provoca que los za-

patos los aprieten.

Respuesta abierta. Esta consigna es metacognitiva y propo-

ne reflexionar sobre el proceso de aprendizaje.

Página 63 Ciencia a la vista

a) Al calentar el frasco, la gotita sube porque el aire se dilata, al

enfriarlo baja porque se contrae.

b) Si frotamos el frasco con las manos después de sacarlo del

hielo, la gotita volverá a subir.

c) La gotita sube o baja por la dilatación y contracción del aire

al variar la temperatura. Se basa, justamente, en la dilatación

térmica de los materiales.

d) Sí, es un buen modelo de termómetro porque el aire se com-

porta de la misma forma que muchas de las las sustancias

con las que normalmente se fabrican los termómetros.

e) Se tendrían que marcar las alturas que alcanza la gotita a dos

temperaturas conocidas, por ejemplo, 10 y 20 grados centí-

grados. Luego se divide el espacio entre ambas marcas por

el número de grados de diferencia y se señalan los grados in-

termedios. Por ejemplo, en este caso, si la marca de 10 gra-

dos estuviera a 10 cm de la marca de 20 grados, se dividirían

los 10 cm entre 10 (20-10) y se trazaría una línea en cada cen-

tímetro que indicaría 11 grados, 12 grados, etcétera.

Páginas 64 y 65 A ver qué aprendí…

Repaso

1. a) Verdadera. b) Verdadera. c) Falsa. d) Falsa. e) Falsa.

f) Verdadera.

2. El texto se relaciona con el fenómeno de dilatación de los sóli-

dos. Si se pegan juntos los cerámicos, cuando se calienten cho-

carán unos contra otros y se romperán. Si, en cambio, se deja

cada tanto una junta de dilatación (un espacio mayor entre cerá-

micos), se les da la posibilidad de agrandarse sin chocar entre sí.

3. a) El telgopor y el aire acumulado entre las paredes dobles

aísla la casa y evita que el calor generado dentro salga al

exterior cuando hace mucho frío.

b) En el aula hay una temperatura homogénea y luego de un

rato todos los objetos que se encuentran en ella alcanzan

el equilibrio térmico con esa temperatura ambiente.

c) El anillo de metal es buen conductor del calor, por lo que

se calienta más rápido que nuestra mano y nos quema.

4. a) Al calentar el clavo, este no pasa por el agujero. Al enfriar-

lo, sí lo hace.

b) El calentamiento provoca la dilatación del clavo de metal, que

ya no pasará por el orificio hecho a su medida anterior. En

cambio, al enfriar el clavo, este se contrae y vuelve a pasar.

c) Si el clavo fuera de otro metal, habría pasado lo mismo.

Pero si fuera de otro material no metálico, no habría pasa-

do lo mismo. Por ejemplo, si fuera de madera o de plásti-

co, podría quemarse.

5. Conducción

Convección

Radiación

6. Al señor se le aconsejaría colocar la estufa en el piso inferior por-

que, como el aire y el calor tienden a subir por convección, pa-

sarían del piso inferior al entrepiso y calentarían así toda la casa.

Organizo mis ideas

Un ejemplo de resumen puede ser: el equilibrio térmico se

produce cuando un cuerpo de mayor temperatura transfie-

re su calor a otro de menor temperatura. En el momento en

que ambos tienen la misma temperatura, se alcanzó el equili-

brio térmico. Se espera que los alumnos, luego, armen otros

resúmenes similares a este con el resto de los temas del ca-

pítulo: calor y temperatura; dilatación y contracción térmica;

convección, conducción y radiación; etc. Será enriquecedor

favorecer la discusión entre ellos acerca de las diferentes ma-

neras de encarar la tarea para que cada uno encuentre la for-

ma más adecuada a su propia comprensión.

El calor y las transformaciones de los materiales

Página 66 A ver qué sé…

Se espera que los chicos puedan diferenciar, a partir de

sus experiencias previas, la mayoría de los objetos que se

6

7

Transferencia del calor por ascenso

junto con un gas o un líquido.

Transferencia del calor mediante ondas.

Transferencia del calor a través de un

material.

Page 15: Naturales 5 bonaerense

Clave de respuestas

© S

antil

lana

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

1414

muestran. Los materiales se clasifican en: Sólidos: útiles es-

colares, globos, hilos, vasos y copas, hielo, tazas, cucharita,

diario, bandeja, medialunas, plato, jarra, tren, vías. I Líquidos:

café, jugo, leche. I Gaseosos: aire contenido en los globos,

humo del tren, aire dentro de la masa de la medialuna.

Se debe inducir a los chicos a expresar sus argumentos intuitivos

acerca de los estados de agregación. Podrán concluir, por ejem-

plo, que los sólidos son los materiales duros, los líquidos se vuel-

can y los gases “vuelan”. Al momento de tener que mencionar

características comunes podrán decir, por ejemplo, que tanto los

sólidos como los líquidos tienen volumen propio. Si no surgiera en

este momento, luego en el capítulo se encontrará la respuesta.

Página 70 A ver cómo voy…

a) La esponja es un sólido que contiene aire en su interior.

Cuando se introduce en agua esta ocupa el lugar del aire

y el volumen de la esponja aumenta un poco. Cuando la

apretamos el agua sale y esos espacios vuelven a ser ocu-

pados por el aire, mucho más liviano, por lo que la espon-

ja se hace un poco más pequeña y resulta más liviana.

b) Los líquidos tienen un volumen constante, por lo que cuan-

do el envase se rompe se formará un charco cuyo volumen

no puede ser mayor que el del líquido que estaba en el en-

vase. Un gas, en cambio, ocupa todo el espacio disponi-

ble según el lugar donde se encuentre. El olor del asado se

expande en el aire y podemos percibirlo hasta que la con-

centración de partículas no sea menor que lo que puede

percibir nuestro olfato.

Respuesta abierta. Esta pregunta es metacognitiva y propo-

ne reflexionar sobre el proceso de aprendizaje.

Página 73 Ciencia a la vista

b) Al calentar el agua hasta los 100 C entra en ebullición y se

produce la vaporización (pasaje de estado líquido a gaseoso)

del agua, a vapor. Cuando el vapor choca con una superficie

fría ocurre la condensación (pasaje de estado gaseoso a lí-

quido) y el vapor pasa nuevamente a ser agua.

c) Se reproduce la parte del ciclo del agua en que esta se eva-

pora de los cuerpos de agua por el calentamiento que pro-

duce el Sol, sube, se condensa parcialmente en gotas muy

pequeñas que forman las nubes y luego, al llegar a zonas

más frías de la atmósfera, se acelera la condensación, las go-

tas se hacen más grandes y caen en forma de lluvia.

Páginas 74 y 75 A ver qué aprendí…

Repaso

1. a) Falsa. A temperatura ambiente el aceite es un líquido por-

que no tiene forma definida.

b) Verdadera.

c) Falsa. Debemos considerar el tamaño, ya que el volumen

de líquido no se modifica; no nos importa la forma porque

el líquido se adapta al recipiente.

d) Falsa. El gas tiende a ocupar todo el espacio disponible,

por lo que al abrir un orificio sale rápidamente al exterior.

e) Falsa. Los líquidos son incompresibles.

f) Falsa. El helio se comprime pero el globo, un sólido, no lo

hace.

2.

3.

4.

5. a) El dióxido de carbono en estado sólido pasa al estado ga-

seoso por volatilización.

b) Cuando los meteoritos caen sobre el océano se produce

la evaporación del agua.

6. a) El estaño se funde, pero el bronce no.

b) Una vez que la soldadura se enfría el estaño se solidifica

y los caños quedan pegados.

c) Para soldar un material con otro que sirve de soldadura

se tiene que tener en cuenta que la temperatura a la que

funde la soldadura sea menor que aquella a la que funde

el material que se quiere unir.

7. a) El aroma de un perfume se puede percibir porque el lí-

quido va pasando al estado gaseoso y el gas llega hasta

nuestras fosas nasales. Se produce una evaporación.

b) Se percibe más aroma cuando se usa más perfume por-

que cuanto más perfume se evapora habrá más sustan-

cia gaseosa expandiéndose por el ambiente.

c) Una persona que usa un perfume va dejando su aroma a

medida que pasa porque, como todos los gases, tiende

a ocupar el mayor espacio posible.

Organizo mis ideas

Se espera que los alumnos puedan detectar los temas prin-

cipales para luego plasmar la información en un cuadro

Propiedad Sólido Gaseoso Líquido

Adopta la forma del recipiente que lo contiene. No Sí Sí

Ocupa todo el espacio disponible. No Sí No

Es compresible. No Sí No

Tiene volumen propio. Sí No Sí

Sólido.

fusión

solidificación condensación

vaporización

volatilización

sublimación

Líquido.

Gas.

Estado inicial

Estado final

Cambio de estado

Al dejar un helado fuera de la heladera, se derrite.

Sólido Líquido Fusión

Al destapar un frasco de alcohol, se evapora y se puede percibir su olor.

Líquido Gaseoso Vaporización

Si se guarda un sachet de leche en el congelador, el líquido se congela.

Líquido Sólido Solidificación

Con el tiempo, una bolita de naftalina se volatiliza hasta desaparecer.

Sólido Gaseoso Volatilización

Se empañaron los vidrios. Lo que pasó es que el vapor de agua se condensó y se formaron gotitas.

Gaseoso Líquido Condensación

Page 16: Naturales 5 bonaerense

Clave de respuestas©

San

tilla

na

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

1515

comparativo que refleje las similitudes y diferencias. Es im-

portante que luego compartan la información con sus com-

pañeros con el fin de enriquecer el trabajo.

Las fuentes del sonido

Página 76 A ver qué sé…

a) La tapa de la olla suena más fuerte porque el repasador

es blando y amortigua el golpe, y la tapa de la olla es rígi-

da y vibra con el golpe.

b) En el primer caso, sigue sonando con un sonido metálico.

En el segundo, no sigue sonando. Esto se debe a que el me-

tal continúa vibrando después del golpe y la madera, no.

c) En el primer caso la copa queda sonando, y en el segun-

do, no. Esto se debe a que en el primer caso, la copa

queda vibrando después del golpe. En el segundo caso,

la mano impide que la copa quede vibrando.

Respuesta abierta que dependerá de los sonidos que escu-

chen y describan los alumnos.

Página 78 A ver cómo voy…

a) Verdadero. La vibración es la que provoca el sonido.

b) Falso. Si el agua está quieta, no produce sonido.

c) Falso. El movimiento tiene que ser vibratorio para que haya

sonido.

d) Verdadero. Muchas veces la vibración es visualmente im-

perceptible aunque escuchemos su sonido.

Esta pregunta es metacognitiva y propone reflexionar sobre

el proceso de aprendizaje.

Página 79 Ciencia a la vista

2.º La vibración del hilo tenso es la que hace que el teléfono funcione.

3.º El teléfono no funciona porque al no estar tenso, el hilo no vibra.

4.º La transmisión se da perfectamente en ambos casos.

