los abajo firmantes, como directores de esta tesis

274

Upload: others

Post on 06-Jul-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Los abajo firmantes, como directores de esta tesis
Page 2: Los abajo firmantes, como directores de esta tesis

Los abajo firmantes, como directores de esta tesis, hacemos constar que la tesis

titulada “Factores que modulan las tendencias temporales de las enfermedades

compartidas con la fauna silvestre”, y realizada por Mariana Boadella Caminal,

licenciada en veterinaria, reúne los requisitos necesarios para su defensa y

aprobación, y por tanto, para optar al grado de Doctor.

Vº Bº de los Directores

Dr. Christian Gortázar Schmidt Dr. Pelayo Acevedo Lavandera

Dr. Joaquín Vicente Baños

Universidad de Castilla-La Mancha

Instituto de Investigación en Recursos Cinegéticos

(CSIC-UCLM-JCCM)

Page 3: Los abajo firmantes, como directores de esta tesis
Page 4: Los abajo firmantes, como directores de esta tesis

A mis estrellas polares, Dolors y Albert, por no dejar de brillar ni una sola noche

A Roberto, sin motivo y por todos

Page 5: Los abajo firmantes, como directores de esta tesis
Page 6: Los abajo firmantes, como directores de esta tesis

Un pollo de buitre negro en la portada y esta tesis no trata sobre los buitres. No es

un sinsentido, los buitres para mí son grandes gestores de la sanidad animal. Pero

por paradojas del enorme desequilibrio que el hombre ha creado, el afán por

erradicar una enfermedad les perjudicó.

Y ésta es la forma que tengo de recordarme que aunque nuestra ciencia sea esa

verdad en la que creemos, quizás debemos humildemente medir el alcance de lo

que hacemos en su nombre, porque al fin, ella no es más que nuestro incansable

intento para explicarnos lo que pasa de verdad.

Page 7: Los abajo firmantes, como directores de esta tesis
Page 8: Los abajo firmantes, como directores de esta tesis

Este trabajo de Tesis Doctoral se realizó gracias a los siguientes proyectos y convenios:

Proyecto FISCAM PI-2007/56, Junta de Comunidades de Castilla-La Mancha

Proyecto PPIC10-0226-0243, Junta de Comunidades de Castilla-La Mancha

Proyecto POII09-0141-8176, Junta de Comunidades de Castilla-La Mancha

Proyecto AGL2005-07401, Plan Nacional I+D+i, MICINN y FEDER

Proyecto AGL2008-03875, Plan Nacional I+D+i, MICINN y FEDER

Proyecto FAU2008-00004-C03 INIA

Proyecto TB-STEP FP 7212414, Unión Europea

Convenio Grupo Santander - Fundación Marcelino Botín

Convenio MARM, Organismo Autónomo de Parques Nacionales (OAPN) y CSIC

Convenio entre el CSIC y el Principado de Asturias

Page 9: Los abajo firmantes, como directores de esta tesis
Page 10: Los abajo firmantes, como directores de esta tesis

Agradecimientos

Phoenix, noviembre de 2011

Cuesta empezar a escribir sobre algo tan grande en un sitio tan pequeño. Dar las

gracias por lo vivido en estos cuatro años es de lo que intento escribir, pero es

también todo lo que no puedo escribir, lo que no cabe y lo que no tiene palabras,

todo eso que espero haberos dicho ya sin necesidad de ellas. Lo compartido, lo

aprendido y lo que admiro de cada uno de vosotros.

Tres directores, Gortázar, Acevedo y Vicente. Pero ante todo, Christian, Pelayo y

Joaquín. Es cierto, todos lo saben, lleváis la ciencia dentro, pero también la

generosidad. Hay mucho para dar las gracias, porque para mí ha sido ésta una gran

suerte. A Christian, por ser el Coronel de este gran batallón y el motor detrás de

esta tesis, por el entusiasmo en lo que hace, y esa capacidad para contagiarlo. Por la

confianza que depositó en mí. Por los cafés a cambio de libreta. Por romper los

aburridos silencios con una gran risa. A Pelayo por esa actitud positiva, por el rigor

en hacer las cosas, por las buenas ideas, por los ratos de Skype. A Joaquín por esa

mente tan prodigiosa y los entrañables despistes que le hacen humano, por esos

momentos de mirar al vacío que tanto me han hecho temblar, y por las pocas

palabras que han hecho falta para saber dónde había una amistad.

A este gran grupo de gente mal llamado submundo, un batallón que aguanta

muchas guerras, en el que me sentí como en casa desde el primer día y con el que

ha sido un placer trabajar. A Paqui por los cinco mil favores sin que faltara una

sonrisa en ninguno de ellos, por querernos tanto. A Encarni por tener tanta

paciencia. A Mauricio, Bea y Valeria por la buena voluntad siempre. A Jose Ángel

por ser tan trabajador pero también por cuidar de mí y dejarme ser tan payasa. A

Vidal, por las pequeñas agradables palabras en su camino a la impresora. A las

Virginias, los Joaos, Nacho, Isa. A Fran, por ser tan atento y preocuparse de mis

dudas. A Álvaro y Óscar, por todo el trabajazo en el frente del norte. Y a la que se

fue al norte y se llevó allí sus rizos y su alegría, pero echamos de menos en el sur. A

Mari Paz y los cien motes con la que la llamamos como pequeña muestra del gran

Page 11: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

cariño que se ha ganado, por ser un ejemplo de fortaleza y no dejar de sonreírle a la

vida.

A los nuevos, Iratxe, Nelson, David, por aguantar a este ser rancio sin apenas

conocerle. A los que dejaron el relevo y también buenos recuerdos de días de

campo, Rafita, Ricardo, Gamarra, Jesús, Tamara, Elisa, Lucca, Tania, Caterina. A

Vane, por ser la mejor anfitriona del B3 que uno pueda tener, y ser tan única, y por

haber ampliado nuestro vocabulario de forma ya irreversible.

A Alfredo por esa amistad rara pero divertida, por los ratos de coche comiendo

pipas camino de San Quirce.

A los guardas de Lugarnuevo, por hacer de los días de muestreo algo tan parecido a

una película cómica.

A Jorge Jordi y la gente del CReSA por hacer tan agradable el eje IREC-Barcelona.

A Susana, Paulo Célio y la gente de CTM. A Pp, Nacho, Lina, Konstantin, y a

todos con los que he tenido el placer de trabajar.

A Montse por cuidar siempre tan bien de nosotros, en los días de tesis en el Llorà,

y a esa otra familia que se llama Joglars.

A Salva por estar siempre ahí, por los paseos en bici en medio de los agobios. A

Jesús por esa capacidad de hacernos reír a todos sin mover un músculo. A Marisa,

por los divertidos momentos de grullas gritonas en los despachos. A Loren, por ese

humor cínico, inigualable, por ser más listo que el hambre. A Eli por su visión

crítica y tan cabal de las cosas, por sus risas de sorpresa. A Elo, por ser tan atenta,

por cuidar y confiar en mí. A Alba por tener claro lo que la amistad significa. A

Elenis por ese optimismo recalcitrante, esas ganas de todo. A Raspa por ser la

personalidad más auténtica que he conocido. A Tachu por esa risa auténtica, como

él. A Carlos por ese espíritu joven, a los dos, por amenizar viajes y veladas de

colores y formas distintas. A Luis y Conchi, por estar siempre dispuestos a pasarlo

bien. A Sandra por convertirse en una persona tan especial en mi vida, con la que

me va a costar mucho no vivir. A vosotros, por las mil historias tan geniales que

hemos generado juntos, por mantenerme a flote en los momentos que fueron

Page 12: Los abajo firmantes, como directores de esta tesis

Agradecimientos

bajos, por cambiar algo y tanto en mí, por hacerme sentir una persona tan

afortunada.

A esa institución llamada Akelarre, y sus maravillosos miércoles de desahogos y

risas.

A todos los que hacéis del IREC un magnífico lugar para trabajar, incluso a Harry y

los sucios, que con sus correos nos dan el gusto de saber que no somos como ellos.

A los que habéis pasado pero no desaparecido, Ainhoa, Julien, María.

A Roberto, por haberme empujado a esto con tanta decisión, por su apoyo y por

ese riñón que espero no tener que usar. A Damià, por la confianza que tuvo en mis

principios, por haber luchado en un nido de víboras. A Noé por no dudar para que

empezara esto, a pesar de todo.

Al apoyo que siempre he encontrado en mi familia.

A Mari, Vane, Loli y Martona por los principios en el camino de los silvestres.

Y también a Alatriste, por lo que fuiste antes de desaparecer en los tercios, y por

esa fuerza con la que me envolviste, que pareciera poderlo todo.

A todos los que no por no estar en estas líneas no estáis en mi vida.

En este mismo lugar, a nueve mil kilómetros, estaba antes de empezar estos cuatro

años de tesis, y aquí vuelvo a estar ahora, quizás cerrando esta maravillosa etapa.

Pero para la siguiente me llevo el equipaje de todo lo que habéis llenado, tanto que

no desearía ir a ninguna otra parte sin él.

Simplemente, gracias.

Page 13: Los abajo firmantes, como directores de esta tesis
Page 14: Los abajo firmantes, como directores de esta tesis

Índice

ÍNDICE GENERAL

OBJETIVOS .........................................................................................................................i

ORGANIZACIÓN DE LA TESIS................................................................................iii

CAPÍTULO 1. INTRODUCCIÓN.................................................................................1

Tendencias temporales de las infecciones en fauna silvestre: revisión....................1

CAPÍTULO 2. METODOLOGÍA............................................................................... 17

2.1. Metodología para la monitorización de las enfermedades de la fauna silvestre ........................................................................................................................... 21

2.2. Efecto de la hemólisis y la congelación-descongelación repetida en el análisis de anticuerpos mediante ELISA................................................................... 33

CAPÍTULO 3. VIGILANCIA SANITARIA DE ZOONOSIS.............................. 43

3.1. Incremento en el contacto con el virus de la hepatitis E en el ciervo Ibérico............................................................................................................................. 47

3.2. ¿Permiten los ungulados silvestres mejorar la vigilancia de flavivirus? ......... 55

3.3. Una tendencia decreciente: la triquinelosis del jabalí ....................................... 67

CAPÍTULO 4. RIESGOS SANITARIOS ASOCIADOS AL MANEJO CINEGÉTICO INTENSIVO DE LOS UNGULADOS SILVESTRES ............. 83

4.1. El jabalí: ¿un riesgo para el control de la enfermedad de Aujeszky en el cerdo?.......................................................................................................................... 89

4.2. Evolución temporal de la seroprevalencia de cuatro patógenos relevantes en el jabalí .................................................................................................. 105

4.3. Distribución espacial y factores de riesgo de la brucelosis en ungulados de la Península Ibérica ............................................................................ 123

4.4. Expansión de la tuberculosis en el jabalí ......................................................... 147

CAPÍTULO 5. APORTACIONES AL CONTROL DE LAS ENFERMEDADES COMPARTIDAS..................................................................... 159

5.1. Persistencia de lesiones compatibles con tuberculosis en poblaciones de ciervo Ibérico bajo distintas condiciones de manejo ....................................... 163

Page 15: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

5.2. Efectos del control poblacional no selectivo del jabalí sobre la prevalencia de contacto con bovis y el virus de la enfermedad de Aujeszky .................................................................................................................. 177

Mycobacterium

CAPÍTULO 6. DISCUSIÓN ....................................................................................... 197

Seis recomendaciones para la mejora de la monitorización de las enfermedades compartidas ........................................................................................ 197

CAPÍTULO 7. SÍNTESIS Y CONCLUSIONES .................................................... 217

SÍNTESIS .................................................................................................................... 219

CONCLUSIONES..................................................................................................... 225

BIBILIOGRAFÍA.......................................................................................................... 227

Page 16: Los abajo firmantes, como directores de esta tesis

Objetivos

OBJETIVOS

En esta tesis se estudian las tendencias en el tiempo del contacto de ungulados

silvestres de la Península Ibérica con diversos patógenos compartidos entre la fauna

silvestre, los animales domésticos y las personas. El primer objetivo perseguido es

utilizar la vigilancia sanitaria para describir la variación espaciotemporal de las tasas

de contacto de los ungulados silvestres con varios agentes zoonóticos. El segundo

objetivo propone identificar factores de riesgo para las enfermedades y poblaciones

estudiadas, a fin de poder inferir herramientas de gestión con las que mejorar la

sanidad global y la conservación de la fauna silvestre. El tercer objetivo es analizar

el efecto de la reducción no selectiva de la población de jabalí sobre su situación

sanitaria y la de otros ungulados en simpatría. Finalmente, con el conjunto del

trabajo se pretende aportar mejoras para la vigilancia sanitaria de la fauna silvestre.

i

Page 17: Los abajo firmantes, como directores de esta tesis
Page 18: Los abajo firmantes, como directores de esta tesis

Organización

iii

ORGANIZACIÓN DE LA TESIS

En la introducción de esta tesis, Capítulo 1, se revisan estudios sobre

tendencias temporales en enfermedades de mamíferos silvestres terrestres

tomados de la bibliografía internacional. Se describen las características de las

tendencias temporales recogidas y se identifica la información que debería ser

registrada en este tipo de trabajos para poder optimizar su análisis.

En el Capítulo 2 se describen brevemente las peculiaridades de la

metodología empleada para el seguimiento de las enfermedades en los

ungulados silvestres.

Los siguientes capítulos siguen un orden paralelo al curso de la investigación de las

enfermedades de la fauna silvestre, desde su descubrimiento, pasando por los

análisis de riesgos, hasta la puesta en marcha de medidas para su control.

En el Capítulo 3 se aborda la vigilancia sanitaria y el seguimiento temporal del

contacto de los ungulados silvestres de la Península Ibérica con tres agentes

zoonóticos: el virus de la hepatitis E, el género Flavivirus, y Trichinella sp.

En el Capítulo 4 se analizan factores de riesgo que determinan las variaciones

temporales en el contacto de ungulados silvestres con siete patógenos

relevantes, así como su posible asociación al manejo cinegético intensivo.

El Capítulo 5 describe el efecto del control poblacional no selectivo de

jabalíes sobre la prevalencia de contacto con el virus de la enfermedad de

Aujeszky y con Mycobacterium bovis en el jabalí, sobre la incidencia de reactores

bovinos a la prueba de tuberculina, y sobre la prevalencia de infección por M.

bovis en el ciervo.

La discusión, Capítulo 6, propone cómo mejorar la monitorización sanitaria

en fauna silvestre, haciendo especial hincapié en las enfermedades causadas

por micobacterias.

Page 19: Los abajo firmantes, como directores de esta tesis
Page 20: Los abajo firmantes, como directores de esta tesis

Capítulo 1

CAPÍTULO 1. INTRODUCCIÓN

Tendencias temporales de las infecciones en fauna

silvestre: revisión

Boadella, M., Acevedo, P., Gortázar, C. Time trends in wildlife infections: a review. En preparación.

Page 21: Los abajo firmantes, como directores de esta tesis
Page 22: Los abajo firmantes, como directores de esta tesis

Capítulo 1

Resumen

La repetición de estimas de prevalencia y de otros indicadores de frecuencia de

enfermedades permite el seguimiento de su evolución en el espacio y tiempo y

resulta imprescindible para evaluar el resultado de eventuales estrategias de

intervención. Sin embargo, datos sobre tendencias temporales de las enfermedades

de la fauna silvestre son aún escasos, y en ocasiones los resultados no están

correctamente descritos en la literatura científica. En este trabajo se realizó una

búsqueda bibliográfica en las principales bases de datos de información científica

(Scopus, PubMed, e ISI Web of Knowledge) para identificar estudios que

describieran tendencias en las prevalencias de enfermedades de la fauna. Se

incluyeron aquellos estudios que describían tendencias de prevalencia en un

período de tiempo superior a 5 años o cuando dos o más estudios transversales

describían prevalencias para el mismo hospedador y enfermedad con una diferencia

de al menos 5 años. En este último caso, los estudios se combinaron y se calculó la

tendencia de la prevalencia entre ellos. En total se identificaron 101 artículos que

mostraban datos de tendencias temporales de prevalencia en distintas

enfermedades de mamíferos terrestres. Estos trabajos resultaron en un total de 191

series temporales de contacto de 42 especies hospedadoras con 51 patógenos

distintos. Las series descritas en ungulados y carnívoros fueron las más frecuentes

en cuanto a hospedadores, los virus fueron estudiados con mayor frecuencia que

las bacterias o los parásitos y el 41% de los patógenos estudiados eran zoonóticos.

De los 101 estudios que permitían el análisis estadístico de las tendencias

temporales, 39 usaron tests no paramétricos, 21 usaron modelos multivariantes, y

en 41 de las publicaciones no se describía el método usado o no se llegaron a

analizar las tendencias. De las 72 series para las que se evidenció una tendencia, ésta

resultó negativa en el 30% y positiva en el 70%. El número de muestreos, la

prevalencia, el estatus del hospedador (reservorio o accidental) y su densidad,

resultaron ser factores asociados con la probabilidad de identificar tendencias

temporales. Finalmente, la literatura revisada permitió enumerar los datos más

1

Page 23: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

2

importantes que se deberían registrar y reportar a fin de permitir un metanálisis

adecuado de las tendencias temporales de las prevalencias en fauna silvestre.

Page 24: Los abajo firmantes, como directores de esta tesis

Capítulo 1

Abstract

Repeated estimation of prevalence or other indicators of disease frequency

allows monitoring its evolution in space and time and assessing the outcome of

intervention strategies. However, time trend data on wildlife diseases are often

missing or not properly described in the scientific literature. A bibliographical

search was launched on scientific web databases (Scopus, PubMed, and ISI Web of

Knowledge) to search for studies that described prevalence trends on wildlife

diseases. Studies included where those that described prevalence trends with a time

span greater than 5 years or when two or more cross-sectional studies described

prevalences for the same host and disease with a difference of at least 5 years

between them. In the latter case, studies were combined and the trend was

calculated. We identified 101 papers dealing with time trends in disease prevalence

in different wild terrestrial mammals. These papers comprised a total of 191 time

series on contact of 42 different host species with 51 different pathogens. Series on

ungulates and carnivores dominated regarding the host species, and viral agents

were more often studied than bacteria or parasites. Of the pathogens studied, 41%

were zoonotic, including the four most often studied ones. Of 101 studies

describing time trends, 39 used nonparametric homogeneity tests, 21 used models,

and 41 did not state the test or used no test at all. Of the 72 series where a time

trend was evidenced, 30% were declining trends and 70% were increasing. Factors

linked with the identification of time trends included number of samplings,

prevalence, presumed host status (maintenance or spillover) and host density.

Finally, the reviewed literature allowed listing the most important data that need to

be recorded and reported in order to allow a proper analysis of prevalence time

trends in wildlife. Comprehensive studies are scarce but needed to get the most

information of a given scenario.

3

Page 25: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Introduction

Repeated estimation of prevalence or other indicators of disease frequency

allows monitoring its evolution in space and time. This in turn allows identifying

changes in disease occurrence and assessing the outcome of intervention strategies.

Hence, disease monitoring in wildlife is promoted in order to obtain information to

compare with the distribution and prevalence trends in humans or in livestock, as a

basis for decision making regarding wildlife disease control, and as a means for

assessing the effects of any disease management action (Boadella et al., 2011a). The

last point is particularly relevant because the effectiveness of most procedures

currently used for management in diseases in wild animals remains largely untested

and unknown. Therefore, every disease management program should include

means to measure its effectiveness (Wobeser, 1994). However, time trend data on

wildlife diseases are often missing or not properly described in the scientific

literature.

True time series data are characterized by an outcome measured at equal time

intervals over a reasonably long time period and stratified spatial sampling. In

human and in domestic animal medicine such time series often originate from data

records on e.g. disease incidence rates, hospital admissions or production records

(Dohoo et al., 2009). For instance, progress in (human) tuberculosis (TB) control is

monitored worldwide by counting TB cases (incidence) accurately through routine

surveillance. By contrast, disease prevalence surveys are costly and laborious, but

give unbiased measures of TB burden and trends, and are justified in high-burden

countries where many cases and deaths are missed by surveillance systems (Dye et

al., 2008). In livestock, too, monitoring of infectious diseases can be achieved

through routine data on apparent prevalence gathered for instance during meat

inspection at slaughter (Enoe et al., 2003), or by monitoring prevalence through

regularly repeated cross-sectional surveys (e.g. cattle skin testing for bovine TB or

Aujeszky’s disease virus detection by ELISA).

4

Page 26: Los abajo firmantes, como directores de esta tesis

Capítulo 1

In wildlife, infection monitoring is even more difficult due to the low

accessibility of most species, the lack of suitable diagnostic tools and the limited

resources available, among other factors (Wobeser, 1994). Thus, long and data-rich

time series on wildlife diseases are an exception that is usually limited to zoonoses

such as rabies (Müller et al., 2005) and trichinellosis (Pannwitz et al., 2010). A few

long term studies on wildlife host-parasite systems also provide valuable data for

trend analysis and epidemiological modelling (e.g. the Soay sheep – gastrointestinal

nematodes system, (Coltman et al., 1999). In most wildlife settings however, time

trend data are limited to a few years or need to be inferred from two or more cross-

sectional studies on the same host-pathogen system and study area repeated at

different times.

For instance, two separate studies described the Mycobacterium bovis infection

prevalence among wild ungulates in Doñana National Park (DNP) in southern

Spain. From 1998 to 2003, a sample of 214 wild boar (Sus scrofa), 168 red deer

(Cervus elaphus) and 134 fallow deer (Dama dama) yielded M. bovis infection

prevalences of 28%, 15% and 13%, respectively (Romero et al., 2008). A new

cross-sectional survey carried out between 2006 and 2007 on 124 DNP wild boar,

95 red deer and 97 fallow deer yielded infection prevalences of 52%, 27% and 18%,

respectively (Gortázar et al., 2008). It is most likely that these huge increases in

infection prevalence represented true increasing time trends. However, differences

in sampling and necropsy procedures, in sample stratification by sex and age, in

sample distribution within the study area or in laboratory protocols could also have

had an effect on the apparent prevalences recorded (Gortázar et al., 2008; Martín-

Hernando et al., 2010; Figure 1).

One classical example of a wildlife disease time trend is the surveillance on red

fox (Vulpes vulpes) rabies in Europe. Data recording on annual fox rabies cases (the

outcome variable) started as early as 1954 and is still continued. Since rabies is an

important zoonotic disease, exceptional measures for its control in foxes have been

implemented. In Germany, fox oral vaccination against rabies with baits containing

5

Page 27: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

a recombinant vaccinia virus started in 1985. This action was successful in reducing

the annual number of fox rabies cases from peaks of over 10,000 in the late 1970s

and early 1980s, to almost zero nowadays (Müller et al., 2005). This long data series

provided and extremely valuable insight into the rabies virus – red fox system, and

allowed assessing the efficacy of the disease control action (vaccination).

Unfortunately, this example is an exception, as information on the time trends of

most wildlife infections is usually either fragmentary or completely lacking.

Another relevant aspect regarding disease trend assessment is the need for

quality background data on population size and distribution. While this is usually

granted in humans and regarding most domestic animals, wildlife population data

are not always available. In Europe, many wildlife species are changing their range

and population size in the last decades. Examples include deer species (Acevedo et

al., 2005), wild bovids (Acevedo et al., 2007a), Eurasian wild boar (Sáez-Royuela

and Telleria, 1986), carnivores such as red fox (Vos, 1995) and lagomorphs such as

the European wild rabbit (Williams et al., 2007). In some of these cases, diseases

have been suspected to drive a species’ decline (rabbits, myxomatosis and rabbit

haemorrhagic disease, Delibes-Mateos et al., 2008; foxes and sarcoptic mange,

Lindstrom et al., 1994). In other occasions disease control measures have been

pointed as causes for wildlife population increase (red fox and rabies control,

König et al., 2005). In other cases, changes in distribution and increases in

abundance of a wildlife host have been linked with increases in the prevalence of

density-dependent infections such as Aujeszky’s disease virus (Pannwitz et al.,

2011) and M. bovis (Gortázar et al., in press).

Since wildlife populations are usually not stable in time, we hypothesized that

contact with pathogens would also vary in time, and this trend (or the likelihood of

detecting it) would be linked to host population characteristics, pathogen

characteristics and study design. Herein, we reviewed scientific literature for time

trend data regarding wildlife diseases in order to infer recommendations for future

studies.

6

Page 28: Los abajo firmantes, como directores de esta tesis

Capítulo 1

Figure 1.- Examples of annual time series and combined cross-sectional surveys. Upper panel: number of fox-mediated rabies cases in Germany from 1955 to 2010. Large-scale fox oral vaccination programmes began in 1985 (modified from (Müller et al., 2005). Lower panel: Mycobacterium bovis infection prevalence (in %, ± 95% CI) in European wild boar (diamonds), red deer (squares) and fallow deer (triangles) from Doñana National Park in two different cross-sectional surveys (Gortázar et al., 2008; Romero et al., 2008).

Material and methods

Sources of wildlife infection time series

A bibliographical search was launched on scientific web databases (Scopus,

PubMed, and ISI Web of Knowledge) combining different key words to search for

studies that described prevalence trends on wildlife diseases. The first search was

done by combining the words [time] or [trend], [disease] and [wildlife]. Secondly, a

7

Page 29: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

search on 36 diseases that are considered relevant at the interface with livestock

(Gortázar et al., 2007; EU Wildtech project list, http://www.wildtechproject.com),

and that witnessed recent progress regarding the involvement of wildlife hosts was

done by entering the [name of pathogen] or [name of the disease] with [wildlife] or

[known wildlife host species for the disease].

Studies included where those that described prevalence trends with a time span

greater than 5 years or when two or more cross-sectional studies described

prevalences for the same host and disease with a difference of at least 5 years

between them. In the latter case, studies were combined and the trend was

calculated. Additionally, we included some studies retrieved from the citations of

the former ones, and 6 own surveys that are under review.

Variables analyzed and statistics

For each selected study, different sampling, host and disease characteristics

were recorded as variables for analysis (Table 1). The response variable was the

presence or absence of a disease trend as defined by the authors of each study.

Trends between combined cross-sectional studies were calculated with Chi-

square tests. Associations between categorical variables were analyzed by means of

homogeneity tests (Chi square or Fischer’s test when appropriate). Correlations

between continuous variables were analyzed by means of Spearman’s rank test.

Results were considered significant when p<0.05. Data was analyzed using the IBM

SPSS statistical package, version 19.0 (IBM Corporation, Somers, NY, USA).

8

Page 30: Los abajo firmantes, como directores de esta tesis

Capítulo 1

Table 1.- Sampling, host and pathogen characteristics recorded as variables for the analysis, their description, type and number of cases (n).

Variable Description Type of variable

(categories) n

Sampling method

Study area Geographical location of the study site

Nominal 101

Country

Country where the study took place

Nominal 101

Continent

Continent where the study took place

Nominal 101

Area size

Relative size of the study area, e.g. local, regional, nationwide

Categorical (small, medium, large)

101

Sample size (n)

Total number of animals or samples analyzed

Continuous 175

Test used

Diagnostic test used to determine prevalence or incidence

Nominal 182

Hr/Ag

Diagnostic test directed to determine the host response (Hr) or the agent (Ag)

Categorical 190

Mean prevalence

Overall prevalence for the whole study

Continuous 168

Prevalence category

Categorized relative prevalence (%)

Categorical (Low: 0-5%, Medium: 5.1-10%, High: 10.1-50%, Very high: >50%)

171

Initial prevalence

Prevalence in the first period/year of the study

Continuous 105

Final prevalence

Prevalence in the last period/year of the study

Continuous 106

Difference in prevalence

Final prevalence minus the initial prevalence

Continuous 104

Sampling events

Number of samplings during the study period or in different cross-sectional studies

Categorical (2, 3 to 5, > 5) 143

Nr of years Duration of the study in years Continuous 191

Time span Categorized duration of the study Categorical (5 to 10, 11 to 20, >20)

191

Test used for trend

Statistical test used for trend analysis

Categorical (nonparametric, model, no test)

61

Trend

The trend identified by the authors or calculated when combining different studies

Categorical (increasing, decreasing, stable) 191

Trend Y/N

Host trend categorized into presence of absence of disease trend

Response variable, categorical 191

Host characteristics Host Host species Nominal 42 Family or

taxonomic group Hosts species grouped into taxonomic groups

Nominal 17

9

Page 31: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Table 1.- Continued

Variable Description Type of variable

(categories) n

Host characteristics

Stated host status The authors state in the article if the host is considered a reservoir or a spillover of the disease.

Categorical (spillover, maintenance) 126

Presumed host status

If authors or current knowledge on the field allow classification of the host into spillover or maintenance.

Categorical (spillover, maintenance)

160

Gregariousness

Level of gregariousness of the host species in the study site

Categorical (low, medium, high)

122

Density

The density of the host in the study site

Categorical (low, medium, high)

63

Host trend

Host trend as identified by the authors

Categorical (increasing, decreasing, stable)

77

Host trend Categorized host trend Categorical (presence,

absence) 77

Pathogen characteristics

Endemic/epidemicThe pathogen is endemic or epidemic in the study site and host

Categorical (Endemic, epidemic)

185

Type Type of pathogen Categorical (prion, virus,

bacteria, parasite) 51

Mm

Pathogen categorized into macroparasite or microparasite

Categorical (macroparasite, microparasite)

51

Transmission Type of transmission Categorical (direct, indirect,

both, vector) 51

Vector

The pathogen is transmitted by vectors

Categorical (yes, no) 51

Environmental stages

The pathogen has environmental stages

Categorical (yes, no) 50

Acute/chronic

The pathogen causes an acute or a chronic disease in the studied host species

Categorical (chronic, acute) 120

Seasonal or not

The pathogen is more frequent during a season or throughout the year

Categorical (seasonal, not seasonal) 51

Zoonosis

The pathogen causes a zoonotic disease

Categorical (yes, no) 51

10

Page 32: Los abajo firmantes, como directores de esta tesis

Capítulo 1

Results and discussion

We identified 101 papers dealing with time trends in disease prevalence in

different wild terrestrial mammals. These papers comprise a total of 191 time series

on contact of 42 different host species with 51 different pathogens. In the

following sections we first describe the characteristics of these 191 time series and

later analyze some of the factors linked with the presence or absence of time trends

(see complete table of time series and their references in:

https://www.dropbox.com/home/Material%20suplementario%20Tesis%20M.%2

0Boadella#:::72822462).

Numerical data on these time series are summarized in Table 2. A total of 110

of 191 series described prevalence trends in ungulates (58%), and 71 described

trends in carnivores (37%). Other orders including rodents and lagomorphs

comprised only 5% of the time series. The most often studied hosts were red

deer/elk (43/191, 22%) and wild boar (33/191, 17%) among the ungulates, and

two canids, the wolf (Canis lupus; 13/191, 6.8%) and the red fox (11/191, 5.7%)

among the carnivores. Viral agents were more often studied (32 viruses; 91 of 191

time series, 48%) than bacteria (11 bacteria; 68/191, 36%) or parasites (7 parasites;

31/191, 16%). Of the 51 different pathogens studied, 21 (41%) were zoonotic,

including the four most often studied ones. These included the members of the

Mycobacterium tuberculosis complex (mainly M. bovis; 23/191, 12%), followed by

Brucella spp. (20/191, 10%), Trichinella spp. (13/191, 7%) and rabies virus (12/191,

6%). Thus, microparasites dominated among the studied time trends (172/191,

90%). One reason for identifying so many time trend studies on viruses in contrast

to so few ones on parasites is that our literature search concentrated on selected

relevant diseases, which include more viruses and bacteria than parasites (Gortázar

et al., 2007). Another explanation is that for most relevant pathogens for the

livestock industry (many viruses among them), there are serological tests available

that allow testing large numbers of samples at a low cost, while such techniques are

11

Page 33: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

often either not commercially available or have a low specificity in the case of many

bacteria and parasites.

Table 2.- Mean, median, range and number of cases for the four continuous variables recorded.

Variable Mean Median Range n

Total sample size 20,452 343 36-2,469,996 175

Time span (years) 11.2 10 5-46 191

Samplings 6.5 6 2-42 143

Mean prevalence 21.6 11.45 0-100 168

Most time series described settings with a mean prevalence lower than 30%

(119/167, 71%), while only 13/167 (7.8%) described settings with a mean

prevalence higher than 70% (Figure 2). Study area sizes were generally medium

(44/101, 44%) or large (42/101, 42%). Studies from Europe (58%) and North

America (28%) dominated, followed by African studies (10%). In contrast, studies

from other regions were scarce (Asia 3%, Oceania 1%) or were lacking, as was the

case for South America. Hence, long term surveys on less known host species from

regions with limited available information such as South America are needed,

especially when considering that areas in the continent have been identified as likely

to change the temporal and geographical distribution of infectious diseases (such as

bluetongue or West Nile fever) due to climate change (Pinto et al., 2008).

Also, most time series described host response (generally antibody prevalence)

and fewer ones described antigen prevalence (133/191, 70% vs. 57/191, 30%,

respectively). Fifty percent of the studies stating the number of sampling events

had more than five, while 17% reported only two sampling events or were based

on repeated cross-sectional studies on the same host/pathogen/site. Of 101 studies

describing time trends, 39 used nonparametric homogeneity tests, 21 used models,

and 41 did not state the test or used no test at all. Most time series did not allow

identifying an increasing or decreasing time trend (119/191, 62%). Of the 72 series

where a time trend was evidenced (38%), 22 (30%) were declining trends and 50

12

Page 34: Los abajo firmantes, como directores de esta tesis

Capítulo 1

(70%) were increasing. This difference was statistically significant (Chi2=21.7, 1 d.f.,

p<0.001). This finding is rather surprising and could be explained by two not

mutually excluding ideas: first, since there is a bias towards ungulates regarding the

hosts studied, and these are generally expanding their distribution and increasing

their abundance, increasing trends of density dependent infections or multi-host

infections would be expected. Second, increasing trends might be more attractive

to report and thus be more likely to get published than negative trends or trend

absence. In a similar way, positive results of gamebird restocking tend to be more

often reported than negative ones (Duarte et al., 2011).

Figure 2.- Proportion of studies (total numbers in columns) that detect a trend (dark grey) or do not detect it (light grey) plotted against 10% prevalence intervals.

The total sample size was negatively correlated with the mean prevalence (rs=-

0.32, p<0.001) and positively correlated with the number of samplings (rs=0.27,

p<0.01). There was no correlation between sample size or number of samplings

and the time span. Regarding the factors linked with the identification of time

trends, these included number of samplings, prevalence, presumed host status and

host density.

Counter intuitively, trend presence was associated with a lower number of

sampling events (Chi2=23.8, 3 d.f., p<0.01). Fewer sampling events (or grouping

the initial and the final parts of a time series) is a simplification of reality. However,

13

Page 35: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

it can be debatable if this simplification is or not advantageous, since it is clear that

budget limitations drive sample size and the number of sampling events, and that

grouping such samples allows inferring at least a gross idea on the evolution of

selected infections through time. For instance, by grouping the initial and final

years of a ten year data series on red deer contact with hepatitis E virus, (Boadella

et al., 2010) managed to identify an increasing trend of contact with this zoonosis in

Spain. However, time trends based on continuous monitoring (e.g. Figure 1, upper

panel) offer more information than just disease situations at time 1 and time 2 (e.g.

Figure 1, lower panel). In fact, if significant changes in disease prevalence occur

during the time series, these might go unnoted if only two periods are defined.

Regarding prevalence, medium and high prevalences were more associated to

trend detection than low or very high ones (Chi2=8.5, 3 d.f., p<0.05; Figure 2). In

fact, detecting a significant change in prevalence in situations of very low or very

high prevalence requires high sample sizes, and makes monitoring more difficult

and costly (Boadella et al., 2011a; Hoye et al., 2010).

Figure 3.- Proportion of studies detecting a trend (dark grey) or not (light grey) in host species classified as maintenance or spillover.

Regarding the host, a trend was detected in 45% of those hosts classified as

maintenance but only in 21% of hosts classified as spillover (Chi2=7.1, 1 d.f.,

14

Page 36: Los abajo firmantes, como directores de esta tesis

Capítulo 1

p<0.01; Figure 3). This might reflect a difference in prevalence, with larger ones in

maintenance than in spillover hosts. Higher host densities were more often linked

to presence of a trend (Chi2=8.1, 2 d.f., p<0.05), possibly because higher host

densities enable obtaining larger sample sizes (Boadella et al., 2011a). In any case,

wildlife disease monitoring will only make sense if population monitoring is carried

out at the same time, allowing to link changes in abundance or management with

changes in disease indicators (Boadella et al., 2011a).

Host density trends and prevalence trends were linked (Chi2=15, 6 d.f., p<0.05;

Figure 4). We found however no link between host density and mean prevalence

(Chi2=8.2, 6 d.f., p>0.05). This can be due to the fact that diseases with different

behaviours were analyzed together. For example, increasing fox abundance has

been linked with increasing prevalence of the cestode Echinococcus multilocularis

(König et al., 2005), while an increase of myxomatosis caused a declining wild

rabbit density by direct mortality (Myers, 1962).

Figure 4.- Relation between host density trend and increasing (dark grey) or decreasing (light grey) prevalence trend.

Finally, the reviewed literature allows listing the most important data that need

to be recorded and reported in order to allow a proper analysis of prevalence time

trends in wildlife. Regarding the pathogen, these are the type of outcome measured

and eventually the type of diagnosis; test used and test interpretation (e.g. cut off).

15

Page 37: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

16

Regarding the host, sex and age are key factors affecting contact likelihood with

many pathogens. Regarding the sampling methods, it is important to state how

sampling was stratified in space and time (sampling season), and if the analyzed

individuals were included randomly or not. Importantly, most surveys do not

define the precise sites sampled each year within large study areas and some do

even fail to report the stratification by age and sex (e.g. Romero et al., 2008 vs.

Gortázar et al., 2008). Thus, the presence or absence of apparent time trends can

be due to differences in the yearly sample distribution and stratification. To avoid

this, all long term studies and also all cross-sectional surveys should include the

listed minimal information in order to allow proper investigation of time trends.

There is a lack of interdisciplinary studies on wildlife disease and wildlife

population trends. Factors regulating disease trends are often a network of

ecological, anthropological, and epidemiological aspects that normally are not

treated as a whole. Studies carried out by biologists normally lack of

epidemiological data while those done by veterinarians often miss basic population

data. Comprehensive studies are scarce but needed to get the most information of a

given scenario.

Page 38: Los abajo firmantes, como directores de esta tesis

Capítulo 2

CAPÍTULO 2. METODOLOGÍA

2.1. Metodología para la monitorización de las enfermedades de la fauna silvestre

2.2. Efecto de la hemólisis y la congelación-descongelación repetida en el análisis de anticuerpos mediante ELISA

Page 39: Los abajo firmantes, como directores de esta tesis
Page 40: Los abajo firmantes, como directores de esta tesis

Capítulo 2

19

Resumen

La vigilancia sanitaria de fauna silvestre que se lleva a cabo en el IREC desde

1999 se basa en realizar investigaciones continuas sobre poblaciones determinadas

con vistas a detectar la aparición de enfermedades o la variación de su prevalencia a

lo largo del tiempo. Esa labor se divide en tres fases principales. Una primera fase

de trabajo de campo en los sitios de estudio que incluye la caracterización del

hábitat y manejo cinegético, y de las poblaciones objeto de estudio, así como la

toma de muestras durante la temporada de caza. Posteriormente, en la segunda fase

se procesan las muestras tomadas y éstas se almacenan en serotecas e histotecas. En

una tercera fase se realiza el análisis de muestras (patología, serología,

microbiología, diagnóstico molecular) y datos (GIS, dinámica de poblaciones,

análisis de factores de riesgo, etc.).

Por otro lado, las muestras de suero de especies silvestres son valiosas para la

detección de contacto con patógenos, pero a menudo están hemolizadas y se usan

varias veces para distintos análisis, por lo que se las somete a repetidos ciclos de

congelación-descongelación (C-D). Con el objetivo de estudiar los efectos de la

hemólisis y de los ciclos de C-D sobre el resultado de un ELISA comercial para la

detección de anticuerpos frente al virus de la Enfermedad de Aujeszky, se usaron

sueros limpios y hemolizados de jabalí (Sus scrofa) y se sometieron a cinco ciclos

repetidos de C-D. La hemólisis no redujo la prevalencia media observada, y a pesar

de que el 27% de las muestras cambiaron su clasificación en alguno de los ciclos,

ninguna de las muestras inicialmente positivas cambió su estado. En vista de los

resultados obtenidos, recomendamos (1) establecer puntos de corte más restrictivos

cuando se analicen sueros de especies silvestres, (2) registrar la calidad del suero

antes de almacenarlo, (3) registrar el número de C-D y (4) almacenar el suero en

varias alícuotas. Los sueros muy hemolizados deberían descartarse para estudios de

monitorización de anticuerpos y ningún suero debería someterse a más de 5 ciclos

de C-D.

Page 41: Los abajo firmantes, como directores de esta tesis
Page 42: Los abajo firmantes, como directores de esta tesis

Capítulo 2.1

Metodología para la monitorización de las

enfermedades de la fauna silvestre

Page 43: Los abajo firmantes, como directores de esta tesis
Page 44: Los abajo firmantes, como directores de esta tesis

Capítulo 2.1

Introducción al método de vigilancia sanitaria de fauna silvestre del IREC

Los animales, y muy particularmente la fauna silvestre, se consideran la fuente

de más del 70% de todas las enfermedades emergentes. En consecuencia, la

vigilancia sanitaria de la fauna silvestre es crítica para el control de esas

enfermedades (Kuiken et al., 2005). Las enfermedades de la fauna silvestre tienen

relevancia por varios motivos:

Por incluir zoonosis

Por afectar a la sanidad de la cabaña ganadera

Por comprometer la producción cinegética

Por sus efectos en la conservación de la fauna silvestre

Dentro de la fauna silvestre, la importancia para la sanidad animal de las

especies susceptibles de aprovechamiento cinegético se debe sobre todo a su

abundancia y distribución, y a su proximidad filogenética con el ganado. En

general, las especies cinegéticas son muy accesibles para la toma de muestras, y esto

hace que estas especies sean buenas candidatas para la vigilancia sanitaria.

La vigilancia sanitaria de fauna silvestre que se lleva a cabo en el IREC desde

1999 se basa en la realización de investigaciones continuas sobre poblaciones

determinadas con vistas a detectar la aparición de enfermedades o la variación de su

prevalencia a lo largo del tiempo. En ese sentido, el estudio continuado de las

enfermedades se puede sintetizar en tres fases (Figura 1):

Fase 1: trabajo de campo en los sitios de estudio

Caracterización del hábitat y del manejo cinegético al que

están sometidas las poblaciones

Caracterización de las poblaciones en términos de

abundancia y distribución

Toma de muestras durante la temporada de caza

Fase 2: Procesado de las muestras tomadas y su almacenaje en serotecas

e histotecas

23

Page 45: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Fase 3: Análisis de muestras (patología, serología, microbiología,

diagnóstico molecular) y datos (GIS, dinámica de poblaciones, análisis de

factores de riesgo)

Figura 1.- Esquema del sistema de vigilancia sanitaria del IREC, basado en tres fases.

Fase 1.- Trabajo de campo

La caracterización y monitorización de las variables de hábitat (p.ej. el estado de

la vegetación o los usos del suelo, etc.) y de las variables de manejo (presencia de

vallado, alimentación suplementaria, puntos de agua, etc.) es una parte fundamental

para la monitorización del estado sanitario de las especies cinegéticas. Las

poblaciones objeto de aprovechamiento cinegético suelen estar sujetas a estrategias

de manejo para mantener densidades elevadas. Esto entre las medidas más

habituales incluye el aporte de agua y alimento (todo el año o sólo en periodos

críticos), los vallados (caza mayor), el control de predadores (caza menor) o los

traslados y repoblaciones. Estas poblaciones manejadas son más susceptibles de

mantener enfermedades debido al mayor riesgo de contacto entre animales. Así, las

variables asociadas al manejo de estas especies son de especial importancia ya que

24

Page 46: Los abajo firmantes, como directores de esta tesis

Capítulo 2.1

varias de ellas se han identificado como factores de riesgo de enfermedades tan

relevantes como la enfermedad de Aujeszky o la tuberculosis bovina (Vicente et al.,

2005; Acevedo et al., 2007b).

El conocimiento de la ecología y comportamiento de las especies silvestres es

esencial para poder realizar una valoración completa del estatus de sus poblaciones,

incluyendo el aspecto sanitario (Delahay et al., 2009). Existe una gran variación en

cuanto a la distribución y densidad de las diferentes especies de ungulados silvestres

en la Península Ibérica. Pero además, éstas se ven afectadas por factores antrópicos

(manejo para obtener mayores rendimientos cinegéticos, aprovechamientos

ganaderos, etc.). Todo ello genera una situación en la que una multitud de factores

relacionados con las especies estudiadas influyen en la adquisición, mantenimiento

y diseminación de distintas enfermedades (Tabla 1).

Tabla 1.- Algunos factores relacionados con las especies estudiadas más relevantes (jabalí y ciervo) según el nivel en el que podrían influir en la epidemiología de sus enfermedades (negro=elevado, gris=medio, blanco=bajo).

FACTOR ECOLÓGICO Jabalí Ciervo

Distribución y abundancia

Organización social

Capacidad reproductiva

Área de campeo

Distancias de movimiento y dispersión

Ineficacia de las barreras frente al movimiento

Interacción con animales domésticos

Interacción con otros animales silvestres

La fauna silvestre es difícil de gestionar y las campañas de control pueden verse

abocadas al fracaso debido a la dificultad de detección de estas especies silvestres o

la imposibilidad de establecer barreras (Figura 2).

25

Page 47: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Figura 2.- Los cambios en el manejo de la fauna silvestre (hacia modelos más intensivos) y en la producción ganadera (hacia modelos más extensivos) complican la epidemiología y el control de las enfermedades compartidas (extraído de Gortázar et al., 2007).

Por todo ello, una parte importante de la vigilancia sanitaria es la

caracterización de las poblaciones en los sitios de estudio, en las que uno de los

aspectos de mayor relevancia en la estimación de la abundancia de las poblaciones

silvestres de forma periódica. A lo largo de los últimos años dentro del grupo de

sanidad animal del IREC se han desarrollado y validado diferentes metodologías

con el objetivo de optimizar la estima de abundancias de los ungulados silvestres de

mayor interés epidemiológico (Tabla 2).

Tabla 2.- Metodologías recomendadas en ambientes mediterráneos para la realización de estimas de abundancia en jabalí y ciervo.

Especie Método Resumen Referencia

Jabalí Índices de abundancia

Frecuencia de aparición de heces en 40x10 tramos de 10m a lo largo de un transecto lineal de 4 Km. La distribución espacial de los tramos con heces sirve para estimar además un índice de agregación.

(Acevedo et al., 2007b)

Ciervo Observación

directa

Recorridos nocturnos con faro 100w desde todo-terreno a lo largo de transectos lineales. Se anotan distancias y ángulos para aplicar el muestreo de distancias.

(Acevedo et al., 2008)

26

Page 48: Los abajo firmantes, como directores de esta tesis

Capítulo 2.1

Por otro lado, durante la temporada de caza (de octubre a febrero) se realiza la

toma de muestras biológicas de los animales cazados ya que la caza mediante

monterías o batidas se considera un método de muestreo aleatorio de la población

(Fernández-Llario and Mateos-Quesada, 2003). En cada finca de estudio el objetivo

es realizar un muestreo representativo, fijado en alrededor de 20 animales por

especie y año, y estratificado por sexo y edades. Esto permite calcular prevalencias

con intervalos de confianza aceptables de enfermedades con prevalencias medias o

altas (ver Tabla 1 del Capítulo 6) y compararlas en el espacio (entre localidades o

regiones) y en el tiempo.

Protocolo de toma de muestras

Después de las cacerías se selecciona aleatoriamente una muestra estratificada y

representativa de los animales abatidos. A los animales seleccionados se les realiza

una inspección general y se les toman biometrías, tales como longitud total (desde

la punta del hocico del animal hasta donde se articula la cola), perímetro torácico y

longitud del pie posterior (desde la punta de la pezuña hasta el corvejón), y al

mismo tiempo se registra el sexo y la edad del animal (Sáenz de Buruaga et al.,

1991). Se realiza una inspección externa del animal para registrar la presencia de

ectoparásitos y en el caso de que los haya, se estima su abundancia y se recoge una

muestra representativa siempre que no sea posible recoger la totalidad de los

mismos.

Una vez registrados los datos de cada animal, se procede a la toma de muestras

de tejidos internos (Tabla 3). Se recogen una serie de tejidos de forma sistemática

de cada animal, pero además es importante recolectar una muestra de todos

aquellos órganos o tejidos en los que se detecte algún tipo de lesión que pueda ser

de interés. Se toma sangre del corazón o de la cavidad torácica. En el caso de que

no sea posible obtener sangre, se toma un trozo de pulmón como muestra

alternativa para poder obtener exudado pulmonar por centrifugación (Ferroglio et

al., 2000). Así, las muestras que sistemáticamente se recogen son:

27

Page 49: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Cabeza. En los cérvidos se recogen los linfonodos (LN) retrofaríngeos

mediales y en el jabalí los LN mandibulares. En ambos se colectan las

tonsilas.

Órganos de la cavidad torácica. En todas las especies se toma el LN

bronquial izquierdo, el LN mediastínico y se inspecciona detalladamente el

pulmón para detectar lesiones macroscópicas. Del pulmón se recogen 3

muestras correspondientes a los lóbulos apical, intermedio y diafragmático,

además de las partes donde se hayan detectado lesiones.

Órganos de la cavidad abdominal. De igual modo que en la cavidad torácica,

hay que examinar macroscópicamente todas las vísceras a fin de observar

posibles lesiones. Se colecta el bazo, el riñón derecho con la grasa peri renal

para calcular el índice de engrasamiento renal (KFI) y los LN mesentéricos e

ileocecales. Se recogen también los ovarios para determinar el estatus

reproductivo de las hembras.

Tabla 3.- Muestras de tejidos más relevantes para la vigilancia sanitaria en jabalí y rumiantes silvestres.

JABALÍ

Tipo de análisis Muestra Importancia PCR o

cultivo Patología Otros

Ejemplos

Encéfalo, ganglio trigémino

Baja Sí Sí E de Aujeszky (ganglio

trigémino)

LN mandibulares

Alta Sí Sí Tuberculosis

Tonsilas Alta Sí Sí E de Aujeszky, Mal rojo, Tuberculosis

Pulmón Baja Sí Sí Parasitología Varias enfermedades

Bazo Alta Sí Sí Pestes porcinas, Mal rojo, Salmonelosis

LN mesentérico

Media Sí Sí Varias enfermedades

Hígado, vesícula biliar

Media Sí ELISA (bilis) Hepatitis E

Riñón Baja Sí Leptospirosis

28

Page 50: Los abajo firmantes, como directores de esta tesis

Capítulo 2.1

RUMIANTES SILVESTRES

Tipo de análisis Muestra Importancia PCR o

cultivoPatología Otros

Ejemplos

Tronco de encéfalo

Media Sí ELISA Encefalopatías ET

LN retrofaríngeos mediales

Alta Sí Sí Tuberculosis

Tonsilas Alta Sí Sí Tuberculosis Pulmón Baja Sí Sí Varias enfermedades Bazo Alta Sí Sí BVD LN mesentérico

Media Sí Sí Tuberculosis y Paratuberculosis

Riñón Baja Sí Leptospirosis

Fase 2.- Procesado y almacenamiento en serotecas e histotecas

El procesado de las muestras recogidas en campo tiene lugar en los laboratorios

del IREC. En la sala de necropsias se registra información sobre aspectos como la

condición física o el estado reproductivo de los animales muestreados, a partir por

ejemplo del engrasamiento renal o del análisis de úteros y ovarios. Los órganos y

tejidos linfoides más importantes se inspeccionan de forma sistemática, se procesan

y se conservan debidamente identificados tanto en formol como mediante

congelación. Igualmente, en el laboratorio de patología, se etiquetan y conservan

los ectoparásitos y se separa suero sanguíneo para futuras analíticas.

Dado que las enfermedades a investigar varían en función de la situación

epidemiológica y que los avances en epidemiología y diagnóstico pueden mejorar su

detección, en el IREC se conservan desde el año 1999 copias de las muestras más

relevantes (suero y tejidos linfoides) en serotecas e histotecas. Este sistema de

almacenaje de muestras permite la realización de estudios epidemiológicos

retrospectivos como los que configuran esta tesis.

29

Page 51: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Logística de los bancos de tejidos

Una vez inspeccionadas en detalle (fileteado fino de todos los tejidos linfoides)

y procesadas las muestras de forma sistemática, se registran en una base de datos y

se almacenan en congeladores de -20º C, salvo cuando son muestras destinadas a

estudios de virología que se conservan a -80º C. Varias copias del suero obtenido

de cada animal se conservan en una seroteca donde se almacenan anualmente unos

3.000 sueros de ungulados silvestres. Del mismo modo, cada tejido colectado se

almacena por duplicado en una histoteca.

En la segunda parte de este capítulo metodológico se aborda uno de los

problemas más habituales que aparece a la hora de trabajar con material de los

bancos de suero de fauna silvestre y que está relacionado con la calidad de los

mismos y su efecto sobre los resultados de las analíticas. El segundo problema de

trabajar con bancos de muestras, aún no resuelto, es el equilibrio entre la

conservación de un número creciente de muestras valiosas y el espacio físico

disponible para ello, que cada vez es más limitante.

Fase 3.- Análisis de muestras y datos

Las analíticas destinadas a la detección del antígeno en fauna silvestre no tienen

particularidades más allá de lo referente al muestreo. En cambio, las analíticas

serológicas para la detección de anticuerpos sí pueden requerir una puesta a punto

especial cuando las inmunoglobulinas del taxón a investigar no presenten suficiente

reacción cruzada con las anti-inmunoglobulinas utilizadas en los protocolos de

diagnóstico para animales domésticos. Otra particularidad de las analíticas

serológicas en fauna silvestre es la calidad de las muestras, que, como anteriormente

se ha comentado, se discute ampliamente en el Capítulo 2.2.

30

Page 52: Los abajo firmantes, como directores de esta tesis

Capítulo 2.1

Analíticas en IREC y en colaboración

En general, todas las analíticas serológicas y por PCR se realizan en el IREC.

Los cultivos que requieran laboratorios P3 o ciertas técnicas especializadas se

remiten a laboratorios colaboradores como VISAVET en Madrid y NEIKER en

Derio (micobacterias) o CITA en Zaragoza (Brucella).

Para los trabajos presentados en esta tesis, la técnica serológica IPMA (ensayo

de inmunoperoxidasa en monocapa) utilizada para la detección de anticuerpos

frente al Circovirus Porcino 2 (PCV2; Capítulo 4.2) se realizó en el CReSA, en

Bellaterra. El CITA desarrolló el ELISA para la detección de anticuerpos frente a

Brucella descrito en el Capítulo 4.3, y analizó todas las muestras, tanto por cultivo

como por ELISA.

Tabla 4.- Ejemplos de algunas particularidades del diagnóstico en fauna silvestre en cuanto a las muestras a tomar y el análisis.

Enfermedad Muestras clave Análisis

Tuberculosis (JABALÍ)

Linfonodos (LN) mandibulares, suero

Cultivo como en domésticos. En estudios a gran escala es de utilidad el ELISA (Boadella et al., 2011b), registrar la proporción de jabalíes que presentan lesiones macroscópicas compatibles (Vicente et al., 2006) y realizar tinciones específicas (Santos et al., 2010).

Tuberculosis (RUMIANTES)

LN retrofar. mediales, bronquial izq., mesentéricos

Cultivo como en domésticos. En estudios a gran escala es de utilidad registrar la proporción de individuos que presentan lesiones macroscópicas compatibles y realizar tinciones específicas (Vicente et al., 2006).

Brucelosis (UNGULADOS)

LN inguinales, bazo, suero

Para análisis serológicos de brucelosis en ungulados silvestres puede servir de orientación la técnica de aglutinación. Idealmente, aplicar la técnica ELISA empleando proteína G como conjugado (Muñoz et al., 2010). Los LN inguinales y el bazo de los seropositivos deberán cultivarse.

Tratamiento de la información

Toda la información recopilada se registra en bases de datos. Existe una base de

datos de los individuos muestreados en la que se integra toda la información

31

Page 53: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

32

recopilada a nivel de cada individuo (datos biométricos, finca de procedencia,

tejidos disponibles, lesiones detectadas, etc.). Estos datos individuales se pueden

cruzar con todas las variables disponibles para su población de procedencia (datos

GIS, datos de manejo, etc.), y de este modo se realiza la integración de la

información sobre hábitat y manejo con la información biológica y de sanidad de

cada animal para su análisis.

Page 54: Los abajo firmantes, como directores de esta tesis

Capítulo 2.2

Efecto de la hemólisis y la congelación-

descongelación repetida en el análisis de anticuerpos

mediante ELISA

Boadella, M. & Gortázar, C. Effect of haemolysis and repeated freeze-thawing cycles on wild boar serum antibody testing by ELISA. Aceptado, BMC Research Notes.

Page 55: Los abajo firmantes, como directores de esta tesis
Page 56: Los abajo firmantes, como directores de esta tesis

Capítulo 2.2

Abstract

Monitoring wildlife diseases is needed to identify changes in disease occurrence.

Wildlife blood samples are valuable for this purpose but are often gathered

haemolysed. To maximise information, sera often go through repeated analysis and

freeze-thaw cycles. Herein, we used samples of clean and haemolysed Eurasian wild

boar (Sus scrofa) serum stored at -20ºC and thawed up to five times to study the

effects of both treatments on the outcome of a commercial ELISA test for the

detection of antibodies against Suid Herpesvirus 1 (ADV). The estimated

prevalence of antibodies against ADV was 50-53% for clean and haemolysed sera.

Hence, haemolysis did not reduce the mean observed serum antibody prevalence.

However, 10 samples changed their classification after repeated freeze-thawing.

This included 3 (15%) of the clean sera and 7 (41%) of the haemolysed sera. None

of the 19 initially positive samples changed their classification. We recommend (1)

establishing more restrictive cut-off values when testing wildlife sera, (2) recording

serum quality prior to sample banking, (3) recording the number of freezing-

thawing cycles and (4) store sera in various aliquots to reduce repeated usage. For

instance, sera with more than 3 freeze-thaw cycles and a haemolysis of over 3 on a

scale of 4 should better be discarded for serum antibody monitoring. Even clean

(almost not haemolysed) sera should not go through more than 5 freeze-thaw

cycles.

Background

Monitoring wildlife diseases is needed to identify changes in disease occurrence

and to measure the impact of intervention. However, obtaining samples from wild

animals is difficult as compared to pets or livestock, due to the limited accessibility

of the former (Cotilla et al., 2010; Boadella et al., 2011a). Wildlife blood samples are

often gathered post-mortem from shot (hunter-harvested) animals, and then

centrifuged to obtain serum. Occasionally, whole blood samples are obtained from

gamekeepers and sent frozen to the laboratory. Sera are stored frozen and often re-

35

Page 57: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

used several times in order to maximise the information obtained. In consequence,

wildlife sera are often haemolysed and/or go through repeated freeze-thaw cycles

(e.g. Muñoz et al., 2010). However, both haemolysis and freeze-thawing may affect

the performance of tests based on serum antibody detection, such as the popular

enzyme-linked immunosorbent assay (ELISA).

Recently, a study on the effect of swine blood sample handling on Erysipelothrix

rhusiopathiae antibody detection by indirect ELISA revealed that serum

immunoglobulin G antibodies were stable in the face of several sample mishandling

events, including repeated freeze-thawing and minimal to severe haemolysis. Only

samples simulating extreme haemolysis (100% haemolysed whole blood) had

significantly lower optical density (OD) readings. However, haemolysis and freeze-

thawing were not studied in combination, and the effect of such treatments on

antibodies against other disease agents is unknown (Neumann and Bonistalli, 2009).

Herein, we used samples of clean and haemolysed Eurasian wild boar (Sus

scrofa) serum stored at -20ºC and thawed up to five times to study the effects of

both treatments on the outcome of an ELISA test for the detection of antibodies

against Suid Herpesvirus 1 (ADV), the aetiological agent of Aujeszky’s disease.

Based on the abovementioned results for E. rhusiopathiae in pigs, we expected no

strong effect of haemolysis and freeze-thawing on test performance.

Methods

Samples

Blood samples were collected from 20 stalking-harvested wild boar. Blood was

drawn from the thoracic major veins by exsanguination immediately after death.

Two blood collection tubes were filled per animal and stored at 4ºC during

transport until the laboratory; although for three animals only one tube could be

filled. Serum was obtained by centrifugation from one of the tubes and stored at

4ºC. The second tube was used to obtain haemolysed serum after freezing the

whole blood simulating the treatment that occurs when blood samples are sent

36

Page 58: Los abajo firmantes, como directores de esta tesis

Capítulo 2.2

frozen. In a subjective haemolysis-scale from 1 (almost nil) to 4 (severe), the

haemolysed obtained sera were classified as level 3. After obtaining all fresh and

haemolysed sera, the first ELISA test was performed. Sera were stored at -20ºC for

one week and thawed at 4ºC for one night. One hour before performing the

ELISA analysis, sera were removed from 4ºC storage and brought to room

temperature. After analysis, sera were frozen again to -20ºC. This process was

repeated 5 times.

All animal samples used for this study came from opportunistic sampling

during legal hunting. No live animal was handled and no special permits were

required.

ELISA test

A commercially available blocking ELISA was used for detection of antibodies

to the gpI antigen of Suid Herpesvirus 1 (IDEXX HerdCheck Anti-ADV gpI,

IDEXX, Inc., USA). This ELISA technique has been broadly used for testing

antibodies to ADV in different wild boar populations (Vicente et al., 2005; Ruiz-

Fons et al., 2006; Pannwitz et al., 2011).

The ELISA was performed following the manufacturer’s instructions, in an

ADV antigen-coated microwell plate, using a 1:2 serum dilution. One hundred

microliters of diluted sera were added in each microwell and incubated for 1 hour

at room temperature (RT). Samples, positive and negative controls were tested in

duplicate in each plate. Subsequent to a wash step, 100μl of anti-ADVgpI

monoclonal antibody conjugate was added and incubated at RT for 20 minutes. If

no gpI antibodies were present in the tested serum, the conjugated gpI antibodies

were free to react with the gpI antigen. Conversely, if gpI antibodies were present

in the tested serum, the enzyme-conjugated monoclonal antibodies were blocked

from reacting with the antigen. Following the incubation, the unreacted conjugate

was washed out and the reaction was revealed by adding 100 μl of

substrate/chromogen solution. In the presence of substrate enzyme, reaction

37

Page 59: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

generated blue colour. After 15 minutes of revealing, the reaction was stopped with

50µl/well of Stop solution and optical density (OD) was measured in a

spectrophotometer at 650 nm.

Results were expressed as a percentage of inhibition (%IN) value using the

following formula: [%IN = (mean negative control OD - mean sample OD / mean

negative control OD) x 100]. The quantity of antibodies to ADV-gpI was inversely

proportional to the OD and directly proportional to the %IN. According to the

manufacturer’s instructions, only samples with %IN values equal to or greater than

40% were considered positive. Samples with a %IN value between 30-40% were

considered doubtful and sera with %IN values <30% were classified as negative.

Figure 1.- Mean optical densities (OD) for positive (black diamonds) and negative (black squares) clean sera, and for positive (grey diamonds) and negative (grey squares) haemolysed sera ( standard error, SE) through the five freeze-thaw cycles (Freezing 1 to 5).

Results

A total of 20 sera were analyzed clean and from these, 17 could also be tested

haemolysed (Table 1). The ELISA results coincided in 14 cases (8 positive, 6

negative; 82%). Two negative clean sera tested positive and doubtful, respectively,

38

Page 60: Los abajo firmantes, como directores de esta tesis

Capítulo 2.2

with haemolysis, and one positive clean sera tested negative with haemolysis. The

estimated prevalence of antibodies against ADV was 10 of 20 (50%; 29-70 95% CI)

and 9 of 17 (53%; 29-75 95% CI) for clean and haemolysed sera, respectively.

Hence, haemolysis did not reduce the observed serum antibody prevalence

(χ2=0.032, 1df, p>0.05).

Table 1.- Classification of the 20 wild boar sera samples (20 clean; 17 haemolysed) after 1 to 5 freeze-thaw cycles into positive (1), negative (0) or doubtful (2) according to a commercial ELISA for the detection of serum immunoglobulin G antibodies against Aujeszky’s disease virus.

Freeze/thaw cycle 1 2 3 4 5 1 2 3 4 5 Sample number

1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 0 0 0 0 0 0 0 0 0 2 4 0 0 0 0 2 0 0 0 0 2 5 0 0 0 0 0 0 0 0 0 0 6 1 1 1 1 1 1 1 1 1 1 7 1 1 1 1 1 1 1 1 1 1 8 0 0 0 0 0 0 0 2 0 2 9 1 1 1 1 1 0 0 0 2 1 10 1 1 1 1 1 1 1 1 1 1 11 0 0 0 0 0 1 1 1 1 1 12 1 1 1 1 1 1 1 1 1 1 13 0 2 0 0 0 2 2 0 0 0 14 1 1 1 1 1 1 1 1 1 1 15 0 0 0 0 0 0 0 0 0 2 16 1 1 1 1 1 1 1 1 1 1 17 0 0 0 0 0 0 0 0 2 2 18 0 0 0 0 2 19 0 0 0 0 0 20 1 1 1 1 1

Nº positive samples 10 10 10 10 10 9 9 9 9 10 Nº negative samples 10 9 10 10 8 7 7 7 6 2 Nº doubtful samples 0 1 0 0 2 1 1 1 2 5 Nº changing state 1 0 0 2 0 2 3 7 % changing state 5% 0% 0% 10% 0% 12% 18% 41%

Table 1 shows the outcome of the experimental manipulation of 37 wild boar

sera in terms of ELISA test results. Only 3 (15%) of the clean sera changed their

result after repeated freeze-thawing, changing from negative to doubtful (1 case at

39

Page 61: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

the 2nd cycle and 2 cases at the 5th). In contrast, 7 (41%) of the haemolysed sera

changed their result (2 cases at the 3rd cycle, 3 at the 4th and 7 at the 5th). These

changes occurred between negative and doubtful, except for one case. This one

consisted of a serum testing first three times negative, then doubtful and finally

positive. All 10 sera with changes at any cycle (27% of 37) tested negative (9) or

doubtful (1) in the first time, while all 19 sera that tested positive at the first cycle

(10 clean sera and 9 haemolysed sera) maintained their positivity through the five

freeze-thaw cycles. Figure 1 shows the mean optical density readings for clean and

haemolysed sera during the five freeze-thaw cycles.

Discussion

Based on the results obtained in this experiment, we rejected our initial

hypothesis: Haemolysis alone and the combination of haemolysis and freeze

thawing affected the results of the ADV ELISA test. These observations have

implications for wildlife disease monitoring based on serum antibody detection.

The effect of the described sample mishandling events was mostly a higher rate

of doubtful results. Based on our observations, we recommend (1) establishing

more restrictive cut-off values when testing wildlife sera, (2) recording serum

quality prior to sample banking (3) recording the number of freezing-thawing cycles

and (4) store sera in various aliquots to reduce repeated usage. Regarding the cut-

off, we observed a trend towards lower ODs with increasing number of freeze-

thawing cycles. So, if the cut off was maintained as the one defining a positive

sample (i.e. considering any doubtful samples as negative), the result in terms of

prevalence (number of positive samples divided by total number of tested samples)

would not change except for one single case at one single cycle. Regarding the

possibility to classify sera based on their apparent quality, a subjective haemolysis-

scale from 1 (almost nil) to 4 (severe), could be defined. Additionally, the number

of freeze-thaw cycles can be recorded for each sample aliquot. For instance, sera

with more than 3 freeze-thaw cycles and a haemolysis of over 3 on a scale of 4

40

Page 62: Los abajo firmantes, como directores de esta tesis

Capítulo 2.2

41

should better be discarded for serum antibody monitoring. Even clean (almost not

haemolysed) sera should not go through more than 5 freeze-thaw cycles.

In studies on domestic animals, samples are normally ELISA tested in duplicate

to reduce within-laboratory variability (e.g. Charlier et al., 2009). This is not always

the case in wildlife, particularly if the available serum volume is limited and several

different tests are run (e.g. Falconi et al., 2010; Holzwarth et al., 2011). Running

each serum in duplicate also means duplicating the cost per individual test,

particularly when using commercial ELISA kits. However, efforts should be done

to test all wildlife sera in duplicate in order to reduce variability (e.g. Curry et al.,

2011).

As in Neumann and Bonistalli’s (Neumann and Bonistalli, 2009) study on E.

rhusiopathiae antibody detection in pigs, our results on ADV antibody detection in

wild boar are not directly applicable to other host-pathogen binomia. It is however

advisable to take care in the interpretation of ELISA results obtained from poor

quality samples. Efforts should be made to evaluate the specific effects of thawing

and haemolysis on the results of other antibody detection tests.

Acknowledgments

Authors thank Alfredo & Tomás for their help in obtaining the serum samples in the funniest

way nobody can imagine.

Page 63: Los abajo firmantes, como directores de esta tesis
Page 64: Los abajo firmantes, como directores de esta tesis

Capítulo 3

CAPÍTULO 3. VIGILANCIA SANITARIA DE ZOONOSIS

3.1. Incremento en el contacto con el virus de la hepatitis E en el ciervo Ibérico

3.2. ¿Permiten los ungulados silvestres mejorar la vigilancia de flavivirus?

3.3. Una tendencia decreciente: la triquinelosis del jabalí

Page 65: Los abajo firmantes, como directores de esta tesis
Page 66: Los abajo firmantes, como directores de esta tesis

Capítulo 3

Resumen

Un punto clave de la vigilancia sanitaria es el seguimiento a lo largo del tiempo

del contacto de las especies silvestres susceptibles con agentes zoonóticos. La fauna

silvestre se ha identificado como reservorio potencial para los humanos del virus de

la hepatitis E (VHE), de ciertos virus del género Flavivirus y de Trichinella spp. En

este capítulo se describen las tendencias temporales de su contacto con poblaciones

de ciervo (Cervus elaphus) y jabalí (Sus scrofa) de la Península Ibérica.

3.1. Con el objetivo de describir la tendencia temporal del contacto en distintas

poblaciones de ciervo con el VHE, se analizaron 968 sueros mediante ELISA y 81

mediante PCR para la detección de ARN vírico. La seroprevalencia global para

todo el periodo de estudio fue del 10%, pero la detectada durante el período de

2006-2009 fue significativamente mayor (12%) que la detectada durante el período

de 2000-2005 (8%). La detección de un 13% de muestras positivas a ARN de VHE

confirmó que el virus circula activamente en las poblaciones de ciervo estudiadas.

El incremento de la seroprevalencia detectado podría suponer un incremento en el

riesgo zoonótico potencial de infección por consumo.

3.2. Como posible herramienta para la vigilancia de la circulación de los

flavivirus, se analizaron sueros de 887 ciervos y 742 jabalíes juveniles del período

2000-2011 procedentes de poblaciones silvestres, y de 327 ciervos de granja

muestreados durante tres años consecutivos en ese mismo periodo. La

seroprevalencia global detectada en las poblaciones de ciervo silvestres fue del

0,2%. En cambio, la prevalencia de contacto con flavivirus en las poblaciones de

jabalí fue de un 4% y se mantuvo estable durante el periodo de estudio. La

seropositividad del ELISA en los ciervos de granja aumentó diez veces tras los

brotes de flavivirus (West Nile y Bagaza) detectados en la zona durante el verano y

otoño de 2010. El estudio evidenció la utilidad de los ungulados silvestres jóvenes,

particularmente del jabalí, como buenos centinelas del contacto con flavivirus en la

Península Ibérica. El almacenaje sistemático de muestras procedentes de animales

45

Page 67: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

46

cazados o de granja proporciona un valioso material para estudios epidemiológicos

retrospectivos y para futuras monitorizaciones del contacto con patógenos.

3.3. Finalmente, para analizar la tendencia de la prevalencia y distribución de

Trichinella spp. en poblaciones de jabalí de la provincia de Ciudad Real durante las

temporadas cinegéticas 1998-99 y 2009-10, se generó una base de datos por finca y

año de los resultados de detección de Trichinella spp. por digestión realizados por

los Servicios Veterinarios Oficiales. De los 93182 jabalíes analizados durante los 12

años de estudio, 47 resultaron positivos (0,05%). Según el modelo logístico aplicado

para el análisis de factores de riesgo, la presencia de Trichinella spp. tuvo una

tendencia decreciente durante el periodo de estudio y el factor temporal explicó la

mayor proporción de la varianza, seguido de las características ambientales y los

factores de manejo en la finca. Paralelamente, se analizaron mediante ELISA 1432

sueros de jabalíes cazados en la misma área. La prevalencia de anticuerpos fue del

7%, pero sólo un 3% de los positivos se confirmó por Western blot. Dada su falta

de especificidad, el ELISA no parece una herramienta útil para la monitorización

del contacto del jabalí con la Trichinella spp.

Page 68: Los abajo firmantes, como directores de esta tesis

Capítulo 3.1

Incremento en el contacto con el virus de la hepatitis

E en el ciervo Ibérico

Boadella, M., Casas, M., Martín, M., Vicente, J., Segalés, J., de la Fuente, J., Gortázar, C. 2010. Increasing contact with hepatitis E virus in red deer, Spain. Emerging Infectious Diseases 16, 1994-1996.

Page 69: Los abajo firmantes, como directores de esta tesis
Page 70: Los abajo firmantes, como directores de esta tesis

Capítulo 3.1

Abstract

We tested Iberian red deer for Hepatitis E virus (HEV) RNA and antibodies.

Overall, 101 of 968 sera (10.4%) were ELISA positive and 11 of 81 (13.6%) were

RT-PCR positive. Sequencing evidenced genotype 3 infection. The increasing

prevalence trend in Iberian red deer suggests a potential exposure risk for humans.

Introduction

Hepatitis E (HE) is caused by hepatitis E virus, the only member of the

Hepeviridae family (Panda et al., 2007). Four major genotypes of HEV have been

recognized: genotypes 1 and 2 are restricted to humans and associated with

epidemics in developing countries, whereas genotypes 3 and 4 are zoonotic in both

developing and industrialized countries. Wild and domestic animals are being

identified as potential HEV reservoirs for humans (Panda et al., 2007; Tei et al.,

2003; Teo, 2010).

Studies on wild Sika deer (Cervus nippon) have found low detection rates

suggesting that Sika deer are accidental hosts to HEV (Matsuura et al., 2007; Yu et

al., 2007) despite the transmission link discovered between them and hepatitis E in

Japan (Tei et al., 2003) that raised awareness on the potential that game animals

have to transmit HEV (Teo, 2010). In Europe, information about HEV infection

in wild ruminants is limited to reports suggesting that the roe deer (Capreolus

capreolus) and red deer (Cervus elaphus) can act as HEV hosts (Forgách et al., 2009;

Reuter et al., 2009; Rutjes et al., 2010). Apart from these limited studies, there are

no large-scale surveys on HEV epidemiology in wild cervids. In Spain, the relatively

high HEV seroprevalence detected in domestic pigs and wild boar suggests that

HEV infection is probably widespread (de Deus et al., 2008).

Red deer density, distribution, and hunting harvest are increasing throughout

Europe in recent years (Milner et al., 2006). In Spain, high densities are recorded

(Acevedo et al., 2008) and hence, the red deer is an important game meat source.

49

Page 71: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

This scenario stresses the need of a better understanding of the epidemiology of

this pathogen in the Iberian game populations.

Our goals were to describe the epidemiology and time trends of HEV in

Iberian red deer by means of serology and PCR. Based on previous results on wild

boar (de Deus et al., 2008), we hypothesised that red deer would show a

widespread contact with HEV in the Iberian Peninsula.

The study

Sera from 968 Iberian red deer were collected between 2000 and 2009. These

samples came from hunter-harvested red deer in 21 wild or semi-free ranging

populations (n=892) and from 2 farms (n=76). This includes a variety of habitats

and climates, which can be simplified into 5 different bioregions in the mainland

(Figure 1; Muñoz et al., 2010). Sampling sites were grouped into seven areas and

two red deer farms (Table 1; Figure 1). Sex and age were recorded. Management

conditions of red deer were classified as open (no fencing and no management, 9

sites), fenced (fencing and artificial feeding, 12 sites) and farmed deer (livestock-like

management, 2 farms). In order to analyse time trends, samples collected between

2000 and 2005 were classified as “time 1” and those collected between 2006 and

2009, as “time 2”. Only sites where sampling occurred in both periods and with

comparable sampling sizes were included in the time trend analysis.

Serum samples were tested for anti-HEV IgG antibodies by means of ELISA

described previously (Matsuura et al., 2007; Peralta et al., 2009) but using protein G

horseradish peroxidase (Sigma Chemical, S. Louis, MO, USA) as a conjugate, as

previously used in red deer (Muñoz et al., 2010).

Anti-HEV positive sera were obtained from ELISA and RT-PCR positive

domestic swine. Anti-HEV negative sera were obtained from previous studies (de

Deus et al., 2007) and negative controls were obtained from HEV negative cattle

(Peralta et al., 2009). Results were expressed as the percentage of optical density

(%OD) using the formula [% OD =100 X sample OD / sum of negative controls

50

Page 72: Los abajo firmantes, como directores de esta tesis

Capítulo 3.1

OD]. Serum samples with values of %OD greater than 100% were considered

positive.

For the RT-PCR, 81 sera were randomly selected and analysed. Viral RNA was

extracted from 150 ml of serum with Nucleospin® RNA virus kit (Macherey-Nagel

Gmbh & Co., Düren, Germany), following manufacturer’s instructions. HEV

detection was done by means of a semi-nested RT-PCR as previously described (de

Deus et al., 2007). In each run, negative and positive controls were added.

Eight HEV RT-PCR positive samples were sequenced. HEV sequences were

identified by using the Blast algorithm at www.ncbi.org against HEV sequences

available in the GenBank (on 25th January 2010). Sequences were deposited in the

GenBank database under accession numbers HM113373 and HM113374.

Sterne's exact method was used to estimate apparent prevalence confidence

intervals. The association of age, sex, sampling site and management with

serological and RT-PCR results was analysed by means of chi-square tests.

Relationship between seropositivity and presence of HEV RNA in the serum was

also analyzed by means of a Pearson’s chi-square test. Differences were considered

statistically significant when p < 0.05.

Table 1.- IgG serology to HEV and RT-PCR results in different Iberian regions and two red deer farms.

Region Sites SamplesNumber

seropositive Prevalence (%)

(95 CI) RT-PCR*

Cantábrico Occidental 3 122 21 17.2 (11.4-24.9) 2/14 Cantábrico Oriental 1 29 0 0.0 (0.0-11.5) 0

Sistema Central 1 16 0 0.0 (0.0-20.8) 0 Montes de Toledo 7 366 19 5.2 (3.2-8.0) 2/18 Valle del Guadiana 2 86 22 25.6 (17.3-35.9) 5/13

Sierra Morena 4 203 15 7.4 (4.3-11.9) 1/14 Doñana 3 70 22 31.4 (21.3-43.5) 1/21 Cádiz † 1 50 1 2.0 (0.1-10.6) 0

Navarra † 1 26 1 3.8 (0.2-18.8) 0 TOTAL 23 968 101 10.4 (8.62-12.53) 11/81

*Number positive/number tested. † Red deer farms

51

Page 73: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Overall, 101 sera (10.43%, 95% confidence interval [CI]=8.62-12.53) were

positive for IgG (Table 1). No significant differences in HEV seroprevalence were

observed between sex (Chi2=0.894, 1 d.f., p>0.05) and age classes (Chi2=12.436, 3

d.f., p>0.05). When analysing prevalences in time, seroprevalence in time 2

(12.15%, 95% CI=9.75-15) was significantly higher than seroprevalence in time 1

(7.52%, 95% CI=5.11-10.82; Chi2=5.181, 1 d.f., p<0.05). Local IgG

seroprevalences ranged from 0% (95% CI=0-20.8) to 31.4% (95% CI =21.3-43.5;

Figure 1). Statistically significant differences were found for IgG seroprevalence

considering management types (Chi2=6.876, 2 d.f., p<0.05), with higher values in

open (14.89%, 95% CI=11.29-19.38) than in fenced (9.09%, 95% CI=6.95-11.72)

and farmed (2.63%, 95% CI=0.47-9.02) areas.

Figure 1.- Map of the Iberian Peninsula showing the five peninsular bioregions (numbers 1 to 5) and the 21 sampling sites. Numbers indicate positive animals/sampled animals. Numbers in brackets indicate fenced estates. The two red deer farms are marked by asterisks.

52

Page 74: Los abajo firmantes, como directores de esta tesis

Capítulo 3.1

Eleven out of 81 samples (13.6%, 95% CI=7.35-22.73) were RT-PCR positive.

Local viral RNA prevalence ranged from 4.5% (95% CI=2.4-22.21) to 38.5% (95%

CI =16.57-65.84; Table 1). No statistically significant differences in HEV

prevalence were observed among geographic areas and management types.

Sequence analysis revealed that all deer sequences from this study belonged to

genotype 3. Seven samples, belonging to sequence HM113374, shared 99%

nucleotide identity with Spanish domestic swine strains. One sample, sequence

HM113373, showed similarity (91%) with a strain from an acute human case of HE

in Marseille, France, according to GenBank.

Conclusions

This is the first demonstration of HEV infection in Iberian red deer,

confirming that HEV circulates actively among deer populations in Spain, as

described before for the wild boar (de Deus et al., 2008). Although it has been

previously shown that red deer can be infected with HEV (Forgách et al., 2009;

Rutjes et al., 2010), this is the first large serosurvey in this species in Europe.

Moreover, the results show an increasing prevalence trend in the last decade.

De Deus et al., (2008) showed that higher IgG seroprevalences were found in

estates with higher wild boar densities. However, in the present study, the lowest

mean seroprevalences were found in red deer farms, where densities were the

highest and red deer had no contact with wild boar or domestic swine. In contrast,

the highest seroprevalences were reported in open areas where contact with suids

may occur. However, wild boar densities are also high in fenced hunting estates

(Acevedo et al., 2007b), and deer from these sites had intermediate HEV antibody

prevalences. These differences could indicate that Iberian red deer may need a

source of infection and thus, are acting as spillovers more than true reservoirs.

Presence of HEV RNA in 13% of deer sera implies that deer carcasses

represent a risk for zoonotic transmission and, consequently, handling of live

animals and carcasses, a risk activity. Red deer are infected with HEV at lower rates

53

Page 75: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

54

than wild boar and domestic pigs, but may act as a potential source of HEV

infection in humans. Further studies are needed to fully elucidate the epidemiology

of HEV in wildlife and the food-borne zoonotic transmission risks.

Acknowledgements

We thank Bibiana Peralta (CReSA) for providing the HEV antigen protein for ELISA, ELISA

and RT-PCR positive controls. Many colleagues at IREC helped in field and laboratory work.

Page 76: Los abajo firmantes, como directores de esta tesis

Capítulo 3.2

¿Permiten los ungulados silvestres mejorar la

vigilancia de flavivirus?

Boadella, M., Díez-Delgado, I., Gutiérrez-Guzmán, AV., Höfle, U., Gortázar, C. Do wild ungulates allow improved monitoring of Flavivirus circulation in Spain? En prensa, Vector-Borne and Zoonotic Diseases.

Page 77: Los abajo firmantes, como directores de esta tesis
Page 78: Los abajo firmantes, como directores de esta tesis

Capítulo 3.2

Abstract

As a response for the need of improved and cost-efficient West Nile virus

(WNV) and other flavivirus surveillance tools, we tested 887 juvenile free living red

deer, 742 free living wild boar and 327 farmed deer to detect temporal variability in

exposure to these viruses. Thirty of 742 juvenile wild boar samples (4%; 95% CI:

2.8-5.7) yielded a positive ELISA result. Antibody positive individuals had been

sampled between 2003 and 2011 in localities from central and southern Spain. No

wild boar from the northern half of Spain (n=120) tested positive. Regarding

juvenile wild red deer, only two out of 887 samples yielded a positive ELISA result

(0.2%; 95% CI: 0.1-0.8). These two samples came from the same site and sampling

year. The likeliness of detecting contact with WNV or cross reacting flaviviruses

was 18 times higher among juvenile wild boar than among juvenile red deer. ELISA

positivity among farmed deer increased tenfold after local flavivirus outbreaks

recorded in summer and autumn 2010. This survey evidenced the potential

usefulness of juvenile wild ungulates, particularly wild boar, as suitable flavivirus

sentinels in southwestern Europe, and that systematic serum banking of samples

from hunter harvested wildlife or from individual farmed ungulates provides

valuable material for retrospective epidemiological surveys and future disease

monitoring.