Páginas 82 y 83 A ver qué aprendí…

Repaso

1. a) Suena más fuerte la cacerola porque vibra, mientras que

el repasador amortigua el golpe.

b) Suena más fuerte en el primer caso, porque la copa vibra

más cuando está vacía.

c) El orden de los sonidos del más fuerte al más débil es: 1.º

colgada de un piolín atado a su manija, 2.º apoyada sobre

una mesa, 3.º sostenida firmemente de los bordes por un

amigo. La variación del sonido tiene que ver con que hay ma-

yor vibración cuanto más libre es el movimiento de la tapa.

2. a) Se escucharía el golpe del badajo pero no el sonido de la

campana, ya que no vibraría por estar sostenida.

b) Se escucharía el sonido de la campana pero más apaga-

do, ya que la goma espuma disminuye la vibración que

puede imprimir el badajo.

3. El autor quiere decir que las clases más desprotegidas tienen

más dificultades para ejercer sus derechos. Y las campanas

de palo representan el poco alcance que tienen sus recla-

mos. Una campana de madera sonaría más apagada.

4. a) y b) Las vocales son sonoras, su sonido se produce por

vibración de las cuerdas vocales. Las letras s, z y p, en

cambio, son sordas, las cuerdas vocales no vibran y solo

intervienen las diferentes partes de la boca. Lo mismo

ocurre con la k y la f.

c) Respuesta abierta. Los alumnos deberán describir qué

sucede al probar la pronunciación de diferentes letras.

5. Si se intentara tocar las cuerdas de una guitarra que no es-

tuvieran tensas, no sonarían, ya que la tensión es lo que las

hace vibrar.

6. a)

b) Se espera que los chicos puedan redactar definiciones

propias luego de elaborar lo estudiado en el capítulo. Se

presentan ejemplos de cada una:

Ruido: sonido no deseado que molesta en la recepción

de otros sonidos. I Vibración: movimiento repetido alre-

dedor de una posición de equilibrio. I Acústica: rama de

la física que estudia el sonido. I Silencio: falta de sonido.

7. a) Mu - vaca, achís - estornudo, toc - golpe, miau - gato,

talán - campana, pío - pajarito, sh - sonido usado

para pedir silencio, clap - palmas, pum - golpe, guau

- perro, paf - golpe, cachetada, gluglú - bajo el agua,

tictac - reloj, clic - metálico, be - oveja, tintín - metálico,

quiquiriquí - gallo, ring - timbre, cof - tos, clocló- gallina.

b) Las onomatopeyas que podrían mencionar los alumnos

como ejemplos de fuentes sonoras artificiales son la del

timbre o la del reloj.

Organizo mis ideas

El sonido se produce por la vibración de un objeto y lo perci-

bimos con nuestros oídos.

El silencio es la ausencia de sonidos.

El viento y los truenos son ejemplos de fuentes sonoras naturales.

Los instrumentos musicales son ejemplos de fuentes sono-

ras artificiales.

Para generar parte de los sonidos del habla, los seres huma-

nos utilizamos las cuerdas vocales.

Algunos insectos, como grillos y mosquitos, utilizan sus alas

para generar sonido.

La acústica es la rama de la ciencia que estudia el sonido.

Para que una sala tenga buena acústica a veces es preciso

absorber los sonidos molestos.

Las telas gruesas y materiales como el telgopor y la goma es-

puma tienen buena capacidad de absorción del sonido.

8

S O N I D O

T

I

C

A

Ú

C

ARBI

U

R

D

O

V

E

L

IC Ó N

S

C

I

O

Page 17: Naturales 5 bonaerense

Clave de respuestas

© S

antil

lana

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

1616

La propagación del sonido

Página 84 A ver qué sé…

a) Cuando un sonido es débil acercamos la mano al oído para

poder dirigir las ondas sonoras hacia él y así escuchar mejor.

b) El ruido de una explosión rompe los vidrios cercanos aun-

que no se golpeen porque la violenta vibración del aire los

sacude con tal intensidad que se rompen.

c) Un buzo puede percibir el ruido del motor de un barco por

la vibración que este genera en el agua.

a) El fenómeno del eco puede ocurrir en las montañas o

frente a una pared alta.

b) No hay eco en todas partes porque el sonido debería re-

flejarse y volver a nosotros, en el momento apropiado,

para poder oírlo. Frecuentemente se dispersa u otros so-

nidos tapan el posible eco que pudiera formarse.

c) Cuando se habla alto en una habitación vacía el sonido

retumba, en un fenómeno llamado reverberación, que

consiste en que los ecos que se forman se superponen

con otros ecos, e incluso con lo que se está hablando.

Página 88 A ver cómo voy…

a) Verdadero. Por ese motivo se oye el timbre.

b) Falso. La luz sí se transmite en el vacío, pero el sonido no,

ya que se necesita un medio para propagar las vibraciones.

c) Verdadero. Esa reflexión es la que explica el fenómeno del eco.

d) Falso. En el aire el sonido se propaga en todas direccio-

nes, como una esfera que aumenta de tamaño.

e) Verdadero. Por ejemplo, el murciélago.

Respuesta abierta. Esta pregunta es metacognitiva y apunta a

que los alumnos hagan una autoevaluación sobre lo aprendido.

Página 89 Ciencia a la vista

Cada alumno obtendrá sus propios resultados, se esbozan

aquí posibles respuestas.

1.º El sonido se percibe débilmente en el primer caso, y en

forma nítida en el segundo.

2.º El sonido casi no se percibe en el primer caso, y sí en el

segundo, a pesar del ruido ambiente.

3.º Claramente, la transmisión del sonido es más eficiente en

la madera que en el aire, por nitidez, alcance e intensidad.

Páginas 90 y 91 Temas en imágenes

1. Es así porque la señal se transmite a la velocidad de la luz.

2. Un aparato de radio no recibe sonidos que viajan por el aire

sino señales de radio, que son otro tipo de ondas.

3. La invención del telégrafo sin hilos contribuyó a la aparición

de la radio porque mostró la manera de enviar señales sin ne-

cesidad de un cableado entre el emisor y el receptor.

4. Al igual que con la radio, no escuchamos realmente la voz de la

persona con la que hablamos por teléfono, sino una voz artificial

generada por los circuitos del aparato a partir de la señal recibida.

Páginas 92 y 93 A ver qué aprendí…

Repaso

1. a) El reloj despertador se vería dentro de la campana de vi-

drio, porque la transparencia de esta permite el paso de

la luz.

b) Si se logró hacer vacío dentro de la campana no se escu-

charía el sonido del despertador porque en el vacío no se

transmiten las vibraciones.

2. Los ecos aparecen antes de que se termine de hablar porque

no habría esa distancia mínima de 10 m que le da tiempo al

eco para llegar cuando ya callamos.

3. Sí, es correcto el recurso del director, pues al haber vacío al-

rededor ningún sonido podría llegar al astronauta.

4. Los desplazamientos señalados con las flechas verde y roja

son los que corresponden a los movimientos de los conos del

parlante.

5. a) Las onditas amarillas y rosadas representan el sonido

emitido, y las marrones, el eco recibido.

b) Para preparar un mapa del fondo marino se mide el tiem-

po que tarda el sonido en ir y volver al sonar y, cono-

ciendo su velocidad, se calcula la profundidad del fondo

marino en ese lugar. Luego, el barco cambia de posición

y se repite el procedimiento.

c) Los murciélagos y los delfines son ejemplos de sistemas

similares al sonar.

6. El que estaba más cerca de la lancha es el pescador. Como

el sonido viaja más lento en el aire que en el agua, el buzo

puede estar más lejos y enterarse al mismo tiempo.

7. Vemos los rayos y luego los oímos porque la velocidad de la

luz es muchísimo mayor que la del sonido.

8. Respuesta abierta a cargo de los alumnos. Con esta activi-

dad se busca que los alumnos realicen un trabajo de investi-

gación que les permita discutir diferentes ideas y opiniones.

Se espera que puedan concluir, por ejemplo, que por razo-

nes físicas, el medio acuático, en comparación con el aire, es

muy adecuado para la comunicación mediante sonidos.

Organizo mis ideas

La música llega al mismo tiempo a la lámpara que a la rata.

La guitarra genera sonido porque sus cuerdas vibran. El ban-

doneón genera sonido porque vibra el aire que pasa a través

de su fuelle.

El empleado en la boletería no oye la música porque la ventana

cerrada impide que la vibración del aire llegue a sus tímpanos.

La antena del celular de la señora capta ondas que luego se

convierten en sonidos emitidos por el auricular.

El sonido del silbato del guarda llegaría antes al perro que al

señor del maletín, pero no se notaría la diferencia porque su

velocidad es de 340 m/s.

La música que se refleja en las paredes y el techo provoca

reverberación.

La rata en la vía puede percibir la llegada del subte antes que nadie.

Si al mismo tiempo se tocara la campana y se encendiera la

lámpara, a lo lejos se vería primero la lámpara.

Cuando llega el subte, su sonido es tan intenso que se con-

vierte en ruido.

9

Page 18: Naturales 5 bonaerense

Clave de respuestas©

San

tilla

na

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

1717

La diversidad de sonidos

Página 94 A ver qué sé…

a) Para que el sonido suene más fuerte o más débil hay que

utilizar la perilla del volumen.

b) Para que el sonido suene más grave o más agudo hay

que utilizar la perilla del tono.

c) La perilla restante sirve para enviar los sonidos hacia los

parlantes ubicados a la izquierda o hacia los ubicados a

la derecha.

a) Esas perillas sirven para resaltar los sonidos graves y los

agudos, es decir, el tono.

b) Para que suene más “apagado” hay que ubicar ambas

perillas en el nivel mínimo. Para que suene más “brillante”

y “cristalino”, hay que ubicarlas en el máximo.

c) Para graves mínimos y agudos máximos, el violín. Y el

bombo, para la otra configuración de perillas.

Página 96 A ver cómo voy…

a) Verdadero. La amplitud de la vibración es la que da la

sensación de volumen.

b) Falso. A mayor volumen, más se desplaza el cono del

parlante.

c) Falso. La diferencia de 30 dB entre ambos sonidos equiva-

le a que un sonido sea 10 x 10 x 10 = 1.000 veces el otro.

d) Verdadero. Considerando el sonido ambiente de una bi-

blioteca como el de una habitación silenciosa, le corres-

ponderían unos 30 dB. La diferencia de 90 dB con el

sonido de un local bailable equivale a 10 x 10 x 10 x 10 x

10 x 10 x 10 x 10 x 10 = 1.000.000.000 de veces.

e) Verdadero. Se lo utiliza para que tengan la suficiente po-

tencia los sonidos que emite el parlante.

f) Falso. Las cuerdas pueden sonar igual, ya que vibran.

Pero lo hacen con un sonido muy débil.

Página 99 Ciencia a la vista

a) A medida que se disminuyen las longitudes de la tanza y

de la columna de aire, el sonido es cada vez más agudo.

b) Lo anterior se explica porque al disminuir las longitudes la

frecuencia aumenta, porque la vibración es más rápida.

Páginas 100 y 101 A ver qué aprendí…

Repaso

1. La frase correcta es: “Vibran con igual altura y distinto volumen”.

2. a) Por ejemplo, el sonido de una conversación normal con

respecto al de una habitación silenciosa, ya que la dife-

rencia es de entre 20 y 30 dB.

b) Respuesta abierta. Dependerá de lo que cada alumno

perciba como ruido.

c) Podría ser el sonido del despegue de un avión.

3. a) Agudos, b) Resonancia, c) Frecuencia, d) Timbre,

e) Decibel, f) Armónicos.

4. a) Sonidos graves: la bocina de un barco o un trueno.

Sonidos medios: la bocina de un auto o el ladrido de un

perro de tamaño mediano.

Sonidos agudos: una silbatina o un cristal que se rompe.

b) Decimos que un sonido agudo es alto porque lo es su fre-

cuencia, no porque tenga mucho volumen.

5. Se puede distinguir cada canción porque, a pesar de ser la

misma, cada instrumento tiene su timbre característico, y eso

es lo que los identifica.

6. La expresión más “finita” significa que suena más aguda.

7. a) El xilofón es un instrumento de percusión.

b) Las tablillas deben golpearse desde la más larga hasta la

más corta para que los sonidos vayan desde los más gra-

ves hasta los más agudos.

8. Cuando pasa por la calle un camión haciendo mucho ruido,

los vidrios de las ventanas llegan a vibrar porque entran en re-

sonancia con la frecuencia del sonido que hace el camión.

9. a) Cuando el diapasón vibra, su sonido se oye mejor si está

apoyado en la base que si se lo sostiene por el mango, ya

que su base hace de caja de resonancia.

b) Esto sucede porque el segundo diapasón entra en reso-

nancia con el primero –ya que son de igual frecuencia– y la

pelotita, que está apoyada en él, rebota con la vibración.

c) Para detectar el diapasón diferente basta con elegir cual-

quier diapasón y golpearlo. Si es el diferente, solo él vibrará;

si no lo es, el que no vibre de los otros dos será el diferente.

10. El orden de las cuerdas desde la que suena más aguda has-

ta la más grave es: 1.º d, 2.º a, 3.º e, 4.º b, 5.º c.

Organizo mis ideas

Respuesta abierta a cargo de los alumnos. Se trata de una

actividad en la que deberán aplicar los conocimientos traba-

jados en el capítulo para poder diseñar el instrumento.

La audición

Página 102 A ver qué sé…

a) Cuando nos tapamos los oídos se oye muy poco o casi

nada porque las ondas sonoras prácticamente no llegan

a los tímpanos.

b) Para oír mejor habría que utilizar un embudo con el pico

apuntando hacia el orificio de la oreja, para que la forma

cónica del embudo concentre las ondas sonoras hacia el

tímpano.

Las imágenes que deberían marcarse con una cruz roja son:

el despegue del avión y del cohete. Y con una cruz azul: el

tránsito, el local bailable y el recital de rock.

Página 104 Ciencia a la vista

Parte A:a) Los dedos perciben la vibración del parche de globo.

b) Este modelo representa la primera parte del oído, donde el

embudo hace las veces de oreja, la botella es el conducto au-

ditivo y el parche de globo es el tímpano.

10

11

Page 19: Naturales 5 bonaerense

Clave de respuestas

© S

antil

lana

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

1818

Parte B:a) Al golpear con el martillo la base de la botella, el agua se

mueve en el interior de esta y balancea a los piolines.

b) Este modelo representa la parte más interna del oído, donde

el martillo hace las veces del hueso estribo, que transmite la

vibración a la botella. Esta última representa una parte de

la cóclea. El agua simula el líquido coclear que se mueve con la

vibración y los piolines representan las células con forma de

pequeños pelos que enviarán los impulsos nerviosos.

Página 105 A ver cómo voy…

a) Verdadero. Hacen de embudo para dirigir las ondas so-

noras dentro del conducto auditivo.

b) Falso. Si el sonido avanza horizontalmente, el aire vibra en

la misma dirección, pues esa es la forma en que se trans-

mite la vibración.

c) Falso. El tímpano transmite su vibración a los huesecillos

del oído, y de allí pasa a la cóclea.

d) Verdadero. Mediante la vibración de ese líquido los pelos

microscópicos de la cóclea transmiten los impulsos ner-

viosos al nervio auditivo.

e) Falso. La sensación sonora se genera en el cerebro, luego

de recibir los impulsos nerviosos a través del nervio auditivo.

f) Falso. Después de los 120 dB el sonido que se oye provo-

ca dolor, pero no deja de oírse.

g) Verdadero. Al aumentar el volumen aumenta la energía

sonora, por lo que el oído se ve expuesto a mayores es-

fuerzos y se incrementa la probabilidad de daños.

h) Verdadero. Son dos de los tipos de fuentes sonoras que

más contribuyen a esa contaminación.

i) Falso. Si bien los auriculares son chiquitos, pueden ge-

nerar el volumen suficiente para producir riesgo de daños

auditivos, ya que su sonido se dirige directamente al tím-

pano sin pérdidas por dispersión ni absorción.

Páginas 108 y 109 A ver qué aprendí…

Repaso

1. a) Oreja, conducto auditivo, tímpano, martillo, yunque, estri-

bo, cóclea.

b) El nervio auditivo no se incluyó en el punto a) porque no

recibe vibraciones sino impulsos nerviosos.

2.

3. a) Martillo, b) Yunque, c) Conducto, d) Estribo, e) Cilios,

f) Nervio, g) Cóclea, h) Tímpano.

4. a) La otra función del oído es importante, ya que se relacio-

na con el equilibrio.

b) Si esta función se ve afectada, podría tener como conse-

cuencia la pérdida del mantenimiento del equilibrio.

5. a) Los humanos podemos oír en un rango de frecuencia de

20 Hz a 20 kHz.

b)

6. a) La expresión límite de audición se refiere a la mínima

frecuencia de un sonido que una persona es capaz de

escuchar.

b) La importancia de este tipo de prueba es que permite

reconocer si se tiene alguna dificultad para oír ciertos

sonidos.

c) Los resultados pueden variar con el tiempo, ya que las

personas vamos perdiendo la capacidad de oír ciertos

sonidos. De hecho, los bebés pueden oír sonidos de de-

terminadas frecuencias que los adultos no oyen.

7. Algunos ejemplos de sonidos fuertes que pueden mencionar

los alumnos son: bocinazos, sonidos de sirenas, explosiones,

ruidos de turbinas de aviones.

8.

Organizo mis ideas

Los alumnos podrán armar textos como los siguientes:

Para la primera ilustración: el sonido entra por la oreja, recorre el

conducto auditivo y hace vibrar al tímpano. El tímpano transmi-

te la vibración al martillo y este, a los huesos yunque y estribo. El

estribo transmite la vibración a la cóclea, que tiene un líquido in-

terno que mueve unos cilios, y el movimiento de estos envía im-

pulsos nerviosos al cerebro, a través del nervio auditivo.

Para la segunda ilustración: escuchar sonidos fuertes puede

dañar nuestros oídos, en forma temporal y hasta permanen-

te. Inclusive, el uso de auriculares debe hacerse controlando

el volumen de la música.

A H C L

F J G B

I E K D

Sonidos audibles para seres humanosInfrasonidos Ultrasonidos

Graves Medios Agudos20 hz 20.000 hz

P R S P Ñ P H P O Y L T L M Q M

N R M C O A H Z N H Y L D G C E

K O N H D Ñ E Q R O D M M Z U C

C L I X I M R H A D H O Y C O O

N O I D N U T J Q I T D Ñ Y V L

U D N O O Ñ Z K F U Ñ I F M O O

J - K T S A I F Q R F N H W D C

M E Q P A J O I M A C O L X C A

M D F Y R M Y O L K Q S F O R L

L - H C T Z I A U Q Q A L M Z I

R L U E L U W N O H Ñ R V N Z Z

C A O X U D N L A D B F C L Q A

B R F Q J K C S N C B N A F V C

I B Z R T I U Q V K I I P Q G I

U M I S C M I Z U L Ñ Ó A X I Ó

W U F M O S J R H N T A N R C N

Page 20: Naturales 5 bonaerense

Clave de respuestas©

San

tilla

na

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

1919

La esfericidad de la Tierra

Página 110 A ver qué sé…

El objetivo de esta actividad es explorar los preconceptos o

ideas intuitivas de los alumnos sobre la forma del planeta Tierra.

Es posible que los alumnos ubiquen correctamente a ambos

astronautas, es decir, al que flota en el espacio exterior y al

que está parado sobre la superficie terrestre. Sin embargo,

es interesante explorar la justificación de tales ubicaciones y

si las relacionan con la gravedad. Sería deseable que se reto-

maran las respuestas al terminar de trabajar el capítulo para

que los chicos puedan evaluarse.

Página 112 A ver cómo voy…

a) Al “hacer navegar” hacia arriba un fósforo sobre una naran-

ja, lo último que se deja de ver es su punta de arriba.

b) Si sigue navegando hacia la misma dirección, se vuelve al

punto de partida.

c) Esta actividad se relaciona con, por ejemplo, el viaje de

Sebastián Elcano, que dio la vuelta alrededor de la Tierra.

Al hacer girar el fósforo hay un momento en el que se deja

de ver, de esta manera se demuestra la esfericidad de la

Tierra. Es similar a lo que sucede con los barcos que se

dejan de ver en el horizonte.

Página 113 Ciencia a la vista

Si se arman varios grupos, por cada uno resultará un hori-

zonte diferente, algo que permitirá identificar semejanzas y

diferencias; otra alternativa es que el mismo grupo construya

horizontes en diferentes lugares.

Páginas 116 y 117 A ver qué aprendí…

Repaso

1. Este ejercicio tiene dos objetivos. El primero es metacognitivo,

es decir que intenta que el propio alumno pueda comparar sus

conocimientos iniciales con los adquiridos a partir del trabajo

con este capítulo. El segundo intenta que ponga su mirada no

solo en las diferencias de sus formas sino también en las ca-

racterísticas de sus superficies y, sobre todo, de qué manera

categórica influyeron y superaron cualquier teoría científica.

2. La secuencia describe la desaparición de una nave sobre el

horizonte. La nave va desapareciendo lentamente. Esta des-

cripción se relaciona con el hecho de que la Tierra es es-

férica, porque si fuera plana los barcos no aparecerían o

desaparecerían en el horizonte en forma gradual.

3. a) La Tierra se veía azul claro porque está cubierta por la at-

mósfera, un conjunto de gases que, junto al 70% de su

gran superficie cubierta por el agua de los océanos, le

dan, desde lejos, esa apariencia. Las manchas blanque-

cinas son nubes.

b) La forma de la Tierra es geoide porque indica la forma

propia del planeta. No es una esfera perfecta sino que el

diámetro polar, o sea la línea imaginaria que pasa por el cen-

tro de la esfera de un polo al otro, es 43 mil metros me-

nor que su “cintura” o diámetro ecuatorial (algo así como

430 cuadras menos de las que caracterizan a la Ciudad

de Buenos Aires).

4. a) Falsa. Todos los cuerpos se atraen entre sí con una fuer-

za de atracción que se denomina fuerza de gravedad.

b) Verdadera.

c) Verdadera.

d) Falsa. Como la Luna tiene menos materia que la Tierra,

la fuerza de atracción entre los cuerpos (fuerza de grave-

dad) también es menor.