Introduction

The importance of the genus Flavivirus in terms of global health is mainly based

on the zoonotic nature of some of its members such as West Nile virus (WNV),

dengue virus, tick-borne encephalitis virus, yellow fever virus, and several other

viruses which can cause fatal disease in humans (Gould and Gritsun, 2006). Four

different members of the genus Flavivirus have been identified in the Iberian

Peninsula: Spanish sheep encephalomyelitis virus (Marin et al., 1995), WNV

(Jiménez-Clavero et al., 2008), Usutu virus (USUV; Busquets et al., 2008; Vázquez

González et al., 2011), and more recently, Bagaza virus (BagV; Agüero et al., 2011).

57

Page 79: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Spanish sheep encephalomyelitis virus is a member of the tick borne encephalitis

serocomplex and is restricted to sheep in Atlantic habitats of northern Spain. The

remaining three members of the genus are mosquito borne. All three are

enveloped, single-stranded positive-sense RNA viruses antigenically related to

Japanese encephalitis virus.

Antibodies against WNV have been reported in several bird species, with

seroprevalences ranging from 2% to 43% (Figuerola et al., 2007; Figuerola et al.,

2008), thus WNV is probably endemic and widespread in its usual bird-mosquito

cycle in Mediterranean Iberia (Hayes et al., 2005). However, few human cases of

WN fever have been recorded (Bofill et al., 2006; Kaptoul et al., 2007;

http://web.oie.int/wahis/public.php?page=event_summary&this_country_code=

ESP&reportid=9695), although human serosurveys suggested that WNV or closely

related flaviviruses circulated at least since the 1970s in the Ebro delta and other

areas in Spain (Garea Gonzalez and Filipe, 1977; Lozano and Filipe, 1998; Bofill et

al., 2006). In contrast to the high mortality recorded in native North American

birds, WNV only recently and in parallel with the increase of human and equine

disease outbreaks, causes sporadic disease and immune suppression in European

birds, including endangered raptors in Spain (Höfle et al., 2008). USUV has been

isolated from mosquitos in north-eastern and southern Spain (Busquets et al., 2008;

Vázquez González et al., 2011). USUV also affects birds (Steinmetz et al., 2011)

and may cause human fatal neuroinvasive disease (Cavrini et al., 2009; Pecorari et

al., 2009). Finally, an outbreak due to BagV with high mortality in wild red-legged

partridges (Alectoris rufa), moderate mortality among pheasants (Phasianus colchicus)

and other bird species, occurred in late summer and early autumn 2010 in Cádiz,

southern Spain, being the first record of BagV in Europe (Agüero et al., 2011).

Hunter-harvested mammals often are more accessible than wild birds and allow

sampling larger amounts of serum. Thus, it has often been suggested to use

mammals as substitute flavivirus sentinels because contact detection would indicate

transmission outside the enzootic bird cycle (Root et al., 2005; Teehee et al., 2005;

58

Page 80: Los abajo firmantes, como directores de esta tesis

Capítulo 3.2

Gómez et al., 2008; Blitvich et al., 2009). However, medium sized and large

mammals have generally a long life span, and antibodies against WNV may

eventually persist more than one year (Geevarghese et al., 1994). Hence, the annual

cohorts of juvenile mammals (after loosing their maternal antibodies) are

potentially the best indicators of current flavivirus circulation. Studies in white-

tailed deer (Odocoileus virginianus) demonstrated that it is unlikely that they are an

important amplifying host for WNV (Farajollahi et al., 2004) but that clinical

disease and mortality are possible (one fatal case described by Miller et al., 2005).

Several authors evidenced seroconversion with enzyme-linked immunosorbent

assays (ELISA) and by plaque-reduction neutralization tests (PNRT) and

prevalences obtained ranged from 0.9 % to 12.7% (Farajollahi et al., 2004; Santaella

et al., 2005). Regarding the Eurasian wild boar (Sus scrofa), we assume an analogous

response as domestic pigs (Sus scrofa). Pigs develop low viremias of short duration

and it is unlikely that they are amplifying hosts, but due to their serological reaction,

pigs can be useful as sentinels (Teehee et al., 2005). Also, flavivirus antibody

prevalences have been reported in wild boar from the Czech Republic (6.5%;

Halouzka et al., 2008) and feral swine in the USA (22.5%; Gibbs et al., 2006). A

preliminary explorative study on Eurasian wild boar from Spain revealed exposure

of the species to WNV in areas with high reported WNV activity in birds

(Gutiérrez-Guzmán et al., submitted). Cattle would be easier to sample than wild

ungulates. In fact, a 4% seropositivity was recorded in Turkey (Ozkul et al., 2006).

However, one study in Spain found no seropositive cattle in a wetland where WNV

was known to circulate among birds and equids (Jiménez-Clavero et al., 2007).

We hypothesized that in the Iberian Peninsula, red deer (Cervus elaphus) and

Eurasian wild boar would contact with members of the Flaviviridae family at

similar rates as sympatric wild birds, and that subsequent seroconversion would be

easier to monitor since these abundant and widespread game species exhibit several

advantages when compared to birds: (1) relatively long life-span, (2) limited home

range and less mobile than their avian counterparts, (3) easy and cost-effective

59

Page 81: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

sampling of hunter harvested animals and in game farms, and (4) larger quantity of

serum available. With the aim of adding a useful tool to the WNV and flavivirus

surveillance, we tested a large number of juvenile red deer and wild boar to detect

temporal variability in exposure to WNV or cross reacting members of the genus

Flavivirus.

Material and methods

Sampling

Serum samples were collected between 2000 and 2011 from hunter-harvested

Eurasian wild boar (n=742) and red deer (n=862). Samples were stored frozen at -

20ºC until analyzed. Only wild boar between 4 and 12 months of age were studied.

Regarding deer, animals included in this part of the study were between 4 and 18

months old.

In addition, we had access to individual serum samples obtained from 327

farmed red deer of all ages except calves in Cádiz, southern Spain. This farm

(indicated by an asterisk in Figure 1) is placed in the region where a WNV

(http://ec.europa.eu/food/committees/regulatory/scfcah/animal_health/presenta

tions/1112102010_wnf_spain.pdf) and a BagV outbreak occurred during summer

and autumn 2010 (Agüero et al., 2011). Three serum samples from each individual

deer were obtained by jugular vein puncture during routine health check protocols

in December 2008/January 2009, January 2010, and January 2011, respectively.

ELISA test

A WNV blocking ELISA was used to screen for flavivirus-specific

immunoglobulin G (IgG) antibodies (INGENZIM WN Compac® INGENASA,

Madrid, Spain), (Sotelo et al., 2011). Following manufacturer’s instructions, samples

with % of inhibition greater than 40% were considered positive. Although the assay

uses the protein E of WNV, this method may detect cross-reactive antibodies

60

Page 82: Los abajo firmantes, como directores de esta tesis

Capítulo 3.2

against antigenically related flaviviruses of the Japanese Encephalitis complex. Due

to logistic limitations positive sera could not be confirmed by seroneutralization.

Statistics

Comparison of seroprevalences between species and sampling periods was

performed by means of Chi-square tests. Only wild boar from sites with n>10 in

both time periods were considered for the time analysis. Generalized linear models

(GLM) with binomial distribution and logit link function were used for calculating

the effect of sampling year (continuous), the sampling area (categorical, n=6) and

their interaction on the probability of testing positive to the ELISA (binomial, 1

positive, 0 negative). Areas without stratified sampling per year were excluded from

the analysis. We used a backward stepwise strategy to obtain the final model,

selected by best p value. Data was analyzed using the IBM SPSS statistical package,

version 19.0 (IBM Corporation, Somers, NY, USA).

Table 1.- Sampling effort and WNV/Flavivirus seroprevalences in each of the five peninsular Bio-regions (BR).

BR Nº sites Time span Wild boar sampled

Prev. wild boar (%)

Red deer sampled

Prev. red deer (%)

1 1 2002-2010 47 0 23 0

2 3 2000-2010 13 0 53 0

3 13 2000-2011 622 4.82 769 0.26

4 1 2002-2010 0 - 17 0

5 1 2007 60 0 0* -

TOTAL 19 2000-2011 742 4.04 862 0.23 * The 327 farmed red deer samples are from Bio-region 5.

Results

As shown in Table 1, only 30 of 742 juvenile wild boar samples (4%; 95% CI:

2.8-5.7) yielded a positive ELISA result. These antibody positive individuals had

been sampled between 2003 and 2011 in localities from central and southern Spain

(Bio-region 3), where sample sizes were larger (Table 1; Figure 1). No wild boar

61

Page 83: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

from the northern half of Spain (n=120) tested positive. When analyzing over time

periods (n=612), wild boar sampled between 2000 and 2005 showed a

seroprevalence of 7%, and in those sampled between 2006 and 2011, the

seroprevalence remained stable at 3.4% (χ2=3.2, 1 d.f., p>0.05). The best model

was explained by the area of sampling (Wald χ2=12.2, 2 d.f., p<0.05), while year

was not a significant factor in the model. Modelling revealed no significant time

trend (β=0.067, p>0.05).

Figure 1.- Map of the Iberian Peninsula showing the 19 sample sites and their flavivirus antibody seroprevalence. Different shapes represent the sampled species, red deer (Cervus elaphus) and wild boar (Sus scrofa) and their sizes are proportional to the sample (big sizes are for sample sizes greater than 50 animals while small ones are for sample sizes below 50 individuals). Grey shapes indicate negative results and black shapes positivity. Mean seroprevalences are indicated in percentage. The years when seropositive animals were detected are the numbers in the squares. The asterisk marks the location of the red deer farm in Cádiz. Grey numbers indicate the five peninsular Spanish Bio-regions.

62

Page 84: Los abajo firmantes, como directores de esta tesis

Capítulo 3.2

Regarding juvenile wild red deer, only two out of 887 samples yielded a positive

ELISA result (0.2%; 95% CI: 0.1-0.8; Table 1). These two samples came from the

same site (a private hunting estate in south-central Spain) and had been collected in

January and December 2006, respectively (Figure 1). No wild boar samples were

available for 2006 in this site. The likelihood of detecting contact with WNV or

cross reacting flaviviruses was 18 times higher among juvenile wild boar than

among juvenile red deer (χ2=30, 1 d.f., p<0.001).

Figure 2.- Individual serum antibody levels (expressed as % inhibition) against West Nile virus or cross reacting flavivirus detected by ELISA in 327 farmed red deer from Cádiz, southern Spain. Data are presented for December 2008/January 2009 (Panel a) and January 2011 (Panel b).The dashed line indicates the cut off.

Figure 2 presents the results obtained from the individually surveyed farmed

deer. ELISA positivity among deer increased tenfold after the lineage 1 WNV

outbreak that affected horses and the parallel BagV outbreak that affected game

birds in the same locality. Overall seroprevalences in winter 2008-2009 and winter

2009-2010 were 1.2% and 3%, respectively. Samples collected in January 2011 from

the same individuals, gave 38.8% of seropositivity. Among these 327 red deer sera,

two tested positive in 2009, negative in 2010 and positive again in 2011 and 6 tested

63

Page 85: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

negative in 2009, positive in 2010 and negative again in 2011. Two deer consistently

tested positive in the three years. All other sera either tested consistently negative

(58.7%) or tested positive only in January 2011 (36%).

Discussion

This survey evidenced the potential usefulness of wild boar, and to a lower

extent of red deer, as sentinels for WNV or cross reacting members of the genus

Flavivirus. It also showed the value of routine serum banking for retrospective

epidemiology for providing an easy and cost-effective way to monitor the current

year activity of a given pathogen (flavivirus) in a region (Boadella et al., 2011a).

Based on the literature, we expected similar seropositivity rates in deer and wild

boar (Santaella et al., 2005; Halouzka et al., 2008). However, free living juvenile

wild boar appeared to be far more suitable as sentinels than free living juvenile red

deer. Several not mutually excluding hypotheses might explain the differences in

antibody prevalence observed between free living juvenile wild boar and red deer.

First, the low hair density, the low thickness of the epidermis and other peculiarities

of the wild boar skin (Meyer et al., 2011), making them eventually more susceptible

to mosquito bites than deer; second, its scavenging behaviour since WNV (and

possibly other flaviviruses) can occasionally be transmitted orally, via consumption

of infected prey or carrion as previously demonstrated in mammals (Austgen et al.,

2004); third, that wild boar (and pigs) might be more likely to produce an antibody

response than ruminants, as is observed in tuberculosis for instance (Boadella et al.,

2011b); and fourth, since host preferences are common factors modulating vector-

borne diseases (Zwiebel and Takken, 2004), we suggest that flavivirus vectors may

display a preference for suids.

The only two seropositive wild red deer were recorded in the same site and

during the same year. This suggests an epidemiologic link between both events,

rather than coincidence, and shows that using juveniles for surveillance purposes

can be effective. Unfortunately, no wild boar were sampled in this site the same

64

Page 86: Los abajo firmantes, como directores de esta tesis

Capítulo 3.2

year, precluding any comparisons. However, the higher apparent sensitivity of wild

boar as flavivirus sentinels allowed detection of antibodies in all years since 2003

(sample sizes were low before 2003), and the analysis along time showed a stable or

even declining seroprevalence. This would confirm that WNV (or cross-reacting

flaviviruses) have been circulating for years in the Iberian Peninsula, as reported for

birds of prey (Höfle et al., 2008), aquatic birds (Figuerola et al., 2007) and for

humans (Garea Gonzalez and Filipe, 1977; Lozano and Filipe, 1998). A very

important aspect of WNV surveillance is early detection (Rockx et al., 2006).

Results reported herein prove that antibodies can be detected in wild ungulates

even before cases are detected in horses or humans, for instance in central Spain.

The fact that two of the farmed deer consistently tested positive in 2009-2011

could suggest that antibodies against flavivirus may persist for periods over one

year, or alternatively it could suggest re-exposure (Geevarghese et al., 1994). This

confirms the choice of juveniles for flavivirus surveillance, since antibodies in these

would indicate a recent exposure to the agent. This study also evidenced that

farmed deer offer an easily accessible sample that can eventually be used to detect

seroconversion. Finally, the fact that neither deer nor wild boar from the northern

third of the Peninsula had a positive ELISA result may be due to two facts. First,

contact with flavivirus is not a frequent event among these wild ungulates or

second, lower sample sizes compared to Bioregion 3, and thus a reduced detection

probability.

In addition to wild and domestic birds, horses would seem the most

straightforward sentinel species for WNV and related flaviviruses (Jiménez-Clavero

et al., 2007). However, well maintained horses are often vaccinated, impeding their

use as sentinels, and access to semi-free ranging unvaccinated horses would seem as

complex as access to hunter-harvested wild ungulates. Regarding wild ungulates,

sampling could eventually be further facilitated by using soft tissue extracts (e.g.

lung extracts) as an alternative to serum (Ferroglio et al., 2000).

65

Page 87: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

66

In conclusion, we confirmed that juvenile wild ungulates, particularly wild boar,

are suitable flavivirus sentinels in southwestern Europe, and that systematic serum

banking of samples from hunter harvested wildlife or from individual farmed

ungulates provides valuable material for retrospective epidemiological surveys and

future disease monitoring.

Acknowledgements

Authors acknowledge the support of the Ministerio de Medio Ambiente, Rural y Marino

(MARM). This study was achieved thanks to the colleagues at IREC that participated in the

fieldwork during the whole study period, to J. Queirós for help with the sera database and to the

commitment of J.A. Ortiz to research collaborations.

Page 88: Los abajo firmantes, como directores de esta tesis

Capítulo 3.3

Una tendencia decreciente: la triquinelosis del jabalí

Boadella, M., Barasona, JA,. Pozio, E., Montoro, V., Gortázar, C., Acevedo, P. Declining trends of Trichinella spp. infection in wild boar (Sus scrofa) of central Spain. En preparación.

Page 89: Los abajo firmantes, como directores de esta tesis
Page 90: Los abajo firmantes, como directores de esta tesis

Capítulo 3.3

Abstract

In south-central Spain, the Eurasian wild boar (Sus scrofa) harvest has heavily

increased in the last decade in association with more intensive management actions

such as fencing and supplementary feeding. We investigated the relationship

between the increasing wild boar hunting bag and Trichinella spp. prevalence. Data

on artificial digestion of muscle-tissue sample from 93,182 wild boar hunted during

the period 1998-2010 was obtained from the Official Veterinary Services. Sera from

1,432 hunter-harvested wild boar were collected between 2000 and 2011 in 25

hunting estates and analyzed by ELISA. The spatial-temporal trend and the risk

factors related to the hunting management on the detection of Trichinella spp.

infected wild boar were assessed using logistic regression. From the hunting

seasons 1998-99 to 2009-10, 47 out of 93,182 wild boar (0.05%; 0.04-0.06 95% CI)

tested positive for Trichinella spp. infection. According to the final model, the

presence of Trichinella spp. infection in wild boar had a decreasing trend during the

study period, and it was found to be negatively related with fenced populations and

non cultivated areas. Variation partitioning showed that the temporal factor,

independently of the rest of considered factors, explained the largest proportion of

the variation (67.26%). A total of 102 of 1,432 wild boar analyzed by ELISA tested

positive (7%; 5.9-8.5 95% CI). However, only one positive sample out of 30 was

confirmed by Western blot. We conclude that ELISA is not a suitable tool for

Trichinella contact monitoring among wild boar and discuss why Trichinella spp.

infection is declining in central Spain, which contrasts with epidemiological data on

other European wild boar populations.

Introduction

Nematodes of the genus Trichinella, the causal agents of trichinellosis, are

among the most widespread zoonotic pathogens (Gibbs, 1997; Murrell et al., 2000;

Pozio, 2007). Worldwide, the most important source of the human infection is the

domestic pig and, in industrialized areas of the European Union, the efforts

69

Page 91: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

focused to remove Trichinella spp. from the pig food chain were almost a success

(EFSA, 2011).

Nonetheless, trichinellosis in Europe is still a problem, due to the sylvatic cycle

where the red fox (Vulpes vulpes) and the Eurasian wild boar (Sus scrofa) play

important roles as reservoir (Pozio et al., 2009), making it impossible to eradicate

this zoonosis (Rafter et al., 2005).

Pork and pork derived products from wild boar represent the second most

important source of trichinellosis for humans (Murrell and Pozio, 2011). In the

European Union, all game animals susceptible to Trichinella spp. infections should

be tested for these pathogens by digestion if the meat is intended for the market

(European Commission Regulation, 2005). However, outbreaks of trichinellosis

associated to the consumption of pork from wild boar consumed by hunters, their

households and friends, are continuously documented (Arevalo et al., 2009; Garcia-

Sanchez et al., 2009).

Given that the wild boar is an important Trichinella reservoir, understanding the

spatial-temporal distribution of this parasite-host system is quite important for

disease control and policy (e.g., Boadella et al., 2011a). Some studies have described

temporal trends of trichinellosis in European wildlife (Ramisz et al., 2001;

Kurdova-Mintcheva et al., 2009). Increasing time trends of Trichinella spp.

prevalence have been recorded in wild boar from Slovakia (Hurnikova and

Dubinsky, 2009), north-eastern Germany (Pannwitz et al., 2010), and Poland

(Ramisz et al., 2011).

In south-central Spain, the wild boar harvest has heavily increased in the last

decade in association with more intensive management actions on wild boar

populations (e.g., supplementary feeding, translocations of animals, etc.) in order to

increase hunting harvest (Acevedo et al., 2007b). The aim of this work was to

investigate the relationship between the increasing wild boar hunting bag and

Trichinella spp. prevalence in a province of Spain.

70

Page 92: Los abajo firmantes, como directores de esta tesis

Capítulo 3.3

Material and methods

Study area and sampling

The study area was Ciudad Real, a 19,813 km2 province in central Spain (Figure

1). This area is characterized by a continental Mediterranean climate and moderate

to high wild boar densities (up to 90 ind/km2; Acevedo et al., 2007b). Wild boar is

widely distributed in this region where it locally cohabits with domestic pig (see e.g.,

Ruiz-Fons et al., 2008c).

On the one hand, sera from 1,432 legally hunter-harvested wild boar were

collected between 2000 and 2011 in 25 hunting estates located along the study area.

Blood was drawn from the heart or the thoracic cavity during field sampling, and

serum was collected and stored frozen at -20°C until analyzed. On the other hand,

data on artificial digestion of muscle-tissue sample from 93,182 wild boar hunted

during the period 1998-2010 was obtained from the Official Veterinary Services

(see below).

ELISA test

Wild boar sera were analyzed by means of a commercial ELISA (ID Screen

Trichinella Indirect, ID Vet), based on the excretory/secretory antigen (E/S),

allowing the detection of antibodies directed against Trichinella spp. Following

manufacturer’s instructions, cut-off was calculated as the S/P ratio: 100 x [(OD

sample - OD negative control) / (OD positive control – OD negative control)].

Sera with a S/P ratio > 60% were considered positive. A selection of 30 positive

sera was sent to the European Union Reference Laboratory for Parasites of Rome

to confirm the ELISA positivity by Western blot.

Spatio-temporal trends

All hunted wild boar were tested for Trichinella spp. infection by artificial

digestion according to the Commission Regulation 2075/2005. Number and origin

of animals tested from 1998-1999 to 2009-2010 hunting seasons (n=12,787 hunting

71

Page 93: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

activities) was provided by the regional sanitary authorities and digitalized into a

database. Since no precise information for each hunting activity was required for

the analyses, the original database was simplified and total values per hunting estate

and hunting season were considered (n=5,186 records). Consequently, the available

information was: the number of hunted wild boar and the number of those which

tested positive yearly for Trichinella spp. per hunting estate (the response variable

for modelling purposes).

Figure 1. Study area including the hunting estates where Trichinella spp. infections were detected (in dark) in wild boar (Sus scrofa) by the Official Veterinary Services in each hunting season.

The spatial-temporal trend and the risk factors related to the hunting

management on the detection of Trichinella spp. infected wild boar were assessed

using logistic regression (Hosmer and Lemeshow, 2000). We extracted information

to be used as predictors from 3 main sources. First, information related to the

hunting estate that can be potentially used as predictors in the models was gathered

from the database on veterinary inspections. So, we recorded the hunting season

72

Page 94: Los abajo firmantes, como directores de esta tesis

Capítulo 3.3

and determined the presence of Trichinella spp. infection in previous hunting

seasons in the same hunting estate in order to account for the time trend of

Trichinella spp. infection in the study area (see e.g., Pannwitz et al., 2010). From the

same data source, the relative abundance of wild boar was estimated through the

hunting yields as the mean number of animals hunted per hunting season in each

hunting area (for details about catch-based abundances indices see e.g., Boitani et

al., 1995; Acevedo et al., 2007b). Secondly, hunting estates have a technical plan for

hunting in which information on game management for each four-year period is

detailed. This database was available from the regional administration and the

information on the presence/absence of fences in the perimeter of the hunting

estate was used in the models. The presence of fences, linked to intensively

managed populations, was raised as one of the most relevant factors explaining the

occurrence of parasites (see e.g., Vicente et al., 2004; Acevedo et al., 2007b). We

also characterized each hunting estate with eco-geographical variables by using

geographic information systems. The geographic coordinates of the centroid of

each hunting estate were taken into account in order to explore the spatial trends in

the response variable (Borcard et al., 1992; Legendre and Legendre, 1998). In

addition, the land uses in each hunting estate were obtained from CORINE

database (Bossard et al., 2000). For this purpose, original classes of the CORINE

were re-coded in order to obtain a simplified legend more useful for the spatial

scale used in this study. Finally, we grouped all obtained predictors in four

explanatory factors (see Table 1): spatial (2 variables), temporal (2 variables),

hunting management (3 variables) and estate-related characteristics (18 variables).

A two-stage statistical analysis was carried out. First, as statistical theory

predicts that type I error rate increases with the number of predictors because of

repeated testing, we independently analyzed the relationship between each

predictor and the response variable by using a logistic regression in order to

minimize the number of predictors in the final model. The effect of hunting estate

was controlled for all models. At this first stage, all predictors for p<0.1 were

73

Page 95: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

selected for their inclusion in the final model (see Table 1). At the second stage, a

forward-backward stepwise procedure following the corrected Akaike Information

Criteria (AICc) was used to select the most parsimonious model (Akaike, 1974;

Burnham and Anderson, 2002).

Table 1. Epidemiological and geographical predictors considered in the study. Those marked with (*) were selected on the basis of the results of the first-stage statistical analysis (see text for details).

Spatial Longitude and latitude of the hunting areas (continuous variable) Temporal Hunting season (ordinal variable)* and the presence of Trichinella spp. infections in previous hunting seasons (binomial variable)* Hunting management Presence/absence of fences (binomial)*, the relative abundance of wild boar (continuous)*. Estate-related characteristics Hunting estate code (nominal) and its surfaces covered by: urban area, road and railway, sandpit, non-irrigated culture and vineyard*, irrigated culture, irrigated fruit orchard, pasture, agricultural area, forest, natural grassland, moor, sclerophyll vegetation, forest-scrubland ecotone, riparian habitat, burned area, marshes, river and dam*, was also characterized (continuous variables).

Probability values yielded by the logistic regression were included in the

favourability function (see Real et al., 2006) to represent the spatial-time trends and

to estimate a risk map for Trichinella spp. infection in wild boar. The concept of

favourability, even if it has not been widely used in epidemiology, has a high

potential in this field. The favourability values are a measure of the degree to which

local conditions lead to a local probability higher or lower than that expected at

random (F=0.5, i.e., neutral favourability), being this random probability defined by

the overall prevalence of the event. Thus, favourability may be used to detect, for

example, conditions that really enhance the presence of a given disease or that

favour in the same degree the occurrence of a rare disease and a common seasonal

flu, even when the probability of suffering them differs due to their different

74

Page 96: Los abajo firmantes, como directores de esta tesis

Capítulo 3.3

prevalence. Favourabilities (F) may be directly derived from probabilities (P)

yielded by a logistic regression according to the following equation:

1

0

(1 )

(1 )

PP

Fn Pn P

Being n1 and n0 the number of presence and absence in the global dataset,

respectively.

One inherent characteristic of this function is that favourability values can be

regarded as the degree of membership of the localities to the fuzzy set of sites with

conditions favourable for the event’s presence which enables the easy application

of fuzzy logic operations for modelling (e.g., Robertson et al., 2004). Fuzzy logic

operations expand the possibilities of the favourability function for comparison

between situations such as the different hunting seasons considered in this study

(Acevedo et al., 2010a; Real et al., 2010; Acevedo et al., 2011). In this study, at

hunting estate level, we combined the favourability values obtained for each

hunting season in order to obtain two proxies of the risk for Trichinella spp.

infection (e.g., Rochlin et al., 2011). One index is defined to display areas where

Trichinella spp. infection was present during the study period (endemic areas for the

parasite), and it is estimated by the minimum value of the seasonal favourabilities

(Zadeh, 1965). Another was designed to determine the global distribution of these

parasites during the study period and can be estimated by the maximum value of

the seasonal favourabilities (ibid.)

Finally, the selected model was partitioned in order to enhance its explanatory

capacity and improve its reliability and interpretation in the presence of

multicollinearity between predictors (Graham, 2003). Variation partitioning

procedures (see Borcard et al., 1992) are used to estimate the variation of the final

model explained independently by each factor (pure effects) and the variation

explained simultaneously by two or more factors (overlaid effects) following

75

Page 97: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

subtraction techniques. For details about the subtraction techniques see (Acevedo

et al., 2010a).

The statistical analyses were performed using SPSS 18.0 (SPSS Inc., Chicago,

IL, USA) statistical software.

Figure 2.- Predicted favourability for Trichinella spp. in wild boar for each hunting estate and studied season according to the final model (Table 2). Favourability values higher than 0.5 (blue colours) indicate conditions that foster the presence of the parasite.

Results

From the hunting seasons 1998-99 to 2009-10, 47 wild boar (0.05%; 0.04-0.06

95% CI) tested positive for Trichinella spp. infection out of 93,182 animals analyzed

by the Official Veterinary Services. After the first stage of the statistical analysis,

only 6 independent variables were considered for the final model; namely, hunting

season, the presence of Trichinella spp. infections in previous hunting seasons,

presence/absence of fences, the relative abundance of wild boar, the surface of the

hunting estate occupied by non-irrigated culture and vineyards, and the surface

occupied by rivers and dams (asterisked in Table 1). Four variables, related to

76

Page 98: Los abajo firmantes, como directores de esta tesis

Capítulo 3.3

spatio-temporal (hunting season and Trichinella spp. infections in previous hunting

seasons), environmental (surface of the hunting estate occupied by vineyards and

non-irrigated lands) and hunting management factors (presence of fences), were

retained in the final model (Tables 2 and 3; explained deviance 11.5%). According

to the model, the presence of Trichinella spp. infection in wild boar had a decreasing

trend during the study period (Figure 2), and it was found to be negatively related

with fenced populations and non cultivated areas. The predicted favourability for

Trichinella spp. infection for each hunting season and hunting estate is shown in

Figure 2; favourable conditions (F>0.5) disappeared completely after the 2006-07

season. Risk maps generated from the seasonal favourabilities (Figure 3) show that

even when endemic areas for these parasites are really scarce in the study area

(Figure 3A), Trichinella spp. infection was widely distributed since favourable

conditions for these parasites have been appearing in different hunting seasons

along the study area (Figure 3B).

Table 2.- Summary of the stepwise model selection procedure based on the corrected Akaike Information Criteria AICc (Akaike 1974). ∆AIC represents differences in AICc in relation to the best model (lowest AICc value).

∆AIC AICc Model 44.69 530.93 Null model (including hunting estate) 15.23 501.47 Hunting season (V1) 5.74 491.98 V1+ Vineyards and non-irrigated lands (V2) 2.28 488.52 V1 + V2 + Presence of fences (V3)

0 486.24 V1 + V2 + V3 + Trichinella spp. infections in wild boar in previous hunting seasons

Table 3.- Variables included in the final model, their coefficients (β), Wald test values and significance (p-value). (*) Coefficients in relation to absence of fences and absence of Trichinella spp. infection in wild boars in previous hunting seasons.

Variable β Wald χ2 p-values

Constant -5.145 93.628 <0.001 Hunting season -0.275 27.492 <0.001 Vineyards and non-irrigated lands -0.004 6.285 0.012 Presence of fences -0.709* 5.866 0.015 Trichinella spp. infection in wild boar in previous hunting seasons

1.007* 5.074 0.024

77

Page 99: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Variation partitioning results of the final model are shown in Figure 4. The

temporal factor, independently of the rest of considered factors, explained the

largest proportion of the variation (67.26%). In terms of pure effects, this was

followed in relevance by the environment (24.39%) and the hunting management

(10.76%). The low percentages explained by the combined effect of two or more

factors, showed a high independence among predictors.

Figure 3.- A) Favourability value for Trichinella spp. in wild boar maintained during the study period and considered as a proxy of the local favourability to be an endemic area, and B) maximum favourability values per hunting season which is considered as a proxy of the spread of this parasite in the study area.

ELISA results

Out of the 1,432 wild boar of 25 hunting estates analyzed by ELISA, 102 wild

boar tested positive (7%; 5.9-8.5 95% CI). However, only one positive sample out

of 30 was confirmed by Western blot. To compare both methods (digestion and

ELISA) from the Official Veterinary Services database we selected the same 25

hunting estates tested by ELISA. During the study period 6207 wild boar were

tested and 5 positive animals were identified in these 25 hunting estates (0.08%;

0.03-0.2 95% CI). At this level, we found no significant correlation between

prevalences obtained by the two methods (rs=0.128, p=0.542, n=25).

78

Page 100: Los abajo firmantes, como directores de esta tesis

Capítulo 3.3

Figure 4.- Results of variation partitioning of the final model in temporal trend (T), hunting management (M) and environmental characteristics (E). Values shown in diagrams are the percentages of variation explained.

Discussion

In contrast to the epidemiological data on Trichinella spp. infection in European

wild boar populations (Pannwitz et al., 2010; Ramisz et al., 2011), we observed a

decreasing prevalence in the last 12 years in central Spain. This finding appears to

be in contrast to the increasing wild boar populations and hunting management.

Why is central Spain of particular interest regarding the sylvatic cycle of

Trichinella? In south-western and central Spain, wild boar are often raised under

intense conditions for hunting purposes in commercial hunting estates that tend to

maintain overabundant wild boar populations in order to maximize returns. These

high densities are maintained through fencing, artificial watering in summer and

supplementary feeding throughout the year (Gortázar et al., 2006; Acevedo et al.,

2007b). Studies in these areas reported Trichinella spp. prevalences of 0.3%-0.8%

(Pérez-Martín et al., 2000; Garcia-Sanchez et al., 2009), while the mean prevalence

for Spain in the last years (2007-2009) was 0.2% (EFSA, 2011). Thus, intensive

management of wild boar populations could be one of the factors determining the

re-emergent character of this parasite.

The predictive model for Trichinella spp. infection in wild boar showed that, in

addition to the temporal trend, other factors related to environmental

characteristics and hunting management explained a part of the variation of the

prevalence of infection at the hunting estate level. So, bearing in mind that the

79

Page 101: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

deviance explained by the final model was low, factors related with both land use

and the absence of fences contributed to modulate the prevalence of infection for

these parasites in wild boar. This result is coherent with rejecting the hypothesis by

which a link between game management and high prevalences was established for

other parasites (e.g., Acevedo et al. 2007b; Vicente et al. 2007b). In our study there

was a higher probability to detect Trichinella spp. infection in wild boar from

unfenced hunting estates than in fenced ones. The former are populations under

less-intensive management strategies (e.g., Acevedo et al., 2007b; Ruiz-Fons et al.,

2008c). Three relevant characteristics could differentiate the results obtained for

fenced and unfenced wild boar populations. First, in fenced hunting estates under

an intensive hunting management the effectiveness of the sanitary control (e.g.

veterinary inspection and hunting remain -gutpile- destruction) is maximized since

all wild boar are hunted in a few hunting events. Less available gut piles for wild

boar could lead to a decrease in the intraspecific Trichinella spp. transmission, as

described for polar bears (Larsen and Kjos-Hanssen, 1983). By contrast, some wild

boar may eventually go uninspected in unfenced estates (for instance, road-kills).

Second, the epidemiological interaction between domestic pigs and wild boar is

higher in these ‘unmanaged’ areas, since movements are less restricted. Finally,

fenced estates with overabundant wild boar have most probably a lower

biodiversity than open sites (Gortázar et al., 2006), and this in turn might affect the

likelihood of Trichinella maintenance and transmission.

The application of the favourability function to spatial modelling of risk factors

for a parasite under time-series data allowed us to estimate spatially-contextualized

indices able to determine endemic areas for theses parasites and their spread

throughout the period but also to identify those localities with risk factors

enhancing the presence of these parasites (F>0.5). So, the analysis showed a clear

absence of areas where Trichinella spp. infection could be considered endemic, but

also that these parasites can occur in most of the study area (Figure 3).

80

Page 102: Los abajo firmantes, como directores de esta tesis

Capítulo 3.3

81

The reference diagnostic method for routine testing of pig and wild boar meat

is the artificial digestion according to regulation (European Commission [EC]) no.

2075/2005.

Alternatively, serological techniques, such as ELISA, have been developed in

order to detect antibodies against Trichinella sp. and have been used in domestic pig

populations (Moller et al., 2005; Nockler et al., 2005; Bień, 2007). This method is

more sensitive than artificial digestion in domestic pig (Gamble et al., 2004), but its

utility in wild boar is under debate due its lack of specificity when compared with

the digestion (Frey et al., 2009a; Frey et al., 2009b; Nockler et al., 2009). In this

survey, only 3.3% of positive samples were confirmed by Western blot, thus

indicating a poor specificity of the ELISA as a diagnostic tool for the contact of

wild boar with Trichinella spp. The lack of specificity in wild boar could be due to

the contact of these wild animals with a vast number of other nematodes

(Fernández-de-Mera et al. 2003). Hence, we do not recommend ELISA as a tool

for Trichinella contact monitoring among wild boar.

Acknowledgements

This study was achieved thanks to the colleagues at IREC that participated in the fieldwork. The

authors also thank the Official Veterinary Services for the information given.

Page 103: Los abajo firmantes, como directores de esta tesis
Page 104: Los abajo firmantes, como directores de esta tesis

Capítulo 4

CAPÍTULO 4. RIESGOS SANITARIOS ASOCIADOS AL MANEJO CINEGÉTICO INTENSIVO DE LOS

UNGULADOS SILVESTRES

4.1. El jabalí: ¿un riesgo para el control de la Enfermedad de Aujeszky en el cerdo?

4.2. Evolución temporal de la seroprevalencia de cuatro patógenos relevantes en el jabalí

4.3. Distribución espacial y factores de riesgo de la brucelosis en ungulados de la Península Ibérica

4.4. Expansión de la tuberculosis en el jabalí

Page 105: Los abajo firmantes, como directores de esta tesis
Page 106: Los abajo firmantes, como directores de esta tesis

Capítulo 4

Resumen

La continua expansión de las poblaciones de jabalí (Sus scrofa) y la persistencia y

expansión de prácticas de manejo cinegético intensivo, con escasa presencia de

medidas de control sanitario, genera preocupación en cuanto a la transmisión de

enfermedades.

4.1. El objetivo del primer trabajo fue el de describir la evolución temporal del

contacto con el virus de la enfermedad de Aujeszky (VEA) de varias poblaciones de

jabalí sometidas a distintos sistemas de manejo y con distintas probabilidades de

contacto con cerdo doméstico. Para ello, se testaron mediante ELISA 1659 sueros

de jabalí procedentes de 6 áreas de la Península Ibérica, colectadas en el periodo de

2000 a 2010. La seroprevalencia media fue del 50%, y las prevalencias más altas se

detectaron en áreas con intenso manejo cinegético. La proporción anual de sitios de

muestreo positivos se mantuvo estable durante todo el período de estudio, mientras

que a nivel estatal, la proporción de comarcas positivas al VEA en cerdo doméstico

disminuyó del 70% en 2003 al 1,7% en 2010. Concluimos que el mantenimiento del

VEA en las poblaciones de jabalí puede suponer un riesgo para el éxito del

programa de erradicación en la cabaña porcina.

4.2. Para detectar cambios temporales y posibles factores de riesgo asociados a

ellos en las prevalencias de contacto con cuatro patógenos relevantes (circovirus

porcino tipo 2, CVP2; virus del síndrome respiratorio y reproductivo porcino,

VPRRS; virus de la hepatitis E, VHE y Erysipelothrix rhusiopathiae), se testó la

presencia de anticuerpos en 1279 sueros de jabalí durante el período 2000-2011.

Las seroprevalencias observadas frente a CVP2 y a VHE se mantuvieron estables

durante el período estudiado (con prevalencias medias del 48% y 26%,

respectivamente), mientras que la seroprevalencia frente E. rhusiopathiae disminuyó.

La baja prevalencia de anticuerpos frente al VPRRS (2%) no permitió su análisis en

el tiempo. A nivel de las localidades estudiadas, los incrementos de prevalencia

detectados siempre fueron mayores en fincas cerradas que en poblaciones abiertas.

Este estudio confirmó la persistencia de altas prevalencias de anticuerpos frente a

85

Page 107: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

CVP2 y VHE en poblaciones de jabalí de la Península Ibérica, hecho que sugiere

que factores de riesgo como la agregación o las altas densidades siguen actuando, y

no sólo para los patógenos estudiados, sino que probablemente favorezcan también

a la transmisión de otros.

4.3. El papel de los ungulados silvestres ibéricos como reservorios de la

brucelosis aún no había sido establecido con claridad. Este trabajo ha permitido

descartar que los rumiantes silvestres tengan un papel en la epidemiología de las

brucelosis bovina u ovina/caprina en España, y en consecuencia no ha evidenciado

tendencias temporales en el contacto de rumiantes silvestres con Brucella sp. Otro

objetivo de este trabajo era determinar la distribución espacio-temporal e identificar

factores de riesgo para el contacto con Brucella suis en varias poblaciones de jabalí

de la Península Ibérica. Para ello, se analizaron entre 1999 y 2009 un total de 4454

jabalíes mediante ELISA. La seroprevalencia aparente detectada varió de un 25% a

un 46% para las distintas áreas estudiadas, pero las prevalencias más altas se

detectaron el las zonas del centro-sur peninsular. Según el modelo aplicado, el año

de muestreo no resultó ser un factor significativo, mientras que sí lo fueron la edad,

el sexo o el mes de muestreo. El estudio demostró que la brucelosis en el jabalí está

extendida y se mantiene estable en el tiempo. Estos resultados sugieren que el jabalí

puede constituir un factor de riesgo para el cerdo doméstico, especialmente en los

sistemas de cría al aire libre.

4.4. Las poblaciones de jabalí del centro-sur peninsular se han identificado

como reservorios de Mycobacterium bovis y otros miembros del complejo

Mycobacterium tuberculosis (CMTB), causantes de la tuberculosis bovina (TB). En este

estudio se determinó la distribución espacial y temporal del contacto del jabalí con

el CMTB en la Península Ibérica mediante serología, y se aplicaron modelos para

tratar de identificar factores de riesgo asociados. Los resultados describieron un

nuevo rango geográfico del contacto del jabalí con el CMTB. La seroprevalencia

media fue del 22% y permaneció estable en la última década, resultado que

86

Page 108: Los abajo firmantes, como directores de esta tesis

Capítulo 4

87

contrasta con el éxito de la campaña de erradicación de la tuberculosis en el ganado

bovino.

La posibilidad de la expansión de la TB del jabalí hacia áreas no endémicas se

debería gestionar urgentemente para tratar de evitar una futura situación parecida a

la presente en el centro-sur de la Península.

Page 109: Los abajo firmantes, como directores de esta tesis
Page 110: Los abajo firmantes, como directores de esta tesis

Capítulo 4.1

El jabalí: ¿un riesgo para el control de la enfermedad

de Aujeszky en el cerdo?

Boadella, M., Gortázar, C., Vicente, J., Ruiz-Fons, F. Wild boar: an increasing concern for Aujeszky’s disease control in pigs? Aceptado, BMC Veterinary Research.

Page 111: Los abajo firmantes, como directores de esta tesis
Page 112: Los abajo firmantes, como directores de esta tesis

Capítulo 4.1

Abstract

The goal of this study was to describe the temporal evolution of Aujeszky’s

disease virus (ADV) contact prevalence among Eurasian wild boar (Sus scrofa)

populations under different management regimes and with different contact

likelihoods with domestic pigs. Given the recent increase in wild boar abundance

throughout Europe, we hypothesized that wild boar contact with ADV would

remain stable in time even after significant reduction of ADV prevalence in

domestic pigs. Sera from 1659 wild boar were collected from 2000 to 2010 within 6

areas from the Iberian Peninsula and tested for the presence of antibodies against

ADV by a commercial ELISA. Wild boar were grouped according to sampling date

into three main time periods. ADV prevalences were compared through period

both globally and by geographic area. Overall seroprevalence for the ten-year study

period was 49.6 ± 2.4%. The highest seroprevalences were recorded in areas where

intense wild boar management was present. The annual proportion of positive wild

boar sampling sites was stable during the ten-year period, while the percentage of

domestic pig AD positive counties decreased from 70% in 2003 to 1.7% in 2010.

Results presented herein confirmed our hypothesis that ADV would remain almost

stable in wild boar populations. This evidences the increasing risk wild boar pose in

the final stages of ADV eradication in pigs and for wildlife conservation.

Background

Aujeszky’s disease (AD), also known as pseudorabies, is one of the most

economically important infectious diseases of swine for which suids are the natural

hosts (Müller et al., 2011). The disease is caused by Suid herpesvirus type I, a

neuroinvasive virus with a wide host range that excludes only higher primates.

Mammals other than suids are considered dead-end hosts because infection is

normally fatal before virus excretion occurs. AD has a high economic impact in pig

husbandry both through direct effects of the disease on the animals and through

movement and trade restrictions of pigs and their products. The direct impact of

91

Page 113: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

AD in wild boar population dynamics is considered to be low, but AD outbreaks

with associated wild boar mortality have been reported and restrictions to wild boar

movements may also have an impact on wild boar production for hunting (Ruiz-

Fons et al., 2008b; Gortázar et al., 2002).

Implications in conservation are considerable since fatal cases have repeatedly

been described in endangered carnivores after consumption of ADV contaminated

meat (Glass et al., 1994; Zanin et al., 1997). In the Iberian Peninsula, the Iberian

wolf (Canis lupus signatus) uses Eurasian wild boar (Sus scrofa, the ancestor of the

domestic pig) as an important part of the diet (Barja, 2009). From the literature

reviewed, to date ADV infection has not been reported in wolves even though fatal

cases do occur in hunting dogs (Cay and Letellier, 2009). Moreover, other

endangered carnivores such as the brown bear (Ursus arctos) and the Iberian lynx

(Lynx pardinus) do occasionally consume wild boar among their prey or carrion

species (Valverde, 1967; Blanco et al., 2011), and thus may also be at risk of ADV

infection (e.g. fatal ADV reports in brown bears; Zanin et al., 1997; Banks et al.,

1999).

Wildlife can act as reservoirs for pathogens shared with their related domestic

species, being able to transmit and maintain them even without the presence of the

domestic reservoir (Gortázar et al., 2007). The wild boar-domestic pig interface

represents one of the clearest examples of this scenario, as both species have a

mutual transmission risk for their infectious and parasitic diseases (Ruiz-Fons et al.,

2008b; Meng and Lindsay, 2009). As disease eradication programs are implemented

in the domestic species, wildlife reservoirs should be considered for the program

success since they become increasingly important (Müller et al., 2000).

In many parts of the world, efforts are being carried out to control ADV in

domestic pigs. In Europe, most countries (including Spain) have implemented strict

national eradication programs based on initial large scale vaccination of pigs with

attenuated glycoprotein E (gE) – deleted vaccines. In countries that have reached

the AD-free status, vaccination against ADV is forbidden (Pannwitz et al., 2011).

92

Page 114: Los abajo firmantes, como directores de esta tesis

Capítulo 4.1

But despite the efforts and subsequent success on AD eradication in domestic pigs,

the disease is being continuously reported in wild boar populations. For instance,

Germany achieved the AD-free status in 2003 despite the increasing

seroprevalences (from 0.4% in 1985 to 16.5% in 2008) and widespread AD

distribution in wild boar (Lutz et al., 2003; Pannwitz et al., 2011). In France

occasional outbreaks have been described in outdoor pig farms. Contact with wild

boar was deemed as the origin (Hars and Rossi, 2005; OIE, 2010). ADV contact

prevalence in wild boar has also been recorded in several other European countries,

such as Spain (0.8-44%; Vicente et al., 2005; Closa-Sebastià et al., 2011), France

(3.5%; Albina et al., 2000), Italy (30-51%; Lari et al., 2006; Montagnaro et al., 2010),

Switzerland (2.8%; Köppel et al., 2007), Croatia (55%; Zupancic et al., 2002),

Slovenia (31%; Vengust et al., 2006), Poland (11%; Szweda et al., 1998) and Russia

(32%; Kukushkin et al., 2009); suggesting that ADV may be endemic in most of

these wild boar populations. In contrast, countries with limited wild boar

populations such as Netherlands, or Sweden with recently expanding wild boar

populations, do not record ADV in wild boar (Elbers et al., 2000; Swedish National

Veterinary Institute [SVA], 2010).

In Spain, the national AD eradication scheme started in 1995 (Royal Decree

[RD] 245/1995; MARM, 2011a). The main control measures were compulsory

vaccination with gE negative vaccines, movement restriction and serological

testing. The AD eradication program was reinforced in 2003 (RD 427/2003) and

subsequently in recent years by applying stricter animal movement restrictions and

more intensive serological testing and vaccination (Allepuz et al., 2009). The AD

eradication program has led to a considerable reduction of ADV prevalences in

domestic pigs, although eradication in the whole territory has not yet been achieved

(MARM, 2011a).

The wild boar is the most widespread and generally also the most abundant

wild ungulate in large portions of the Iberian Peninsula. Wild boar populations are

continuously expanding numerically and geographically (Gortázar et al., 2000;

93

Page 115: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Acevedo et al., 2006). Furthermore, in some areas of the south-central Iberian

Peninsula, wild boar are part of a growing hunting industry where management

practices, such as high-wire fencing, artificial feeding and restocking are on the rise

(Acevedo et al., 2006). At the same time, sanitary measures for wildlife are not

being implemented to match this development. As a result, high wild boar densities

have already been shown to be a risk factor with negative consequences for the

control of AD and other infectious diseases (Gortázar et al., 2006; Acevedo et al.,

2007b; Vicente et al., 2007b; Ruiz-Fons et al., 2008c).

Although for ADV it has been shown that the prevalence in wild boar

populations was not a significant risk factor for the level of AD prevalence in the

coexisting pig farms (Ruiz-Fons et al., 2008c), there are studies that suggest the

opposite (Corn et al., 2009). Moreover, the experimental infection of domestic pigs

with ADV strains of wild boar origin (Müller et al., 2001) and the excretion of virus

to the environment by wild boar (Müller et al., 1998; Ruiz-Fons et al., 2007),

suggest the possibility of ADV transmission between both suids.

The goal of this study was to describe the temporal evolution of ADV contact

prevalence among wild boar populations under different management regimes and

varying contact with pigs in Spain. Based on the European literature, we

hypothesized that wild boar contact with ADV would remain stable in time even

after significant reduction of ADV prevalence in domestic pigs.

Methods

Wild boar sampling

A total of 1659 serum samples collected between 2000 and 2010 from beating

or Monteria hunter-harvested wild boar, were selected for this retrospective study.

Monteria hunting of wild boar is random and thus, is accepted as a random survey

method for wild boar (Fernández-Llario and Mateos-Quesada, 2003). The selected

sample was stratified by sex and age classes. Sex was known for 1503 animals and

included 687 males and 816 females. Age classes of biological meaning included

94

Page 116: Los abajo firmantes, como directores de esta tesis

Capítulo 4.1

juveniles (n=316), yearlings (n=464), and adults (n=733), as described in previous

studies (Vicente et al., 2004) and in Sáenz de Buruaga et al. (1991). Sera selected for

this study had gone through less than five freeze-thaw cycles and severely

haemolysed samples were excluded (Capítulo 2.2).

Samples came from 37 sites (range 5 to 111 samples per site) and were grouped

into six geographic areas of biological meaning (Table 1; Figure 1) plus an isolated

fenced estate (not shown in Figure 1). The selected areas are representative of a

gradient of situations from an intense hunting management (involving fencing,

artificial feeding and watering) to a lesser or inexistent hunting management. More

precise descriptions of these areas have been given by Vicente et al. (2004). One

area (SM) is part of the geographical range of Iberian pig production, a traditional

breed that is reared by open air farming or as backyard production (Table 1).

Table 1.- Number of sampled wild boar, categorized wild boar density (low, medium, high), wild boar management (inexistent to intense) and likelihood of contact with open air raised domestic pigs (low, medium, high) generally present in each of the six areas of the study, mainly based on observational data from the authors (unpublished results).

Area Number wild boar sampled

Wild boar density

Wild boar management

Likelihood of contact with open air raised

domestic pigs

Asturias (AS) 133 Medium Low or

inexistent Low

Sistema Central (SC) 127 Medium Low or

inexistent Low

Sistema Ibérico (IBER)

76 Low Low or inexistent

Low

Toledo (TO) 91 Low Low or

inexistent Low

Montes de Toledo (MT) 765 High

Frequently intense

Low (Ruiz-Fons et al., 2008c)

Sierra Morena (SM) 361 High Frequently intense

High (Bech-Nielsen et al., 1995)

Doñana (DN) 46 Medium-high

Inexistent Low

In order to analyze prevalence changes in time, samples were grouped by area

into three periods: years 2000-2003, 2004-2007 and 2008-2010. We also used the

95

Page 117: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

annual proportion of positive sampling sites to compare with data on positive

counties regarding pigs (Figure 2).

In one private hunting estate outside the described areas, we recorded wild

boar relative abundance (FBII) and aggregation index (Z) in 2002 and 2010, as

described in Vicente et al. (2004) and in Acevedo et al. (2007). ADV seroprevalence

was calculated for wild boar sampled in 2003-2005 (n=12) and in 2008-2010

(n=48). Wild boar management started to change late in 2005 through improved

fencing and supplementary feeding.

ELISA test

A commercially available blocking ELISA was used for screening of antibodies

to ADV in accordance with the manufacturers’ instructions (IDEXX HerdCheck

Anti-ADV gpI, IDEXX, Inc., USA). This ELISA technique has been broadly used

in wild boar (Vicente et al., 2005; Ruiz-Fons et al., 2006; Pannwitz et al., 2011) and

for domestic pigs it has a sensitivity of 95-98% and a specificity of 97–99%

according to the manufacturer.

Data on pig status

ADV seroprevalence data of the control and eradication campaign in Spain at

county level from 2003 to 2010 were available from the Spanish Ministry of the

Environment and Rural and Marine Affairs (MARM, 2011a). With the data

provided, we calculated the annual proportion of positive counties.

Statistics

Standard errors at 95% confidence intervals were calculated for apparent

prevalences. Mean prevalence estimates were adjusted for test sensitivity and the

specificity using Rogan-Gladen corrections (RGC). RGC were calculated using the

lowest values of ELISA sensitivity and specificity given by the manufacturer, 95%

sensitivity - 97% specificity (Rogan and Gladen, 1978). ADV prevalences were

96

Page 118: Los abajo firmantes, como directores de esta tesis

Capítulo 4.1

compared through period both globally and by geographic area by means of chi-

square tests. The p-value was set at 0.05. Data was analyzed using the IBM SPSS

statistical package, version 19.0 (IBM Corporation, Somers, NY, USA).

WinEpiscope software (WinEpiscope software, 2011) was used to calculate the

level of confidence for negative results.

Results

The overall seroprevalence for the ten-year study period was 49.6 ± 2.4% (S.E.

at 95% CI), (Rogan-Gladen correction [RGC]: 50.7 ± 2.4). Antibody prevalences

were high in all areas except for AS (7.5 ± 4.4% [RGC: 4.9 ± 3.7%]) and TO (11 ±

6.4% [RGC: 8.7 ± 5.8%]). Figure 1 shows the observed prevalences by area in the

three sampling periods. The highest mean seroprevalences were recorded in areas

where intense wild boar management was present: MT (61.4 ± 3.4% [RGC: 63.5 ±

3.4%]) and SM (54.6 ± 5.1% [RGC: 56.1 ± 5.1%]).

Figure 1.- Map of the Iberian Peninsula showing the six sampled areas for the study (right panel). Seroprevalences (and associated 95% standard errors) for each area during the three considered seasons (2000-2003, 2004-2007, 2008-2010) are shown in the left panel. Within each area, significant differences in overall season seroprevalences are marked with an asterisk.

In three areas the observed increase in seroprevalence was statistically

significant (IBER, TO and SM), while in MT the change in seroprevalence had no

clear trend (Chi-square, p<0.005 in all cases). In TO, ADV contact appeared for

97

Page 119: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

the first time in the period 2004-2007 (12.3 ± 8.5% [RGC: 10.1 ± 7.8%]) and

increased in the following period (Figure 1).

The annual proportion of individual sampling sites with at least one

seropositive wild boar remained stable during the ten-year period, while the

percentage of domestic pig AD positive counties decreased from 70% in 2003 to

1.7% in 2010 (Figure 2).

Figure 2.- Temporal trends on Aujeszky’s disease virus (ADV) seroprevalences in wild boar and pig. Time trend (2000-2010) of the annual proportion of sampling sites with seropositive wild boar (black diamonds) and of the proportion of counties in Spain with ADV in domestic pig (grey squares; based on data from the Spanish Ministry of the Environment and Rural and Marine Affairs, MARM). Numbers on the black line indicate the number of wild boar sampling sites per year. Numbers in grey indicate the number of reported counties per year. The discontinuous grey line is an estimated prevalence of positive counties before 2003 as data were not available before this date. The dotted line represents the hypothetical relative risk of ADV spill-back from wild boar to domestic pig, based on the difference between the pig and wild boar ADV proportions.

In one specific study site in northern Spain, outside the range of the main high

prevalence areas, ADV seropositivity was first detected in 2008 in 27 out of 48

sampled wild boar (56.3 ± 14.0% [RGC: 57.9 ± 14.0%]). The estimated level of

confidence for the negative results in the preceding period 2003-2007 (none out of

12) was 95% for an expected prevalence of 20%. Wild boar censusing confirmed a

98

Page 120: Los abajo firmantes, como directores de esta tesis

Capítulo 4.1

marked increase in abundance and spatial aggregation between both time periods

(Figure 3).

Figure 3.- Aujeszky’s disease virus (ADV) seroprevalence and wild boar relative abundance and spatial aggregation changes in a private hunting estate. Wild boar relative abundance (FBII; diamonds), aggregation index (Z; squares) and ADV seroprevalence (black triangles, 95% CI) in an estate where wild boar management drastically changed during the study period.

Discussion

Results presented here confirmed our hypothesis that ADV would remain

almost stable in wild boar populations. This occurred in those areas where wild

boar production as a hunting resource is practiced, and ADV seroprevalences are

high. Results also showed increasing seroprevalence rates for some of the studied

areas in spite of the decreasing trend reported in pigs. Time trends in wild boar

contact with ADV were independent of the area’s likelihood of contact with pigs,

adding evidence to the hypothesis of that AD maintenance in wild boar is

independent of the pig situation (Müller et al., 1998; Ruiz-Fons et al., 2008c;

Pannwitz et al., 2011).

Sample sizes per individual site were small. This motivated studying areas

which were representative of wild boar distribution and management characteristics

99

Page 121: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

in Spain. The limited sample size also means that results, particularly regarding time

trends by area, need to be taken with caution. However, total wild boar ADV

seroprevalence clearly remained stable after ten years, confirming that AD remains

endemic at high prevalences in the south-central Spanish wild boar populations

(Vicente et al., 2005; Ruiz-Fons et al., 2008c). This finding is in compliance with

other studies which also record stable or even increasing trends of ADV contact in

different wild boar and feral pig populations (Albina et al., 2000; Lutz et al., 2003;

Corn et al., 2004; Pannwitz et al., 2011). In our area, wild boar density and spatial

aggregation within fenced hunting areas have been previously identified as risk

factors for wild boar ADV contact prevalence in wild boar populations (Acevedo et

al., 2007b; Ruiz-Fons et al., 2008c). These factors have not changed during the

studied period. Thus, in the absence of any control measure and considering the

ability of ADV to remain latent in infected suids (Alemañ et al., 2001), ADV

prevalences were not expected to decline. Prevalences recorded in areas with

intense management are among the highest of the literature worldwide (Müller et

al., 2011). Thus, the observed time trends in these prevalences (decrease in MT and

increase in SM) may represent cyclic fluctuations around a “steady state” that ADV

seroprevalence may have reached under these particular conditions. Even though

wild boar population characteristics are different, a similar dynamic situation has

also been proposed to be occurring in wild boar ADV high-prevalence areas of

Germany (Müller et al., 2011).

This asymptote seems not to have been reached in other Spanish wild boar

populations. Furthermore, intense hunting management practices are becoming

popular in certain areas outside south-central Spain. This might suggest that higher

prevalences will be reached as the wild boar population increases and the

management becomes more intense.

The specific case illustrated in Figure 3 is an example of the effect of intense

wild boar management for hunting on the temporal trend of ADV seroprevalence.

Fencing and feeding led to a significant increase of wild boar abundance and

100

Page 122: Los abajo firmantes, como directores de esta tesis

Capítulo 4.1

aggregation (Acevedo et al., 2007b), and to the detection of high contact

prevalences with ADV (56%). It is unlikely that a high ADV prevalence could have

gone undetected in the preceding period. Therefore, based on the current and

previous observations (Vicente et al., 2005), we suggest that the emergence of ADV

seroprevalence could be boosted by intense hunting management practices,

including a possible translocation of wild boar from positive sites. As suggested for

tuberculosis, efforts should be done to control the proliferation of such intense

game management without sanitary control in disease-free areas, since they can

become risk hotspots with negative implications for animal health and for

conservation (Boadella et al., in press).

In contrast and despite of the situation in the studied wild boar populations,

ADV seroprevalence in Spanish domestic pigs experienced a significant reduction

thus showing that the eradication efforts were successful. A comprehensive study

of European ADV isolates of wild boar origin, including Spanish ones,

demonstrated that all except one belonged to genotype I (Müller et al., 2010). Based

on the observation that mainly type II strains were found in domestic pigs in

Central Europe, it has been suggested that infections of wild boar by domestic pigs

did not occur recently (Müller et al., 2011). Thus, spill over between pigs and wild

boar is apparently not a frequent event. However, the pig vaccination campaigns

probably had a main role in this decrease of ADV, but we open the question of

which will be the situation if Spain reaches the ADV-free status and pig vaccination

is no longer permitted? Outdoor pig production is an environmentally friendly and

sustainable productive system that additionally improves animal welfare and

product quality, aspects that are increasingly demanded by the European society.

These added values of outdoor production carry nonetheless a sanitary risk because

of the increased probability of interactions with wild boar and other wildlife of

uncontrolled sanitary status. There are several examples in the literature about the

link between open-air or back-yard pig production and the risk of disease

transmission at the pig-wild boar interface (Classical Swine Fever in Germany,

101

Page 123: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Fritzemeier et al., 2000; African swine fever in Sardinia, Laddomada et al., 1994 and

the Caucasus, FAO, 2008; and ADV, Hars and Rossi, 2005). Thus, when pig

biosafety measures are insufficient to avoid contact with wild boar, the wild boar

could become a risk for ADV re-introduction (Köppel et al., 2007). If wild boar are

seen as a source of the disease, a potential conflict on biosafety can arise between

the pig industry and hunting land owners (Ruiz-Fons et al., 2008c; Gortázar et al.,

2010). Because of the huge difficulties in controlling ADV in free-roaming wild

boar, the main recommendation to maintain ADV-free open-air produced

domestic pigs would be not to stop vaccination. Nonetheless, in countries without

vaccination such as Switzerland, it has been advised to include outdoor pigs in

areas at risk in routine wild boar ADV surveillance programs, since transmission

between infected wild boar and outdoor pigs might occur in the future (Köppel et

al., 2007). In parallel, it is important to drive efforts towards improved pig biosafety

(Gortázar et al., 2011b), along with continuous monitoring of the wild boar AD

epidemiological situation (e.g. the recent establishment of the Spanish National

Wildlife Disease Surveillance Scheme, MARM, 2011b). Eventually, research on

means to control ADV in wild boar could be pertinent (Ruiz-Fons et al., 2008a).

In the Iberian Peninsula, the presence of ADV in wild boar also exposes

endangered wild carnivores to the risk of contracting lethal infection (Capua et al.,

1997). ADV contact has been detected in wild boar in protected areas where they

coexist with endangered carnivores (bear and wolf in AS, wolf in IBER, wolf and

lynx in SM, lynx in DN). This adds interest to ADV regarding conservation.

Unfortunately, conservation programs often underestimate the role that wildlife

diseases can play in their success (Leopold, 1933).

Conclusions

With the presented scenario, where wildlife populations represent a potential

sanitary risk for livestock, trans-disciplinary wildlife disease research may provide

an opportunity for stakeholders to reconsider the current approach of disease

102

Page 124: Los abajo firmantes, como directores de esta tesis

Capítulo 4.1

103

eradication in livestock towards a less severe but more sustainable concept of

disease control, at least for open-air systems.

Acknowledgements

F. Ruiz-Fons is supported by the Spanish National Research Council (CSIC). We thank Paqui

Talavera and all the colleagues at IREC that participated in the field work, collecting and

processing all the samples and making this research possible.

Page 125: Los abajo firmantes, como directores de esta tesis
Page 126: Los abajo firmantes, como directores de esta tesis

Capítulo 4.2

Evolución temporal de la seroprevalencia de cuatro

patógenos relevantes en el jabalí

Boadella, M., Ruiz-Fons, J.F., Vicente, J., Martín, M., Segalés, J., Gortázar, C. Seroprevalence evolution of selected pathogens in Iberian wild boar. Aceptado, Transboundary and Emerging Diseases.

Page 127: Los abajo firmantes, como directores de esta tesis
Page 128: Los abajo firmantes, como directores de esta tesis

Capítulo 4.2

Abstract

A total of 1279 Eurasian wild boar (Sus scrofa) sera were collected from 2000 to

2011 in the Iberian Peninsula in order to reveal time changes in serum antibody

prevalences against selected infectious agents (porcine circovirus type 2, PCV2;

porcine reproductive and respiratory syndrome virus, PRRSV; hepatitis E virus,

HEV; and Erysipelothrix rhusiopathiae) and to identify putative individual or

population factors driving such changes. Overall seroprevalences were 48%, 26%,

2% and 15% for PCV2, HEV, PRRSV and E. rhusiopathiae, respectively. The global

observed prevalence of antibodies against PCV2 and HEV remained stable during

the study period, while the global mean antibody seroprevalence against E.

rhusiopathiae declined. The mean increment in prevalence was always lower for open

than for fenced sites. This study evidenced for the first time that wild boar from

the Iberian Peninsula have widespread contact with E. rhusiopathiae, and confirmed

high prevalences of antibodies against PCV2 and HEV. Maintained high

prevalences of transmissible agents in wild boar suggest that epidemiological

drivers such as aggregation and high density are still acting. This will most probably

also affect the transmission rates of other disease agents, and should be taken into

account regarding disease control at the wildlife livestock interface.

Introduction

The Eurasian wild boar (Sus scrofa) is the ancestor of the domestic pig, and

shares most if not all pig pathogens. Wild boar populations have notably increased

worldwide, and can maintain viral and bacterial pathogens without the intervention

of domestic or other wild animals (Naranjo et al., 2008; Ruiz-Fons et al., 2008a;

Muñoz et al., 2010).

Wild boar pathogens, such as Mycobacterium bovis (Gortázar et al., 2011b),

Aujeszky’s disease virus (ADV; Müller et al., 2011) and classical swine fever virus

(Le Potier et al., 2006) are highly relevant not only for the livestock industry but

also for wildlife conservation (Gortázar et al., 2010) and for the hunting industry

107

Page 129: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

(Vicente et al., 2004; Ruiz-Fons et al., 2008a). In Spain, hunting is a significant

business where landowners often earn higher incomes through hunting permits

than through livestock and forestry. Commercial hunting estates tend to maintain

overabundant wild boar populations in order to maximize returns. These high

densities are maintained through an intense management including fencing,

artificial watering in summer and supplementary feeding throughout the year

(Gortázar et al., 2006; Acevedo et al., 2007b).

Moreover, some wild boar pathogens are zoonotic (Meng and Lindsay, 2009).

Since several million wild boar are harvested and consumed yearly in Europe, wild

boar meat and derivates are a likely source of human infections (Gauss et al., 2005).

In Europe, most attention has been devoted to diseases that are under official

surveillance and control in pigs, wild boar or both, while other infections have

received comparatively less effort.

Porcine circovirus type 2 (PCV2), the essential infectious agent in porcine

circovirus diseases (PCVD, including postweaning multisysemic wasting syndrome,

PMWS), circulates at high rates among domestic pig and wild boar populations

(Reiner et al., 2011). Contact or infection with PCV2 has been reported in wild

boar from many countries in Europe (Sánchez et al., 2001; Knell et al., 2005;

Cságola et al., 2006; Lipej et al., 2007; Sedlak et al., 2008; Sofia et al., 2008; Petrini

et al., 2009; Morandi et al., 2010; Reiner et al., 2010; Turcitu et al., in press),

including Spain, where PCV2 has been linked to juvenile mortality (Vicente et al.,

2004).

Hepatitis E virus (HEV), a small RNA virus belonging to the Hepeviridae

family (Emerson and Purcell, 2003), is a major cause of human viral hepatitis in

tropical and subtropical countries (Smith, 2001). In industrialized countries,

hepatitis E (HE) is an emerging zoonosis that is often acquired by consuming raw

pig or wild boar meat, liver or bile (Kaba et al., 2010; Kim et al., 2011). In Europe,

Anti-HEV antibodies were reported in The Netherlands (Rutjes et al., 2010), and

108

Page 130: Los abajo firmantes, como directores de esta tesis

Capítulo 4.2

several studies reported HEV RNA detection (Kaci, 2008; Martelli et al., 2008;

Forgách et al., 2009; Kaba et al., 2010; Jemersic et al., 2011; Widén et al., 2011).

Porcine reproductive and respiratory syndrome virus (PRRSV) causes one of the

most economically significant diseases in the pig industry (Meng, 2000). Antibodies

to PRRSV are occasionally detected in wild boar, generally at low prevalences that

do not suggest a reservoir status (Albina et al., 2000; Closa-Sebastià et al., 2011;

Montagnaro et al., 2010). Temporal changes in prevalence have been detected

when comparing different studies in Germany. A first study found no wild boar

contact with PRRSV (Lutz and Wurm, 1996), while a more recent study revealed

3.8% antibody prevalence in sera collected between 2000 and 2005. Later, a PCR

survey carried out in Germany from 2004 to 2007 detected PRRSV RNA in 16%

of the studied wild boar (Reiner et al., 2009). Thus, local wild boar populations can

become infected by PRRSV at high rates, comparable to those occurring in pigs.

Erysipelothrix infection is caused by bacilli of the genus Erysipelothrix, mainly E.

rhusiopathiae (26 serovars, Takahashi et al., 1999). The infection is easily transmitted

to humans by direct contact with infected hosts. Wild boar contact with E.

rhusiopathiae has been described in Spain (Vicente et al., 2002; Closa-Sebastià et al.,

2011).

The Spanish domestic swine population is considered to be enzootically infected by

PCV2, PRRSV and HEV. PCV2 is highly widespread and no serologically negative

farms have been found (López-Soria et al., 2005). Moreover, antibodies against

PCV2 are not just elicited by natural infection but also by vaccination; it is

estimated that around 60% of the domestic pigs are currently vaccinated (data not

shown). PRRSV herd seroprevalence was found to be 89% in a recent study

screening 107 Spanish farms (Fraile et al., 2010). In the same study, around 40% of

the operations vaccinated sows against PRRSV, while piglet vaccination was not

indicated as a common practice. HEV herd seroprevalence was found to be 97.6%

in a study using 41 farms (Seminati et al., 2008). Currently, there is no vaccine

against HEV. Finally, no data on seroprevalence against E. rhusiopathiae have been

109

Page 131: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

so far published in Spain, although vaccination of sows against this pathogen,

usually in combination with porcine parvovirus, is a systematic practice.

Information on time trends of disease prevalence and distribution is needed for

decisions regarding wildlife management and disease prevention at the wildlife-

livestock interface (Boadella et al., 2011a). However, time trends in the prevalence

of wild boar contact with infectious agents have rarely been investigated, and only

regarding ADV (Pannwitz et al., 2011; Capítulo 4.1), CSFV (Albina et al., 2000),

and Mycobacterium bovis (Gortázar et al., 2011a; Boadella et al., in press). To fill this

gap, we retrospectively studied the epidemiology of four of the less known

pathogens of wild boar, including two viral ones of relevance for the pig industry

(PCV2 and PRRSV), one zoonotic virus (HEV), and one zoonotic bacterium (E.

rhusiopathiae). The aim of this study was to reveal time changes in serum antibody

prevalence and to identify putative individual or population factors determining

such changes.

Material and methods

A total of 1279 wild boar sera were collected from 25 study sites throughout

the Iberian Peninsula. The volume of serum available for a given individual was

limited, particularly for the oldest samples. Thus, only a proportion of the total

1279 sera were tested for each agent. Sera with limited available volume were

randomly assigned to each test controlling for age and sex bias and targeting a

sample size between 20 and 30 for each time period. Blood was drawn from the

heart or the thoracic cavity during field necropsies. Sera were obtained after

centrifugation and frozen at -20ºC until analyzed. Sex and age were recorded. Based

on tooth eruption patterns, animals less than 12 months old were classified as

juveniles, those between 12 and 24 months as yearlings, and those more than 2

years old as adults (Saenz de Buruaga et al., 1991; Table 1).

Hunting harvest sampling is accepted as a random survey method for wild boar

(Fernández-Llario and Mateos-Quesada, 2003). Fenced and open sites were

110

Page 132: Los abajo firmantes, como directores de esta tesis

Capítulo 4.2

generally located in similar habitats, but wild boar abundances are usually higher in

fenced sites due to supplementary feeding (Acevedo et al., 2007b). Contact with

domestic pigs is generally not likely because the distributions of the pig farms and

wild boar sampling sites did not match (Ruiz-Fons et al., 2008c).

Table 1.- Time span, sample size and antibody seroprevalences against the four studied pathogens.

PCV2 HEV PRRSV E.

rhusiopathiaeObservation period 2000-2008 2000-2011 2000-2009 2000-2009 Total sampled animals 818 942 407 874 Age (juveniles/yearlings/adults/unknown)

(119/232/382/71)

(127/270/465/59)

(54/130/200/18)

(129/244/415/86)

Sex (male/female/unknown) (336/396/86) (409/457/76) (132/251/24) (359/413/102)

Prevalence (%) 47.68 26.33 2.21 15.45

95% IC (44.2-51.2) (23.5-29.2) (1.1-4.13) (13.1-18)

Table 2 describes the tests used for detecting antibodies against each pathogen,

along with the established cut-off and other relevant information. The in-house

ELISA used to test antibodies against HEV was performed using Protein G as

conjugate at a dilution of 1:1500 as described in (Boadella et al., 2010).

Table 2.- Different ELISA tests used for the serological assays of wild boar sera.

Agent Test Positive

threshold Reference

PCV2 Immunoperoxidase

monolayer assay (IPMA) Titre ≥1:320 (Vicente et al., 2004)

HEV Modified In-house ELISA (Protein G as conjugate)

Percentage of the negative control sum

>100%

(Boadella et al., 2010)

PRRSV ELISA; DEXX HerdChek® PRRS 2XR IDEXX, USA

S/P ratio >0.4 (Ruiz-Fons et al., 2006)

E. rhusiopathiae

Ingezim Mal Rojo 11.MR.K1 Ingenasa, Spain.

Mean OD negative controls + 0.1

111

Page 133: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Associations of age (categorical; juveniles, yearlings and adults), sex (categorical;

male and female), sampling site, time and management (categorical; open and

fenced) with serological results were analyzed by means of Pearson’s chi-square test

or Fisher’s exact test.

Due to their lower likeliness of contact with infectious disease agents and

possible interference of maternal antibodies, juveniles were only used for describing

overall prevalences (Table 1), but removed when analyzing site, management or sex

associations with seroprevalences. Thus, for these analyses, only a subsample of

948 sera (yearling and adult animals) was used.

For time analysis, only yearlings and adults from sampling sites with stratified

sampling in both periods were considered (n=865). Two sampling periods were

established for Chi-square comparisons with seroprevalences: Period 1, from year

2000 to 2005 and Period 2, from 2006 to 2011. GLM with binomial distribution

were used for calculating the beta of prevalence by sampling year at the sampling

site level. Sterne's exact method was used to estimate 95% apparent prevalence

confidence intervals (95% CI), (Reiczigel, 2003). Differences were considered

statistically significant when p<0.05. For statistical evaluation, SPSS 19.0 software

was used (IBM Corporation, Somers, NY, USA).

Results

Overall antibody prevalences of the 1279 wild boar tested for the four studied

pathogens are presented in Table 1. Mean global and local antibody

seroprevalences for yearling and adult wild boar are presented in Table 3 (Apéndice

4.2).

Antibodies against PRRSV were detected only in 7 of 22 studied sites (Table 3

[Apéndice 4.2]; Figure 1). Moreover, the prevalence of serum antibodies against

PRRSV was low and at a low mean OD (0.63; max: 0.91; cut-off: 0.4). Thus, we

made no further analysis on PRRSV antibody prevalence.

112

Page 134: Los abajo firmantes, como directores de esta tesis

Capítulo 4.2

Figure 1.- Map of the Iberian Peninsula showing the 25 sampling sites (letters from A to Y) and positivity to the four pathogens tested in each, represented by different shapes. Black shapes indicate seropositivity while white shapes are for negative sites.

Sex-related differences in prevalence were found only for E. rhusiopathiae (males

19.6%, females 11.2%; Chi2= 7.9, p<0.01). Age had a significant effect on antibody

seroprevalence against E. rhusiopathiae (22.5%, 20.9% and 11.1% for juvenile,

yearling and adult wild boar, respectively; Chi2= 15.9, p<0.001) but not against

PCV2 (Chi2= 7.3, p>0.05) and HEV (Chi2= 2.6, p>0.05). Type of management

(open vs. fenced) was a significant factor for antibody prevalence against PCV2

(29.5% in open vs. 56.3% in fenced sites, Chi2= 50, p<0.001) and against HEV

(21.3% in open vs. 28.7% in fenced sites, Chi2= 3.9, p<0.05), but not for E.

rhusiopathiae (Chi2=2.1, p>0.05; Figure 2).

113

Page 135: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Figure 2.- Apparent antibody seroprevalences against the four pathogens tested (PCV2, HEV, PRRS and E. rhusiopathiae) by age and type of population (open vs. fenced; +95% CI). Asterisks indicate significant differences.

The overall observed antibody prevalence against PCV2 and HEV stayed stable

from Period 1 to Period 2 (Chi2=3, p>0.05 and Chi2=0.09, p>0.05; respectively),

while the observed antibody prevalence against E. rhusiopathiae declined (Chi2=6.9,

p<0.05; Figure 3). When analyzing time trends by GZLM, the probability of testing

positive to PCV2 and HEV between the years 2000 and 2011 was stable (β=0.05,

p>0.05 and β=0.06, p>0.05; respectively), while the probability of testing positive

to E. rhusiopathiae had a negative trend (β=-0.18, p<0.05).

Results on the trends for the analyzed sampling sites are shown in Table 3

(Apéndice 4.2). Local PCV2 prevalences increased between Period 1 and 2 in three

fenced sites. Regarding HEV, two fenced sites had increasing prevalences and four

fenced sites had decreasing prevalences, while no significant trends were evidenced

in open sites. Regarding E. rhusiopathiae two fenced sites had increasing prevalences

and three fenced sites and one open site had decreasing prevalences (Figure 4

[Apéndice 4.2]). In one site (L), a fenced private hunting estate with an intense

game management, serum antibody prevalences against all three agents (PCV2,

114

Page 136: Los abajo firmantes, como directores de esta tesis

Capítulo 4.2

HEV and E. rhusiopathiae) increased between Period 1 and 2. In contrast, none of

four open populations had a significant change in PCV2 and HEV prevalence

between time periods. In fact, the mean increase in prevalence was always lower for

open than for fenced sites (5.8 vs. 7.4, 4.4 vs. 7 for PCV2 and HEV respectively),

while the mean decrease for E. rhusiopathiae was higher for open than for fenced

sites (-14 vs. -10.3; Figure 4 [Apéndice 4.2]).

Figure 3.- Mean antibody seroprevalences for PCV2, HEV and E. rhusiopathiae (bars indicate 95% CI) in Period 1 (grey diamonds) and Period 2 (black squares).

Discussion

This study evidenced for the first time that wild boar from the Iberian

Peninsula have widespread contact with E. rhusiopathiae, and confirmed high

prevalences of antibodies against PCV2 and HEV. In the study period,

seropositivity to PCV2 and HEV remained globally stable, while a decreasing

contact rate with E. rhusiopathiae was identified.

Monitoring wildlife diseases faces a number of wildlife-specific constraints,

including sampling difficulties regarding proper sample and site stratification,

consistent sampling of the same sites, and limitations of the diagnostic tests

available for wildlife (see Boadella et al., 2011b for a recent review). In wild boar,

115

Page 137: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

the proportion of seropositive animals is, in general, significantly higher in

individuals older than one year (Kaden et al., 2009). However, disease can occur

more often in juveniles, as for example in PMWS (Vicente et al., 2004; Morandi et

al., 2010). Thus, in contrast to other studies (e.g. Reiner et al., 2009), testing for

time changes using paired samples from the same sampling sites avoided site bias,

using only yearling and adult wild boar to control for age bias while keeping a

balanced sex-ratio. The same type of sample (serum) was used throughout the

study, a difference with those studies that changed the type of sample analyzed (e.g.

Kaci, 2008) vs. (Schielke et al., 2009). Moreover, techniques used for antibody

detection were also constant throughout this retrospective study (in contrast to

Pannwitz et al., 2011). Thus, time changes in prevalences reported herein are not

considered biased due to sampling or diagnostic method constraints. However, one

specific constraint of our study was the low sample size in most of the studied sites.

Therefore, we performed two different analyses since the sample size was

considered reasonable for a Chi-square comparison between two arbitrary time

periods, but not always enough for a proper regression analysis since annual sample

sizes were too low. Nevertheless, the output of the two analyses was generally

comparable, with differences in significance only at site level (Table 3 [Apéndice

4.2]).

PRRSV evidence of contact was noted in the present study, but at a very low

prevalence. This coincides with low prevalences recorded in France (3.6%; Albina

et al., 2000) and north-eastern Spain (3%; Closa-Sebastià et al., 2011). However, it

contrasts with the high nucleic acid prevalence recently recorded in Germany

(Reiner et al., 2009) and the 38% of antibodies to PRRSV described in Italy

(Montagnaro et al., 2010). Although sensitivity and specificity for the PRRSV

ELISA test used are reported to be high (Seuberlich et al., 2002), some percentage

of false positives can occur with this test. In the present study, the mean OD value

for the positives was low, with a maximum value under 1. Due to this fact, further

116

Page 138: Los abajo firmantes, como directores de esta tesis

Capítulo 4.2

studies aimed at elucidating if the origin of the detected seropositivity is a true

contact with the virus or the result of false positives will be needed.

Regarding PCV2, prevalences recorded in this study coincide with the known

high prevalences in wild boar in Spain (48%; Vicente et al., 2004). The observed

prevalence remained steady in the last decade although there was significant local

increase in prevalence in several sites that are intensely managed for hunting. Along

with the observed higher prevalences in fenced sites as compared to open ones,

this suggests that PCV2 prevalence could be a good indicator of artificial wild boar

management for commercial hunting purposes.

Regarding HEV, the mean of 26% IgG antibodies was similar to the one

reported previously in Spain (28%; de Deus et al., 2008) and larger than the 12%

recorded in The Netherlands (Rutjes et al., 2010). HEV prevalence was also

affected by the type of management, with higher means in fenced estates. This may

be due to the higher wild boar densities in these estates as compared to open ones,

since high HEV prevalences are also common in pig farms (Seminati et al., 2008).

The observed prevalence increase from Period 1 to Period 2 was not statistically

significant. However, such increase had previously been recorded for sympatric red

deer (Cervus elaphus; Boadella et al., 2010).

Finally regarding E. rhusiopathiae, the 15% serum antibody prevalence recorded

in this study is higher than the 5% described previously in serosurveys carried out

in south-central and north-eastern Spain, respectively (Vicente et al., 2002; Closa-

Sebastià et al., 2011). Contact with the causal agent of SE was affected by host sex

and age, but not by the type of management. In fact, the significant declining trend

recorded in this study contrasts with those observed for PCV2 and HEV, and

suggests that opposite drivers are mediating wild boar contact with these pathogens

in the study region. For instance, PCV2 and HEV may produce more persistent

infections than E. rhusiopathiae, and these viral agents are possibly more

transmissible than the bacterial one. Another possibility could be based on the

multi-host nature of E. rhusiopathiae in contrast to a more host-specific nature of

117

Page 139: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

PCV2 and HEV. Overabundant wild boar populations within intensively managed

sites may cause a loss of fauna diversity (Gortázar et al., 2006). This may disfavour

the transmission of the former, as suggested for Metastrongylus sp. (e.g. Acevedo et

al., 2007b). However, a clinical outbreak of SE was recently reported in farmed wild

boar (Risco et al., 2011).

High prevalences of transmissible infectious agents in wild boar suggest that

epidemiological drivers such as aggregation and high density are still acting. This

will most probably also affect the transmission rates of other disease agents, and

should be taken into account regarding disease control at the wildlife livestock

interface (Ruiz-Fons et al., 2008b).

Acknowledgements

Ruiz-Fons is supported by the Spanish National Research Council (CSIC). We thank many

colleagues at IREC who participated in the field sampling. We also thank Anna Maria Llorens

from CReSA for their help with the laboratory work.

118

Page 140: Los abajo firmantes, como directores de esta tesis

Capítulo 4.2

Apéndice 4.2

Table 3.- Number of analyzed sera from yearling and adult animals (n), mean prevalences (in %) and 95% confidence intervals (CI) for the four pathogens analyzed in each of the 25 sampling sites. The time trend GzLM beta (β) and p values, and the Chi-square results are indicated for PCV2, HEV and E. rhusiopathiae (*Significant by Chi-square and GzLM; #Only significant by GzLM; &Only significant by Chi-square).