5. a) Yuri Zaistev dijo que el peso del traje espacial no tiene im-

portancia porque si la gravedad es mínima, no tiene peso,

dado que este disminuye cuando la gravedad disminuye.

b) Como el peso es consecuencia de la atracción ejercida en-

tre ese planeta y vos, si el otro planeta tiene menos materia

que la Tierra, la fuerza de atracción entre los cuerpos tam-

bién sería menor y viceversa. En consecuencia, tu peso

tendría otro valor diferente del que tiene en la Tierra.

c) La fuerza de gravedad es la que causa que los objetos se

caigan sobre la Tierra.

6. a) En esta consigna se busca generar un foro de discusión.

Se puede considerar correcta si los chicos responden,

por ejemplo: “Todo lo que no esté sujeto, estaría disper-

so”, “Si todo lo que se cae naturalmente al suelo, como

la lluvia, no se cayera, no existiría la lluvia. El agua estaría

homogéneamente dispersa por todos lados. Entonces no

habría nubes, ni lagos ni mares, por ende no habría vida,

tal como la conocemos”, “El polvo, la tierra, las pelusas

que se depositan sobre las superficies estarían dispersas

en el aire dificultando la visión y hasta la respiración”.

b) La respuesta inicial es negativa. Los chicos pueden respon-

der, por ejemplo, que la hamaca no hamacaría; en el tobo-

gán no se podría bajar salvo que uno se impulsara; el sube

y baja no bajaría ni subiría si no se lo impulsara.

c) Existen dispositivos especiales que permiten evacuar de-

sechos y bañarse sin salpicar todo alrededor, comida

sólida, etcétera. En otros tiempos se usaban duchas es-

peciales pero luego se prefirieron los paños húmedos en-

jabonados para lavarse. No se lavan los platos sucios, los

recipientes de comida usados se trituran y simplemen-

te se desechan. Estos son algunos de los puntos que se

pueden mencionar. Se sugiere consultar las siguientes

páginas de Internet para mayor información:

http://www.esa.int/esaKIDSes/SEM23AXJD1E_

LifeinSpace_0.html I http://ciencia.nasa.gov/science-

at-nasa/2005/12aug_eft/ I http://www.abc.com.py/

nota/144788-la-nasa-anima-a-los-ninos-a-aprender-

con-buzz-lightyear/ I http://www.portalplanetasedna.

com.ar/humanos_espacio.htm I http://www.fundacion.

telefonica.com/es/at/ingravidos/paginas/c4.html

Nota para el docente: algunas páginas requieren adapta-

ción de la información para los alumnos.

d) Si existieran ríos y mares, no existiría la posibilidad de “ba-

jar a favor de las pendientes”. Probablemente habría infini-

dad de lagos formados por aguas subterráneas.

12

Page 21: Naturales 5 bonaerense

Clave de respuestas

© S

antil

lana

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

2020

(entre el 21 de junio y el 21 de diciembre), se hace cada

vez más corta, y durante la otra mitad del año, se alarga.

Al cabo de doce meses, el proceso empieza de nuevo

porque el Sol, visto desde la Tierra, no repite el mismo ca-

mino todos los días. Durante el invierno, el día es más cor-

to porque el Sol está menos tiempo en el cielo; su camino

en el cielo es más corto que durante el verano y está más

bajo en el horizonte (por eso hace sombras más largas).

Páginas 126 y 127 A ver qué aprendí…

Repaso

1. a) Verdadera.

b) Verdadera.

c) Falsa. Cuando la Luna se ve toda iluminada está en la fase

de Luna llena.

d) Verdadera.

e) Verdadera.

f) Falsa. A medida que van perdiendo calor, las estrellas se

tornan rojas.

g) Falsa. La Vía Láctea es el nombre de la galaxia que incluye

al Sol.

2. Con algunos amigos construimos una nave espacial y nos

fuimos de viaje por el Universo. Cuando quisimos volver no

pudimos encontrar el camino de regreso. ¿Por dónde co-

menzaríamos a buscar la Tierra? Lo primero que pensamos

fue en ubicar a nuestra estrella más cercana, el Sol. Pero la

verdad es que, desde el espacio, resulta casi imposible ha-

llarlo porque es solo un puntito más entre los millones y mi-

llones de puntitos brillantes. ¿Cómo podríamos distinguir las

estrellas de los planetas?

Sabíamos que las estrellas son luminosas mientras que los

planetas son opacos aunque los podemos ver iluminados,

pero eso no nos ayudó mucho. Quizás un mapa estelar hu-

biera sido más útil para ubicarnos. De pronto me desperté y

vi la Luna llena asomando por mi ventana y entonces me que-

dé más tranquila.

3. Como los alumnos trabajaron en ciencias el movimiento apa-

rente del Sol, la idea de este punto es sencillamente que

recreen ese movimiento con sus propios cuerpos aprove-

chando el horizonte completo armado. En el capítulo 14 se

cuestionará lo que se ve desde la Tierra para pasar a estudiar

el movimiento de rotación y traslación terrestre.

4.

Organizo mis ideas

Los alumnos deben identificar como palabras claves, por

ejemplo: babilonios, cielo, hindúes, océano, aztecas, cuadra-

dos. Luego, cada uno seleccionará las que considere más di-

fíciles. La idea es que después de tener los significados de

cada una de ellas, puedan armar su propio glosario.

Los movimientos aparentes de los astros

Página 118 A ver qué sé…

El objetivo de esta actividad es explorar los preconceptos o

ideas intuitivas de los alumnos sobre el movimiento de los as-

tros en el cielo y su aparente cambio de forma, trayectoria y altu-

ra. Sería deseable que se retomaran las respuestas al terminar

de trabajar el capítulo para que los chicos puedan evaluarse.

a) Las estrellas y el Sol.

b) Se lo ve moverse siempre en la misma dirección.

c) Es un astro iluminado y rocoso que cada tanto desapare-

ce del cielo nocturno.

d) Las estrellas no se ven porque el Sol las tapa con su brillo.

Página 120 A ver cómo voy…

Esta consigna es metacognitiva y propone reflexionar sobre

el proceso de aprendizaje.

Página 121 Ciencia a la vista

a) Al mediodía la sombra es más corta.

b) Con cada una de las circunferencias se observa que coinci-

den los tamaños de las sombras de la mañana y de la tarde.

c) El Sol se traslada de izquierda a derecha, y tiene una tra-

yectoria curva.

d) No, la sombra “se mueve” para el lado contrario del Sol.

e) Por la mañana temprano, cuando sale el Sol, la sombra

es bien larga y se acorta a medida que pasan las horas

hasta llegar al mediodía, luego comienza a alargarse nue-

vamente hasta que el Sol desaparece por el horizonte.

f) Para que las sombras cambien de tamaño y lugar, lo que

cambia es la altura y la posición del Sol.

g) Cuando el Sol se encuentra en su máxima altura (culmi-

nación superior) es el momento exacto del mediodía. La

sombra es menor cuando la altura del Sol es mayor, es

decir, a principios de verano (solsticio de verano) y es ma-

yor al aproximarse el invierno (solsticio de invierno).

Es decir, si se observa la sombra que hace el gnomón

justo al mediodía (el momento del día en que la sombra

es más corta), se descubrirá que el largo de la sombra al

mediodía no es siempre igual. Durante una mitad del año

Astros vistos desde la Tierra

El Sol y las otras estrellas

Luminosos o fuentes de luz

La Luna

Iluminados

O E

O E

O E

O E

Atardecer

Media mañana

Media tarde

Mediodía

5

2

4

3

13

Page 22: Naturales 5 bonaerense

Clave de respuestas©

San

tilla

na

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

2121

5. a) y b)

6. a) Cielo: esfera imaginaria que rodea a la Tierra.

Antihorario: movimientos del Sol y la Luna contrarios al de

las agujas del reloj.

Gnomón: uno de los primeros instrumentos astronómicos.

Luna: astro iluminado que se traslada en sentido antihorario.

Sol: estrella más cercana a la Tierra que sale por el punto

cardinal Este.

Polos celestes: ejes imaginarios alrededor de los cuales

se mueven las estrellas.

b)

Organizo mis ideas

a) Una posibilidad para completar el cuadro sería:

b) Respuesta a cargo de los alumnos. Se presentan algunos ejem-

plos: el Sol es una fuente de luz. Ilumina cuerpos opacos que

producen sombra. La Luna presenta diferentes fases: luna llena,

luna nueva, cuarto menguante y cuarto creciente. Su movimien-

to de rotación y traslación dura aproximadamente 29 días.

Los movimientos reales de la Tierra

Página 128 A ver qué sé…

a) Se espera que los alumnos intercambien opiniones acer-

ca de aquello que ya saben sobre el tema: las diferencias

del clima, los ciclos de las plantas y de algunos animales

y, fundamentalmente, las diferencias en la duración de los

días en función de su experiencia cotidiana. También po-

drían recuperar lo estudiado en el capítulo anterior en re-

lación con los cambios en las sombras a lo largo del año.

b) Es posible que les sea difícil decir cuál es la diferencia más

importante o detallar qué observarían del Sol para saber en

qué estación estamos. En el capítulo anterior estudiaron el

movimiento aparente del Sol y es posible que algunos pue-

dan comenzar a relacionar ambos fenómenos.

c) Cada alumno propondrá algunas características, sobre

todo referidas al clima.

d) Esta pregunta es de indagación. Si bien pueden saber las

diferencias, quizá no tanto lo más importante. Por ejemplo,

los alumnos suelen pensar que cuando comienza el vera-

no (21 de diciembre, aproximadamente) los días comien-

zan a ser más largos y, si bien lo son, se están acortando.

a) y b) Es común que los alumnos piensen que los ciclos

estacionales se deben a la cercanía y lejanía de la Tierra

respecto del Sol. Esta pregunta pretende indagar sobre

estas cuestiones. Una vez que han dado sus opiniones

acerca de las causas que provocan las estaciones, segu-

ramente surgirán algunas ideas correctas y otras no tan-

to, algunas más o menos incompletas, y algunas acerca

de las cuales no todos los alumnos piensen lo mismo. De

acuerdo con sus respuestas, es la ubicacion que les da-

rán al Sol y a la Tierra en sus dibujos.

Página 131 A ver cómo voy…

C H E M L A J I M A T R T

I C C O L E T A E M G N R

E U N N R I S A T D U L S

L A T O V L K H E L S R L

O N J I L S O L O S T E S

A T A C O I O L R E T N C

N I L A B R I E I L U Z I

T L U N A I S O M E C S O

I O M O R T I N O L I L L

H S A R A S T E R O I D O

O L S G N O M Ó N L U T P

R P O M M O E S T E N A L

A R I L R E S M A M A S O

Sol

Estrellas

Planetas

Luna

Observación nocturna

Bóveda celeste

Observación diurna

14

Momento del año

Duración del día

Duración de la noche

Otras características

21 de marzo

Igual a la noche (12 h)

Igual al día (12 h)

El Sol sale por el Este. Se inicia el otoño.

Durante el otoño

Se acortanMás larga que

el día

Los arcos del Sol son cada vez más cortos. Las salidas se

corren del Este.

21 de junioEl día más

corto del añoLa noche más

larga El arco solar es el más corto

de todos.

Durante el invierno

Se alargan Se acortan

El Sol comienza a correrse en sus salidas respecto del Este. Los arcos son cada vez más

largos.