PRRSV PCV2

n Prevalence CI n Prev. CI β p

A 26 0 (0-12.8) 70 21.4 (11.8-31) 0 1 B 19 5.3 (0.2-25.3) 26 50 (30.8-69.2) -0.184 0.439 C 28 3.6 (0-10.4) 58 51.7 (38.9-64.6) 0.132 0.189 D 11 0 (0-26.4) 55 67.3 (54.9-79.7) 0.274 0.008* E 7 0 (0-37.7) 34 23.5 (9.3-37.8) -0.098 0.507 F 34 0 (0-9.8) 64 68.8 (57.4-80.1) 0.612 0.001* G 24 0 (0-13.9) 27 66.7 (48.9-84.4) -0.341 0.133 H 10 0 (0-29) 18 83.3 (58.6-95.2) -0.139 0.617 I 20 5 (0.2-24.4) 48 50 (35.9-64.1) 0.019 0.845 J 20 0 (0-16.6) 50 46 (32.2-59.8) 0.039 0.656 K 14 7.1 (0.3-31.6) 22 36.4 (16.3-56.5) 0.143 0.517 L 16 6.3 (0.3-30.5) 32 71.9 (56.3-87.5) 0.289 0.042* M 27 0 (0-12.4) 25 52 (32.4-71.6) 0.445 0.104 N 5 0 (0-50) 28 60.7 (42.6-78.8) 0.075 0.658 O 26 34.6 (16.3-52.9) -0.025 0.893 P Q 4 0 (0-52.7) 17 47.1 (23.3-70.8) 0.077 0.893 R 26 3.8 (0.2-18.8) 11 90.9 (59.5-99.5) S 7 0 (0-37.7) T 5 20 (1-65.7) U 5 0 (0-50) V W 1 0 (0-94.9) 3 0 (0-36.5) X 6 0 (0-41.1) Y 14 0 (0-23.8)

TOTAL 329 2.1 (0.6-3.7) 614 51.3 (47.3-55.3)

119

Page 141: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Table 3.- Continued.

HEV E. rhusiopathiae n Prev. CI β p n Prev. CI β p

A 71 7 (1.1-13) 0.198 0.396 73 11 (3.8-18.1) -0.064 0.693

B 47 46.8 (32.5-61.1) 0.408 0.040# 30 16.7 (3.3-30) -1.02 0.012#

C 71 23.9 (14-33.9) -0.152 0.096 61 9.8 (2.4-17.3) -0.21 0.225

D 45 46.7 (32.1-61.2) 0.15 0.087 54 18.5 (8.2-28.9) 0.224 0.054&

E 43 16.3 (5.2-27.3) 0.007 0.959 34 2.9 (0.1-15.6) 0.158 0.702

F 37 56.8 (40.8-72.7) 0.188 0.177 48 12.5 (3.1-21.9) -0.101 0.51

G 46 26.1 (13.4-38.8) -0.298 0.046* 41 24.4 (11.2-37.5) -0.369 0.049#

H 22 45.5 (24.6-66.3) 0.328 0.027# 16 0 (0-20.8) -0.183 1

I 66 25.8 (15.2-36.3) -0.205 0.026# 43 11.6 (2-21.2)

J 44 18.2 (6.8-29.6) -0.448 0.010* 47 12.8 (3.2-22.3) -0.249 0.101

K 28 60.7 (42.6-78.8) 0.154 0.392 25 24 (7.3-40.7) -0.533 0.030#

L 31 51.6 (34-69.2) 0.267 0.052& 32 34.4 (17.9-50.8) 0.4 0.035*

M 44 4.5 (0.8-15.5) -0.371 0.238 29 20.7 (5.9-35.4) 0.061 0.836

N 19 5.3 (0.2-25.3) 20 15 (4.2-37.2) -0.162 0.538

O 43 9.3 (0.6-18) 0.651 0.174 31 22.6 (7.9-37.3) -0.339 0.078

P 29 44.8 (26.7-62.9) 29 10.3 (2.8-27.2) -0.91 0.046#

Q 30 3.3 (0.1-17.7) 17 0 (0-19.6) -0.494 0.999

R 14 0 (0-23.8) 14 7.1 (0.3-31.6)

S

T

U

V 10 10 (0.5-44.6)

W 3 0 (0-36.5) 5 40 (7.6-81)

X

Y 2 50 (2.5-97.4)

TOTAL 735 26.5 (23.3-29.7) 659 14.7 (12.2-17.6)

120

Page 142: Los abajo firmantes, como directores de esta tesis

Capítulo 4.2

121

Figure 4.- Differences in antibody seroprevalence between Period 1 and Period 2 among sampling sites available for both periods for PCV2 (upper panel), HEV (middle panel) and E. rhusiopathiae (lower panel). Empty diamonds indicate open sites, while black diamonds are for fenced sites. Numbers at the left of the diamonds indicate sample size in Period 1 and those on the right indicate sample size for Period 2. Diamonds above the dotted line signal a relative prevalence increase over time whereas diamonds below the dotted line signal a relative decrease in prevalence.

Page 143: Los abajo firmantes, como directores de esta tesis
Page 144: Los abajo firmantes, como directores de esta tesis

Capítulo 4.3

Distribución espacial y factores de riesgo de la

brucelosis en ungulados de la Península Ibérica

Muñoz, P., Boadella, M., Arnal, M., de Miguel, M., Revilla, M., Martínez, D., Vicente, J., Acevedo, P., Oleaga, A., Ruiz-Fons, F., Marin, C., Prieto, J., de la Fuente, J., Barral, M., Barberán, M., Fernández de Luco, D., Blasco, J., Gortázar, C. 2010. Spatial distribution and risk factors of Brucellosis in Iberian wild ungulates. BMC Infectious Diseases 10, 46.

Page 145: Los abajo firmantes, como directores de esta tesis
Page 146: Los abajo firmantes, como directores de esta tesis

Capítulo 4.3

Abstract

The role of wildlife as a brucellosis reservoir for humans and domestic

livestock remains to be properly established. The aim of this work was to

determine the aetiology, apparent prevalence, spatial distribution and risk factors

for brucellosis transmission in several Iberian wild ungulates. A multi-species

indirect immunosorbent assay (iELISA) was developed. In several regions having

brucellosis in livestock, individual serum samples were taken between 1999 and

2009 from 2,579 wild bovids, 6,448 wild cervids and 4,454 Eurasian wild boar (Sus

scrofa), and tested to assess brucellosis apparent prevalence. Strains isolated from

wild boar were characterized to identify the presence of markers shared with the

strains isolated from domestic pigs. Mean apparent prevalence below 0.5% was

identified in chamois (Rupicapra pyrenaica), Iberian wild goat (Capra pyrenaica), and

red deer (Cervus elaphus). Roe deer (Capreolus capreolus), fallow deer (Dama dama),

mouflon (Ovis aries) and Barbary sheep (Ammotragus lervia) tested were seronegative.

Only one red deer and one Iberian wild goat resulted positive in culture, isolating B.

abortus biovar 1 and B. melitensis biovar 1, respectively. Apparent prevalence in wild

boar ranged from 25% to 46% in the different regions studied, with the highest

figures detected in South-Central Spain. The probability of wild boar being positive

in the iELISA was also affected by age, age-by-sex interaction, sampling month,

and the density of outdoor domestic pigs. A total of 104 bacterial isolates were

obtained from wild boar, being all identified as B. suis biovar 2. DNA

polymorphisms were similar to those found in domestic pigs. In conclusion,

brucellosis in wild boar is widespread in the Iberian Peninsula, thus representing an

important threat for domestic pigs. By contrast, wild ruminants were not identified

as a significant brucellosis reservoir for livestock.

125

Page 147: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Background

Brucellosis is an infectious disease caused by bacteria of the genus Brucella,

characterized by abortion and infertility in several mammal species, and being

considered one of the most important zoonosis worldwide (Cutler et al., 2005).

Brucella melitensis, followed by Brucella abortus and Brucella suis, are the main species

involved in the infection of human beings, thus being the main target of eradication

campaigns.

With very few exceptions, B. suis infection in both humans and pigs remains an

important problem in most countries. B. suis biovar 2 is the main responsible of

brucellosis in pigs in Europe. Despite having been isolated from human beings

(Teyssou et al., 1989), this biovar 2 seems to be less pathogenic for humans than

the biovars 1 and 3 (Godfroid et al., 2005). Other Brucella species have been isolated

in rodents, terrestrial carnivores, and sea mammals, but the relevance of these

Brucella species for livestock and human beings is quite limited (Tryland et al., 1999;

Godfroid et al., 2005; Scholz et al., 2008).

Wild animals are often at risk as a consequence of contacts with infected

livestock, particularly in extensive breeding systems. In addition to the B. abortus

infection specific problem shared by cattle, bison (Bison bison) and elk (Cervus

elaphus) in limited territories of the USA (see below), some sporadic cases have been

reported in wild bovids, such as ibex (Capra ibex) and chamois (Rupicapra sp.) in the

EU (Garin-Bastuji et al., 1990; Ferroglio et al., 1998). Although wild ruminants

have been suggested to hold brucellosis and eventually originate spillback to

domestic animals or infection in humans, the most extended opinion is that these

wild animals are occasional victims of brucellosis transmitted from infected

livestock, rather than a true reservoir of the disease for domestic animals (Gortázar

et al., 2007). In fact, only limited cases of brucellosis have been reported in these

free-living animals (Garin-Bastuji and Delcueillerie, 2001; Godfroid et al., 2005;

Gaffuri et al., 2006), and only weak evidence for a direct relationship between

brucellosis apparent prevalence and wild ruminant population size/density has

126

Page 148: Los abajo firmantes, como directores de esta tesis

Capítulo 4.3

been found (e.g., Conner et al., 2008 and references therein). However, the risk can

be high in overabundant wildlife populations in contact with infected livestock and

when artificial management increases aggregation (Gortázar, 2007; Conner et al.,

2008). In the Greater Yellowstone Ecosystem (GYE), USA, winter feeding of elk

and bison contributes to maintain valuable wildlife populations and avoid contacts

between B. abortus infected wildlife and cattle, but significantly increases the intra-

specific transmission risk (Etter and Drew, 2006). Modelling of observational data

has shown that brucellosis prevalence in elk correlates with the timing of the winter

feeding season (Cross et al., 2007). This underlines that human dimension issues

are fundamental to successful management of wildlife diseases (Conner et al.,

2008).

Brucellosis caused by B. suis biovar 2 is frequently reported in the Eurasian wild

boar (Sus scrofa) and the European brown hare (Lepus europaeus), and apparent

prevalence ranging from 8 to 32% has been reported in wild boar in the EU

(Garin-Bastuji and Delcueillerie, 2001; Hubálek et al., 2002; Cvetnic et al., 2003; Al

Dahouk et al., 2005; Koppel et al., 2007; Bergagna et al., 2009). It is accepted that

both species play a relevant role as a brucellosis reservoir for domestic pigs, even

under natural environmental conditions (Cvetnic et al., 2003; Godfroid et al., 2005;

Pikula et al., 2005). In fact, both wildlife species have been directly involved in the

transmission of infection to domestic pigs reared in outdoor farms (Garin-Bastuji

and Delcueillerie, 2001). Outside the EU, feral pigs may maintain B. suis biovars 1

and 3, being a potential source of infection to both domestic pigs and human

beings (Drew et al., 1992).

Only limited information on wildlife brucellosis is available in the Iberian

Peninsula. Regarding wild ruminants, brucellosis has not been detected in limited

studies conducted on Barbary sheep (Ammotragus lervia) (Candela et al., 2008),

Cantabrian chamois (Rupicapra pyrenaica parva) (Falconi et al., 2010) and mouflon

(Ovis aries) (Lopez-Olvera et al., 2009). In contrast, several cases of infections

induced by B. suis biovar 2, have been reported in wild boar (Garcia-Yoldi et al.,

127

Page 149: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

2007) and European brown hares (Lavín et al., 2006). Wild ungulates are currently

expanding and increasing in density in the whole Iberian Peninsula (Gortázar,

2000), as well as the artificial management of these wild species including fencing,

feeding and translocation, then increasing the risk of infectious disease transmission

(Gortázar et al., 2006).

The availability of accurate and validated diagnostic tests is of paramount

importance to properly assessing the prevalence of brucellosis in wildlife (Van

Houten et al., 2003). In this work we developed a multispecies iELISA to

determine brucellosis apparent prevalence in several Iberian wild ungulate species,

and determined spatial distribution and risk factors associated with brucellosis. We

hypothesised that: (1) free-living wild ruminants would not show significant

infection with Brucella species; (2) wild boar, conversely, would show infection with

B. suis biovar 2, constituting a potential hazard for domestic pigs; and (3) apparent

prevalence would vary with environmental, population and individual risk factors

such as artificial management.

Materials and Methods

Study area

The study area was the Iberian Peninsula in the south-western European

Union. This includes a variety of habitats and climates, which can be simplified into

5 different Bio-regions in the mainland, as defined in the Spanish Wildlife Disease

Surveillance Scheme (http://rasve.mapa.es/Publica/Programas/Normativa.asp).

Table 1 summarises the most relevant characteristics of each Bio-region.

128

Page 150: Los abajo firmantes, como directores de esta tesis

Capítulo 4.3

Table 1.- Characteristics of the Bio-regions of the Iberian Peninsula included in the study area.

Bio-region Environment Wildlife Sampling site characteristics

1.- Atlantic

Atlantic climate with high precipitation. Pastures and deciduous woodlands. Mountain habitats. Almost no fencing of wildlife habitats.

Wild boar and roe deer abundant. Locally red deer abundant. Chamois at high altitudes (Cantabrian Mts.).

n=76. Woodlands: 62%; Agricultural lands: 33%. Altitude (in m): mean 452 (range 0-2032). Mean annual precipitations (in mm): 1284. Mean annual temperature (in ºC): 12

2.- Northern- Plateau

Continental Mediterranean climate. Dry, hot summers, dry, cold winters. Open, cereal landscapes with pine or oak woodlands, limited to the north by mountains. Little fencing.

Ungulates expanding and locally abundant. Chamois limited to high altitudes in the Pyrenees. Locally ibex and fallow deer.

n=98. Woodlands: 68%; Agricultural lands: 30%. Altitude (in m): mean 987 (range 67-3314). Mean annual precipitations (in mm): 808. Mean annual temperature (in ºC): 10.5

3.- South-Central

Continental Thermo Mediterranean climate. Pastures and crops with interspersed vegetation, sometimes forming savannah-like structures. Low altitude mountains with scrubland. Frequent fencing.

Wild boar and red deer often at high density; feeding and watering. Locally abundant fallow deer and Iberian ibex, and introduced wild bovids.

n=72. Woodlands: 68%; Agricultural lands: 29%. Altitude (in m): mean 705 (range 47-2321). Mean annual precipitations (in mm): 605. Mean annual temperature (in ºC): 14.5

4.-Interior Mountains

Severe Continental Mediterranean climate. Limestone mountain and high-plateau habitats with cereal crops, pastures, and pine and oak woodlands. Little fencing.

Wild boar, roe deer, and ibex widely distributed but usually at moderate abundance. Locally abundant red deer.

n=22. Woodlands: 71%; Agricultural lands: 29%. Altitude (in m): mean 1178 (range 248-1932). Mean annual precipitations (in mm): 568. Mean annual temperature (in ºC): 11.3

5.- South and East Coast

Coastal Thermo Mediterranean climate; arid in the central portion. Few well preserved wildlife habitats (mountains). Little fencing.

Wild boar abundant in the northern and southern ends. Other ungulates locally abundant.

n=7. Woodlands: 48%; Agricultural lands: 23%. Altitude (in m): mean 190 (range 0-1238). Mean annual precipitations (in mm): 720. Mean annual temperature (in ºC): 15.7

129

Page 151: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Animal sampling procedures

The number of samples obtained by species and study region is summarised in

Table 2. Sampling was opportunistic and biased towards the hunting season

(October to February in most species, and summer in chamois and roe deer), and

took place from 1999/2000 to 2008/2009. The total number of wild ungulates

sampled was 13,481, including 2,579 bovids (Barbary sheep, chamois, Iberian wild

goat and mouflon), 6,448 cervids (roe deer, red deer and fallow deer) -see Table 2

for the precise numbers in each animal species-, and 4,454 wild boar. Samples were

collected from hunter-harvested animals. Blood was drawn from the heart or the

thoracic cavity during field necropsies, then the serum (usually haemolysed) was

collected after centrifugation and kept frozen at -20°C until analysed. Whenever

possible, cranial and iliac lymph nodes, spleen and sexual organs were collected and

stored at -20°C for microbiological analyses. The number of samples from the

different animal species submitted to microbiological studies is shown in Table 2.

Age-classes of biological meaning were defined. Based on tooth eruption

patterns, wild ruminants were classified as fawns (first year of life), yearlings

(second year of life), juveniles (third to fourth year of life), and adults (fifth year of

life onwards). Wild boar less than 7 months old were classified as piglets, between 7

and 12 months were classified as juveniles, those between 12 and 24 months as

sub-adults, and those over 2 years as adults (Saenz de Buruaga et al., 1991). Sex was

known in 5,683 wild ruminants, and age-classes in 4,065. For wild boar, sex was

known in 2,688 animals and age in 2,419.

Serological studies

A multi-species indirect enzyme immunoassay (iELISA) was developed and

validated to assess brucellosis apparent prevalence. A detailed description of the

technique can be found in Muñoz et al. (2010). Briefly, an extract from B. melitensis

was obtained as described elsewhere (Leong et al., 1970). ELISA plates were coated

with antigen solution in and incubated at 4ºC overnight. Sera were added by

130

Page 152: Los abajo firmantes, como directores de esta tesis

Capítulo 4.3

duplicate to each well, and the plates incubated. Optimal serum dilutions previously

assessed were added. After washing, a conjugate solution of Protein G/HRP was

added, and the reaction was developed with ABTS solution. Results were expressed

as the percentage of optical density (%OD) using the formula [% OD=100 X mean

OD of duplicated sample / mean OD of duplicate positive control]. Due to the

lack of gold standard sera (i.e., taken from culture positive and brucellosis free

animals) from the different wild ungulate species, the sera used for setting up and

iELISA validation were from Brucella culture positive (CP) and Brucella-free (BF)

phylogenetically related domestic animals. The overall results were then submitted

to ROC analyses (Medcalc. 9.2.1.0 software) and cut-offs resulting in 100%

diagnostic specificity and the maximal diagnostic sensitivity for sheep, goats and

cattle, and pigs, were selected to further assess the apparent prevalence in the

corresponding phylogenetically wild animals tested.

Bacteriological analysis and Brucella typing

Necropsy samples (lymph nodes, spleen and/or sexual organs) from iELISA-

positive animals (see Table 2 for precise numbers in each species) were submitted

to bacteriological analysis. To assess the relative diagnostic specificity of the

iELISA developed, similar necropsy samples taken from iELISA-negative animals

(see Table 2) were also cultured. Briefly, each sample was surface decontaminated

and homogenised in a blender. Each homogenate was smeared onto at least two

plates of both Farrell’s and modified Thayer Martin’s culture media (Marín et al.,

1996). After 5-7 days of incubation at 37ºC in 10% CO2 atmosphere, the resulting

Brucella isolates were identified according to standard procedures (Alton et al.,

1988).

Brucella field isolates were further analysed using both molecular and standard

bacteriological procedures. Bacterial DNA was extracted using QIAamp DNA

minikit (QIAGEN, Hamburg, Germany). For the identification and differentiation

of Brucella species, the Bruce-ladder multiplex PCR was applied as described

131

Page 153: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

elsewhere (Garcia-Yoldi et al., 2006). To assess the precise biovar a multiplex PCR

was used (Garcia-Yoldi, 2008).

Table 2.- Sample size by host species and Bio-region studied, apparent prevalence obtained, and Brucella culture results in Iberian wild ungulate species.

Serum samples by region Common name Latin name 1 2 3 4 5 Total

Barbary sheep Ammotragus lervia 0 0 8 0 0 8

Mouflon Ovis aries 0 0 75 0 0 75

Iberian wild goat1 Capra pyrenaica 0 41 2 1042 1 1086

Chamois3 Rupicapra pyrenaica 57 1353 0 0 0 1410

Roe deer Capreolus capreolus 77 152 5 9 42 285

Fallow deer Dama dama 92 107 47 32 64 342

Red deer Cervus elaphus 452 1591 2378 932 468 5821

Wild boar Sus scrofa 658 1920 1499 132 245 4454

TOTAL 1336 5164 4014 2147 820 13481

Common name Mean prevalence

(95% CI) Samples submitted for

culture Nr. of isolates

(species and biovar)

Barbary sheep 0 (0-36) 0

Mouflon 0 (0-5) 0

Iberian wild goat1 0.1 (0-0.6) 12 1 (B. melitensis biovar 1)

Chamois3 0.8 (0.4-1.4) 11

Roe deer 0 (0-1) 0

Fallow deer 0 (0-1) 0

Red deer 0.4 (0.3-0.6) 814 1 (B. abortus biovar 1)

Wild boar 33 (31.6-34.4) 5895 104 (B. suis biovar 2)

TOTAL 682 106 1Includes mainly the Mediterranean subspecies Capra pyrenaica hispanica. 2 All animals were sampled randomly during hunting or at game farms but for the ibex tissues submitted for culture, which came from a clinical case with suspected brucellosis. 3 Cantabrian chamois (Rupicapra pyrenaica parva) in Bio-region 1 and Pyrenean chamois (R. p. pyrenaica) in Bio-region 2. 4 Thirty-one out of these 81 samples came from iELISA-positive animals and 50 from iELISA-negative ones. 5A total of 539 out of these 589 samples were from iELISA-positive animals and 50 from iELISA-negative ones.

132

Page 154: Los abajo firmantes, como directores de esta tesis

Capítulo 4.3

Statistical analyses

We used Sterne's exact method (up to N=1,000), or adjusted Wald method

(N>1,000) to estimate apparent prevalence confidence intervals (Reiczigel, 2003).

Apparent prevalence comparisons among categories were done with homogeneity

tests. The Mantel test was used to assess the spatial association between brucellosis

apparent prevalence in wild boar across different sampling sites. Calculations were

done with the PASSAGE software (Rosenberg, 2001).

Quantitative exploratory analysis of risk factors for brucellosis apparent

prevalence was carried out at two different geographic scales (peninsular and

regional) using two-stage analyses. First, the associations between all the

hypothesized risk factors and apparent prevalence were analyzed using single factor

generalized models. Factors that captured the effect of any set of highly correlated

variables for which P<0.1 were selected for inclusion in the multivariate models

(Table 3). In a second step, the selected variables were then jointly evaluated in a

multiple logistic model. The individual iELISA result (N=3,883) was the response

variable (binomial, i.e. antibody presence or absence). Since sampling across

different populations was not homogeneous in relation to age and sex, statistical

analyses were conducted at the individual level to control for them. Age was

included as a continuous discrete explanatory variable and sex was included as a

categorical binomial explanatory variable. We used a stepwise strategy to obtain the

final model. Statistical significance was assumed wherever P<0.05. We used the

SAS statistical package.

In the Peninsular scale model we controlled for the effect of the Bio-region by

including it as categorical random variable. Factors tested are listed in Table 3.

In the smaller geographical scale model (Ciudad Real province, Bio-region 3),

we restricted our analysis to wild boar sampled on 20 sites, that were well

characterized regarding habitat characteristics (e.g. estate-related environmental

conditions, land cover and habitat structure) and relevant wildlife management

133

Page 155: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

factors such as fencing, supplemental feeding, watering sites, and estimated

abundance (Vicente et al., 2007b). The variables tested are shown in Table 3.

Hunting season (from 2000-2001 to 2008-2009) and sampling site were

included as random factors in both models.

Table 3.- Factors included in the analysis, indicating those significantly associated (excluding other highly correlated variables) with apparent prevalence of brucellosis at the Peninsular (GLM, P<0.1, N=2416) and the regional (GLM, P<0.1, N=460) scales. Sampling season and sampling site were included as random factors.

Peninsular scale

Factor Estimate N p

Significantly associated with prevalence (selected for the model):

Age class (1-4) 2416 <.0001

Month (1-12) 4394 <.0001

Annual rainfall -0.00013 4079 0.0011

Cultivated lands 0.000629 4079 0.0091

Non-irrigated cultures 0.000908 4079 0.0181

Iberian hare habitat suitability 0.000011 4019 0.0287

Road 0.07015 4079 0.0386

Woodlands (-0.000644) 4079 0.0529

Irrigated cultures 0.001514 4079 0.0709

Urban 0.00572 4079 0.0745

Not associated with prevalence (not selected):

Sex (1-2), wild boar management, European brown hare habitat suitability, irrigated fruit orchards, pastures, annual radiation, slope range, mean slope, maximum slope, mean altitude, min. altitude, max. altitude, altitude range, annual temperature (Jothikumar et al., 2006), annual temp. (min), annual temp. (max)

134

Page 156: Los abajo firmantes, como directores de esta tesis

Capítulo 4.3

Table 3.- Continued.

Regional scale

Factor Estimate: N p

Selected: Age class 0.0001 Month (1-12) 505 0.0263 Iberian hare abundance (pellet FBII) -177.415 460 0.0457 Mean open-air farm size (number of pigs) 0.000213 500 0.0532 Number of pigs on open-air farms 0.000209 500 0.0625 Number of pigs on open-air farms per square Km 0.1253 500 0.0949

Not selected: Sex, Iberian hare habitat suitability, wild rabbit abundance (pellet FBII), wild boar km abundance, wild boar spatial aggregation index (Z), wild boar abundance (dropping FBII), red deer FBII, red deer density (distance estimates), wild boar FBII by feeding site and ha, wild boar FBII by watering site and ha, annual temperature (Jothikumar et al.), mean slope, annual rainfall, annual radiation, mean altitude, sampling estate surface (Ha), type of population (open, fenced, farm), fencing, % boundary fenced, riparian habitats, irrigated cultures, non-irrigated cultures, cultivated lands, woodlands, irrigated fruit orchards, urban, tree diversity, grass cover, scrubland cover, pine woodlands, pastures, dehesa (savannah-like open oak woodlands), number of Quercus trees/5 m, total woodlands, tree cover, soil cover, total wood + scrublands, Quercus spp.>4 m/5m, cultures (%), scrublands (%), number of waterholes, waterholes per ha, wild boar supplemental feeding, wild boar feeding sites, wild boar feeders per ha, deer feeding sites, goats per ha, cattle per ha, sheep per ha, number of pig farms in municipality, pig farms per Km2, total pigs in municipality, total number of pigs in municipality per Km2, mean farm size (number of pigs), number of pigs on closed farms per Km2, closed pig farms in municipality, closed pig farms per Km2, mean closed farm size, pigs on closed farms, open-air pig farms in municipality, open-air pig farms per Km2.

Results

iELISA validation

As an example of the iELISA validation procedure followed, the distribution of

%OD results obtained with the gold standard populations in domestic goats and its

phylogenetically related Capra pyrenaica counterpart is shown in Figure 1. As seen in

this figure, a relatively wide range of % OD were resulting in 100% sensitivity and

specificity with the gold standard populations tested, and this picture was similar

when using gold standard sera from the cattle, sheep and pig populations used as

reference controls. The corresponding cut-offs for the different wild animal species

tested were 50% OD (for all wild ruminant species) and 40% OD (for wild boar),

considering that the resulting sensitivity and specificity with the corresponding gold

standard populations was always 100%.

135

Page 157: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

The relative specificity of the iELISA versus the culture results obtained with the

50 iELISA negative wild ruminants tested (Table 2) was adequate since no positive

isolations were obtained in these animals. The relative specificity versus the culture

results was also adequate in wild boar, since only one B. suis biovar 2 strain was

isolated from the cultured specimens of the 50 iELISA negative animals tested.

Figure 1.- Example of the typical distribution of optical density (% OD) results obtained by iELISA when testing the gold standard populations (from domestic goats) and its phylogenetically related Iberian wild goat (Capra pyrenaica) counterpart. The horizontal line represents the cut off selected for assessing the apparent prevalence of brucellosis.

Studies in wild ruminant species

Our results revealed not or only very limited antibody responses to infections

by smooth Brucella species in Iberian wild ruminants (Table 2). Anti-Brucella

antibodies were detected in chamois, red deer, and to a lesser extent, the Iberian

wild goat. The highest apparent prevalence (0.8%) was identified in chamois, being

essentially detected in the animals living in the Pyrenean Mountains, in Bio-region

2.

Altogether, the overall estimated apparent prevalence in wild ruminants was as

low as 0.4% (95% CI range 0.3-0.6%), and no significant inter-species differences

(χ2=10.2, 6 d.f., P>0.05) or spatial aggregation (data not shown) were evidenced.

However, slightly higher apparent prevalence was observed locally. As an example,

136

Page 158: Los abajo firmantes, como directores de esta tesis

Capítulo 4.3

the percentage of red deer positive reactors reached maximum value of 1.9% (3 out

of 158 animals tested; 95% CI 0.5-5.5) in the Garcipollera reserve (Pyrenees, Bio-

region 2), and 0.8% (16 out of 1,899 animals tested; range 0.5-1.4) in the Montes

Universales reserve (Bio-region 4).

Only two out of the 93 animals submitted to bacteriological analyses (one from

a clinical case, 42 from iELISA-positive animals, and 50 from ELISA-negative

animals, Table 2) resulted in Brucella positive culture. One of the strains identified

(B. melitensis biovar 1) was isolated from the clinical case, a severely ill Iberian wild

goat buck found in Albacete province (Bio-region 4), and that resulted positive in

the iELISA. The other strain isolated (B. abortus biovar 1) came from a hunter-

harvested red deer stag, from Montes Universales reserve in Teruel province (Bio-

region 4), and found also positive in the iELISA.

Studies in wild boar

In strong contrast with results found in wild ruminants, wild boar showed a

high apparent prevalence of brucellosis (33%; 95%CI 31.6-34.4; see also Additional

Material 1), in all Bio-regions tested (Figure 2 panel A). The highest apparent

prevalence (average 46% with some populations reaching over 80%) was found in

Bio-region 3 (Figure 2 panel A). The remaining Bio-regions showed lower but still

high values (average 26%; Figure 2 panel A). No statistically significant spatial

association was found by Mantel test (Pearson r=−0.10, n=68; p=0.99).

A total of 539 necropsy samples from iELISA positive wild boar were

submitted to bacteriological culture (Table 2). One hundred and four isolates

(representing 19.3% of the animals tested) were obtained from these seropositive

animals cultured, while only 1 of the 50 iELISA negative wild boar tested resulted

in positive culture, being this difference statistically significant (P<0.001). All

isolates were identified as Brucella suis, and the multiplex PCR identified patterns

consistent with those characteristic of B. suis biovar 2. Type A strains (n=57) were

found widely distributed throughout Bio-regions 1, 2 and 3, whereas type C (n=46)

137

Page 159: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

and B (n=1) strains were restricted to Bio-regions 2 and 3, respectively (Figure 2

panel B).

Figure 2.- Panel A: Apparent prevalence of brucellosis in Eurasian wild boar (Sus scrofa) in Bio-regions 1 to 5. Dots are proportional to prevalence. Only data from localities with at least 10 wild boar samples are shown. Panel B: Distribution of the different haplotypes of Brucella suis strains isolated from wild boar. Points represent an infected population cluster rather than individual isolates; the dotted line represents the south-western distribution limit of the European brown hare (Lepus europaeus).

Table 4 panel A shows the variables included in the final large-scale model. The

probability of wild boar testing positive in the iELISA was affected by age

(χ2=42.3, 3 d.f., p<0.001; Figure 3 panel A), age-by-sex interaction, rainfall, Bio-

region and month. By contrast, apparent prevalence was not affected by sex (males

35.8%, 95% CI 33.3-38.5; females 36.5%, 95% CI 34.0-39.0). Apparent prevalence

increased during the hunting season reaching maximum levels in February (Figure 3

panel B). Apparent prevalence in wild boar also varied among Bio-regions (χ2=183,

4 d.f., p<0.001), Bio-region 3 showing almost the double of apparent prevalence

than the other Bio-regions.

138

Page 160: Los abajo firmantes, como directores de esta tesis

Capítulo 4.3

Figure 3.- Distribution of apparent prevalence in wild boar (Sus scrofa) through age and sex classes (Panel A), and sampling period (Panel B) at the Peninsular scale.

Table 4 panel B shows the 6 variables included in the final regional-scale model.

The probability of testing positive in the iELISA was affected by age-by-sex

interaction, sampling month, and the number of open-air bred pigs per square Km

in the sampling municipality. Fifty eight additional variables resulted not statistically

significant in the first analysis and thus, not selected for the model (Table 3).

Table 4.- Effects on the probability of testing positive to brucellosis at Peninsular (Panel A) and regional (Panel B) scales. DF degrees of freedom; F test statistic; Pr>F probability.

A B

Effect DF F Pr>F Effect DF F Pr>F

Age 3.1947 23.2 <0.001 Month 6.373 2.39 0.0280

Sex by age interaction

4.1886 2.53 0.0390 Open-air pigs per sq km

1.136 3.29 0.0919

Rainfall 1.186 10.7 0.0013 Sex by age interaction

5.48 4.90 0.0002

Bio-region 4.207 10.7 <0.001

Month 4.1557 2.80 0.0247

Discussion

We developed and validated a multi-species immunosorbent assay and applied

it to determine the apparent prevalence and distribution of brucellosis in wild

ungulates from the Iberian Peninsula. Our results showed that wild ruminants do

139

Page 161: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

not play a relevant role in the maintenance of B. abortus and B. melitensis infections.

In contrast, the wild boar was identified as an important threat for B. suis infection.

The quality of the diagnostic methodology used is of paramount importance to

assess the prevalence of wildlife diseases (Van Houten et al., 2003). Due to the lack

of brucellosis tests validated for wildlife species, the most recommendable

approach for studies to determine brucellosis prevalence in wildlife should be based

in the use of classical serological tests such as the Rose Bengal (RBT), which has

been widely validated in the domestic animal species phylogenetically related with

wild ungulates, and extensively used worldwide (OIE, 2009). These classical tests,

however, require samples of a very high quality to avoid haemolysis problems.

However, gathering high quality serum samples devoid from haemolysis is

frequently impossible in standard wildlife sampling procedures, particularly those

based on hunted specimens. To circumvent this problem, many recent brucellosis

studies in wildlife have been based on immunosorbent assays -ELISA- (Cvetnic et

al., 2004; Zarnke et al., 2006; Koppel et al., 2007). One of the advantages of this

serological test is that the degree of haemolysis of the serum samples does not

affect significantly the ELISA performance (Neumann and Bonistalli, 2009). Due

to the absence of specific conjugates against the immunoglobulin isotypes of the

different wildlife species, indirect ELISAs have not been widely used, and most of

studies have been based on the use of competitive ELISAs, which are potentially

able to identify specific anti-Brucella antibodies in all animal species (Gall et al.,

2000; Nielsen et al., 2001; Van Bressem et al., 2001; Van Houten et al., 2003).

However, due to the absence of adequate gold standard sera, most studies in

wildlife have been performed using the protocols (i.e., serum dilution, antigen

concentration, cut-off, etc.) as recommended by manufacturers in domestic

livestock (Deem et al., 2004; Al Dahouk et al., 2005; Koppel et al., 2007), and

therefore without adequate validation for the corresponding wild species tested.

Moreover, the problem of the false-positive serological reactions induced by gram-

negative bacteria sharing common epitopes with Brucella (Kittelberger et al., 1997;

140

Page 162: Los abajo firmantes, como directores de esta tesis

Capítulo 4.3

Muñoz et al., 2005) is also an important issue to properly assess brucellosis

prevalence. Hence, recent studies suggest the need for better diagnostic tools to

obtain reliable results in serological studies on brucellosis in wildlife (Koppel et al.,

2007).

The best gold standard known in brucellosis diagnosis is the isolation of the

bacteria. However, individual bacteriology is cumbersome, unpractical and very

expensive to be used as the unique test to determine the prevalence of brucellosis

in animal populations. Thus, the most recommendable approach is a combination

of serological and bacteriological studies, such as those conducted here. We

developed an iELISA using an antigen sharing the major common surface epitopes

present in all smooth Brucella species (Alton, 1990; Cherwonogrodzky et al., 1990),

allowing the diagnosis of infections induced by B. abortus, B. melitensis and B. suis.

The lack of availability of polyclonal or monoclonal antibodies raised to detect

specifically the immunoglobulin isotypes of wildlife species was overcome by using

protein G as a conjugate. This reagent has been reported suitable in wildlife for

detecting antibodies to Brucella (Godfroid et al., 1994; Nielsen et al., 2004) and

other pathogens (Aurtenetxe et al., 2008; Reyes-Garcia et al., 2008). Due to the

absence of gold standard sera from culture positive and brucellosis free wild

animals, we validated our iELISA using gold standard sera from the closest

phylogenetically related domestic species. The adequate relative sensitivity of the

iELISA with respect to the bacteriological status of the animals was confirmed in

wild boar, in which the number of strains isolated from seropositive animals was

relatively high (Table 2), being comparable to those obtained in similar studies

conducted in the EU (Godfroid et al., 1994).

The success for bacteriological isolation depends on the quality of the samples

cultured. Unfortunately, in our study it was not always possible to obtain necropsy

samples of proper quality, which probably decreased the final sensitivity of the

bacteriological methods applied. This can explain the relatively high number of

samples from iELISA positive animals that resulted in negative culture. Moreover,

141

Page 163: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

the relative specificity of the iELISA versus culture results was also adequate since

only one out of the 50 iELISA negative animals tested yielded a positive culture.

However, this iELISA negative serum from an infected wild boar could also be due

to a recent B. suis infection in which antibodies of the IgG isotypes (the only ones

detected by protein G) had not yet been produced, or simply, as a consequence of a

human error in sampling or identification.

The relative sensitivity of the iELISA developed could not be properly assessed

in wild ruminants due to the low apparent prevalence figures detected and,

accordingly, the low number of iELISA positive samples cultured (Table 2). The

only two animals in which field Brucella strains were isolated resulted positive in the

iELISA. Finally, no brucellae were isolated from the 50 iELISA negative wild

ruminants tested, this result supporting the adequate relative specificity of the

serological test developed. Therefore, this iELISA should be considered as

adequate enough for detecting Brucella antibodies in the wild species studied.

At least for the species with large sampling sizes (Table 2), it can be concluded

that wild ruminants are not a significant potential source of B. abortus and B.

melitensis infections for livestock in the Iberian Peninsula. However, data on species

with a limited sample size, such as Barbary sheep (N=8) and mouflon (N=75), are

not enough to support that general conclusion. The finding of the B. melitensis

infected Iberian wild goat in a locality with no active sampling stresses, however,

the importance of setting up passive wildlife surveillance networks.

The small variations in the geographical distribution of seropositive wild

ruminants can reflect sampling biases rather than real differences in apparent

prevalence. However, the relatively high apparent prevalence found in some areas

could be also related with the high prevalence of brucellosis in domestic species

reared in extensive breeding systems. As an example, the percentage of red deer

and chamois positive reactors reached maximum values in some areas of the

Pyrenees (Bio-region 2), and red deer in the Montes Universales reserve (Bio-region

4), that were coincident with some brucellosis outbreaks taking place in domestic

142

Page 164: Los abajo firmantes, como directores de esta tesis

Capítulo 4.3

sheep and cattle in these mountain areas during the 2002 and 2004 seasons

(Gobierno de Aragón, Annual Animal Health Report, unpublished data).

Current knowledge on B. abortus epidemiology in the GYE strongly suggests

that artificial management including crowding and supplemental feeding influences

the dynamics of wildlife brucellosis (Cross et al., 2007). The very low apparent

prevalence of brucellosis in Iberian wild ruminants may be explained by a couple of

non-mutually excluding hypotheses. First, the relatively low overall prevalence of

brucellosis in domestic ruminants in Spain makes the transmission to wildlife highly

improbable, despite the existence of important risk factors such as overabundance

(Gortázar et al., 2006). Second, artificial feeding in southern Spain takes place

mostly in summer, once the lambing/calving season is over. Thus, abortions

occurring at winter feeding sites as in elk in the GYE (Cross et al., 2007), are

unlikely. This is consistent with recent results on the effects of management on elk

behaviour and brucellosis transmission (Maichak et al., 2009).

In strong contrast with the situation in wild ruminants, the wild boar

population was found seriously affected by B. suis biovar 2 infection. The general

apparent prevalence figures found herein (Table 2) were similar to those indicated

in other European reports (Dedek et al., 1986; Garin-Bastuji and Delcueillerie,

2001; Hubálek et al., 2002; Cvetnic et al., 2003; Al Dahouk et al., 2005; Koppel et

al., 2007). However, apparent prevalence close to 100% was recorded locally

(Figure 2). Bio-region 3, the area where game is more intensively managed through

fencing, feeding and translocation, was the region with the highest apparent

prevalence (Figure 2 panel A). This Bio-region concentrates practically the whole

Iberian censuses of domestic Iberian pigs reared in fully out door breeding systems.

The absence of sex effects on brucellosis apparent prevalence in wild boar

(Table 3) was not surprising, since similar results have been found also in other

diseases (Vicente et al., 2004, 2007b). However, we found at both geographical

scales a significant effect of the sex-by-age interaction on the apparent prevalence

of brucellosis (Table 3). This effect can be explained by sex and age related

143

Page 165: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

differences in wild boar behaviour (Ruiz-Fons et al., 2008c). While females live in

matriarchal groups, adult males live solitary and only contact with these matriarchal

groups during the mating season (Rosell and Herrero, 2002). Apparent prevalence

observed among adult wild boar was higher than that found in younger age classes,

as expected by the higher participation in reproduction by adults (Ruiz-Fons et al.,

2007).

In wild boar, positivity to several other infectious agents has been linked with

density, spatial aggregation or artificial management (e.g. Aujeszky’s disease,

Vicente et al., 2005; Ruiz-Fons et al., 2007; Bovine tuberculosis, Vicente et al.,

2007b; Porcine circovirus type 2, Vicente et al., 2004. However, no relationship

between apparent prevalence and wild boar management or density risk factors has

been evidenced in this study. There is no clear explanation for this finding, and

further research is needed to better identify the factors modulating B. suis infection.

Several authors have suggested that spillover from wild boar and European

hares to domestic pigs could be a frequent event, and the explanation of the re-

emergence of brucellosis due to B. suis biovar 2 in outdoor reared pigs in EU

countries (Godfroid and Kasbohrer, 2002; Leuenberger et al., 2007). Historical

contact between free ranging Iberian domestic pigs and wild boar could have

boosted wild boar infection with B. suis biovar 2 in the Iberian Peninsula. As

indicated above, Bio-region 3 is the Spanish region with more open-air bred

domestic pigs, and in which the apparent prevalence figures in wild boar were

maximal (Figure 2). In the small scale study carried out in this Bio-region 3, a

positive relationship between apparent prevalence in wild boar and the density of

open air bred Iberian pigs was evidenced (Table 4). This may contribute to explain

the important prevalence of brucellosis reported in Iberian pig farms in the last

years in Spain (Muñoz et al., 2003; Garcia-Yoldi et al., 2007). Accordingly, having in

consideration the close genetic characteristics of the strains isolated in Spain (Lavín

et al., 2006), our study confirms that domestic Iberian pigs reared outdoor and wild

boar share the same brucellosis infection due to B. suis biovar 2. Three out of the

144

Page 166: Los abajo firmantes, como directores de esta tesis

Capítulo 4.3

five wild boar estates showing the highest apparent prevalence were fully open and

sharing pastures with free-ranging domestic pigs.

In contrast with the situation reported in France (Garin-Bastuji et al., 2006),

wild boar were capable to maintain B. suis biovar 2 infection independently of the

existence of European brown hares. Interestingly, the unique B. suis biovar 2 strain

isolated from European brown hare in Spain (Lavín et al., 2006) was showing a

molecular pattern different from the three haplotypes identified in this study in

wild boar (J.M Blasco, unpublished results). This hare strain was showing also

different restriction patterns from those identified in the B. suis biovar 2 Thomsen

reference strain and other B. suis biovar 2 strains isolated from hares in France,

which show common patterns with those identified in wild boar (B. Garin-Bastuji,

personal communication). This suggests that at least in Spain, the B. suis biovar 2

haplotypes infecting European brown hares and wild boar may be different.

However, this must be confirmed in further studies using larger numbers of

animals. The possible role of the Iberian hare (Lepus granatensis) in B. suis biovar 2

epidemiology is currently unknown. No isolation of B. suis biovar 2 has been

reported in Iberian hares but no adequate studies are available. Suitability of Iberian

hare habitat, meaning open, flat, sparsely-forested Mediterranean agrosystems, was

selected in the first step of the analysis, but not in the final model. Its weak link

with wild boar apparent prevalence may be due to a correlation between Iberian

hare habitat suitability and Bio-region 3. A similar explanation can be given for the

inclusion of rainfall in the large-scale model, having in consideration that rainfall is

more abundant in the North (e.g. Bio-region 1) than in Bio-region 3 (Table 1).

Data provided herein suggest that B. suis biovar 2 infection can be maintained

in wild boar in an independent epidemiological cycle to that taking place in

domestic pigs. The period of the year (month of sampling) was a significant factor

affecting apparent prevalence (Table 4), suggesting that the reproductive season

may influence brucellosis spreading among wild boar. An alternative explanation

could be related with differences in host-specific behaviour, for example regarding

145

Page 167: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

146

carrion consumption from gut piles during the hunting season (October to

February).

In summary, we conclude that free-living wild ruminants are not a significant

brucellosis reservoir in the Iberian Peninsula but conversely, wild boar is an

important threat regarding B. suis biovar 2 infection. This represents an important

hazard particularly for the Iberian pig population reared in out door breeding

systems, but the entry of the disease in the highly intensified pig industry should

not be disregarded. This situation could become of great concern if brucellosis

control programs in domestic pigs are envisaged.

Additional Material

Table S1 is provided as supplemental material in .doc format. Table S1 data

shows sample size, number of ELISA positive samples, and serum antibody

prevalence of wild boar from the Iberian Peninsula

(http://www.biomedcentral.com/content/supplementary/1471-2334-10-46-

S1.DOC).

Acknowledgements

Many colleagues at IREC, UNIZAR, NEIKER and SERIDA helped in field and laboratory.

We acknowledge the dedicated assistance of the game wardens of Aragon and Asturias. The

Aragon Government has financed part of this work under the programme “Health status

surveillance on game wildlife in Aragon”. NEIKER thanks the funding of the Department for

Environment, Spatial Planning, Agriculture and Fisheries of the Basque Government and the

collaboration of ACCA and Regional Governments.

Page 168: Los abajo firmantes, como directores de esta tesis

Capítulo 4.4

Expansión de la tuberculosis en el jabalí

Boadella, M., Acevedo, P., Vicente, J., Mentaberre, G., Balseiro, A., Arnal, M., Martínez, D., García-Bocanegra, I., Casal, C., Álvarez, J., Oleaga, Á., Lavín, S., Muñoz, M., Sáez-Llorente, J.L., de la Fuente, J., Gortázar, C. Spatio-temporal trends of Iberian wild boar contact with Mycobacterium tuberculosis complex detected by ELISA. En prensa, EcoHealth.

Page 169: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Abstract

The continuing expansion of Eurasian wild boar (Sus scrofa) populations raises

concerns regarding disease transmission. In south-central Spain, overabundant wild

boar are reservoirs of Mycobacterium bovis, and related members of the Mycobacterium

tuberculosis complex (MTBC), the causative agents of bovine tuberculosis (bTB). An

indirect enzyme-linked immunosorbent assay (ELISA) using bovine purified

protein derivative (bPPD) was applied to determine the spatial and temporal

distribution of wild boar contact with MTBC in the Iberian Peninsula and to model

and identify the associated risk factors. Wild boar apparent seroprevalence was

22%. Seropositives were detected in 71% of 81 sites, including 23 sites where

wildlife was thought to be bTB free. The results described a new geographic range

of wild boar contact with MTBC and a stable prevalence in this wildlife reservoir

that contrasts with the success of bTB control in cattle. Inference of which host

(wild boar or cattle) is driving bTB maintenance was not possible with our

correlational results. The possibility of a wild boar bTB emergence in non-endemic

regions should urgently be taken into account to avoid a future scenario resembling

the current situation in south-central Spain.

Introduction

In the last decades, Eurasian wild boar (Sus scrofa) populations have expanded

both geographically and in densities throughout Europe, driven by rural

abandonment, changes in agricultural production and changes in game

management (Kruger, 1998; Gortázar et al., 2000; Hartley and Gill, 2010; Acevedo

et al., 2011). This continuing expansion raises concerns regarding the control of

diseases shared with livestock (Meng and Lindsay, 2009).

In Spain, one of these shared diseases is bovine tuberculosis (bTB), caused by

Mycobacterium bovis and closely related members of the Mycobacterium tuberculosis

complex (MTBC). Infection in cattle has been reduced by test-and-slaughter.

However, in some south-central regions, prevalences are at a standstill (MARM,

148

Page 170: Los abajo firmantes, como directores de esta tesis

Capítulo 4.4

2011a). There, transmission amongst wild ungulates (wild boar, red deer Cervus

elaphus, and fallow deer Dama dama, where present) and livestock contributes to the

maintenance of the causative agents (Gortázar et al., 2008; Gortázar et al., 2011b).

However, in the wildlife multi host system, the wild boar plays the most important

role (Vicente et al., 2006; Gortázar et al., 2008; Naranjo et al., 2008; Santos et al.,

2009).

In some areas of the south-central Iberian Peninsula, wild boar are part of a

growing hunting industry. In this bio-region (BR3 sensu Muñoz et al., 2010), habitat

factors such as summer droughts, as well as feeding and watering within fenced

hunting areas, have contributed to create a singular epidemiological situation that

has led to high prevalences of bTB in wildlife (Vicente et al., 2007b). Resultant

overabundant wild boar populations have been identified as true wildlife reservoirs

for MTBC (Gortázar et al., 2008; Naranjo et al., 2008). Wild boar management is

less artificial in the remaining parts of peninsular Spain. Nonetheless populations

are increasing (Acevedo et al., 2006). Here, wild boar bTB is either not reported or

present locally (Mentaberre et al., 2010), often at low prevalence as compared to

south-central Spain (Vicente et al., 2006).

A recently developed ELISA with a fair sensitivity and excellent specificity and

proven to correlate with bTB lesions under experimental conditions (Garrido et al.,

2011), opened a new inexpensive and largely observer-independent way for MTBC

contact monitoring in this species (Boadella et al., 2011a). Herein, we apply this

ELISA to [1] determine the current spatial distribution of wild boar contact with

MTBC in the Iberian Peninsula; [2] to identify management and environmental

factors associated with the probability of testing positive; and [3] to detect eventual

time trends in wild boar apparent antibody seroprevalence.

149

Page 171: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Materials and methods

Samples

The study area was the Iberian Peninsula, in south-west Europe. Sera from 3007

legally hunter-harvested wild boar were collected between year 2000 and 2010 in 81

sampling sites belonging to the five peninsular Bio-regions (BR) previously

described (Muñoz et al., 2010; Figure 1). Hunting harvest sampling is accepted as a

random survey method for wild boar (Fernández-Llario and Mateos-Quesada,

2003). Sex was known for 2685 animals (1297 males and 1388 females). Age classes

of biological meaning were determined and animals less than 12 months old were

classified as juveniles (n=585), those between 12 and 24 months as yearlings

(n=652), and those more than 2 years old as adults (n=1205), (Saenz de Buruaga et

al., 1991). Blood was drawn from the heart or the thoracic cavity during field

necropsies, and then the serum was collected after centrifugation and kept frozen at

-20°C until analyzed. Sera used in this study had gone through less than five freeze-

thaw cycles and excluded severely haemolyzed samples (Capítulo 2.2). Information

on the presence of bTB compatible lesions (bTBL) was recorded for 1371 animals

in BR3 and for 624 animals from outside BR3 (Non-BR3), as described in Vicente

et al. (2006).

ELISA test

Serum samples were tested by means of an indirect ELISA using bovine purified

protein derivative (bPPD) following the protocol previously described (Boadella et

al., 2011b). Sample results were expressed as an ELISA percentage (E%) that was

calculated using the formula [Sample E% = (sample OD / 2 x mean negative

control OD) x 100]. Serum samples with E% values greater than 100 were

considered positive.

150

Page 172: Los abajo firmantes, como directores de esta tesis

Capítulo 4.4

Statistical analysis

Quantitative exploratory analysis of factors modulating bTB contact at the

individual level was carried out using two different two-stage analyses (Zuur et al.,

2009), and as done in Muñoz et al. (2010), one for BR3 (n=1619), where bTB is

endemic (Vicente et al., 2006), and one for samples from Non-BR3 (n=1325). The

individual bPPD-ELISA result was the response variable (binomial, i.e.,

thresholded antibody presence or absence). First, the associations between all the

hypothesized factors (Tables 1 and 2) and ELISA positivity were analyzed using

single factor generalized linear models (GLM). Factors that captured the effect of

any set of highly correlated variables for which p<0.1 were selected for inclusion in

the multivariate models. In a second step, the selected independent variables were

evaluated with generalized linear mixed models (GLMMX) using a backward

stepwise strategy to obtain the final model, selected by Akaike Information

Criterion (AIC; Akaike, 1974). For both stages, models where built with a binomial

structure and a logit link function, the year of sampling was included as a

categorical factor (since no linear trend along time was expected) and sampling site

was included as random factor.

151

Page 173: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Table 1.- Factors tested in the single factor generalized linear models (GLM). Bold type indicates those associated and selected for inclusion in the multivariate models (excluding other highly correlated variables) with bPPD ELISA positivity at the BR3 (GLM, p<0.1, n=1653) and non-BR3 (GLM, p<0.1, n=1354) scales.

BR 3 Non-BR3

Effect Est. F-

Value p Est. F-

Value p

Year of sampling 5.44 <0.001 1.66 0.105

Type of population (Categorical: open, fenced, farm)

2.25 0.136 18.56 <0.001

Artificial feeding (Cat.: presence, absence) 0.4 0.533 0.25 0.62

Latitude (Mean lat. in the locality [m]) -5.78E-06 10.69 0.003 -4.68E-06 39.01 <0.001

Longitude (Mean long. in the locality [m]) -3.91E-06 3.2 0.084 0.5 0.484

Mean altitude (Mean alt. in the locality [m]) 1.13 0.296 0.9 0.349

Annual mean temperature (ºC)1 0.024 3.29 0.081 0.021 3.3 0.078

Annual mean of maximum temp. (ºC) 1 0.024 3.71 0.065 0.013 4.38 0.044

Annual rainfall (mm) 1 1.49 0.231 0.88 0.353

Annual radiation (10 kJ·m-2·day-1·µm-1) 1 0.11 0.738 0 0.996

Woodlands (per locality [%])2 1.38 0.251 0.39 0.537

Favourability for Sus scrofa 1.09 0.305 1.72 0.196

Favourability for Cervus elaphus 1.16 0.291 1.29 0.263

Number of cattle herds by county 3 0.12 0.737 1.07 0.305

Nº of beef cattle herds by county 3 0.23 0.639 0.39 0.538

Nº of bullfighting cattle herds by county 3 0.14 0.709 0.126 9.3 0.005

Density of cattle herds by county 3 0 0.978 1.09 0.303

Density of beef cattle herds by county 3 0 0.985 0.48 0.493

Density of bullfighting cattle herds by county 3 0.26 0.616 0.19 E5 9.99 0.004

Density of cattle by county 3 1.18 0.288 1.59 0.211

Density of beef cattle by county 3 1.16 0.29 0.15 0.701

Density of bullfighting cattle by county 3 0.24 0.628 83.881 10.24 0.004

Mean cattle herd bTB prev. by county 3 0.033 4.06 0.055 2.88 0.1

Nº of bTB positive cattle herds by county 3 0.015 4 0.056 0.037 4.09 0.052

Mean cattle bTB prevalence (animals) by county 3

2.03 0.167 1.248 7.07 0.012

Number of bTB positive animals (cattle) by county 3

0.69 0.414 0.004 8.99 0.005

Sources: 1 Digital climatic atlas of the Iberian Peninsula at spatial resolution of 200 m.; 2 CORINE land cover database at spatial resolution of 250 m (European Environment Agency, 2000; www.eea.europa.eu); 3 MARM, 2011a.

152

Page 174: Los abajo firmantes, como directores de esta tesis

Capítulo 4.4

We used the SAS statistical package for statistical analysis. The Mantel test was

used to assess the spatial associations of ELISA seroprevalence across sampling

sites. Calculations were done with the PASSAGE software (Rosenberg, 2001).

Comparisons of mean observed prevalences for Non-BR3 were done with Mann-

Whitney U tests at the sampling site (n=41) and county (n=36) scale since data did

not meet the assumption of normality. Finally, independent GLM (binomial

distribution and logit link function) were used for calculating the beta of bTBL

prevalence by sampling year for wild boar in BR3 and Non-BR3.

Figure 1.- Spatial distribution of wild boar contact with Mycobacterium bovis in the Iberian Peninsula. Apparent prevalence of M. bovis contact in the 81 sampled localities within Bio-regions 1 to 5. Dot sizes are proportional to observed prevalences for localities where more than 10 animals were analyzed. Squares represent localities where less than 10 animals where sampled and none tested positive (white) or at least one was ELISA positive (black).

153

Page 175: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Results

Figure 1 shows the spatial distribution of the apparent prevalence of antibodies

against MTBC in Iberian wild boar. The global seroprevalence was 22.2% (IC95%:

20.7-23.7%), ranging from 35.2% in BR3 to 6.9% in Non-BR3. Seropositive wild

boar were detected in 58 out of 81 sites (71.6 %; 97.2% in 36 BR3 sites; 51.1% in

45 Non-BR3 sites). This included 23 sites where wildlife bTB had never been

recorded before, 22 of them outside BR3. Sites with similar observed prevalence

were spatially clustered (Mantel test, n=81; r=0.22; p<0.01).

Figure 2.- Time trend comparative prevalences for bTB in wild boar and cattle. Mean annual bPPD ELISA seroprevalence in wild boar (black squares) and mean annual bTB compatible lesion prevalence (grey squares) compared with mean annual cattle bTB herd prevalence (grey triangles, based on official testing results) in regions belonging to BR3 (upper panel) and Non-BR3 (lower panel).

154

Page 176: Los abajo firmantes, como directores de esta tesis

Capítulo 4.4

Figure 2 shows the global wild boar ELISA and bTBL seroprevalence trends

for BR3 (β=-0.016 and -0.018, respectively, p>0.05) and Non-BR3 (β=0.105 and -

0.089 respectively, p>0.05). In all cases, observed prevalences were stable with

trendless inter-annual fluctuations. Prevalences in cattle were always lower and

reaching an asymptote during the study period.

Variables tested for association with MTBC contact in BR3 and outside BR3

are listed in Table 1. Table 2 shows the variables included in the final models. In

the BR3 model, the probability of testing positive varied with the sampling season

and was associated with the number of bTB positive cattle herds in the county. For

the Non-BR3 model, the probability of testing positive was statistically associated

with the type of wild boar population (higher if fenced) and by the (higher) density

of bullfighting cattle herds in the county (Table 2; Figure 3).

Table 2.- Selected factors. Factors modulating the probability of Eurasian wild boar testing positive to bPPD ELISA in BR3 and Non-BR3 sites. GLMMX odds ratio (Exp E) and their minimum and maximum values; Estimate of the model; DF degrees of freedom; F-Value test statistic; p probability).

Effect Estimate DF F-Value p Exp E

(min - max)

BR 3

Year - 10 5.5 <0.001

Intercept -0.5848 0.076 0.557 (0.40 – 0.77)

Number of bTB positive cattle herds by county

0.0141 1 3.39 0.077 1.014 (1.00 – 1.02)

Non-BR3

Type of population (fenced vs. open) - 1 7.6 0.014

Intercept -1.9631 0.001 0.140 (0.08 – 0.23)

Density of bullfighting cattle herds by county

1.3043 1 4.71 0.045 3.685 (2.02 – 6.72)

155

Page 177: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Discussion

This study describes a new geographic range of bTB contact in wild boar as

well as a stable apparent prevalence in this wildlife reservoir that contrasts with the

success of bTB control in cattle (Figure 2), raising concerns regarding the relative

importance of wildlife for bTB control in Europe (Gortázar et al., in press). We

detected for the first time MTBC contact in a high proportion (50%) of the

sampling sites outside BR3.

Detecting a low apparent prevalence of wild boar contact with MTBC in Non-

BR3 does not imply a significant role of the wild boar in bTB epidemiology.

However, our results are relevant in the current scenario of increasing wild boar

densities (Acevedo et al., 2006) and sympatric alternative MTBC hosts such as the

Eurasian badger (Meles meles) in BR1 (Balseiro et al., in press).

Despite the high specificity of this ELISA (Boadella et al., 2011b), the presence

of false positives can not be ruled out. However, wild boar from Non-BR3

presented bTBL (Figure 2) and existence of MTBC infection was confirmed by M.

bovis culture positive animals. This suggests that a more intensive surveillance is

likely to reveal an even more widespread bTB distribution.

Spatial clusters of wild boar bTB were found in the present study at a

peninsular level, with aggregates of high prevalence in BR3 and of low prevalence

outside BR3. This might indicate that factors that modulate bTB prevalence are

visible at large scales, possibly linked with habitat characteristics, but not at local

ones (Vicente et al., 2007b). Fencing, in turn linked to higher densities, feeding and

translocations (Vicente et al., 2007b) was identified as a key risk factor for wild boar

contact with MTBC outside BR3. This implies that the – relatively few – fenced

hunting estates and wildlife movements from bTB affected areas outside BR3

should become targets for active surveillance, and that efforts should be done to

limit the proliferation of such intense game management.

156

Page 178: Los abajo firmantes, como directores de esta tesis

Capítulo 4.4

Figure 3.- Non-BR3 mean observed sampling site seroprevalence ( S.E.) by type of wild boar population (open vs. fenced; p=0.01) and mean observed county seroprevalence ( S.E.) by presence of bullfighting cattle herds in the county (absence vs. presence; p=0.464).

Cattle-related variables were selected in both the BR3 and the Non-BR3

models. From these correlational results it is not possible to infer if wild boar

(wildlife reservoir) are driving cattle bTB prevalences, or if the presence of infected

cattle (cattle bTB reservoir) affects both cattle and wild boar. Differences in bTB

prevalence among cattle farming systems (dairy, beef, bullfighting) may be due to

(a) the fact that control programs were fully implemented in beef and bullfighting

herds later than in dairy; (b) that skin testing of beef cattle (and even more of

bullfighting cattle), is more difficult than in dairy and is impaired by their temper,

hence limiting test accuracy; and (c) that changes in the bTB control program

aimed to increase the sensitivity of the testing have concentrated on high

prevalence areas. Moreover, open air ranging beef and bullfighting cattle are more

likely to come in contact with wildlife or other bTB hosts than dairy (MARM,

2011a).

Our results evidenced that wild boar contact with MTBC is more widespread in

Spain than previously thought and that serum antibody prevalences in wild boar

remained stable during the study period. We suggest that BR3 represents a more

157

Page 179: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

158

advanced situation, where wildlife bTB has reached certain stability at high

prevalence, and can contribute to the difficulty of the already complex bTB control

in cattle. Serology results for this region coincide with local prevalence data based

on culture (Gortázar et al., 2008). At the same time, wildlife bTB emergence in

Non-BR3 regions needs urgently to be taken into account to avoid a future

scenario resembling the current BR3 situation. Moreover, it is advisable that other

countries with large wild boar populations and with a recent or persistent history of

bTB in cattle also carry out targeted bTB surveillance in this wildlife host.

Acknowledgements

Studies on diseases shared between domestic animals and wildlife are also supported by SDG

Recursos Agrarios, Consejería de Medio Ambiente y Ordenación del Territorio de la Comunidad

de Madrid, JCCM, Principado de Asturias, Gobierno de Aragón. PA is currently holding a Juan

de la Cierva research contract awarded by the Ministerio de Ciencia e Innovación—Fondo Social

Europeo. Authors also thank Roger Vila, Gerardo Domínguez and all colleagues that participated

in the sampling.

Page 180: Los abajo firmantes, como directores de esta tesis

Capítulo 5

CAPÍTULO 5. APORTACIONES AL CONTROL DE LAS ENFERMEDADES COMPARTIDAS

5.1. Persistencia de lesiones compatibles con tuberculosis en poblaciones de ciervo Ibérico bajo distintas condiciones de manejo

5.2. Efectos del control numérico no selectivo del jabalí sobre la prevalencia de contacto con Mycobacterium bovis y el virus de la

enfermedad de Aujeszky

Page 181: Los abajo firmantes, como directores de esta tesis
Page 182: Los abajo firmantes, como directores de esta tesis

Capítulo 5

Resumen

En el suroeste europeo existe una preocupación creciente por las enfermedades

relevantes compartidas entre los ungulados silvestres y los domésticos, incluyendo

la tuberculosis (TB) y la enfermedad de Aujeszky (EA). En esas áreas existe un

complejo sistema multi-hospedador donde los ungulados silvestres y el ganado

doméstico (bovino, caprino, porcino) contribuyen al mantenimiento de la TB,

mientras que para el caso de la EA, dado que la cabaña porcina está sometida a

vacunación, la enfermedad se mantiene de forma endémica sólo en las poblaciones

de jabalí (Sus scrofa). A nivel mundial, los fracasos en la erradicación de las

enfermedades en el ganado se han relacionado en ocasiones con reservorios

silvestres de la enfermedad. Por tanto, existe una necesidad de desarrollar

estrategias de control para agentes que causan enfermedades de relevancia como

Mycobacterium bovis o el virus de la enfermedad de Aujeszky (VEA) en reservorios

silvestres. Este capítulo incluye sendos trabajos que describen el efecto de la

reducción de la población de jabalí (una especie considerada reservorio) sobre la

prevalencia de contacto con estas enfermedades en otras especies simpátricas,

domésticas o silvestres.

5.1. Con frecuencia se registran lesiones compatibles con la TB (TBL) e

infección con Mycobacterium bovis en el ciervo (Cervus elaphus). Sin embargo, existe un

gran desconocimiento sobre las tendencias temporales de la TB en esta especie. Se

investigaron las tendencias temporales en la prevalencia de TBL en España usando

3403 ciervos cazados en 20 poblaciones diferentes, desde el año 2000 a 2011. La

prevalencia de TBL para el periodo estudiado se mantuvo estable (β=-0,04,

p>0,05), con variaciones inter-anuales significativas y con un rango del 5,3% al

16,6% (Chi2=25,5, 10 g.l., p<0,05). Sólo un sitio de estudio tuvo una tendencia

(negativa) temporal en la prevalencia de TBL. En ese sitio se produjo una

reducción significativa de la abundancia de jabalí, y de la prevalencia de TBL en el

jabalí. Esto sugiere que una reducción significativa de la densidad de jabalí puede

tener consecuencias no sólo para el control de la TB en esta especie, sino también

161

Page 183: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

162

para el control de la TB en especies simpátricas como el ciervo. Los resultados

sugieren además que el ciervo juega un papel en la persistencia de la TB en el

sistema multi-hospedador del centro-sur peninsular.

5.2. En el segundo trabajo de este capítulo se describen los efectos de un

control numérico no selectivo de las poblaciones jabalí en el mantenimiento de la

TB y de la EA en un área de alta prevalencia (centro-sur de la Península Ibérica).

Las dos infecciones respondieron de forma distinta al control numérico. En los

sitios control (n=10), la prevalencia de TBL incrementó, mientras que la

prevalencia de positivos a cultivo y la prevalencia de seropositivos a ELISA se

mantuvo estable. De forma contraria, la prevalencia conjunta de contacto con el

VEA se mantuvo estable en los sitios sometidos a tratamiento. En el único sitio

tratamiento con presencia de ganado bovino, el número de jabalíes cazados se

correlacionó negativamente con el número de vacas positivas a la prueba de la

tuberculina. Los resultados sugieren que el control numérico no selectivo redujo la

probabilidad de que los jabalíes no infectados contactaran con M. bovis, y que existe

una conexión entre la TB en el jabalí y en el bovino. La reducción de la prevalencia

de TB se logró a pesar de que ninguna otra especie fue sometida a una caza intensa.

La eficacia de esta estrategia de reducción numérica en términos de prevalencia está

ligada a la epidemiología de cada enfermedad. El control numérico no selectivo

podría integrarse con otras estrategias de control de enfermedad en las que se

incluyen cambios de manejo o vacunación, especialmente si un control numérico

inicial temporal pero sustancial pudiera contribuir a aumentar el éxito de otras

estrategias de control, o a reducir sus costes totales.

Page 184: Los abajo firmantes, como directores de esta tesis

Capítulo 5.1

Persistencia de lesiones compatibles con tuberculosis

en poblaciones de ciervo Ibérico bajo distintas

condiciones de manejo

Boadella, M., Vicente, J., Gortázar, C. Persistence of tuberculosis-compatible lesions in Iberian red deer populations under diverse management factors. En preparación.

Page 185: Los abajo firmantes, como directores de esta tesis
Page 186: Los abajo firmantes, como directores de esta tesis

Capítulo 5.1

Abstract

In south-western Europe tuberculosis (TB) is of increasing concern among

wild ungulates and TB-like lesions (TBL) and Mycobacterium bovis infection have

been often reported in red deer (Cervus elaphus). However, time trends of TB

prevalence in red deer are largely unknown. Herein we investigate time trends in

red deer TBL in Spain by using 3403 hunter-harvested red deer sampled in 20

different populations from hunting season 2000/2001 to hunting season

2010/2011. The TBL prevalence for the studied period had a stable trend (β=-0.04,

p>0.05) with significant inter-annual variation, ranging from 5.3% to 16.6%

(Chi2=25.5, 10 d.f., p<0.05). Only one site had a significant (negative) time trend in

the prevalence of TBL (β=-0.72, p<0.05). In this site, a significant reduction of

wild boar abundances (and wild boar TBL prevalence) has taken place. This

suggests that a significant reduction of wild boar density can have positive

consequences not only for wild boar TB control but also for TB control among

sympatric hosts such as deer. Overall, our findings suggest a role for red deer in the

persistence of TB in a multi-host system along South central Spain, where mainly

wild ungulate species and domestic cattle contribute to maintain the circulation of

M. bovis. Future monitoring in order to detect changes in TB prevalence of red deer

is therefore needed through the country.

Introduction

Tuberculosis (TB), a chronic disease of cattle caused by Mycobacterium bovis and

closely related members of the Mycobacterium tuberculosis complex (MTC), has turned

into a wildlife disease of major concern worldwide (Corner, 2006). TB in wildlife

populations is a relevant issue due to its potential effect on TB control in cattle and

the subsequent economic consequences (Gortázar et al., 2011b), but also because

of conservation concerns regarding endangered species and protected areas

(Gortázar et al., 2008, 2010).

The potential role of wild deer in perpetuating TB in cattle has come under

increasing focus (Ward and Smith, 2011). Red deer and elk (Cervus elaphus) are

165

Page 187: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

among the wildlife hosts most often involved in TB epidemiology (Gortázar et al.,

in press). Despite the fact that the highest prevalence of infection (above 50%) has

been reported in farmed deer (Griffin et al., 2004), prevalences around 10-20%

have repeatedly been recorded in wild populations (Vicente et al., 2006; Delahay et

al., 2007; Zanella et al., 2008), and in few cases even higher prevalences can occur

(Lugton et al., 1998; Gortázar et al., 2008). Red deer are considered TB

maintenance or spillover hosts depending on the region and on the density

(Corner, 2006). However, modelling suggests that even at densities of up to 50 red

deer per square km, the host status of this species remains uncertain (Ward and

Smith, 2011). One peculiarity of red deer as compared to wild boar or badgers, for

instance, is their longevity. Since TB is a chronic disease and red deer can be long

lived (up to over 20 years), disease eradication is unlikely to become a reality unless

the population is held below the maintenance host threshold, and all other sources

of M. bovis infection are removed, for at least one complete generation (Nugent,

2011; Ward and Smith, 2011).

In south-western Europe TB is of increasing concern among wild ungulates,

particularly where these are managed for hunting purposes by fencing, artificial

watering and feeding (Vicente et al., 2007b). TB-like lesions (TBL) and M. bovis

infection have been often reported in Eurasian wild boar (Sus scrofa), red deer and

locally in fallow deer (Dama dama) of the south-western Iberian Peninsula,

suggesting that the infection is largely endemic (Aranaz et al., 2004; Hermoso de

Mendoza et al., 2006; Vicente et al., 2006; Gortázar et al., 2008; Santos et al., 2009).

Among these wild ungulates, the wild boar has been identified as the main reservoir

host for TB in the Mediterranean Iberia (Naranjo et al., 2008). Prevalence of TBL

in wild boar has been found to correlate with prevalence in red deer, although wild

boar always show higher prevalences, both in Spain (42% and 14% of TBL,

respectively; Vicente et al., 2006) and in Portugal (22% and 12% of TBL,

respectively; Vieira-Pinto et al., in press). TBL risk in red deer has been associated

with the aggregation of wild boar at artificial watering sites and at feeding sites,

166

Page 188: Los abajo firmantes, como directores de esta tesis

Capítulo 5.1

denoting that management practices that promote host aggregation could increase

the risk of transmission (Vicente et al., 2007b). There is also a clear aggregation of

red deer TB in south-central Spain, as compared to other peninsular regions

(Vicente et al., 2006).

However, time trends of TB prevalence in red deer are largely unknown. A

regional study based on carcass inspection found a steady increase in M. bovis

prevalence in Extremadura (south-western Spain) from 1997 to 2002, reaching a

maximum prevalence of 1.7% (Parra et al., 2006). The prevalence in 2004 was 2.9%

(Hermoso de Mendoza et al., 2006). In the same area, animals sampled between

2007 and 2009 showed an apparent prevalence, as determined by TBL, of 5.1%,

indicating a possible increase of TB linked to an intensification of game

management (Castillo et al., 2011). Even in a protected and unmanaged area of the

south Iberian Peninsula, Doñana National Park (DNP), an increase of M. bovis

culture prevalence was observed since 1998. From 1998 to 2003, 168 red deer

yielded an M. bovis infection prevalence of 15% (Romero et al., 2008). A recent

study in 2007 confirmed infection with M. bovis in 27.4% of 95 sampled red deer

(Gortázar et al., 2008).

The aim of this study was to investigate time trends in red deer TB in Spain by

using a large data set on TB-like lesion (TBL) prevalence. Based on the above cited

precedents, we hypothesized that TBL prevalence would increase in Iberian red

deer populations.

Material and Methods

Sampling

From hunting season 2000/2001 to hunting season 2010/2011, 3403 hunter-

harvested red deer were sampled from 20 different populations throughout

mainland Spain (Figure 1). Based on tooth eruption and tooth wear, animals were

grouped into age classes of biological meaning as follows: young (animals up to 2

years old; n=717), sub-adults (up to 4 years old; n=366) and adults (≥5 years;

167

Page 189: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

n=2161). Age was unknown for 159 animals. Table 1 shows the detailed numbers

of animals sampled per site.

Table 1.- Sampling site characteristics, mean prevalence and linear regression results between the sampling season and the annual TBL prevalence for positive sites with more than two sampled years.

Linear regressionSite

Open/ fenced

BR Timespan* Sampled animals

Prevalence (IC) Beta p

1 Open 3 2000-2010 (10) 279 6.8 (4-10) 0.19 0.623

2 Open 3 2002-2010 (9) 311 7.1 (4-10) 0.62 0.137

3 Fenced 3 2002-2010 (8) 371 9.4 (6-12) 0.27 0.567

4 Fenced 3 2002-2010 (8) 177 34.5 (27-41) -0.11 0.805

5 Fenced 3 2000-2010 (9) 159 3.1 (0.4-6) 0.03 0.953

6 Fenced 3 2000-2010 (9) 118 1.7 (0.3-6) 0.47 0.247

7 Fenced 3 2000-2010 (11) 779 11.7 (9-14) -0.72 0.012

8 Open 3 2002-2010 (7) 77 5.2 (0.2-10) 0.35 0.570

9 Fenced 3 2002-2008 (5) 82 13.4 (6-21) -0.92 0.080

10 Fenced 3 2000-2010 (9) 178 2.2 (0-4) 0.03 0.951

11 Open 3 2005-2010 (3) 124 29.8 (22-38) 0.85 0.359

12 Fenced 3 2001-2010 (4) 127 11.8 (6-17) 0.42 0.584

13 Fenced 3 2001-2008 (5) 95 23.2 (15-32) 0.69 0.200

14 Fenced 3 2001-2007 (4) 58 32.8 (21-46) -0.59 0.405

15 Fenced 3 2002-2006 (2) 57 8.8 (1-16)

16 Fenced 3 2000-2006 (3) 33 0 (0-10)

17 Open 1 2003-2007 (5) 39 0 (0-9)

18 Open 1 2001-2009 (8) 210 0 (0-2)

19 Fenced 2 2000-2007 (3) 74 0 (0-5)

20 Fenced 4 2002-2010 (3) 55 0 (0-7)

Total 3403 10.3 (9-11) * Number of samplings in brackets.

At site 7, red deer and wild boar relative abundance data were obtained by

maximal counts at observational points (Rodriguez-Hidalgo et al., 2010). Counts

were transformed into deer and wild boar per ha.

168

Page 190: Los abajo firmantes, como directores de esta tesis

Capítulo 5.1

Presence of tuberculosis-like lesions

Presence of TBL was diagnosed by field necropsy of the deer with detailed

macroscopic inspection of lymph nodes and abdominal and thoracic organs as

described in (Vicente et al., 2006; Martín-Hernando et al., 2010). Lymph nodes

were later dissected, sectioned serially and carefully examined for gross lesions in

the laboratory. Animals were considered to have generalized TBL when lesions

were found in at least two different anatomical regions (head, thorax and

abdomen).

TBL presence was used as a criterion to evaluate disease distribution and in

order to obtain comparable TBL rates between sampling sites (Rodwell et al.,

2001). Although presence of TBL is not a perfect tool for estimating prevalence of

disease, such information has been proven to be a valuable and inexpensive tool

for exploring the magnitude and general distribution of infection in red deer and in

wild boar when large sampling sizes are obtained from extensive areas (Vicente et

al., 2006; Santos et al., 2010). Although isolation of M. bovis is the reference

standard for TB diagnosis, the high costs of culturing make this technique

unsuitable for most large-scale surveys. Besides, (Rohonczy et al., 1996) found that

in the elk (Cervus elaphus), the presence of post-mortem TBL showed good

agreement with the isolation of M. bovis (kappa agreement coefficient: 69%).

One possible interference with the use of lesions as a proxy for TB in red deer

would be paratuberculosis (PTB). PTB, a chronic enteritis of ruminants with a

worldwide distribution, and caused by Mycobacterium avium paratuberculosis (MAP),

can cause lesions resembling those of M. bovis infection (Mackintosh et al., 2004).

However, a recent survey on 332 Iberian red deer, that included culture and

histopathology, found no culture positive animal and no visible PTB lesion (Carta

et al., in press). In the present study, we confirmed at least one animal as M. bovis

infected per site with TBL.

169

Page 191: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Statistical analysis

For statistical analysis of the TBL time trends, only a subsample including

animals from areas with macroscopic evidence of TB in at least one individual

(n=2626) and more than three sampled seasons was considered. Negative areas

were excluded from the analysis. The association of sampling season (global and

per sampling site) with the presence of TBL was analyzed by means of Pearson’s

chi-square test. The trend on the yearly prevalence of TBL was analyzed with a

linear regression both globally and per sampling site. We used the Spearman rank

correlation to test for an association between red deer TBL prevalence and red deer

and wild boar abundances in site 7.

Differences or trends were considered statistically significant when p<0.05. For

statistical evaluation, IBM SPSS 19.0 software (IBM Corporation, Somers, NY,

USA) and STATISTICA 7.1 (StatSoft, Inc., www.statsoft.com) were used.

Results

The overall TBL prevalence was 10.3% (95% CI: 9.4-11.4), but local

prevalences ranged from 0% (95% CI: 0-1.8) to 34.5% (95% CI: 21.3-45.6) (Figure

1; Table 1). Figure 2 shows the yearly overall prevalence of TBL and the annual

proportion of generalized lesions in lesion positive Iberian red deer, between 2000

and 2010. The TBL prevalence had a stable trend (β=-0.04, p>0.05) with

significant inter-annual variation, ranging from 5.3% to 16.6% (Chi2=25.5, 10 d.f.,

p<0.05). The proportion of deer with generalized lesions had no significant trend

(β=-0.32, p>0.05) and the inter-annual differences were not significant.

Results on the TBL time trends per sampling site are summarized in Table 1.

Only one site (site 7) had a significant (negative) time trend in the prevalence of

TBL (β=-0.72, p<0.05; Figure 3). In this site, annual red deer density increased

during the study period (β=0.67, p<0.05), while wild boar density decreased (β=-

0.62, p<0.05).

170

Page 192: Los abajo firmantes, como directores de esta tesis

Capítulo 5.1

Figure 1.- Map of Peninsular Spain showing the 20 sampled sites and their positivity (black squares are for sites with at least one positive animal while white squares represent negative sites).

Figure 2.- Annual overall mean prevalence of TBL (black diamonds) and proportion of individuals with generalized lesions (grey squares) from hunting season 2000/2001 to hunting season 2010/2011. The dashed line indicates the regression for the prevalence of TBL (β=-0.04, p>0.05).

171

Page 193: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Five of the 20 sampling sites maintained their negative results during the whole

study period, three of which where the populations from northern Spain that we

included in this study.

Discussion

Although our sampling does not ensure a proportional and representative

sample of the overall deer across Spain, provides insights into the temporal pattern

of red deer TB status, and helps to focus future monitoring programs on the issue,

confirming TB may persist for long in red deer populations, and therefore

contributing to the complex epidemiology of TB in the Iberian Peninsula. This can

be so especially under Mediterranean circumstances, where environment,

management and habitat or resource sharing with other TB hosts concurs. Our

results of overall prevalence are similar to those reported for south-central Spain by

Vicente et al. (2006), and for central Portugal by Vieira-Pinto et al. (2011), and in

the international context, can be considered as medium to high (Corner, 2006). We

should have into account that in the red deer, prevalences may have been

underestimated according to Lugton and others (1998), who affirm that up to one

quarter of infected deer may show no detectable gross lesions.

Although we did not confirm our initial hypothesis suggesting an increasing

trend in the prevalence of TBL in Iberian red deer in the last ten years, the fact is

that, overall, such prevalence at least keep stationary. In contrast to our results, the

few other studies on time trends in red deer TB in Spain showed an increase (e.g.

Parra et al., 2006). However, these increases occurred mostly in regions with

relatively low prevalence, suggesting that the threshold level has not yet been

reached. In our study, prevalences remained stable but at rather high levels,

suggesting that even at high densities and intense management it is unlikely to

expect even higher mean prevalences in red deer. The percentage of red deer with

generalized lesions did not vary significantly during the study suggesting that

172

Page 194: Los abajo firmantes, como directores de esta tesis

Capítulo 5.1

changes in susceptibility and/or pathogenicity seemed not to occur during the

sampling period.

The single study site where deer TBL prevalence declined in time (coincident

with the best sampled site), is a site where a significant reduction of wild boar

abundances (and wild boar TBL prevalence) has taken place (Figure 3). This

suggests that a significant reduction of wild boar density can have positive

consequences not only for wild boar TB control but also for TB control among

sympatric hosts such as deer. The absence of significant changes in some other

sampling sites can be due to inadequate sampling effort, too few sampled animals

per year and too few years sampled.

Figure 3.- Annual density of wild boar and red deer (grey squares and diamonds, respectively; animals/ha) and prevalence (%) of TBL in red deer (black triangles) in site 7 from hunting season 2000 to hunting season 2010.

Overall, our findings suggests a role for red deer in the persistence of in a

multi-host system along South central Spain, which must be evaluated together

with the changes in the determinants of disease transmission and persistence at

intra but also inter-specific level. Under our epidemiological circumstances the red

deer, usually considered a poor reservoir host, and the wild boar (in mixed

populations or alone (Boadella et al., in press), were both able to maintain TB

infection in the wild in a number of different situations. Molecular studies based on

173

Page 195: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

part of the animals here reported found that wild boar and red deer share the same

M. tuberculosis complex organisms, and the comparison of the obtained patterns

(Aranaz et al., 2004). Therefore we need (pseudo)experimental designs in the field

considering the main reservoir of TB in Spain TB (see below considering location

7), the wild boar, which is widely spread but impeding situations where deer is

present alone.