21 de septiembre

Dura lo mismo que la noche

Dura lo mismo que el día

El Sol sale por el Este.

Durante la primavera

Siguen alargándose

Siguen acortándose

Las salidas del Sol se corren, los arcos del Sol van

alargándose.

21 de diciembre

El día más largo

La noche más corta

El arco solar más largo de todos.

Durante el verano

Se acortan Se alargan El Sol se corre en su salida

respecto del Este, los arcos se van achicando.

5 de julioO E

Comienzo de octubre

Fines de diciembre

O E

Amanecer1

Page 23: Naturales 5 bonaerense

Clave de respuestas

© S

antil

lana

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

2222

Este cuadro podría ser válido para el hemisferio Norte sim-

plemente modificando la columna de momento del año, dado

que las estaciones se alternan entre uno y otro hemisferio.

Esta pregunta es metacognitiva y propone reflexionar sobre

el proceso de aprendizaje.

Página 133 Ciencia a la vista

a) Se exploran los movimientos de rotación (sobre el eje del glo-

bo) y de traslación (a lo largo de la “órbita” de piolín).

b) y c) Con esta actividad de modelización los alumnos pondrán

en juego lo estudiado y comprenderán las explicaciones que

se dan a estos fenómenos. Es importante que vuelvan so-

bre las vivencias astronómicas (duración del día y la noche,

arco solar) para contrastarlas con la modelización. La com-

paración de diversas ciudades les permitirá comprender me-

jor las diferencias en la llegada de los rayos solares. Es decir,

por ejemplo: si bien en todo el hemisferio Sur es verano, no

en todas la duración del día y la noche es la misma. Esto es

una consecuencia de la forma de la Tierra, tema trabajado en

capítulos anteriores.

Páginas 134 y 135 Temas en imágenes

1. a) El Sol más bajo corresponde al invierno. En esta época,

los días son cortos en comparación con el verano y esto

significa que el arco solar es más chico. El Sol alcanza

menos altura en el cielo. El otro corresponde al verano, de

días más largos que en invierno.

b) El Sol de invierno corresponde al solsticio de junio para el

hemisferio Sur y de diciembre para el hemisferio Norte. El

Sol de verano, al solsticio de junio para el hemisferio Nor-

te y de diciembre para el hemisferio Sur.

c) Se espera que puedan decir que dado que en esas épocas

la Tierra se encuentra en los equinoccios de marzo y sep-

tiembre, en donde los rayos del Sol llegan con igual intensi-

dad en ambos hemisferios, los días son iguales. Entonces,

el Sol alcanza una posición intermedia entre los otros dos.

2. Cuando el Polo Sur está en total oscuridad la Tierra está en el

solsticio de junio.

Páginas 136 y 137 A ver qué aprendí…

Repaso

1.

2. La idea es que consulten en un globo terráqueo el hemisferio

donde queda cada ciudad y puedan utilizarlo para decir qué

ropa es adecuado llevar, teniendo en cuenta la fecha, cerca-

na al inicio del invierno en el hemisferio Sur y del verano en el

hemisferio Norte.

3. a) Esta pregunta invita a reflexionar sobre la duración del día

en verano. Suele ser común que se piense que en verano

los días son más largos, hecho que es cierto parcialmen-

te. Es decir, son más largos que en invierno, pero salvo

para el inicio de esta estación (21 de diciembre, aproxi-

madamente), luego se van acortando. Se sugiere, en todo

caso, volver a la página 129.

b) Es el día más largo del año. Se debe esperar un año para

que el día vuelva a durar lo mismo.

4. A: Equinoccio de marzo: otoño. / B: Solsticio de junio: invierno. /

C: Equinoccio de septiembre: primavera. / D: Solsticio de di-

ciembre: verano.

a) La Tierra se traslada alrededor del Sol y demora unos 365

días en hacerlo. En ese tiempo, pasa por cuatro puntos ca-

racterísticos que son los dos solsticios y los dos equinoccios.

La llegada de rayos solares a la superficie de la Tierra en cada

hemisferio y en cada posición determina las estaciones.

b) El dibujo es similar, solo que se alternan las estaciones.

Por ejemplo, la B es solsticio de junio, verano en el hemis-

ferio Norte.

5. a) Los chicos están queriendo comprobar cómo se siente el

calor de la estufa en diferentes situaciones y entender lo que

sucede con el Sol y la Tierra, para explicar las estaciones.

b) En la primera, Lauti está frente a la estufa y Nico se en-

cuentra a la misma distancia, pero de costado. El calor

llega más a Lauti que a Nico. En las otras dos, Lauti siem-

pre está de frente, pero primero más cerca y después

más lejos. Cuando está más cerca siente más calor.

c) En el primer caso, la explicación es que a Lauti le llega más

calor por estar de frente mientras que Nico queda de cos-

tado y la radiación de la estufa le llega de manera inclinada.

Es como les sucede a las diferentes partes de la Tierra por

estar esta inclinada. En las otras dos imágenes, se trata de

ver otra forma de explicación, por cercanía y lejanía. Si bien

estos factores también hacen que Lauti sienta a veces más

calor, no permiten explicar que haya estaciones opuestas

en un mismo momento en la Tierra. Esta explicación no es

válida para el caso de la Tierra y el Sol.

6. a) Es importante que los alumnos den cuenta de las seme-

janzas y diferencias al explorar las sombras en los tres ca-

sos. Al mover la Tierra derecha, lo que sucede es que las

sombras varían durante el día pero no lo hacen durante el

año. Es decir, una Tierra que rota derecha sí permite ex-

plicar el día y la noche pero no la variación de su duración

a lo largo del año. Al inclinarla, observamos variación de

sombras tanto en su dirección durante el día como en su

longitud durante el día y el año. Esto es coherente con lo

que se observa al hacer el seguimiento de las sombras

“reales”, tema estudiado en el capítulo anterior. Al dejar la

Tierra fija y mover el Sol (en tres arcos) también se obser-

van variaciones de sombras.

b) En este caso se trata de que los alumnos reflexionen so-

bre el uso de los modelos en ciencia, que no reflejan con

exactitud los fenómenos investigados, pero algunos obje-

tos son más útiles que otros. Por ejemplo, una linterna no

representa bien el hecho de que el Sol irradia en todas di-

recciones; en cambio, sí lo hace una lamparita.

Movimiento¿Cuánto

dura?

¿Qué carac-terísticas se destacan?

¿Cuáles consecuencias produce?

Rotación 24 h Eje imaginario inclinado,

denominado eje de rotación.

El día y la noche, cambios en la duración de los días de luz, cambios en la intensi-dad de los rayos solares.

Traslación 365 días Órbita circular con el Sol en su

centro.

Estaciones astronómicas.

Page 24: Naturales 5 bonaerense

Clave de respuestas©

San

tilla

na

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

2323

c) La idea es que los alumnos se den cuenta de que al no

inclinar la Tierra, la duración del día en cualquier lugar del

planeta sería igual a lo largo del año, puesto que no ha-

bría variación de arcos solares.

7. a) Se espera que los alumnos puedan ahora hablar sobre

las diferentes alturas del Sol a lo largo del año, que po-

drían, además, medir sombras, etc. Cada alumno reela-

borará sus respuestas iniciales.

b) Esta pregunta pretende ponerlos a pensar en que la explica-

ción de las estaciones por cercanía o lejanía se debe a órbitas

elípticas. Si esto fuese cierto, no puede explicarse la alternan-

cia de estaciones entre hemisferios. Entonces, no es correcta

porque la órbita es circular, no hay momentos de más o me-

nos cercanía (al menos no que influya en las estaciones). Si

se considera que la forma de la órbita es casi circular, el argu-

mento de cercanía o lejanía queda sin sustento y el fenóme-

no de las estaciones (las diferencias de temperatura y largo

del día) requiere otra explicación: la diferente incidencia de los

rayos sobre la Tierra, por inclinación de la Tierra.

c) En este ítem se espera que los alumnos elaboren un texto

en el que expliquen que la razón de los cambios observa-

dos a lo largo del año es la traslación y rotación de la Tie-

rra con su eje inclinado.

Organizo mis ideas

El Sistema Solar

Página 138 A ver qué sé…

Con estas consignas se busca indagar qué conocen los

alumnos sobre los planetas y la posibilidad de que sean pa-

recidos o no al nuestro. Por lo general, tienen alguna idea de

esto, por los documentales.

En este punto se busca averiguar qué conocen sobre las dis-

tancias a las que se encuentran y la posibilidad de verlos sin

instrumentos.

Los dibujos permiten poner en evidencia cómo se imaginan

la conformación del Sistema Solar y la manera en que lo re-

presentan (sin escala alguna, ubicaciones, etcétera).

Página 143 A ver cómo voy…

Se recomienda utilizar valores aproximados para compren-

der cuántas veces más grandes o más chicos son respecto

de la Tierra. Los más difíciles de interpretar serán los valores

más chicos que 1, para el caso de unidad ecuatorial.

Esta pregunta pretende poner en consideración el procedi-

miento de la organización de la información.

a) En este caso, por ejemplo, podría armarse con nueve filas

y tres columnas. Esto dependerá de cómo quieran o les

sea más útil presentar la información.

b) Esta respuesta se obtiene leyendo el texto o bien mirando

el cuadro. Se pretende que los alumnos reflexionen respec-

to de la importancia y utilidad de organizar la información.

La invención del telescopio permitió darnos cuenta de que

había muchos otros astros que los que solo se ven a simple

vista y que aquellos que veíamos desde la Tierra en realidad

no eran tales como se veían; se pudieron distinguir y cono-

cer más a fondo sus detalles. También contribuyó a que al-

gunas de las ideas antiguas se modificaran, por ejemplo, que

la Tierra era el centro alrededor del cual giraban los planetas,

la Luna y el Sol.

Resulta importante hablar de tamaños o distancias compa-

rándolos con el Sol o la Tierra porque son dos astros muy fa-

miliares y para poder establecer dimensiones es importante

comparar datos entre sí.

Página 145 Ciencia a la vista

a) Es importante utilizar una escala adecuada puesto que se

deben representar las medidas de todos los planetas.

b) En este caso, es posible representar las ubicaciones relativas de

los planetas entre sí y respecto del Sol, pero difícilmente se res-

pete la escala que permita dar cuenta de las distancias relativas.

c) Cada grupo podrá diseñar sus propias maquetas. La escala

anterior no es útil puesto que ahora hablamos de distancias

del orden del millón de kilómetros y el kilómetro no resulta útil.

En este caso, debería ser alguna escala en millones de kiló-

metros (por ejemplo, 1 en 10 millones).

Nuevamente, es importante que los alumnos se den cuen-

ta de que se puede utilizar una escala que dé idea de los ta-

maños relativos de los planetas; se puede mostrar la forma

aproximada de las órbitas, pero no es posible recrear los mo-

vimientos de todos los astros en simultáneo, ni las lunas de

cada uno de los planetas, etcétera.

Páginas 146 y 147 A ver qué aprendí…

Repaso

1. a) En este caso se trata de representarse magnitudes por

comparación con otras más familiares. La distancia Bue-

nos Aires-Mar del Plata entra unas 963 veces en la dis-

tancia Tierra-Luna. Es decir, cubrir la distancia a la Luna

es equivalente a ir 963 veces a Mar del Plata. Al Sol:

Sucesión de días y noches

Planeta Tierra

RotaciónMovimiento sobre su eje

Estaciones

Cambios en la

iluminación

Movimiento alrededor

del SolTraslación

Planeta Mercurio Venus Tierra Marte

Diámetro 4.878 12.180 12.756 6.760

Unidad ecuatorial 0,4 0,9 1 0,5

Planeta Júpiter Saturno Urano Neptuno

Diámetro 142.800 120.000 50.000 45.000

Unidad ecuatorial 11 9,4 4 3,80

15

Page 25: Naturales 5 bonaerense

© S

antil

lana

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

Clave de respuestas

2424

375.000 veces. Lo importante no son tanto las cifras sino

darse cuenta de que las distancias astronómicas son va-

lores muy grandes.

b) Para simular el diámetro de Neptuno se necesitan casi

cuatro de la Tierra.

c) Para obtener el del Sol hacen falta casi 30 diámetros de

Neptuno.

2. a) Incorrecta. Cuanto mayor es la distancia respecto del Sol,

las temperaturas de los planetas son más bajas.

b) Incorrecta. Un año en un planeta más alejado del Sol dura

más que un año en un planeta más cercano al Sol.

c) Correcta. Si el planeta rota más rápido, el día es más corto.

d) Correcta. Mercurio está muy cerca del Sol. El Sol se vería,

seguramente, más grande y brillante.

3. a) Se trata de que intenten usar lo aprendido en relación con

lo que ocurre en la Tierra pero en una nueva situación que

es otro planeta. Cada alumno podrá estar de acuerdo o

no. En b), deberán fundamentar.

b) En Júpiter no hay estaciones porque el calor (radiación)

que llega a su superficie es siempre el mismo a medida

que se traslada alrededor del Sol, dado que su eje de ro-

tación está casi derecho.

4. a) Esta respuesta es de carácter metacognitivo. Se espera

que los alumnos puedan incluir nuevos datos trabajados y

organizar todo lo que leyeron en las páginas, en especial

el cuadro que brinda información sobre su ubicación y ta-

maños en cada caso. Es importante que puedan respetar

la escala de tamaños. Una discusión interesante con los

chicos podría ser cómo dibujamos al Sol o simplemente

indicamos que el Sol no está a escala, pero que el dato

es importante. Revisar las respuestas iniciales es un ejer-

cicio de reflexión sobre cómo van avanzando.

5. a) La idea es que puedan usar la información de la noticia y

lo que saben sobre las características de los planetas del

Sistema Solar para pensar, por un lado, en que la presen-

cia de agua y el estado en que se encuentra guarda rela-

ción con las temperaturas del planeta y por otro, que las

condiciones para el desarrollo de la vida tienen relación

con la distancia al Sol, las temperaturas, la composición

de la atmósfera y la presencia de agua.

b) El sistema planetario y el Solar se parecen en que poseen

una estrella central y planetas que la orbitan. Se diferen-

cian en la cantidad de planetas y tipo de órbitas caracte-

rísticas de los planetas. Tampoco se dice nada respecto

de otros objetos del sistema planetario tales como los tie-

ne el nuestro.

c) Este descubrimiento resulta importante porque permite

ver que hay otros sistemas planetarios en la inmensidad

del Universo en alguno de cuyos planetas podría existir

vida. Se relaciona porque en esa parte del texto habla del

impacto de sacar a la Tierra del centro (dejamos de tener

tanta importancia). Esto parece algo similar en tanto no

existe un solo sistema ni probablemente un solo planeta

habitado.

d) La idea es tomar los datos, como por ejemplo que todos

los planetas parecen tener órbitas casi circulares, que

son cinco planetas similares a Neptuno; revisar los datos

sobre Neptuno, y con esto, proponer el dibujo.

Organizo mis ideas

El mapa podría continuarse con los planetas o podrían plan-

tearse otros mapas a partir de los conceptos claves.

formado por

El Sistema Solar

asteroides

transneptunianos

cometas

planetas

satélites

planetas enanos

Cuerpos menores Cuerpos principales

como como

Page 26: Naturales 5 bonaerense

© S

antil

lana

S.A

. P

erm

itid

a su

foto

cop

ia s

olo

par

a uso

doce

nte

.

Banco de actividades

2525

La organización del cuerpo humano

Mirá con atención esta imagen y luego

respondé las preguntas.

A este niño le asustó el ruido del auto y sa-

lió corriendo.

a) ¿Qué partes de su cuerpo están en

acción en esta situación? Nombralas.

b) ¿A qué sistemas pertenece cada una

de esas partes?

c) ¿Qué función cumple cada uno de

esos sistemas en el cuerpo humano?

d) Seguramente, algunos de los siste-

mas no fueron nombrados. ¿Cuáles

son? ¿Qué función cumplen?

Los microorganismos

Julián tomó algunas notas en la clase de ciencias naturales acerca de los

microorganismos. El problema es que no es muy ordenado y mezcló las

anotaciones. Con todas ellas debe construir los epígrafes para las fotos

que ves a continuación.

Los organismos unicelulares y pluricelulares

Mirá esta imagen y resolvé las consignas.

a) Los chicos de la imagen están en una salida de campo in-

vestigando diferentes seres vivos. ¿Cuál de ellos pensás

que está buscando organismos unicelulares? ¿Creés que

los encontrará? ¿Por qué?

b) Pensá dónde podrían encontrarse los organismos unice-

lulares de esta imagen. ¿En qué se parecen y en qué se

diferencian de los pluricelulares? Organizá toda esta infor-

mación en un cuadro.

c) Tomá como ejemplo alguno de los seres vivos que se en-

cuentran en la imagen. ¿Te parece que sus células son to-

das iguales? ¿Por qué? ¿Qué pasa con los unicelulares en

este caso?

d) ¿Qué características comunes tienen las células de todos los seres vivos de la imagen? Técnica 4

Nota 1: Muchos obtienen alimento de la superficie de los frutos.

Nota 2: Un ejemplo es el paramecio.

Nota 3: Son más pequeñas que los demás microorganismos.

Nota 4: Necesitan encontrarse en contacto con ambientes húmedos.

Nota 5: Muchos poseen flagelos o cilios.

Nota 6: Algunos se trasladan cambiando de forma.

Nota 7: Un ejemplo son las levaduras.

Nota 8: Algunos se utilizan para la producción de vino.

Nota 9: El Penicillium es un ejemplo.

Nota 10: Algunas pueden encontrarse en el interior del sistema

digestivo de ciertos animales y los ayudan en la digestión.

Nota 11: Algunos producen enfermedades, como por ejemplo el

vibrión colérico.

Nota 12: Habitan todos los ambientes de la Tierra.

a) Relacioná cada nota con alguna de las tres fotos. Luego utilizalas para

escribir un epígrafe para cada una.

b) Un grupo de microorganismos no fue tenido en cuenta. ¿Te acordás

de cuál es? ¿Qué características lo distinguen de los otros grupos?

Bacterias Hongos unicelulares Protozoo

Page 27: Naturales 5 bonaerense

© S

antil

lana

S.A

. P

erm

itid

a su

foto

cop

ia s

olo

par

a uso

doce

nte

.

Banco de actividades

2626

La importancia de los alimentos

El grupo de campamentos de la escuela se está organizando

para ir el fin de semana a Córdoba. Deben pensar en el menú

para los dos días y comprar en el supermercado los alimen-

tos necesarios. Leé atentamente el menú elegido y respondé

las consignas.

a) Su coordinador de campamentos les dijo que debían revisar

la propuesta del menú porque no era adecuada. ¿Por qué te

parece que les dijo esto? Pensá en todos los temas del capí-

tulo e incluilos en tu respuesta si te parece necesario.

b) ¿Qué cambios te parece que deberían hacer los chicos en

su menú? ¿Por qué?

c) ¿Tendrían que tener en cuenta las tablas de información

nutricional de los alimentos que compren? Justificá tu

respuesta.

d) Hacé una propuesta de menú para el campamento te-

niendo en cuenta tus respuestas anteriores.

e) ¿Cambiaría tu propuesta de menú si los que van al cam-

pamento fueran ancianos? ¿Por qué?

El calor y los materiales

Observá la foto del

termómetro clínico y realizá

las actividades.

a) Indicá en la imagen las diferentes partes que componen un termómetro.

b) ¿En qué fenómeno relacionado con la acción del calor sobre los materiales se basa el funcionamiento del termómetro de bulbo?

c) El termómetro de laboratorio, a diferencia del clínico, tiene una escala más larga, que va generalmente desde -10 °C hasta

120 °C, y no posee estrangulamiento entre el bulbo y el capilar, de modo que el mercurio puede subir y bajar según ocurran los

cambios de temperatura. Dibujá la siguiente experiencia indicando claramente la lectura de los termómetros:

a medir las temperaturas.

d) ¿Qué pasó después de la hora en que los vasos estuvieron a temperatura ambiente?

e) Indicá en qué sentido se realizó la transferencia de energía térmica en los dos casos estudiados (vaso inicialmente a 60 °C y

vaso a 10 °C) y cuáles fueron los cuerpos involucrados en esa transferencia.

Las transformaciones de los alimentos

El restaurante “El quinto” abrirá sus puertas próxima-

mente, ofreciendo una exquisita carta que te mostra-

mos a continuación. Leela y resolvé las consignas.

a) Identificá qué entradas contienen ingredientes que nece-

siten de técnicas de conservación de los alimentos. ¿Cuá-

les son esas técnicas en cada caso?

b) Elegí tres platos principales que contengan alimentos natu-

rales y otros tres que contengan alimentos elaborados. En

cada caso, identificá los alimentos que tuviste en cuenta.

c) Marcá en la carta los platos (sean entradas, platos princi-

pales o postres) o bebidas que…:

únicamente.

d) Hubo un corte de luz en el restaurante que duró toda la no-

che. ¿Qué comidas no podrán servirse en esa jornada y por

qué? Pensá en las técnicas de conservación de alimentos.

Desayunos y meriendas

Almuerzo Cena

Sábado Café con leche y galletitas.

Fideos con manteca.

Postre: helados.

Empanadas de queso y cebolla.Postre: alfajores.

Domingo Té con pan casero y dulce de

leche.

Ravioles con albahaca y tomate.Postre: chupetines.

Pizza.Postre:

chocolates.

Entradas Fetas de jamón ahumado norteño Alcauciles frescos Sardinas del Pacífi co con cebollas moradas

Platos principales Camarones al limón en nido de ensalada de hojas verdes Salmón con suave salsa de queso azul Arroz envuelto en algas pardas Fideos integrales con salsa de tomates cherry

Postres Frutas cubiertas con chocolate derretido Mermelada de grosellas sobre feta de queso de cabra Frutas frescas en cubos con lluvia de chocolate rallado

Bebidas Cerveza Vino Agua Gaseosas

Page 28: Naturales 5 bonaerense

© S

antil

lana

S.A

. P

erm

itid

a su

foto

cop

ia s

olo

par

a uso

doce

nte

.