It is interesting to note that, even within the core area of high TBL prevalence,

the negative sites remained negative during the study period, mainly in northern

Spain. Game management is uncommon in Northern Spain, and this may

contribute to explain the observed geographical pattern. This contrasts with a study

based on TB serology in the wild boar, where a geographic expansion was detected

towards previously thought TB-free areas (Boadella et al., in press). In the red deer,

we did not detect such expansion even though the sampling sites were the same.

Explanations for this finding include (1) the absence of large scale acceptable

serology tests in the red deer (due to cross-reactions; Carta et al., in press), which

may impede an early detection of M. bovis circulation among wild populations; (2)

that red deer are possibly spillover rather than maintenance hosts, dependent

mainly on transmission from sympatric wild boar; and (3) the possibility that red

deer get infected later than wild boar (or wild boar easier than red deer), so that it

will take more time to detect a TB expansion trend in deer than in wild boar. This

in turn would suggest that wild boar are more suitable for TB monitoring than red

deer (Boadella et al., 2011a). The red deer, in contrast, is spatially more restricted

and colonizes new areas slower than wild boars do. In conclusion, the importance

of red deer resides in that may act as a long-lived reservoir of infection, having the

potential to initiate new outbreaks of infection well outside currently infected areas,

or to reinitiate infection after TB has been eliminated by controlling reservoirs and

other short-lived vectors (Griffin et al., 2004). Information gathered in this study

contributes therefore to the view that red deer contribute to a multi-host system,

where wild ungulate species, domestic cattle, and to a lesser extent (due to their low

174

Page 196: Los abajo firmantes, como directores de esta tesis

Capítulo 5.1

175

densities) carnivores contribute to maintain the circulation of M. bovis. Future

monitoring in order to detect changes in TB prevalence of red deer is therefore

needed through the country.

Acknowledgements

Authors thank all colleagues at IREC that participated in the fieldwork. We thank Yolanda Fierro

for access to her study site and for sharing valuable data.

Page 197: Los abajo firmantes, como directores de esta tesis
Page 198: Los abajo firmantes, como directores de esta tesis

Capítulo 5.2

Efectos del control poblacional no selectivo del jabalí

sobre la prevalencia de contacto con Mycobacterium

bovis y el virus de la enfermedad de Aujeszky

Boadella, M., Vicente, J., Ruiz-Fons, F., de la Fuente, J., Gortázar, C. Effects of culling Eurasian wild boar on the prevalence of contact with Mycobacterium bovis and Aujeszky’s disease virus. En evaluación.

Page 199: Los abajo firmantes, como directores de esta tesis
Page 200: Los abajo firmantes, como directores de esta tesis

Capítulo 5.2

Abstract

Worldwide, failure to eradicate a disease in livestock has sometimes been

related to wildlife reservoirs of infection. Therefore, there is a need for the

development of strategies aimed at controlling relevant infectious disease agents,

such as Mycobacterium bovis and Aujeszky’s disease virus (ADV), in wildlife

reservoirs. Herein we describe the effects of culling Eurasian wild boar (Sus scrofa)

on the maintenance of two chronic infectious diseases: tuberculosis (TB) and

Aujeszky’s disease (AD) in a high prevalence area (South-central Spain). The two

infections studied responded differently to culling. Regarding the control sites

(n=10), the prevalence of TB-compatible lesions increased, while bovine purified

protein derivative (bPPD) ELISA positivity and M. bovis culture prevalence

remained stable. The global ADV contact prevalence decreased in the control sites.

In the treatment sites (n=3), a decrease was detected for TB-compatible lesions,

bPPD ELISA and culture prevalence. Conversely, ADV contact prevalence

remained stable in treatment sites. In the only treatment site with cattle, the annual

wild boar cull was negatively correlated with the annual number of skin test reactor

cattle. We suggest that culling effectively reduced the probability of uninfected wild

boar to contact M. bovis in the treatment sites and that some link between wild boar

and cattle TB may exist. The reduction in wild boar TB was achieved despite no

alternative M. bovis host was included in the culling strategy. The effectiveness of

culling in terms of prevalence reduction is linked to the epidemiology of each

disease. We advocate that culling could become a part of integrated control

strategies including management changes and vaccination, particularly if an initial

short term but substantial reduction of host density and disease prevalence could

contribute to increase the success likelihood of other control tools, or contribute to

reduce the total expenses.

179

Page 201: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Introduction

Selective culling of infected animals after systematic testing is, along with

vaccination, a key tool for disease control in livestock. Worldwide, failure to

eradicate a disease in livestock has sometimes been related to wildlife reservoirs of

infection (e.g. Delahay et al., 2002; Corner, 2006). Therefore, there is a need for the

development of strategies aimed at controlling infectious disease agents in wildlife

reservoirs (Gortázar et al., in press). Culling is often considered in situations where

a wildlife reservoir is suspected to interfere with disease control in livestock (shared

diseases; Gortázar et al., 2007). Reducing host density is a straightforward strategy

that should lead to a lower contact rate and incidence until a threshold density is

reached, at which the infection will disappear due to the low probability of

transmission (Ward and Smith, 2011). Herein, we analyse the effects of culling

Eurasian wild boar (Sus scrofa) on the maintenance of two chronic infectious

diseases: tuberculosis (TB) and Aujeszky’s disease (AD).

Bovine TB is a chronic disease of cattle shared with wildlife among many other

hosts and caused by Mycobacterium bovis and closely related members of the

Mycobacterium tuberculosis complex (MTBC; O'Reilly and Daborn, 1995). The disease

causes concern because of its significant impact mainly on economy, but also on

global health and conservation. In Spain, since national test and slaughter

campaigns began in cattle, the percentage of positive cattle herds has experienced a

significant reduction from 11.1% in 1986 to 1.5% in 2010, with a yearly cost (e.g. in

2009) of approximately 30 million € (http://rasve.mapa.es). Despite the TB

reduction in cattle in most parts of the country, in some south-central regions,

cattle TB herd prevalences are at a standstill, being beef and bullfighting cattle the

ones with higher infection rates (Allepuz et al., 2011). In south-central Spain (SCS),

beef and bullfighting cattle are commonly raised free-ranging and thus, share

habitat with infected wildlife (Vicente et al., 2006). MTBC infection prevalence in

wild boar ranges up to 50% in SCS (Gortázar et al., 2008).

180

Page 202: Los abajo firmantes, como directores de esta tesis

Capítulo 5.2

AD is caused by infection of mammals other than primates with Suid

Herpesvirus 1, the Aujeszky’s disease virus (ADV). Wild and domestic suids are the

only maintenance hosts for ADV. AD causes important losses to the pig industry

and is currently close to be controlled in Spanish livestock after intense efforts

based on combining test and slaughter and vaccination (MARM, 2011a). AD also

creates conservation concerns, since it can infect and kill endangered predators

after contact with infected wild boar or pigs and their remains (Glass et al., 1994;

Zanin et al., 1997). ADV contact prevalence in wild boar in Spain is high (over 40%

in SCS), thus representing a potential threat for the success of the current Spanish

eradication program in pigs. Again, the highest wild boar contact prevalences with

ADV are recorded in SCS (Vicente et al., 2005a).

SCS has the added particularity of having a growing hunting industry in a

Mediterranean ecosystem (Acevedo et al., 2007b). This region is characterized by

intense summer droughts and an intense management of game species (mainly red

deer Cervus elaphus and wild boar) by fencing and feeding. However, high densities

and high disease prevalences also occur in protected areas in absence of

management for hunting, possibly because of the overabundant wild ungulate

populations (Gortázar et al., 2008). These factors promote the aggregation of

animals at watering sites, for example, facilitating contact between individuals and

among different species. This particular situation does also affect the epidemiology

of other wildlife diseases of relevance for human or livestock health (e.g. Ruiz-Fons

et al., 2008c; Boadella et al., 2010). However, problems such as TB in cattle or AD

in pigs should not be oversimplified considering the wildlife reservoirs as the only

obstacle to eradication; their epidemiology is much more complex, including

livestock acting as their own reservoir, particularly regarding TB (Woodroffe et al.,

2006; Gortázar et al., 2008).

Hence, information on means to reduce the high infection prevalences in SCS

wild boar populations is needed. Also, further knowledge on the main drivers of

infection persistence in wildlife populations is necessary for the development of

181

Page 203: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

holistic and long-term sustainable control schemes, not only regarding livestock

health, but also to protect humans and wildlife (Gavier-Widén et al., 2009; Boadella

et al., 2011a).

Culling is an unpopular strategy and has to be time-flexible optimized to be

efficient and sustainable (Bolzoni and De Leo, 2007). Despite this, culling has been

a common tool to attempt to control infectious diseases in wildlife populations,

including TB. Eurasian badger (Meles meles) culling, for instance, formed a

component of both Ireland and UK TB control policy for many years (Krebs et al.,

1997). In Ireland, badgers are culled when a severe breakdown in cattle is deemed

to have been due to badgers (focal or reactive culling). When sustained over large

areas (proactive culling), removal of badgers led to a significant reduction in the

incidence of tuberculosis in associated cattle populations (e.g. Griffin et al., 2005;

Donnelly et al., 2006), as reviewed in Corner et al. (2011). However, field trials of

reducing badger numbers in the UK had contrasting outcomes. Proactive culling

reduced cattle TB incidence in the culled core areas, but increased incidence in the

adjoining areas (Donnelly et al., 2006). It seems that culling disrupted social and

territorial organization, leading badgers to range more widely and to increase

contact rates between them. This may explain the marked increases in M. bovis

prevalence that have been detected in badger populations subjected to culling

(Woodroffe et al., 2006; Jenkins et al., 2007). In Michigan and in Minnesota, USA,

white-tailed deer culling is part of the strategy to control TB in this wildlife

reservoir. Apparently, intense culling in the low density Minnesota deer herd

resulted effective, while less intense culling in Michigan had only limited effect in

terms of TB control (Carstensen et al., 2011). In New Zealand, 14 species of

domestic and wild animals are M. bovis hosts, with the introduced brushtail possum

(Trichosurus vulpecula) being the single most significant source of infection for cattle.

Culling of infected possum populations gave good results since it was associated

with a decrease in the risk of breakdown in neighbouring cattle herds (Caley et al.,

1999).

182

Page 204: Los abajo firmantes, como directores de esta tesis

Capítulo 5.2

Culling wild boar for TB or AD control has never been reported. However,

control of another viral disease, classical swine fever (CSF) by shooting wild boar

has been attempted in France, Germany and Italy. There is evidence that this

measure was much less effective than expected or even produced the contrary

effect (Laddomada, 2000). Due to the wild boar ecological elasticity (i.e. increased

turnover due to compensatory reproduction enhances disease persistence), the

population may be quickly re-established and the threshold level for infection die-

out may not be reached after culling (Artois et al., 2002). For example, in Eastern

Sardinia, infection stayed endemic for at least 17 years at low prevalence, even if

45% of the population was culled each year (Guberti et al., 1998). However, CSF

control in Sardinia is also hindered by the large population of backyard pigs. It has

been estimated that between 47 and 72% of the total wild boar population needs to

be culled instantaneously to reach a threshold density of local extinction of CSFV

(EFSA, 2009).

Since wild boar density is a known TB and AD risk factor (Gortázar et al.,

2006; Vicente et al., 2007b), we hypothesized that culling would reduce the

prevalence of both diseases, particularly among the younger age classes. To

challenge this hypothesis, we used information on three instances where SCS wild

boar populations were reduced. The aims of this study were (1) to quantify the

changes of TB and AD prevalence after a significant reduction of wild boar density

in three sites of SCS; (2) To compare TB and AD prevalence between sites with an

intervention and sites without intervention; and (3) to assess the potential effect of

wild boar density reduction on the TB status of sympatric host species such as

cattle, red deer and fallow deer (Dama dama).

Material and Methods

Study sites

The study included 13 public and private sites with different characteristics,

summarized in Table 1. Study sites were chosen on the basis of (1) previous

183

Page 205: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

knowledge of their management characteristics and (2) exhibiting a representative

range of management practices. Sampled sites include both protected areas and

hunting estates and ranged in size from 723 to 54,252 hectares.

Table 1.- Main characteristics (A) and sample sizes (B) for each of the 13 studied sites.

*RD: Red deer (Cervus elaphus); RoD: Roe deer (Capreolus capreolus); FD: Fallow deer (Dama dama).

A Site characteristics

Site Private/ Public

Main use Open/ fenced

Supp. feeding

Livestock Cervids*

Control 1 Private Big game hunting Fenced Yes No RD 2 Public Protected area Open No Yes RD/RoD 3 Public Protected area Open No No none 5 Public Agricultural Open No Yes RD 6 Private Big game hunting Fenced Yes No RD 7 Private Big game hunting Fenced Yes No RD/FD 10 Public Big game hunting Fenced No No RD 11 Public Big game hunting Fenced No No RD/FD/RoD12 Public Big game hunting Fenced No No RD/RoD 13 Private Big game hunting Fenced Yes No RD

Treatment 4 Public Protected area Open No Yes RD/FD 8 Private Big game hunting Fenced Yes No RD 9 Private Big game hunting Fenced Yes No RD/FD

B Number of samples tested

Site Gross lesions bPPD ELISA M. bovis culture ADV ELISA Total

Control 1 219 92 61 92 245 2 291 124 50 129 324 3 248 99 35 50 262 5 134 62 43 70 145 6 137 42 32 46 139 7 86 56 32 56 99 10 62 50 35 40 70 11 300 81 82 69 307 12 207 94 68 100 231 13 0 70 9 60 76

Treatment 4 197 149 191 46 197 8 132 100 82 98 157 9 154 84 74 101 176

Total 2167 1103 794 957 2428

184

Page 206: Los abajo firmantes, como directores de esta tesis

Capítulo 5.2

Ten sites were used as controls. All were known to have constant or increasing

hunting bags or frequency of wild boar faecal droppings found on transects (FBII;

Acevedo et al., 2007b). Three sites were defined as treatment sites for having a

substantial wild boar density reduction. Site number 4 (54,252 ha) implemented a

more intense wild boar culling strategy in 2008 to control wild boar populations

due to high TB prevalences reported in this species. Site 8, a private estate of 723

ha, decided to reduce wild boar density since 2005 by hunting all the available wild

boar with the purpose of eliminating the entire wild boar population. Site 9 (2,690

ha) started to move out all female and part of the young wild boar in 2005 to an

adjacent estate in order to raise only big trophy males for hunting. In any of the

sites other coexisting ungulate populations were subject to increased hunting to

have densities reduced.

Both for sites 4 and 8, data on TB-compatible lesions and M. bovis culture

prevalences were available for the coexisting ungulate species. In site 4, data on the

TB skin testing results of coexisting cattle (Gortázar et al., 2008), was available for

the period 1994-2011.

Wild boar data

Hunted wild boar (n=2428) were sampled from 2000 to 2011. Sex was known

for 2289 animals (1192 females, 1097 males). Age-classes of biological meaning

(according to reproductive and social status) were defined. Based on tooth eruption

patterns, wild boar until 12 months were classified as juveniles (n=623), those

between 12 and 24 months as sub-adults (n=627) and those over 2 years as adults

(n=1079), (Saenz de Buruaga et al., 1991).

The presence or absence of TB-compatible lesions was recorded for 2167

individuals. Out of these, 2159 animals were also classified by the following TB

lesion scores: 0 for animals with no visible lesions (n=989); 1 for animals with

lesions smaller than 1 cm of diameter or only in one cavity (head, thorax or

185

Page 207: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

abdomen; n=686); and 2 for animals with at least one lesion larger than 1 cm or

lesions in more than one cavity (n=484).

A total of 794 individuals had M. bovis culture results, 191 of them from site 4.

Serum samples were tested for M. bovis contact by means of an indirect ELISA

(with a sensitivity of 79% and a specificity of 100%) using bovine purified protein

derivative (bPPD) following the protocol previously described for wild boar

(Boadella et al., 2011b).

Data on ADV seroprevalence was obtained by screening sera for antibodies to

ADV with a commercially available blocking ELISA (95-98% sensitivity and 97–

99% specificity; IDEXX HerdCheck Anti-ADV gpI, IDEXX, Inc., Maine, USA),

previously used in wild boar (Ruiz-Fons et al., 2006).

Statistics

In order to analyse changes over time, for control sites, samples collected

between 2000 and 2005 were classified as “Time 1” (T1) and those collected

between 2006 and 2011, as “Time 2” (T2). For treatment sites, samples collected

before the beginning of the population reduction, were classified as “Time 1” and

those collected after, as “Time 2”.

Prevalences for TB-compatible lesions, bPPD ELISA and ADV ELISA were

compared through period by means of Pearson chi-square or Fischer tests. Time

trends for cattle skin-test positivity were calculated by lineal regression. Differences

were considered statistically significant when p<0.05. Spearman’s rank correlations

were used to assess the relationship between the annual increase (%) of cattle TB

skin reactors (cosine transformed) and the annual increase (%) of the wild boar

hunted (cos. transformed). Data was analyzed using the IBM SPSS statistical

package, version 19.0 (IBM Corporation, Somers, NY, USA) and STATISTICA

(data analysis software system), version 7.1. (StatSoft, Inc., www.statsoft.com).

186

Page 208: Los abajo firmantes, como directores de esta tesis

Capítulo 5.2

Results

Considering globally the 13 study sites and both time periods, TB-compatible

lesions were recorded in 1174 out of 2178 wild boar (53.9%); the bPPD ELISA

detected antibodies in 376 out of 1103 (34%) animals; and culture yielded 168

isolates out of 794 (21.1%) wild boar. ADV contact prevalence, as estimated by the

presence of specific antibodies, was 59%.

In treatment site 4, annual numbers of culled wild boar from 2000 to 2010

ranged from 46 to 959. The most intense culling occurred in 2008 and 2009 (n=773

and 959, respectively). This cull was highly correlated with the estimated wild boar

abundance (rs=-0.9, p<0.05, n=5). In treatment site 8, wild boar densities

diminished from 0.2 animals/ha in 2000 and 0.19 in 2005 to 0.03 in 2011. No exact

information was available regarding site 9.

Differences in the overall prevalences of TB-compatible lesions, bPPD ELISA

and M. bovis culture between T1 and T2 for each site are presented in Table 2.

Regarding the control sites, TB-compatible lesions remained stable in all but two

sites, where lesion prevalence increased. Bovine PPD ELISA and M. bovis culture

prevalences remained stable in all control sites. In the treatment sites, a significant

decrease of TB-compatible lesions prevalence was detected in one site and a

significant bPPD ELISA and culture prevalence decrease occurred in two sites.

Figure 1 shows the mean prevalences of TB-compatible lesions, bPPD ELISA

positivity and M. bovis infection at T1 and T2 in the control and treatment sites. In

the control sites, the mean prevalence of TB-compatible lesions increased while the

mean prevalence for bPPD ELISA positivity and M. bovis infection remained stable

between T1 and T2. In the treatment sites, all prevalences decreased significantly

between T1 and T2. Figure 2 shows the mean prevalences of TB-compatible

lesions, bPPD ELISA positivity and M. bovis infection by age class in each of the

three treatment sites. The global prevalence of TB-compatible lesions in these

treatment sites, remained stable in juveniles (mean -5.5%, Chi2=0.06, p>0.05), but

decreased in sub-adults (28.6%, Chi2=3.8, p<0.05) and in adults (24.7%, Chi2=5.7,

187

Page 209: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

p<0.05); bPPD ELISA positivity decreased in all age classes (juveniles: mean

77.67%, Chi2=19.3, p<0.05; sub-adults: 28.7%, Chi2=1.6, p>0.05; and adults:

41.1%, Chi2=9.2, p<0.05; respectively). In turn, M. bovis infection prevalence stayed

stable in juveniles and in sub-adults (37.8%, Chi2=1.9, p>0.05; 34.2%, Chi2=2.5,

p>0.05; respectively) and decreased 78.8% in adults (Chi2=9.1, p<0.05). In

contrast, in the control sites, the only significant change was the increase on the

prevalence of TB-compatible lesions in juveniles (mean -51.7%, Chi2=5.9, p<0.05);

in sub-adults and adults it remained stable. Equally, bPPD ELISA positivity and M.

bovis infection prevalence stayed stable between periods in all age classes

(Chi2=0.01-2.3, p>0.05; Figure 2).

Table 2.- Mean prevalences, prevalence at T1 and T2 and significance of the difference between prevalence at T1 and T2 for TB-compatible lesions, bPPD ELISA positivity and M. bovis culture in the studied sites. Significant p values (P) are underlined.

TB lesions bPPD ELISA Culture

Mean prev

Prev T1

Prev T2

P Mean prev

Prev T1

Prev T2

P* Mean prev

Prev T1

Prev T2

P

Control sites

1 46.6 42.11 48.15 0.52 ª 19.6 21.9 18.3 0.895 ª 11.5 8.3 13.5 0.834 ª

2 62.5 45.6 67.7 0.002 ª 37.1 36.8 37.2 1 ª 16 25 7.7 0.199 ª

3 35.1 22.2 35.6 0.5 b 20 13.5 0.63 b14.1 0 0 0 -

5 37.3 29.7 40.2 0.262 ª 22.6 11.5 30.6 0.144 ª 14 11.5 17.6 0.908 ª

6 50.4 51.6 49.3 0.927 ª 57.1 55 59.1 1 ª 53.1 53.1 - -

7 75.6 85 72.7 0.376 b 54.5 64.4 0.73 b62.5 18.8 12.5 25 0.650 ª

10 58.1 70 55.8 0.499 b 38 40 37.5 1 b 17.1 10 20 0.831 ª

11 78.3 50 81.7 0 ª 46.9 36 51.8 0.283 ª 17.1 12.5 19 0.747 b

12 40.6 35.7 41.3 0.721 ª 5.6 14.5 0.451 b12.8 7.4 10.7 5 0.396 b

13 - - - - 8.6 0 10 0.583 b 0 0 - -

Treatment sites

4 60.4 62.9 56.2 0.433 ª 55 68.3 38.8 0.001 ª 45.5 52.4 32.8 0.014 ª

8 53 67.9 43 0.009 ª 45 57.9 37.1 0.068 ª 9.8 17.0 0 0.023 ª

9 48.7 52.3 43.9 0.389 ª

27.4 45.7 14.3 0.003 ª 5.4 6.1 0 1 ª *P values: ª (Chi2 test p); b (Fisher’s exact test).

188

Page 210: Los abajo firmantes, como directores de esta tesis

Capítulo 5.2

Figure 1.- Mean prevalences of TB-compatible lesions, bPPD ELISA positivity and M. bovis culture in T1 (light grey) and T2 (dark grey), for the control sites (upper panel) and treatment sites (lower panel). Asterisks indicate significant differences between T1 and T2 at p<0.05.

ADV contact prevalence significantly decreased in the control sites from 64.2%

(58-7095%IC) in T1 to 53.7% (49-5895%IC) in T2 (Chi2=6.9, p<0.01). In the treatment

sites ADV contact prevalence remained stable (from 60.7% [52-6995%IC] in T1 to

67.3% [58-7695%IC] in T2; Chi2=0.8, p>0.05). The observed non significant increase

was due to site 9, where prevalence changed from 66.1% (54-7895%IC) in T1 to

89.7% (80-9995%IC) in T2 (Chi2=5.9, p<0.05). In sites 4 and 8, ADV contact

prevalences remained stable (52.4% in T1, 44% in T2 for Site 4 and 57.7% in T1,

60.9% in T2 for Site 8). No significant differences in time of the mean prevalences

of contact with ADV by age class were observed in any of the three treatment sites

(data not shown).

189

Page 211: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Figure 2.- Changes between T1 and T2 on the mean prevalences for TB-compatible lesions, bPPD ELISA and M. bovis culture by age class in each of the three treatment sites (sites 4, 8 and 9), and in the 10 control sites. Asterisks indicate significant differences at p<0.05.

Official data on cattle TB skin test results were available for site 4. In this site,

the annual wild boar cull was negatively correlated with the annual number of skin

test reactor cattle (rs=-0.79, p<0.05; Figure 3). No cattle are present at sites 8 and 9.

TB free cattle had been introduced into site 8 in 1989, but had to be slaughtered

due to an increasing TB prevalence after only 3 years.

Regarding sympatric deer, mean prevalences of TB-like lesions and M. bovis

infection did not differ significantly between T1 and T2 in adult red and fallow deer

from site 4 (Chi2=0.1-0.8, p>0.05 in all cases). However, no data on yearling or

sub-adult deer were available for site 4 at T2. For site 8, the prevalence of TB-like

190

Page 212: Los abajo firmantes, como directores de esta tesis

Capítulo 5.2

lesions in red deer remained stable (Chi2=0.8, p>0.05), while the infection

prevalence decreased significantly from 10.11% to 1.57% (Chi2=12.6, p<0.01). At

T2, none of 53 fawns, yearlings or sub-adult deer tested in site 8 yielded a positive

culture and all 3 positive deer were adults.

Figure 3.- Spearman’s rank correlation between the annual increase (%) of cattle TB positive skin reactors and the annual increase (%) of the number of culled wild boar in site 4 from 2000 to 2010.

Discussion

This is the first description of the short-term effects of culling on the sanitary

status of wild boar in a high TB and ADV prevalence area. The two diseases

studied responded differently to culling. While TB prevalences decreased, ADV

contact seroprevalences remained largely unaffected in the treatment sites.

Culling effects on wild boar disease status

In directly and indirectly transmitted diseases probably a few severely affected

individuals or “super-spreaders” contribute disproportionately to infection

maintenance (Kramer-Schadt et al., 2009). In the case of M. bovis, these individuals

tend to be juveniles and sub-adults, rather than adults (Vicente et al., 2006; Martin-

191

Page 213: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Hernando et al., 2007). The risk of TB in wild boar is age-dependent and correlates

with abundance and spatial aggregation (Acevedo et al., 2007b; Vicente et al.,

2007b). We suggest that culling effectively reduced the probability of uninfected

wild boar to contact M. bovis in the treatment sites. It is worth noting that this

reduction in wild boar TB was achieved despite no alternative M. bovis hosts such as

red deer were included in the culling strategy. This confirms previous reports

suggesting that wild boar are the main drivers of TB epidemiology in SCS (Vicente

et al., 2007b; Naranjo et al., 2008).

Regarding ADV, contact prevalence is also linked to age, abundance and spatial

aggregation (Ruiz-Fons et al., 2008c; Acevedo et al., 2007b), but transmission is

mostly direct and often linked to the reproductive season (Ruiz-Fons et al., 2008b).

The fact that mean contact with ADV did not decrease after culling suggests that

ADV clearance will not occur immediately once the virus becomes endemic. The

particular ADV “carrier” state of some of the infected individuals involves a

continued high viral shedding after infection has been apparently cleared. By such

mechanism, ADV enhances its persistence after most susceptible hosts have been

lost from the population, which is clearly a selective advantage when compared to

MTC. Alternatively, the proportion of ADV infected wild boar excreting ADV may

be larger than the proportion of M. bovis infected wild boar excreting the bacteria,

explaining the differences in the success of culling in reducing disease transmission.

One site (number 9) even witnessed an increase in ADV contact prevalence. This is

explained by the fact that only juvenile and sub-adult individuals were removed,

while the (generally ADV positive) adult males were maintained.

Spatial structuring of the host may allow pathogen persistence (e.g. TB in

badgers): host populations that are structured into sub-populations (or social

groups) promote persistence of microparasites by allowing epidemics to occur

asynchronously in the various sub-populations and avoiding deep global troughs

(Bolker and Grenfell, 1996). However, if the sub-populations are small and

isolated, fadeout will occur (Rohani et al., 1996). Contrary to wild boar biology, this

192

Page 214: Los abajo firmantes, como directores de esta tesis

Capítulo 5.2

is particularly important for infections of wild-mammal populations that are

frequently at low and variable densities, with low reproductive rates. For example,

some badger social groups remain chronically infected for many years, while

neighbouring groups remain uninfected (Vicente et al., 2007a). Studies are needed

in relation to culling disruption of social and territorial organization in the wild

boar (Scillitani et al., 2010).

As discussed in Laddomada (2000), culling was ineffective to control CSF

because of (1) interference with the establishment of herd immunity, as it induced a

quicker turnover of the population; (2) induction of long distance animal

movements and more frequent contacts between different groups of animals; and

(3) virus spread related to evisceration of carcasses and use of meat. By contrast,

our scenario has some dissimilarities with the CSF one. First, natural herd

immunity seems not to be relevant factor regarding TB epidemiology, although it

might be relevant for AD (De Jong and Kimman, 1994). Second, many SCS wild

boar populations are raised with supplementary feeding and watering within fenced

estates. So, a massive increase of long distance movements caused by culling is less

likely (Scillitani et al., 2010). However, consumption of wild boar carcasses or

hunting remains (gralloch or gut-piles) might constitute a relevant factor in the

maintenance of both TB and AD in SCS.

Since data on wild boar densities and total cull were only available for two

treatment sites, it is difficult estimating the threshold required for a significant

reduction of TB prevalence. However, a rough estimate based on these two sites

would be that culling at least 50% of the estimated population would allow

reducing TB prevalence by 23-50% in high prevalence sites. The annual hunting

harvest goal of a wild boar population is approximately 30% (Fernández-Llario and

Mateos-Quesada, 2003). So, to achieve a reduction of TB prevalence a 67%

increase of this cull would be necessary. Moreover, one must take into account that

in addition to the reduced prevalence in wild boar, a 50% reduction of wild boar

numbers would also contribute to a similar reduction in direct or indirect contact

193

Page 215: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

likelihood with this M. bovis reservoir host. So, effects on the TB status of

sympatric host species such as deer or cattle are indeed expected.

Third species

Despite the data we used in this study were not collected to analyze the effects

of wild boar culling on the TB prevalence in sympatric ruminants, data obtained on

cattle and deer suggest that some positive effect may exist. In site 4, the correlation

between percentage of cattle TB skin test reactors and wild boar culling (Figure 3)

may indicate some link between wild boar and cattle TB. Regarding deer, infection

prevalence decreased significantly in the only site where deer sampling was

representative enough. Moreover, the fact that only adult deer were infected at T2

evidences that red deer infection pressure declined after wild boar culling.

Pros & cons of culling wild boar

Under certain circumstances, culling may prove effective to achieve a rapid and

inexpensive reduction in wild boar TB prevalence. This suggests that increased

hunting could contribute within an integrated TB control strategy. However, even

though the wild boar is a game species, conflict with stakeholders such as hunters,

game producers, conservationists (in protected areas) and even the general public

can arise when culling is considered (White et al., 2011). Moreover, culling alone,

especially in large areas, is likely not a sustainable long term option: in private-

owned hunting estates, high densities are targeted to maximize profit and in public

lands budget constraints and public opinion will limit its use. Wild boar are

extremely able to adapt to different environmental circumstances and will respond

to increased mortality through a compensatory larger reproductive success

(Gethöffer et al., 2007; Fonseca et al., 2011). Finally, even if all key maintenance

hosts were extirpated from a given area, sympatric alternative M. bovis hosts could

eventually maintain the infection. This is particularly a risk in the case of long-lived

hosts such as the red deer (Nugent, 2011).

194

Page 216: Los abajo firmantes, como directores de esta tesis

Capítulo 5.2

Alternatives (or complements) to culling

Diseases are a natural component of ecosystems. However, the extremely high

TB and AD prevalences recorded in SCS are in part due to human intervention

(Vicente et al., 2007b; Ruiz-Fons et al., 2008c). In SCS, overabundance and spatial

aggregation are key factors modulating infection patterns. So, reducing density or

aggregation would be the most straightforward strategy for disease control.

However, reduced densities may be achieved by two means: habitat management

and population reduction (culling). For instance, limiting feeding would reduce the

carrying capacity of wildlife habitats and reduce wild boar density in a more

sustainable way than culling. Moreover, aggregation at feeders would no longer take

place, even if the risk would persist at waterholes (Gortázar et al., 2008). Since the

management characteristics of each estate are among the determinants of disease

transmission (at least can favour disease persistence that thereafter can disperse to

neighbouring territories), one future direction is to convince hunters and wildlife

managers of the benefits of management for quality instead of quantity (Gortázar

et al., 2006; Vicente et al., 2007b). That is, information campaigns (for example TB

in possum in NZ; http://www.ahb.org.nz/). Since disease can spill back from

cattle to wildlife, farmers need to be part of the strategy. Any action encouraged to

mitigate wildlife-livestock interaction is welcomed, especially when culling would

boost such interaction due to increased wild boar movements and contacts with

cattle.

Alternatively, red deer and wild boar within clusters of intensely managed

fenced hunting estates could be defined as semi-domestic livestock. As such,

specific regulations regarding TB control, segregation from cattle, game meat

inspection and pre-movement testing, could eventually be implemented.

The last but likely most expensive alternative to culling is vaccination. In

principle, it is possible to immunize wild boar against ADV (Ruiz-Fons et al.,

2008a) and against M. bovis (Ballesteros et al., 2009b; Garrido et al., 2011). With this

purpose, specific baits have been designed (Ballesteros et al., 2009a) and

195

Page 217: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

196

deployment strategies tested (Ballesteros et al., 2010). However, field vaccination

experiments are pending and it is unlikely that vaccination alone will allow

controlling infections at large spatial scales, particularly under funding constraints.

We conclude that the effectiveness of culling in terms of prevalence reduction

is linked to the epidemiology of each disease. We advocate that culling could

become a part of integrated control strategies including management changes and

vaccination, particularly if an initial short term but substantial reduction of host

density and disease prevalence could contribute to increase the success likelihood

of other control tools, or contribute to reduce the total expenses.

Acknowledgements

Authors thank all colleagues at IREC that participated in the fieldwork. We thank Yolanda Fierro

for access to her study site and for sharing valuable data. We also thank the “Equipo de

Seguimiento de Procesos Naturales de la Estación Biológica de Doñana" for sharing the data on

wild boar abundance (http://www-rbd.ebd.csic.es/Seguimiento/mediobiologico.htm) and José

Antonio Muriel and the rest of the colleagues from the Doñana National Park for making the

sampling possible.

Page 218: Los abajo firmantes, como directores de esta tesis

Capítulo 6

CAPÍTULO 6. DISCUSIÓN

Seis recomendaciones para la mejora de la

monitorización de las enfermedades compartidas

Boadella, M., Gortázar, C., Acevedo, P., Carta, T., Martín-Hernando, M.P., de la Fuente, J., Vicente, J. 2011. Six recommendations for improving monitoring of diseases shared with wildlife: examples regarding mycobacterial infections in Spain. European Journal of Wildlife Research 57, 697–706.

Page 219: Los abajo firmantes, como directores de esta tesis
Page 220: Los abajo firmantes, como directores de esta tesis

Capítulo 6

199

Resumen

La monitorización resulta necesaria para identificar cambios de prevalencia de

las enfermedades y para medir el impacto de eventuales intervenciones. Usando

como ejemplo las enfermedades causadas por micobacterias, en este trabajo se

discuten los pros y contras del Plan Nacional de Vigilancia Sanitaria en España,

aportando sugerencias para la monitorización de enfermedades relevantes

compartidas con la fauna silvestre en otras regiones con situaciones similares.

Deberían considerarse seis puntos: (1) asegurar que la enfermedad se monitoriza en

los animales domésticos o incluso en humanos; (2) asegurar que se dispone de

información sobre la ecología de las poblaciones silvestres para así maximizar los

beneficios del esfuerzo de monitorización; (3) seleccionar los hospedadores

adecuados para monitorizar, siendo suficientemente flexibles para incorporar otros

nuevos si surgen resultados que así lo sugieren; (4) seleccionar métodos apropiados

para el diagnóstico y para el análisis de tendencias espacio-temporales; (5) decidir

qué parámetros monitorizar; y finalmente (6) establecer un esfuerzo de muestreo

razonable y suficientemente estratificado para garantizar la detección de cambios en

el tiempo o en respuesta a acciones de manejo. La monitorización sanitaria de la

fauna genera información que beneficia al menos a tres sectores, sanidad animal,

salud pública y conservación. Éstos deberían combinar esfuerzos y recursos para

hacer viable la monitorización. El establecimiento de programas estables,

exhaustivos y precisos a distintas escalas espaciales, debería convertirse en una

prioridad. Los recursos siempre son un factor limitante, pero la experiencia

demuestra que los esfuerzos combinados y en colaboración permiten establecer

programas con un coste suficientemente bajo como para resultar sostenibles en el

tiempo. Estos seis pasos para la monitorización de las enfermedades relevantes

compartidas se pueden adaptar a otras zonas geográficas y a distintas situaciones

epidemiológicas.

Page 221: Los abajo firmantes, como directores de esta tesis
Page 222: Los abajo firmantes, como directores de esta tesis

Capítulo 6

Abstract

Monitoring is needed to identify changes in disease occurrence and to measure

the impact of intervention. Using mycobacterial diseases as an example, herein we

discuss the pros and cons of the current Spanish Wildlife Disease Surveillance

Scheme providing suggestions for monitoring relevant diseases shared with wildlife

in other regions facing similar challenges. Six points should be considered. This

includes: (1) making sure the disease is properly monitored in the relevant domestic

animals or even in humans; (2) that background information on wildlife population

ecology is available to maximize the benefits of the monitoring effort; (3) selecting

the appropriate wildlife hosts for monitoring, while being flexible enough to

incorporate new ones if research suggests their participation; (4) selecting the

appropriate methods for diagnosis and for time and space trend analysis; (5)

deciding which parameters to target for monitoring; and finally (6) establishing a

reasonable sampling effort and a suitable sampling stratification to ensure detecting

changes over time and changes in response to management actions. Wildlife disease

monitoring produces knowledge that benefits at least three different agencies,

namely animal health, public health and conservation, and these should combine

efforts and resources. Setting up stable, comprehensive and accurate schemes at

different spatial scales should become a priority. Resources are always a limiting

factor, but experience shows that combined, cross-collaborative efforts allow

establishing acceptable schemes with a low enough cost to be sustainable over time.

These 6-steps for monitoring relevant shared diseases can be adapted to many

other geographical settings and different disease situations.

Introduction

The history of wildlife disease surveillance in Europe possibly started with the

first passive surveillance schemes set up in Scandinavian countries in the 1930s

(Mörner et al., 2002). Surveillance of rabies (King et al., 2004) and trichinellosis

(Blancou, 2001) started afterwards. However, the first scientific meetings did not

occur till the early 1990s (Symposium on the health and management of free-

201

Page 223: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

ranging mammals held in Nancy, France, in 1991; First conference of the European

section of the Wildlife Disease Association EWDA, in Paris, France, in 1994).

These meetings prompted a more widespread interest in wildlife disease

surveillance. In the last decades, classical swine fever in Eurasian wild boar (Sus

scrofa; Rossi et al., 2005) and highly pathogenic avian influenza (Chen et al., 2005),

further contributed to a growing interest on diseases shared with wildlife, such as

zoonotic diseases and diseases that have potential risk for domestic species

(Gortázar et al., 2007). Detection of these relevant diseases in wildlife was

identified as a determinant of the structure and function of European surveillance

schemes (Leighton, 1995). At a worldwide scale, the OIE (World Organization for

Animal Health) working group on wildlife diseases was also established in 1994. It

is now recognized that those countries which conduct disease surveillance of their

wild animal populations are more likely to detect the presence of infectious and

zoonotic diseases and to swiftly adopt counter measures (Mörner et al., 2002).

In Spain, the interest in wildlife diseases started in the 1980s and was boosted

in 1989 with the emergence of rabbit hemorrhagic disease in European wild rabbits

(Oryctolagus cuniculus; Villafuerte et al., 1994). In the last decade however, resources

for studying wildlife diseases increased after the identification of wildlife species as

actors in the epidemiology of important livestock diseases such as Aujeszky’s

disease (Müller et al., 1998), bluetongue (Ruiz-Fons et al., 2008d) and bovine

tuberculosis (bTB; Naranjo et al., 2008), and more recently after realizing the

importance of diseases in Iberian lynx (Lynx pardinus) conservation (Millán et al.,

2009). Risk factors for the appearance of wildlife reservoirs are commonly the

spillover from domestic livestock in combination with anthropogenic activities

such as translocation of wildlife, supplemental feeding of wildlife and wildlife

populations reaching densities beyond normal habitat carrying capacities (Gortázar

et al., 2006; Palmer, 2007). This, along with the size of the Spanish livestock

industry and the significant proportion of free range breeding systems, prompted

202

Page 224: Los abajo firmantes, como directores de esta tesis

Capítulo 6

specific calls for wildlife disease research in the national grant scheme in 2006 and

2008 (INIA-FAU, http://sp.inia.es/ucc/contenidos/memo1.pdf).

Using mycobacterial diseases as an example, herein we discuss the pros and

cons of the current Spanish Wildlife Disease Surveillance Scheme (MARM, 2011b)

providing suggestions for wildlife disease monitoring in other regions facing similar

challenges.

Mycobacterial diseases in European wildlife

Tuberculosis in Eurasian badgers (Meles meles) was first diagnosed in

Switzerland (Bouvier, 1963), a country where no further reports on wildlife TB

exist in the scientific literature (Wyss et al., 2000). Later, M. bovis was isolated from

badgers in southwest England in 1971 and Ireland in 1973. Since then, the

infection in badgers has been found throughout dense badger populations of

southwestern England and parts of Wales (Krebs, 1997) and throughout Ireland

(Dolan, 1993). By contrast, there was no published TB case in badgers from the

continent since the first description in Switzerland in the 1960’s, until a recent case-

report from Spain (Sobrino et al., 2008). This is surprising, since many countries in

continental Europe have both TB and badgers. Lower badger densities as

compared to Britain and Ireland may partly explain this absence. However, a lack

of targeted surveillance could also contribute (Artois et al., 2009).

More recently, a growing body of evidence suggests that other wildlife hosts do

also act as M. bovis reservoirs in different parts of Europe (Gortázar et al., in press),

including the Eurasian wild boar in Spain (Naranjo et al., 2008) and Portugal

(Santos et al., 2009) and several cervids in different countries (e.g. Gortázar et al.,

2008). As many countries attempt to eradicate bTB from domestic livestock,

success is impeded by spillback from wildlife reservoirs. It will not be possible to

eradicate M. bovis from livestock until transmission between wildlife and domestic

animals is halted. Such an endeavor will require a collaborative effort between

agricultural, wildlife, environmental and political interests (Palmer, 2007).

203

Page 225: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Nowadays TB is among the wildlife diseases receiving more attention by scientists

and government agencies.