Banco de actividades

2727

Las fuentes del sonido

Algunos sonidos característicos tienen un nom-

bre que los identifica. ¿Te animás a encontrarlos?

a) Armá parejas de sonidos y fuentes sono-

ras en tu carpeta. Luego indicá cuáles son

artificiales.

b) Hay nombres de sonidos naturales que tam-

bién se aplican a ciertas fuentes artificiales.

Mencioná algunos de ellos a partir de las

que aparecen en el punto a), y decí a qué

fuentes artificiales los asociarías.

El calor y las transformaciones de los materiales

Con una botellita de plástico y un poco de agua se pueden

estudiar sus cambios de estado. Mirá la imagen y resolvé las

consignas.

a) ¿Cuántos materiales diferentes se señalaron en la imagen?

¿Cuál o cuáles son los estados de agregación de cada uno?

b) Con la botellita con agua hasta la mitad, se la tapa y se la

coloca horizontal en la heladera. Luego de un rato se ob-

serva que la parte superior interna ha comenzado a em-

pañarse y tiene pequeñas gotitas de agua. ¿Cuáles de las

siguientes afirmaciones son ciertas? Marcalas con una X.

Se condensó el aire del interior de la botellita.

Se vaporizó el agua de la botellita.

Se condensó vapor de agua del interior de la botellita.

Se condensó vapor de agua del interior de la heladera.

Se condensó vapor de agua al encontrarse con la

superficie fría de la botella.

R F Q N T B I M Q C I A J P C

I V Ñ Ó S A B L A O R X T A M

O N Ó I C A R E B R E V E R A

E R K C N U V R P H F D X C Ñ

A B Ñ A Z U I P O D J A I Ñ G

S L D Z X M B L A I R E T A M

H N Ó I P A R E W R E B E R A

R E B L M W A D F O Y D R C A

P Ñ I A B O C E Y N A Q I Q J

B L X C W C I F E D A T E Ñ S

I P H O A M Ó Ñ I V S I Q W Z

Z K E L C A N L Y Ú L B I E V

F D M O V R E E C L R M Y Ñ U

C Z P C T D D A I O E U O I F

P T E E I D X N L T I X F Z X

H F Z F E O C I T S Á L E M W

La propagación del sonido

En esta actividad tenés que descubrir ocho palabras relacionadas

con la propagación del sonido. Ellas deben formar parte de las si-

guientes frases, y aparecen en la sopa de letras que ves a la derecha.

Ayudita: pueden estar al derecho o al revés, en sentido horizontal, ver-

tical o diagonal. Comenzá por las frases o la sopa, o alternadamente,

para descubrir todas esas palabras.

La propagación del sonido se produce por la

de un medio que debe ser ,

como el aire o el agua.

En las salas de ensayo y los teatros se busca disminuir la reflexión

para evitar la , y lograr así que

el sonido llegue con la mayor al espectador.

Por el contrario, algunos animales hacen uso del

para buscar comida o para desplazarse evitando obstáculos; a este

mecanismo se lo llama .

So

nidosFuentes sonorasMaullido

Castañeteo

Ladrido

Bramido

Chirrido

Aullido

Estruendo

Balido

Cacareo

Rugido

Relincho

Mugido

Redoble

Zumbido

Rebuzno

Repiqueteo

Barrito

Asno

Oveja

Caballo

Tambor

Vaca

Elefante

Gallina

Toro

Campana

Lobo

Gato

Dientes

Mosquito

Perro

Bomba

Ruedas del tren

León

Plástico

Aire y vapor de agua

Agua

Page 29: Naturales 5 bonaerense

© S

antil

lana

S.A

. P

erm

itid

a su

foto

cop

ia s

olo

par

a uso

doce

nte

.

Banco de actividades

2828

La audición

Imaginá que tienen que prepa-

rar una clase especial acerca de

la audición. La siguiente historieta

puede darte una idea de los temas que deberían mencionar;

completá los espacios en blanco para ver si ya estás en con-

diciones de dar esa clase.

a) Completá las siguientes frases:

A mayor de vibración, frecuencia. Es decir,

sonidos agudos.

Al pulsar la misma cuerda con más fuerza se obtiene el mismo ,

pero de mayor .

En general, la frecuencia del sonido de una cuerda aumenta con la

, pero disminuye con el y la .

b) Observá el esquema de la derecha y luego completá las afirmaciones:

Si las pesas y los grosores de las cuerdas son iguales, la cuerda más grave

es la y la más aguda, la .

Si los sonidos y los grosores de las cuerdas son iguales,

la mayor pesa es la y la menor, la .

A

B

C

1

2

3

Técnica 12

La esfericidad de la Tierra

Los chicos de 5º de otra escuela estaban estudiando

el tema de la forma de la Tierra. Recordaron el argu-

mento de los fenicios acerca de que el mar no es pla-

no, porque primero se ve asomar el mástil de un barco

que se acerca, y luego empieza a emerger el resto de la

embarcación.

En el curso se generó una discusión acerca de si eso que

pensaban los fenicios es argumento suficiente para sos-

pechar que la Tierra es esférica. Leé atentamente las opi-

niones de algunos chicos. Juntate con un compañero y

analicen si esos argumentos son válidos o no.

Uno de los chicos dice que es natural que, al acercar-

se, un barco se vea cada vez más grande y nítido, y eso

también ocurriría con una Tierra plana.

Una chica dice que si la Tierra fuera plana y descendie-

ra hacia la lejanía del horizonte (como un plano inclinado),

igualmente se observaría el efecto del barco que “emerge”.

Otro chico dice que la observación de los fenicios tam-

bién funcionaría con una Tierra cilíndrica, donde ade-

más podría darse la vuelta al mundo.

El oído tiene varias partes móviles; el ,los y los

, dentro de la cóclea.

Así, el sonido se transforma en

nerviosos que llegan al .

¡PODEMOS TOLERAR SONIDOS DE HASTA

dB!

Los seres humanos podemos oír sonidos cuyas frecuencias estén

entre los y los .

¡Bueno, pero no grites que podés

mis tímpanos!

Los , los delfi nes y los murciélagos pueden oír ,

mientras que los elefantes oyen .

La diversidad de sonidos

Resolvé las siguientes actividades. Para ayudarte tené en cuenta que podés conseguir una guitarra y experimentar con sus diferen-

tes cuerdas, variando grosor, longitud y tensión para obtener diferentes sonidos.

Page 30: Naturales 5 bonaerense

© S

antil

lana

S.A

. P

erm

itid

a su

foto

cop

ia s

olo

par

a uso

doce

nte

.

Banco de actividades

2929

Los movimientos aparentes de los astros

Esta actividad ayuda a ilustrar las fases de la Luna.

1.º Conseguí una varilla o una aguja de tejer, una esfera de telgopor, que hará las

veces de la Luna, mientras vos serás la Tierra (donde tu cabeza sería el Nor-

te). Pinchá la esfera con la varilla. En una habitación a oscuras ubicate de es-

paldas a un velador encendido, tomá la esfera por la varilla y extendiendo tu

brazo sostenela delante tuyo (tené cuidado de no tapar la fuente de luz). Para

ayudarte mirá la imagen. ¿Ves la cara oscura o iluminada de la esfera? ¿Qué

fase de la Luna representa?

2.º Ahora empezá a girar lentamente hacia la izquierda, observando la forma en

que se ilumina la esfera. ¿Cómo queda iluminada cuando giraste un cuarto de

vuelta? ¿Qué fase de la Luna representa?

3.º Seguí girando hasta cumplir media vuelta. ¿Cómo se ve iluminada la esfera

ahora? ¿Qué fase de la Luna representa?

Los movimientos reales de la Tierra

Los chicos de 5º de otra escuela realizaron una actividad que muestra el movimiento aparente del Sol.

Usaron una esfera de telgopor, un palito -que hacía de eje–, un marcador y un puntero láser (de esos

que se consiguen en kioscos o jugueterías).

1.º Colocaron el eje en la esfera y lo inclinaron como en un solsticio, como muestra la imagen,

donde el láser era el Sol. Apuntaron el láser al centro de la esfera y marcaron el punto que

ilumina. Luego giraron un cuarto de esfera y marcaron otro punto (repitieron la operación

dos veces más). Una vez marcados todos los puntos, los unieron por una línea: ella repre-

senta el paso del Sol por la esfera celeste durante el día de ese solsticio imaginario.

2.º Realizaron el mismo procedimiento, pero considerando que se trataba de un equinoccio.

Marcá las opciones correctas. Si es necesario, podés volver a ver la página 134.

La línea del Ecuador quedó marcada en la experiencia del solsticio.

La línea del Ecuador quedó marcada en la experiencia del equinoccio.

La línea de uno de los trópicos quedó marcada en el solsticio.

La línea de uno de los trópicos quedó marcada en el equinoccio.

Técnica 9

Técnica 10

El Sistema Solar

Los chicos de quinto resolvieron un cuestionario sobre el Sistema Solar. Aquí están sus respuestas. Leelas con atención y escribí en tu

carpeta cada una de las preguntas que tuvieron que responder.

a) Está formado por los planetas, los satélites, los planetas enanos, los asteroides, los transneptunianos, los cometas, las estre-

llas, polvo y gas.

b) Mercurio es el más cercano.

c) Aunque parecen del mismo tamaño, no lo son. La Luna es cuatrocientas veces más pequeña.

d) También se lo conoce como lucero. Sí, es el planeta más cercano a la Tierra.

e) Es la distancia que separa la Tierra del Sol, que alcanza son unos 150.000.000 de kilómetros.

f) Es el quinto planeta desde el Sol, posee más de 60 lunas y es el más grande del Sistema Solar.

Page 31: Naturales 5 bonaerense

© S

antil

lana

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

3030

Soluciones del banco de actividades

Los organismos unicelulares y pluricelulares

a) Se espera que los alumnos puedan identificar que el que

busca organismos unicelulares es el niño con la lupa. Po-

drán justificar que no se ven a simple vista. Es interesante que

puedan pensar que, aunque la lupa le permite observar cla-

ramente algunos objetos que no se percibirían a simple vista,

el aumento de estas en ciertos casos no alcanza para visua-

lizar los microorganismos más pequeños. Para esos necesi-

tarán un microscopio.

b) Un cuadro puede ser:

El cuadro podrá estar planteado de variadas formas, por

ejemplo, comparando diferentes seres vivos. Es importante

que los alumnos intercambien las respuestas para elegir cuál

es la opción de cuadro que les parece más adecuada.

c) En los seres vivos pluricelulares (podrán citar a cualquiera

de los animales, plantas o incluso citar al ser humano como

ejemplo) existe una división de trabajo en la que las células

presentan diferentes formas y esas formas están asociadas

con las funciones que cumplen. En los seres vivos unicelula-

res, justamente esa única célula es la que cumple todas las

funciones.

d) Todas las células poseen membrana celular, citoplasma y

material genético.

Los microorganismos

a) Para la foto de las bacterias corresponden las notas 3,

10, 11 y 12.

Para la foto de los hongos unicelulares corresponden las no-

tas 1, 4, 7, 8 y 9.

Para la foto de protozoo corresponden las notas 2, 5 y 6.

Cada alumno elaborará el epígrafe con las notas selecciona-

das. Se presenta uno a modo de ejemplo:

Las bacterias son más pequeñas que los demás microorga-

nismos y habitan todos los ambientes de la Tierra. Algunas

pueden encontrarse en el interior del sistema digestivo de

ciertos animales y los ayudan en la digestión. Otras producen

enfermedades, como por ejemplo, el vibrión colérico.

b) No se tuvieron en cuenta las algas unicelulares, autótrofas

que forman, en ocasiones, colonias o agrupaciones de po-

cas células. Siempre se encuentran en la superficie de am-

bientes acuáticos, ya sean de agua dulce o salada.

La organización del cuerpo humano

a) Los alumnos deberán nombrar los órganos de los sentidos, el

cerebro, los músculos, los huesos, las articulaciones. Es posi-

ble que nombren brazos, piernas, etc. Algunos pueden nom-

brar partes del sistema circulatorio o del digestivo. Su inclusión

dependerá de las justificaciones que los alumnos utilicen.

b) Nombrarán el sistema locomotor y el sistema nervioso. Es posi-

ble que se presente la dificultad de si es necesario que el siste-

ma circulatorio esté funcionando correctamente, o si el digestivo

ha tenido que cumplir su función correctamente para que el

cuerpo tenga la energía necesaria para poder correr. Este es un

buen momento para revisar las respuestas anteriores.

c) En este punto se trata de que los alumnos nombren las fun-

ciones de protección, sostén y movimiento, así como tam-

bién las de relación con el medio, etcétera.

d) En este caso dependerá de las respuestas que los alum-

nos hayan dado anteriormente. En todos los casos, se es-

pera que no hayan nombrado el sistema reproductor, cuya

función es la de generar nuevos seres vivos a partir de otros

semejantes.

La importancia de los alimentos

a) La propuesta no incluye carnes ni verduras. Además no tiene

en cuenta el agua. Por otra parte, presenta demasiados dul-

ces y alimentos grasos. Podrán relacionar esto con la nece-

sidad de una alimentación equilibrada, con el aporte de los

diferentes alimentos y las clasificaciones vistas en el capítulo.

b) Esta pregunta completa la anterior en el caso de que los

alumnos no se hayan detenido a observar qué tipo de ali-

mentos faltaban en el menú y solo hayan respondido que la

dieta era desequilibrada.

c) Las tablas de información nutricional brindan información in-

dispensable para conocer lo que nos aporta cada alimento.

Por lo tanto, es importante tenerlas en cuenta.

d) La respuesta es abierta, pero deberán incluir en el menú

aquellos alimentos que nombraron en las preguntas anterio-

res y sacar los que les parece que estaban en exceso.

e) Al ser las necesidades nutricionales diferentes para cada edad,

se espera que los alumnos respondan que sí cambiarían la

propuesta porque los niños tienen más necesidades energéti-

cas que los ancianos y necesitan alimentos diferentes.

Las transformaciones de los alimentos

a) Las técnicas de conservación que se utilizaron son: ahuma-

do para el jamón y enlatado para las sardinas.

b) En este caso las respuestas pueden ser varias. Se trata de

identificar si los alumnos conocen la diferencia entre alimen-

tos naturales (por ejemplo, las verduras frescas) y los elabora-

dos (por ejemplo, el queso). Además, como deberán nombrar

los platos e identificar los alimentos que los componen, esta

actividad permitirá dejar claro si ellos pueden diferenciar en-

tre estos dos conceptos: comida–alimento.

Seres vivos

Unicelulares Pluricelulares

Similitudes Nacen, crecen, se desarrollan, se reproducen y mueren.

Reaccionan ante estímulos.Intercambian materia y energía

con el ambiente.

Nacen, crecen, se desarrollan, se reproducen y mueren.

Reaccionan ante estímulos.Intercambian materia y energía

con el ambiente.

Diferencias Compuestos por una célula. Microscópicos.

Compuestos por muchas células.

Page 32: Naturales 5 bonaerense

© S

antil

lana

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

3131

Soluciones del banco de actividades

c) Los platos que necesiten en su preparación únicamente

transformaciones físicas son los postres: frutas cubiertas con

chocolate derretido y frutas frescas en cubos con lluvia de

chocolate rallado. Los platos de origen animal son salmón,

sardina, camarones, jamón, queso de cabra. Se obtienen a

partir de microorganismos la cerveza, el vino y los quesos.

d) Podrán dar cuenta de la importancia de la refrigeración para

la conservación de ciertos alimentos.

El calor y los materiales

a) Las partes que componen el termómetro son: bulbo, capilar

y escala.

b) El funcionamiento del termómetro se basa en la dilatación tér-

mica de los materiales.

c) Los alumnos deben realizar tres dibujos: uno de un vaso con

agua y un termómetro en su interior, con el mercurio a la altura

del número 60; otro dibujo de un vaso con agua y un termóme-

tro dentro de él, con el mercurio a la altura del número 10. En el

tercer caso deben dibujar dos vasos con agua y sendos termó-

metros en su interior con el mercurio a la altura del número 25.

d) Luego de estar una hora a temperatura ambiente, el líquido

contenido en los vasos ha alcanzado el equilibrio térmico con

el ambiente.

e) En el primer caso, el calor del agua inicialmente a 60 °C pasó

al aire. En el segundo caso, el calor pasó desde el aire hacia

el líquido contenido en el vaso inicialmente a 10 °C.

El calor y las transformaciones de los materiales

a) Hay tres materiales diferentes: plástico, aire y agua. El plás-

tico está en estado sólido; el aire, en estado gaseoso; y el

agua, en estado líquido y gaseoso.

b) Son ciertas las siguientes afirmaciones:

Se condensó vapor de agua del interior de la botellita.

Se condensó vapor de agua al encontrarse con la super-

ficie fría de la botella.

Las fuentes del sonido

a) Los alumnos deben armar las siguientes parejas:

Maullido - Gato

Castañeteo - Dientes

Ladrido - Perro

Bramido - Toro

Chirrido - Ruedas del tren

Aullido - Lobo

Estruendo - Bomba

Barrito - Elefante

Cacareo - Gallina

Rugido - León

Relincho - Caballo

Mugido - Vaca

Redoble - Tambor

Zumbido - Mosquito

Rebuzno - Asno

Balido - Oveja

Repiqueteo - Campana

Son artificiales: chirrido, estruendo, redoble y repiqueteo.

b) Los alumnos podrían mencionar: castañeteo asociado con las

castañuelas, bramido o rugido asociados con un motor, aulli-

do asociado con una sirena, zumbido asociado con un torno.

La propagación del sonido

La propagación del sonido se produce por la vibración de un

medio material que debe ser elástico como el aire o el agua.

En las salas de ensayo y los teatros se busca disminuir la re-

flexión acústica para evitar la reverberación, y lograr así que

el sonido llegue con la mayor fidelidad al espectador.

Por el contrario, algunos animales hacen uso del eco para

buscar comida o para desplazarse evitando obstáculos; a

este mecanismo se lo llama ecolocalización.

La diversidad de sonidos

a) A mayor velocidad de vibración, mayor frecuencia. Es de-

cir, sonidos más agudos.

Al pulsar la misma cuerda con más fuerza se obtiene el

mismo sonido pero de mayor volumen.

En general, la frecuencia del sonido de una cuerda au-

menta con la tensión, pero disminuye con el grosor y la

longitud.

b) Si las pesas y los grosores de las cuerdas son iguales, la

más grave es la 3 y la más aguda, la 1.

Si los sonidos y los grosores de las cuerdas son iguales,

la mayor pesa es la C y la menor, la A.

R F Q N T B I M Q C I A J P C

I V Ñ Ó S A B L A O R X T A M

O N Ó I C A R E B R E V E R A

E R K C N U V R P H F D X C Ñ

A B Ñ A Z U I P O D J A I Ñ G

S L D Z X M B L A I R E T A M

H N Ó I P A R E W R E B E R A

R E B L M W A D F O Y D R C A

P Ñ I A B O C E Y N A Q I Q J

B L X C W C I F E D A T E Ñ S

I P H O A M Ó Ñ I V S I Q W Z

Z K E L C A N L Y Ú L B I E V

F D M O V R E E C L R M Y Ñ U

C Z P C T D D A I O E U O I F

P T E E I D X N L T I X F Z X

H F Z F E O C I T S Á L E M W

Page 33: Naturales 5 bonaerense

© S

antil

lana

S.A

. P

rohib

ida

su f

oto

cop

ia.

Ley

11.7

23

3232

Soluciones del banco de actividades

La audición

El esquema del oído se completa de la siguiente manera:

El oído tiene varias partes móviles: el tímpano, los huese-

cillos y los cilios dentro de la cóclea.

Así, el sonido se transforma en impulsos nerviosos que

llegan al cerebro.

¡PODEMOS TOLERAR SONIDOS DE HASTA 130 dB!

¡Bueno, pero no grites que podés dañar mis tímpanos!

Los humanos podemos oír sonidos cuyas frecuencias es-

tén entre los 20 Hz y los 20.000 Hz.

Los perros, los delfines y los murciélagos pueden oír ul-

trasonidos, mientras que los elefantes oyen infrasonidos.

La esfericidad de la Tierra

El primer argumento no es válido porque no coincide con

la observación fenicia, donde no se dice que al barco se

lo vea entero –aunque poco nítido o pequeño–, sino que

se afirma que “emerge”.

La segunda afirmación no es válida si el supuesto pla-

no inclinado comenzara en la costa, porque en ese caso

siempre se vería al barco entero hasta perderlo de vista.

Pero podría funcionar si hubiera un primer tramo de mar

horizontal antes de que comience el descenso del plano

inclinado. Sin embargo, esa posibilidad fallaría por el mis-

mo motivo que el siguiente argumento.

Si la Tierra fuera cilíndrica, se observaría el mismo fenó-

meno descripto por los fenicios, pero solo en la dirección

en que se circunnavega la curvatura. En la realidad, el

efecto del barco que “emerge” se observa en cualquier

dirección del mar (podría ser un puerto en la punta de una

península, por ejemplo). Esto no es posible ni con la hipó-

tesis cilíndrica ni con la del plano inclinado.

Los movimientos aparentes de los astros

1.º Se ve la cara iluminada de la Luna, lo que representa la fase

de luna llena.

2.º Cuando se gira un cuarto de vuelta queda iluminada la mi-

tad izquierda de la esfera, lo que representa la fase de cuarto

menguante.

Nota para el docente: es importante no perder de vista que

esto es válido para el hemisferio Norte, ya que en el hemisfe-

rio Sur, la misma porción iluminada representa la fase de luna

creciente.

3.º Al cumplir media vuelta no está iluminada la cara visible de la

esfera, lo que representa la fase de luna nueva.

Los movimientos reales de la Tierra

Las afirmaciones correctas son:

La línea del Ecuador quedó marcada en la experiencia del

equinoccio.

La línea de uno de los trópicos quedó marcada en el

solsticio.

El Sistema Solar

a) ¿Cómo está formado el Sistema Solar?

b) ¿Cuál es el planeta más cercano al Sol?

c) ¿La Luna y el Sol son del mismo tamaño?

d) ¿Con qué otro nombre conocemos a Venus? ¿Está ubica-

do cerca de nuestro planeta?

e) ¿Qué es una UA?

f) ¿Cuáles son las características de Júpiter?

Tímpano

Martillo

Yunque

Cóclea

Estribo