Paratuberculosis in wildlife, by contrast, is receiving far less attention in wildlife

than TB. This disease, caused by Mycobacterium avium paratuberculosis (MAP), has been

considered as a major disease of ruminants for more than a century and has

significant economic and welfare effects on livestock in all continents. Recently,

this bacterium has received an increasing interest because of scientific evidence

suggesting that human infection with this micro-organism may be causing some,

and possibly all, cases of Crohn’s disease (Naser et al., 2004; Uzoigwe et al., 2007).

The incidence of paratuberculosis is high in animals kept intensively under

environmental and husbandry conditions which are conducive to the spread of the

infection (Chiodini et al., 1984). Cervids and other wild ruminants have frequently

been identified as MAP hosts, and high prevalence along with clinical disease was

reported in some cases (Balseiro et al., 2008), but not in others (Carta et al., in

press). In Scotland, wild rabbits have been identified as true wildlife MAP

reservoirs, too (Beard et al., 2001), and a similar status may locally apply in Spain

(Maio et al., 2011).

However regular surveillance, other than the annual reporting of TB cases and

far more sporadic reporting of wildlife paratuberculosis to the OIE, is not done at

the (European) country level, or at least not recorded in the scientific literature.

Wildlife disease monitoring

Wildlife disease monitoring can be defined as the systematic recording of

epidemiological data, with the specific purpose of detecting spatial and temporal

trends as well as the presence/absence of the disease. Data and samples gathered

can be used for detecting emerging diseases (Rhyan and Spraker, 2010) and in

retrospective studies (Oleaga et al., 2008; Ruiz-Fons et al., 2008d). Ideally,

monitoring information should integrate data on the risk factors determining the

pathogen epidemiology, such as host abundance and distribution, as they can

204

Page 226: Los abajo firmantes, como directores de esta tesis

Capítulo 6

inform us on potential disease spread in a given spatial or temporal frame. The

concept is similar to surveillance, which is done in order to meet the objectives of

controlling the disease (Artois et al., 2009). In contrast to disease surveillance,

which may be passive based on clinical cases, or active based on random sampling,

monitoring is more often active.

Disease control at the human – livestock – wildlife interface should be based

on a thorough knowledge of the "natural history" (ecology) of the disease agent

and its human, domestic and wild hosts (Woodford, 2009). Disease and population

monitoring is a fundamental part of disease ecology. Figure 1 presents a diagram of

how new diseases usually lead first to descriptive epidemiology and eventually to

risk factor analyses and control actions. If humans or domestic animals are

affected, disease monitoring will start early in time. The decision to monitor this

disease in wildlife will depend on the relevance of wildlife hosts as disease

reservoirs for humans or domestic animals or on the effects of the disease on

wildlife population dynamics. Only if at least one of these options is suspected, will

monitoring of the disease among wildlife hosts be considered. As a consequence,

wildlife disease monitoring usually starts much later in time. However, while this is

the case for most regions in developed countries, in areas where wildlife species

provide greater economic returns than livestock, the opposite might be the case.

This has driven wildlife research and monitoring schemes in less-developed

countries where livestock and human health care are poor or non-existent (Kock et

al., 2002).

Disease monitoring in wildlife is promoted in order to obtain information to

compare with the distribution and prevalence trends in livestock; as a basis for

decision making regarding wildlife disease control; and as a means for assessing the

effects of any disease management action. Monitoring, by definition, has no limited

time frame. Monitoring wildlife disease trends requires adequate diagnostic

methods and differential diagnoses; a large scale and long term sampling network;

the logistics linked to the preparation, distribution and conservation of valuable

205

Page 227: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

wildlife samples; and expertise for data management and analysis. In addition, a

vital need exists to gather data from the ecology and wildlife management field, in

order to combine them with disease information regarding both wildlife and

livestock (Delahay et al., 2009).

Figure 1.- Schematic representation of disease management in humans and domestic animals (upper part) and wildlife (lower part). Dotted boxes indicate decisions and the arrow at the bottom suggests time. Wildlife disease monitoring will mainly occur if wildlife species are identified as significant reservoirs for humans or domestic animals, or if the disease has a significant impact on wildlife populations. This will probably happen later in time than monitoring in humans or domestics.

Recommendations for monitoring diseases in wildlife

To properly monitor a wildlife disease, several points must be considered. This

includes (1) making sure the disease if shared, is properly monitored in the relevant

domestic animals or even in humans; (2) also making sure that background

information on wildlife population ecology is available to maximize the benefits of

the monitoring effort; (3) selecting the appropriate wildlife hosts for monitoring,

while being flexible enough to incorporate new ones if research suggests their

206

Page 228: Los abajo firmantes, como directores de esta tesis

Capítulo 6

participation; (4) selecting the appropriate methods for diagnosis and for

time/space trend analysis; (5) deciding which parameters to target for monitoring:

one or more disease agents, or lesions, or contact as revealed by serum antibodies?;

and finally (6) establishing a reasonable sampling effort and a suitable sampling

stratification that can be prolonged over time.

First, if the disease is shared with humans or domestic animals, do appropriate

monitoring programs that allow for instance trend comparisons between these and

wildlife, exist? Regarding bTB, good information on prevalence and incidence in

bovine livestock will be available in most European situations. But, at the same

time, information may be lacking for other relevant – or potentially relevant –

domestic species, such as goats and free-range pigs.

Second, wildlife disease monitoring will only make sense if population

monitoring is carried out at the same time, allowing to link changes in abundance

or management with changes in disease indicators (Acevedo et al., 2007b). This

should not only include the target wildlife hosts, but also other relevant competitor

or prey species (Sobrino et al., 2009).

Third, wildlife disease monitoring should select for the most appropriate

wildlife hosts, considering distribution, abundance, degree of protection, prevalence

and disease susceptibility, but also ease of sample collection and diagnostic

sensitivity and specificity. For instance, in Spain TB has mainly been recorded in

wild boar, red deer (Cervus elaphus) and fallow deer (Dama dama; e.g. Gortázar et al.,

2008), and as previously stated, sporadically in badgers (Sobrino et al., 2008). TB

has also occasionally been described in red fox (Vulpes vulpes; Martín-Atance et al.,

2005) and Iberian lynx (Lynx pardinus; Peña et al., 2006). However, wild boar are

considered the best TB surveillance target because of their wider distribution and

higher abundance, high availability as a game species, and because of their lesion

distribution (Martín-Hernando et al., 2007). The recent design of a specific and

sensitive enough ELISA test (Aurtenetxe et al., 2008; Boadella et al., 2011b) makes

sample harvesting and laboratory analyses relatively easy even if only head lymph

207

Page 229: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

nodes and blood samples are available. By contrast, the detection of TB compatible

lesions in cervids requires the inspection of the head and neck, thorax and

abdomen (Vicente et al., 2006; Martín-Hernando et al., 2010). Moreover, wild

ruminants are often infected with other mycobacteria such as MAP, further

compromising diagnostic specificity of some tests, particularly those based on

serum antibodies (Reyes-García et al., 2008; Carta et al., in press). In turn, badgers

have a more limited distribution in Spain and are protected by law, making

sampling difficult. However, monitoring schemes should be flexible enough to

allow incorporating new species if research suggests their participation in disease

epidemiology (Delahay et al., 2001).

Fourth, the diagnostic and statistic methods should be defined in a way

assuring repeatability and data quality. Diagnostic methods selected for wildlife

disease monitoring will depend on factors such as the selected host species and

expected sample size, the cost of each test, and its specificity and sensitivity. Tests

suitable for their use in wildlife are not always available, and the difficulties

imposed by field sampling contribute to reduce test sensitivity (Donnelly and

Hone, 2010). Statistical methods will depend on factors such as the expected

prevalence, the geographic scale, the length of the time series and the degree of

change in time of the measured variable, being it prevalence or lesion intensity (Joly

et al., 2009). It is often of use to study the age-specific prevalence rates, particularly

using juvenile prevalence as a proxy for incidence (Wobeser, 1994).

Epidemiological data are peculiar from a statistical perspective. Data with

aggregated distributions are usual in the epidemiological databases so parametric

statistics, which are requiring normal distribution of the data, cannot be generally

used (e.g. Jewell, 2009). So, in risk factor and disease trend assessment, generalized

models – with Poisson, negative binomial, zero-inflated or binomial distributions –

are needed. Information is often generated at different spatial scales – from

individual to population or even to region – and so it is required to use mixed

models in which, by means of random variables, pseudo-replication can be avoided

208

Page 230: Los abajo firmantes, como directores de esta tesis

Capítulo 6

(Zuur et al., 2009). Another essential peculiarity is that the epidemiological data of

different host species is rarely available at the same spatial resolution and at a high

enough resolution to allow meaningful inferences to be made. In general terms,

data analyzed should be referred to the same territorial units (municipalities or

provinces, for example), and the lowest resolution will determine the spatial

resolution of the analysis (see Pfeiffer et al., 2008).

Fifth, once the host species are defined, it must be decided what to target for

monitoring. This means defining the agent or agents: M. bovis only, or members of

the M. tuberculosis complex (MTBC), or MTBC and MAP, for instance; and also

defining what data will be needed, be it the antigen by culture or PCR, specific

antibodies or even characteristic lesions (Vicente et al., 2006; Aurtenetxe et al.,

2008; Santos et al., 2010). It is important to choose parameters for which detection

tools of known effectiveness are available (Wobeser, 1994). In addition, it is

important to consider testing expenses and budget limitations. Thus, if funding is

limited it can be wise to combine more expensive techniques such as culture,

applied for confirmation to a subsample, with cheaper techniques such as gross

pathology (e.g. Vicente et al., 2006). In most cases of mycobacterial disease

monitoring, the target will be MTBC, but under certain circumstances monitoring

may need to include MAP because of the relevance of cross-reactivity to the tests

used, or because of the importance of MAP for the regional livestock industry (e.g.

Balseiro et al., 2008). Moreover, prevalence rates have a limited value for

monitoring chronic diseases with a very protracted course (Wobeser, 1994), such as

mycobacterial infections.

Finally, it is of paramount importance defining an adequate and reasonable

sample size as well as number and distribution of sampling localities according to

statistical recommendations (Table 1). This must keep in mind the budget and the

current and future logistic constraints, such as the laboratory analysis throughput

per day, the space available for short and long term sample storage, and the design

of proper databases and sample banking registers. Moreover, sampling must be

209

Page 231: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

adequately stratified by age and sex (Vicente et al., 2006), management (Vicente et

al., 2007b) and study zone (Muñoz et al., 2010). Epidemiology software can help

identifying suitable sample sizes enabling to detect time trends when a known initial

prevalence and an expected prevalence change are given (e.g. Win Episcope; EFSA,

2010). For instance, sampling requirements will depend on the expected initial

prevalence or the expected degree of change in these prevalences from time 1 to

time 2 (Table 1). In order to spare costs, it may be advisable to pool samples for

analysis (e.g. Tayce et al., 2008) or to accumulate samples gathered during several

years until the required sample size is achieved (see Table 2).

Table 1.- Sample effort needed for the detection of disease according to the expected prevalence (assuming a population size of >10,000) and for the detection of prevalence variations over 50% according to the initial prevalence (with a power of 90% and confidence level of 95%; Win Episcope 2.0).

Detection P>10,000 Expected prevalence 0.1% 1% 5% 10% Required sample size 2,990 300 59 29 Variation >50% Initial prevalence 1% 12% 30% 60% Required sample size 5,098 387 130 44

Table 2.- Example regarding the Spanish Wildlife Disease Surveillance Scheme. Probability of detection: Annual samples by taxon and bio-region (BR 1 to 6). Shadings indicate that sampling is sufficient for the detection of prevalences of 10% (light grey), 5% (medium grey), and 1% (dark grey), with a power of 90% and confidence level of 95%; Win Episcope 2.0. White boxes represent situations where these levels are not achieved in only one year of sampling.

Birds Carnivores Hares Rodents

Wild boar

Red deer

Roe deer

Wild bovids

BR 1 200 60 0 100 400 70 50 20

BR 2 100 60 120 200 570 190 60 40

BR 3 100 60 90 100 510 250 35 30

BR 4 100 60 60 100 245 120 40 60

BR 5 200 60 65 0 345 50 20 75

BR 6 100 0

TOTAL 800 300 335 500 2,070 680 205 225

210

Page 232: Los abajo firmantes, como directores de esta tesis

Capítulo 6

Monitoring mycobacterial diseases in Spanish wildlife

Spain is a 504,782 Km2 country in southwestern Europe that includes two

archipelagos, the Canary Islands off the West African coast, the Balearic Islands in

the Mediterranean, and the Autonomous Towns of Ceuta and Melilla in the north

of Africa. Based on habitat and climate features and wildlife population

characteristics, Spain can roughly be divided into 6 Bio-regions (Muñoz et al., 2010;

Figure 2). The compulsory control of bTB in Spanish cattle has been successful, so

that current individual cattle incidence is below 0.5%. However, the distribution of

positive cattle herds is not uniform, with higher prevalence in Mediterranean

habitats of the south and west of the Spanish mainland. Islands with no potential

wildlife reservoirs are almost bTB-free (MARM, 2011a). Of the susceptible

domestic hosts, bTB is only monitored in cattle and in goats living in close contact

to cattle. Some regions have also implemented compulsory or voluntary bTB

control programs in goats. In Spain, paratuberculosis has been diagnosed for over

20 years in all three (cattle, sheep and goat) domestic ruminant species (Aller et al.,

1973; Garrido and León-Vizcaíno, 1979), but is not monitored.

Figure 2.- Map of Spain, with a division into six large Bio-regions for sampling and wildlife disease monitoring, according to the Spanish Wildlife Disease Surveillance Scheme.

211

Page 233: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

The current situation regarding tuberculosis in Spanish wildlife was recently

reviewed (Gortázar et al., 2011). Paratuberculosis, in turn, has been recorded in

farmed red deer (Fernández-de-Mera et al., 2009), but preliminary data from

nationwide surveys suggest that wildlife is only locally relevant in MAP

epidemiology (Carta et al., in press). This is the case of fallow deer in an intensively

grazed mountain area in northern Spain (Balseiro et al., 2008) and possibly of

European wild rabbits sharing pastures with infected domestic ruminants in

southern Spain (Maio et al., 2011). Sporadic records of MAP are also available for

wild boar (Álvarez et al., 2005).

So, wildlife TB prevalence is two orders of magnitude higher than in cattle, and

it is most likely that certain wildlife reservoirs might locally interfere with the cattle

bTB eradication efforts (Gortázar et al., 2008). In addition, TB has killed several

endangered Iberian lynxes causing conservation concerns (Peña et al., 2006). These

are clear reasons for targeting wild ungulates for TB monitoring, and for taking into

account the possible interference of MAP in certain diagnostic tools and host

species (Boadella et al., 2011b; Carta et al., in press). Table 3 presents an overview

of the application of the six abovementioned recommendations to the current

Spanish circumstances.

Table 3.- Main requisites, current circumstances, and recommendations for tuberculosis monitoring in Spanish wildlife.

Requisite Current circumstances Recommendations (1) Disease is properly monitored in the relevant domestic animals or even in humans.

Excellent monitoring in cattle. No nationwide compulsory monitoring in other domestic animals. Human cases not always differentiated from M. tuberculosis.

Include most goat herds in monitoring. Improve information exchange with medics.

(2) Background information on wildlife population ecology is available to maximize the benefits of the monitoring effort.

Tools for estimating relative abundance and spatial aggregation are available for wild boar (Acevedo et al., 2007b). No easy density estimation methods are available for wild boar. In deer, population density can be estimated (Acevedo et al., 2008; 2010c). Management-related risk factors (feeding, waterholes, fencing) have been identified (Vicente et al., 2007b) and are monitored.

Decide a tool (dung counts and/or hunting yields) and apply to all selected sampling sites. Characterize other risk factors and monitor their changes through time.

212

Page 234: Los abajo firmantes, como directores de esta tesis

Capítulo 6

Table 3.- Continued.

Requisite Current circumstances Recommendations

(3) Select the appropriate wildlife hosts for monitoring, while being flexible enough to incorporate new ones.

Wild boar is an accessible and widespread game species; is more able to cross fences and likely to contact cattle than other ungulates; and serosurveillance already exists for other infections. Deer are not as widespread. Badger distribution and abundance is limited. Foxes are poor sentinels for mycobacterial diseases (Carta et al., 2011).

Use wild boar as key indicator species. Collect head lymph nodes and sera, along with data on sex and age. Where available, use red deer, fallow deer and badger, too.

(4) Select appropriate methods for diagnosis and for time trend analysis.

Sensitive and highly specific ELISA available for wild boar (Aurtenetxe et al., 2008, Boadella et al., 2011b), lesions easily detectable in wild boar heads (Martín-Hernando et al., 2007). Cross reactions and low sensitivity limit the use of ELISA in deer, and TB monitoring in deer requires inspecting whole carcass and using expensive and time demanding pathology and culture (Martín-Hernando et al., 2010).

Use ELISA for calculating serum antibody prevalence, pathology for additional lesion scoring, and culture a subsample, for confirmation and molecular epidemiology. Expertise required for data management and statistical analysis.

(5) Decide which parameters to target for monitoring: one or more disease agents, or lesions, or contact as revealed by serum antibodies?

Serum antibodies and TB compatible lesions are time and cost – effective in wild boar (Vicente et al., 2006; Aurtenetxe et al., 2008; Santos et al., 2010; Boadella et al., 2011b).

Use wild boar serum antibody prevalence as main parameter, lesion scoring as additional tool. Pay attention to prevalence in juvenile age classes. Some proportion of culture confirmation is advisable for strain characterization and epidemiology.

(6) Establish a reasonable sampling effort and distribution.

Wildlife sampling bio-regions have been defined (Muñoz et al., 2010) and cattle bTB prevalence and distribution is well described. Sampling effort depends on regional wild boar abundance and the collaboration of hunters and local authorities.

Stratify sampling by bio-region and cattle bTB prevalence. Better sample from permanent sampling sites, which can be monitored for host abundance and management.

Discussion

As our knowledge on wildlife diseases grows, disease control becomes more

often an option. However, monitoring is needed to identify changes in disease

occurrence and to measure the impact of interventions (McDonald et al., 2008).

213

Page 235: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Despite this fact, wildlife disease monitoring is largely in its infancy (Artois et al.,

2009), and setting up stable, comprehensive and accurate schemes at different

spatial scales (local, national and global) should become a priority for health

authorities and wildlife managers.

In many countries including New Zealand, the United States, and several ones

in the European Union, wildlife vaccination as a means to contribute to bTB

control in livestock is being seriously considered (e.g. Ballesteros et al., 2009b;

Corner et al., 2009; Tompkins et al., 2009; Chambers et al., 2011). In this context,

the implementation of wildlife TB monitoring schemes is a real need.

One point to consider is who takes charge of the monitoring costs. Wildlife

disease monitoring produces knowledge that benefits at least three different

agencies, namely animal health, public health and conservation. It would be wise to

combine efforts and resources from all three compartments, and to take advantage

of already existing expertise in government agencies and academic institutions.

Government attitudes towards wildlife disease research have changed during the

last decades, for reasons already listed in the introduction. Now it is needed that

other stakeholders, too, such as the livestock industry, the hunting lobby or the

conservationists, and even medics, become convinced of the need to monitor

wildlife diseases if we are thinking about their future control. Successful examples

of collaboration between conservationists and vets (e.g. the detection and

management of feline leukemia in the endangered Iberian lynx, López et al., 2009),

between vets and medics regarding many zoonoses such as trichinellosis (e.g.

Wacker et al., 1999); and between conservationists, medics and vets, for instance in

zoonoses where wildlife are both reservoirs and victims, such as TB (Gortázar et

al., 2005, 2008) should serve as a trigger for future collaborations.

The 6-steps for surveillance of relevant shared diseases can be adapted to many

other geographical settings and different disease situations. Regarding

mycobacterial diseases, these are worldwide distributed, and do frequently affect

multi-host systems at the domestic animal – wildlife interface, as described for

214

Page 236: Los abajo firmantes, como directores de esta tesis

Capítulo 6

215

Spain. In any such situation, similar requisites to those outlined in Table 3 do apply.

The same requisites are also valid for other disease systems, if they affect domestic

animals or humans. For instance, deer might be better indicators of bluetongue

virus circulation than vaccinated domestic sheep or cattle (Rodríguez-Sánchez et al.,

2010).

Wildlife disease monitoring programs that are integrated within national animal

health surveillance infrastructures should have the capacity to respond promptly to

the detection of unusual wildlife mortality and to institute epizootiological

researches into new and emerging wildlife diseases (Mörner et al., 2002). Increased

training and preparedness of human and animal health staff and government

agencies, improved communication and continued research will enhance wildlife

monitoring efforts (Belant and Deese, 2010). Resources are always a limiting factor,

but the developments towards the monitoring of TB in Spanish wildlife show that

combined efforts of local and national government agencies, along with the

commitment of trans-disciplinary research can allow setting up acceptable schemes

with a low enough cost to be sustainable in time. Improvements, such as extending

animal TB surveillance to goats and pigs, and establishing improved links and data

exchange with the human health system, are still needed. There exist opportunities

for similar approaches elsewhere, regarding other diseases, hosts, and geographic

circumstances.

Acknowledgements

Tania Carta acknowledges a grant from Regione Sardegna, and Pelayo Acevedo and Maria Paz

Martín-Hernando acknowledge a Juan de la Cierva (Fondo Social Europeo) and an ISCIII

postdoctoral contract from MCINN, respectively. Jose Luis Sáez made valuable comments to the

first draft.

Page 237: Los abajo firmantes, como directores de esta tesis
Page 238: Los abajo firmantes, como directores de esta tesis

Capítulo 7

CAPÍTULO 7. SÍNTESIS Y CONCLUSIONES

Page 239: Los abajo firmantes, como directores de esta tesis
Page 240: Los abajo firmantes, como directores de esta tesis

Capítulo 7

SÍNTESIS

Este apartado sintetiza los contenidos más relevantes de la presente tesis,

poniendo especial énfasis en resaltar los resultados sobre tendencias temporales.

En el Capítulo 1, de revisión bibliográfica sobre tendencias temporales, se

pone de manifiesto que la repetición de estimas de prevalencia u otros indicadores

de frecuencia de las enfermedades, permite el seguimiento de su evolución en el

espacio y en el tiempo, y resulta imprescindible para evaluar el resultado de

eventuales estrategias de intervención. El número de muestreos, la prevalencia, el

estatus del hospedador (reservorio o accidental) y su densidad, resultaron ser

factores asociados con la probabilidad de identificar tendencias temporales, por lo

que esa es información que, en la medida de los posible, se debe aportar en los

estudios epidemiológicos.

El Capítulo 2 describe la metodología en vigilancia sanitaria de fauna

silvestre, dedicando atención al problema de la conservación de sueros y, en

concreto, al efecto de las descongelaciones sucesivas y de la hemólisis sobre la

detección de anticuerpos mediante ELISA. Utilizando como ejemplo un test para la

detección de anticuerpos frente al virus de la enfermedad de Aujeszky (VEA) en el

jabalí (Sus scrofa), se sugiere que los sueros con más de tres ciclos de

congelación/descongelación y una hemólisis de más de 3 en una escala de 4

deberían descartarse. Incluso sueros limpios, no hemolizados, nunca deberían pasar

por más de 5 ciclos de congelación/descongelación.

En el Capítulo 3, sobre vigilancia sanitaria de zoonosis, se aborda la

vigilancia sanitaria y el seguimiento temporal del contacto de los ungulados

silvestres de la Península Ibérica con tres agentes zoonóticos: el virus de la hepatitis

E (VHE), miembros del género Flavivirus, y el nematodo Trichinella spp.

219

Page 241: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Dados los resultados previos que describían un contacto extendido del jabalí

con el VHE en la Península Ibérica (de Deus et al. 2008), se testaron ciervos

Ibéricos (Cervus elaphus) para la detección de anticuerpos frente el VHE y para

detectar la presencia de ARN vírico por PCR. Un 10% y un 13% de los ciervos

analizados resultaron positivos al ELISA y a la PCR, respectivamente. El análisis

temporal de las prevalencias detectadas por ELISA entre el período 2000-2005 y el

período 2006-2009 reveló un incremento de la prevalencia del contacto con este

virus que junto a la detección de ARN vírico en esta especie, podría significar

también un aumento de la potencial exposición de las personas.

En cuanto a los flavivirus, se testaron jabalíes y ciervos jóvenes de distintas

regiones peninsulares con el objetivo de detectar la existencia de variabilidad

temporal en el contacto con los virus del género Flavivirus. Se observó que la

probabilidad de detectar contacto con flavivirus era 18 veces mayor en jabalíes

jóvenes que en ciervos de la misma edad. La seroprevalencia detectada en las

poblaciones de jabalíes se mantuvo estable durante los 11 años estudiados. Con los

resultados obtenidos se evidenció el uso potencial de los ungulados silvestres

juveniles, particularmente del jabalí, como centinelas de la circulación de flavivirus

en el sureste europeo.

Contrariamente a los dos trabajos anteriores, el ELISA para la detección de

anticuerpos frente a Trichinella spp. en el jabalí no resultó ser una herramienta útil

para su monitorización dada su baja especificidad. En cambio, el análisis temporal

de los resultados de las inspecciones oficiales y detección de Trichinella spp. en carne

de jabalí evidenció una tendencia decreciente de los casos positivos en la provincia

de Ciudad Real para el período 1998-99 a 2009-10.

En el Capítulo 4, sobre riesgos sanitarios asociados al manejo cinegético

intensivo de los ungulados silvestres, se analizan los factores de riesgo que

determinan las variaciones temporales en el contacto de ungulados silvestres con

220

Page 242: Los abajo firmantes, como directores de esta tesis

Capítulo 7

siete patógenos relevantes y su posible asociación a prácticas de manejo cinegético

intensivo.

En primer lugar, se estudió la evolución temporal del contacto de poblaciones

de jabalí con el VEA durante un período de 10 años. Se observó que la alta

proporción de sitios de estudio positivos permanecía estable mientras que para el

cerdo doméstico, el número de comarcas positivas disminuía del 70% al 1,7%

durante el mismo período. Se constató que las prevalencias más altas de contacto

con el VEA se detectaban en áreas donde existe un frecuente manejo intensivo de

las poblaciones de jabalí. Este hecho pone de relieve el creciente riesgo que puede

suponer el jabalí para la erradicación del VEA en el cerdo doméstico, especialmente

en aquellas situaciones donde haya contacto entre los dos.

Cuando se analizaron las prevalencias de anticuerpos frente al circovirus

porcino tipo 2 (PCV2), al VHE y a Erysipelothrix rhusiopathiae en distintas

poblaciones de jabalí para el período 2000-2011, las prevalencias observadas de

PCV2 y VHE se mantuvieron estables, mientras que la de E. rhusiopathiae

disminuyó. Las altas prevalencias encontradas sugieren que los factores

previamente identificados como de riesgo (Vicente et al., 2004; Acevedo et al.,

2007b), siguen estando presentes y deberían tenerse en cuenta para el control de las

enfermedades en la interfaz domésticos-silvestres.

Las prevalencias más altas de anticuerpos frente a Brucella suis y a los miembros

del complejo Mycobacterium tuberculosis (CMTB), causantes de la tuberculosis (TB), se

encontraron en las poblaciones de jabalí del centro-sur peninsular en comparación

con otras áreas estudiadas de la Península Ibérica. En ambos casos la serología

demostró que el contacto con los dos agentes infecciosos está extendido en las

poblaciones de jabalí y que las altas prevalencias persisten a lo largo del período

estudiado. En el caso de la TB, la aplicación de esta nueva técnica de diagnóstico

permitió detectar que el rango geográfico del contacto con CMTB era más amplio

de lo esperado.

221

Page 243: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

El Capítulo 5, sobre aportaciones al control de las enfermedades

compartidas, describe la tendencia temporal estable de las lesiones compatibles

con TB (TBL) en poblaciones ibéricas de ciervo y cómo sólo en una de las 20

localidades estudiadas, la prevalencia de TBL disminuyó entre los años 2000 y 2011.

Los resultados obtenidos para esta localidad, sugieren que se trata de un efecto del

control numérico no selectivo de jabalíes en esa localidad.

La reducción de las poblaciones de jabalí tuvo efecto sobre los indicadores de

sus propias prevalencias de TB, pero también sobre la incidencia de reactores

bovinos a la prueba de tuberculina y sobre la prevalencia de infección por M. bovis

en el ciervo. De forma contraria, la prevalencia conjunta de contacto con el VEA

en el jabalí se mantuvo estable en los sitios sometidos a una reducción numérica no

selectiva de jabalíes. Ello sugiere que la eficacia del control numérico como

herramienta de manejo sanitario en fauna silvestre está ligada a la epidemiología de

cada enfermedad. Para el caso de la TB, el control numérico no selectivo de jabalí

podría aplicarse como paso inicial dentro de una estrategia integrada de control de

esta enfermedad.

La discusión de esta tesis, Capítulo 6, se centra en la necesidad de la

monitorización sanitaria de la fauna silvestre como herramienta para detectar

cambios en las enfermedades y para poder medir el impacto de eventuales

intervenciones. Se utilizan las enfermedades causadas por micobacterias como

ejemplo para discutir sobre los pros y los contras del Plan Nacional de Vigilancia

Sanitaria en España. Se proponen seis medidas para mejorar la monitorización

sanitaria en fauna silvestre que pueden ser adaptadas a otras zonas y otras

situaciones de enfermedad. Dichos puntos son los siguientes: (1) asegurar que la

enfermedad se monitoriza en los animales domésticos o incluso en humanos; (2)

asegurar que se dispone de información sobre la ecología de las poblaciones

silvestres para así maximizar los beneficios del esfuerzo de monitorización; (3)

seleccionar los hospedadores adecuados para monitorizar, siendo suficientemente

222

Page 244: Los abajo firmantes, como directores de esta tesis

Capítulo 7

flexibles para incorporar otros nuevos si surgen resultados que así lo sugieren; (4)

seleccionar métodos apropiados para el diagnóstico y para el análisis de tendencias

espacio-temporales; (5) decidir qué parámetros monitorizar; y finalmente (6)

establecer un esfuerzo de muestreo razonable y suficientemente estratificado para

garantizar la detección de cambios en el tiempo o en respuesta a acciones de

manejo.

La monitorización sanitaria de la fauna genera información que beneficia a la

sanidad animal, la salud pública y la conservación. Los gestores de estos tres

sectores deberían combinar esfuerzos y recursos para establecer programas de

monitorización sostenibles, sólidos, exhaustivos y precisos a distintas escalas

espaciales.

En conjunto, esta tesis no ha identificado tendencias temporales significativas

para el contacto con flavivirus, VEA, PCV2, VHE, B. suis en jabalí, ni para el

contacto con CMTB en ciervo y jabalí. Debe tenerse en cuenta que la tesis abarca

un periodo de poco más de una década, relativamente corto, y que durante esta

década no han tenido lugar cambios drásticos en cuanto a manejo y gestión de los

ungulados silvestres españoles, como por ejemplo ocurrió con las repoblaciones de

los años 1960 y 1970, o con la proliferación de vallados cinegéticos en los años

1980 y 1990. En el caso del contacto con flavivirus esta ausencia de tendencias

temporales se debe por una parte a que con prevalencias tan bajas resulta difícil

identificar variaciones significativas, y por otra a que los ungulados silvestres

simplemente reflejan una dinámica entre virus, vectores y aves, en la que no tienen

participación directa. En la mayoría de los demás casos, la estabilidad temporal

observada sugiere que los citados patógenos ya han alcanzado su máxima difusión

en las poblaciones de hospedadores. En consecuencia, las altas prevalencias y su

estabilidad en el tiempo indican que esos agentes patógenos constituyen un

problema permanente para la salud pública, la sanidad animal y la conservación.

Por otra parte, se observa que tales variaciones sí ocurren a escalas más reducidas,

223

Page 245: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

224

por ejemplo a nivel de aquéllas localidades de estudio en las que se han producido

cambios significativos de gestión. Esto implica que, como es natural, nuestra

percepción de las variaciones en el tiempo es dependiente de la escala espacial y

temporal que definamos.

El único caso en el que se observa un incremento general en el contacto entre

un patógeno y su hospedador silvestre es el de VHE en el ciervo. Este fenómeno

podría deberse a que el ciervo refleja con retraso la previa difusión de VHE en la

población simpátrica de jabalí, su hospedador silvestre principal. Esta posibilidad se

vería apoyada por la observación de que las menores prevalencias de VHE en

ciervo se registran en granjas donde no hay contacto ciervo/jabalí.

Dos patógenos, Erysipelothrix rhusiopathiae y Trichinella spp., disminuyen en

prevalencia durante el periodo de estudio. Nuevamente, se trata de observaciones

difíciles de explicar. Ambos patógenos tienen la capacidad de aprovechar múltiples

especies hospedadoras. En consecuencia, cabe especular que la progresiva

simplificación de los ecosistemas, consecuencia a su vez de la creciente

intensificación de los sistemas de producción cinegética, afecte negativamente al

éxito de transmisión de los patógenos que dependan de relaciones complejas entre

hospedadores. Por el contrario, tales entornos facilitarían el mantenimiento de

patógenos densodependientes.

En el futuro, convendría aprovechar los contrastes entre los espacios naturales

menos alterados y las explotaciones cinegéticas y ganaderas para explorar en

profundidad la interacción entre la biocenosis y la comunidad de patógenos a fin de

identificar patrones y mecanismos que contribuyan a explicar su evolución en el

tiempo.

Page 246: Los abajo firmantes, como directores de esta tesis

Capítulo 7

CONCLUSIONES

1. La monitorización sanitaria de la fauna silvestre es una parte necesaria de la

vigilancia sanitaria, que debe integrarse con la vigilancia en salud pública y en

ganadería. Una monitorización eficaz permite detectar variaciones temporales

y espaciales del contacto de la fauna con agentes patógenos, así como evaluar

críticamente la eficacia de eventuales medidas de control.

Wildlife disease monitoring is a substantial part of disease surveillance that should be

integrated with public and livestock health surveillance. An effective monitoring allows the

detection of spatio-temporal trends of wildlife contact with pathogens. It also allows assessing

critically the efficacy of eventual control measures.

2. En particular, los ungulados silvestres presentan gran variabilidad demográfica,

de gestión, exposición a patógenos e interacción con otra fauna silvestre,

ganado y humanos. Por ello, es importante integrar la monitorización sanitaria

con la biología y gestión de las poblaciones estudiadas.

Wild ungulates present a great variability in demography, management, exposure to

pathogens, and interaction with other wildlife, livestock and humans. Therefore, it is

important to integrate the sanitary aspects with the biology and management of the studied

populations.

3. El creciente manejo cinegético intensivo de la caza mayor en terrenos vallados,

así como la sobreabundancia, se asocian negativamente con la evolución en el

tiempo del contacto de los ungulados cinegéticos con agentes patógenos

compartidos con los animales domésticos y las personas.

The increasing intense management of big game for hunting, along with overabundance,

negatively modulate the temporal trend of the contact between wild ungulates and pathogens

shared with livestock and humans.

4. La permanencia en el tiempo de las situaciones de reservorio silvestre de

enfermedades compartidas, incluyendo enfermedades emergentes y re-

emergentes como la hepatitis E o la tuberculosis, tiene consecuencias para la

salud pública, la sanidad animal, la conservación y la producción cinegética.

225

Page 247: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

226

The persistence over time of wild reservoirs of shared diseases, including emerging or resurgent

diseases such as hepatitis E or tuberculosis has consequences for public health, animal

health, conservation and game production.

5. Por primera vez se evidencia una asociación entre la reducción no selectiva de

la población de jabalí y un descenso en la prevalencia de tuberculosis en

rumiantes. Es urgente abordar investigaciones experimentales sobre las

distintas opciones para el control de las enfermedades compartidas. Estas

estrategias de control deberían ser integradas y sostenibles.

An association between wild boar culling and a decreasing prevalence of tuberculosis in

ruminants is evidenced for the first time. Experimental research on the different control

options for shared diseases is urgently needed. Control strategies based on this research should

be integrated and sustainable.

6. Todo programa de monitorización debería contar con el conocimiento sobre

cuáles son los hospedadores, los métodos de diagnóstico y de tratamiento de

datos, los parámetros a monitorizar y el tamaño y estratificación del muestreo

más adecuados para optimizar la detección de cambios en el tiempo en el

contacto con patógenos.

Every monitoring program should rely on knowledge about the most appropriate hosts,

diagnostic and data analysis tests, parameters to monitor and size and stratification of the

sample in order to optimize the detection of changes over time of the contact with pathogens.

Page 248: Los abajo firmantes, como directores de esta tesis

Bibliografía

BIBILIOGRAFÍA

Acevedo, P., Delibes-Mateos, M., Escudero, M.A., Vicente, J., Marco, J., Gortázar, C., 2005. Environmental constraints in the colonization sequence of roe deer (Capreolus capreolus Linnaeus, 1758) across the Iberian Mountains, Spain. J. Biogeogr. 32, 1671-1680.

Acevedo, P., Escudero, M.A., Muñoz, R., Gortázar, C., 2006. Factors affecting wild boar abundance across an environmental gradient in Spain. Acta Theriol. 51, 327-336.

Acevedo, P., Cassinello, J., Gortázar, C., 2007a. The Iberian ibex is under an expansion trend but displaced to suboptimal habitats by the presence of extensive goat livestock in central Spain. Biodiv. Conserv. 16, 3361-3376.

Acevedo, P., Vicente, J., Hofle, U., Cassinello, J., Ruiz-Fons, F., Gortázar, C., 2007b. Estimation of European wild boar relative abundance and aggregation: a novel method in epidemiological risk assessment. Epidemiol. Infect. 135, 519-527.

Acevedo, P., Ruiz-Fons, F., Vicente, J., Reyes-Garcia, A.R., Alzaga, V., Gortázar, C., 2008. Estimating red deer abundance in a wide range of management situations in Mediterranean habitats. J. Zool. 276, 37-47.

Acevedo, P., Ruiz-Fons, F., Estrada, R., Luz Marquez, A., Angel Miranda, M., Gortázar, C., Lucientes, J., 2010a. A Broad Assessment of Factors Determining Culicoides imicola Abundance: Modelling the Present and Forecasting Its Future in Climate Change Scenarios. PLoS ONE 5, art. e14236.

Acevedo, P., Ward, A.I., Real, R., Smith, G.C., 2010b. Assessing biogeographical relationships of ecologically related species using favourability functions: a case study on British deer. Divers. Distrib. 16, 515-528.

Acevedo, P., Ferreres, J., Jaroso, R., Durán, M., Escudero, M.A., Marco, J., Gortázar, C., 2010c. Estimating roe deer abundance from pellet group counts in Spain: An assessment of methods suitable for Mediterranean woodlands. Ecol. Indic. 10, 1226-1230.

Acevedo, P., Farfán, M.Á., Márquez, A.L., Delibes-Mateos, M., Real, R., Vargas, J.M., 2011. Past, present and future of wild ungulates in relation to changes in land use. Landsc. Ecol. 26, 19-31.

Agüero, M., Fernández-Pinero, J., Buitrago, D., Sánchez, A., Elizalde, M., Miguel, E.S., Villalba, R., Llorente, F., Jiménez-Clavero, M.A., 2011. Bagaza virus in partridges and pheasants, Spain, 2010. Emerg. Infect. Dis. 17, 1498-1501.

Akaike, H., 1974. New look at the statistical model identification. IEEE Trans. Autom. Cont. AC-19, 716-723.

Al Dahouk, S., Nockler, K., Tomaso, H., Splettstoesser, W.D., Jungersen, G., Riber, U., Petry, T., Hoffmann, D., Scholz, H.C., Hensel, A., Neubauer, H., 2005. Seroprevalence of brucellosis, tularemia, and yersiniosis in wild boars (Sus scrofa) from North-Eastern Germany. J. Vet. Med. Ser. B-Infect. Dis. Vet. Public Health 52, 444-455.

Albina, E., Mesplède, A., Chenut, G., Le Potier, M.F., Bourbao, G., Le Gal, S., Leforban, Y., 2000. A serological survey on classical swine fever (CSF), Aujeszky's disease (AD) and porcine reproductive and respiratory syndrome (PRRS) virus infections in French wild boars from 1991 to 1998. Vet. Microbiol. 77, 43-57.

227

Page 249: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Alemañ, N., Quiroga, M.I., Lopez-Pena, M., Vazquez, S., Guerrero, F.H., Nieto, J.M., 2001. Induction and inhibition of apoptosis by pseudorabies virus in the trigeminal ganglion during acute infection of swine. J. Virol. 75, 469-479.

Allepuz, A., Saez, M., Solymosi, N., Napp, S., Casal, J., 2009. The role of spatial factors in the success of an Aujeszky's disease eradication programme in a high pig density area (Northeast Spain, 2003-2007). Prev. Vet. Med. 91, 153-160.

Allepuz, A., Casal, J., Napp, S., Saez, M., Alba, A., Vilar, M., Domingo, M., González, M.A., Duran-Ferrer, M., Vicente, J., Álvarez, J., Muñoz, M., Saez, J.L., 2011. Analysis of the spatial variation of Bovine tuberculosis disease risk in Spain (2006-2009). Prev. Vet. Med. 100, 44-52.

Aller, B., Fernández-Díez, M., Escudero-Díez, A. 1973. Paratuberculosis ovina. Suplemento Científico del Boletín Informativo del CGCVE 196:11-18.

Alton, G.G., Jones, L.M., Angus, R.D., Verger, J.M. 1988. Techniques for the brucellosis laboratory. Institute National de la Reserche Agronomic (INRA), Paris, 190 p.

Alton, G.G. 1990. Brucella suis, In: Nielsen, K., Duncan, J. (Eds.) Animal Brucellosis. CRC Press, Boston, pp. 412-422.

Álvarez, J., De Juan, L., Briones, V., Romero, B., Aranaz, A., Fernández-Garayzábal, J.F., Mateos, A., 2005. Mycobacterium avium subspecies paratuberculosis in fallow deer and wild boar in Spain. Vet. Rec. 156, 212-213.

Aranaz, A., de Juan, L., Montero, N., Sanchez, C., Galka, M., Delso, C., Alvarez, J., Romero, B., Bezos, J., Vela, A.I., Briones, V., Mateos, A., Dominguez, L., 2004. Bovine tuberculosis (Mycobacterium bovis) in wildlife in Spain. J. Clin. Microbiol. 42, 2602-2608.

Arevalo, A., Bringas, M.J., Rodriguez, R., Menor, A., 2009. Outbreak decription of trichinellosis in Salamanca (Spain). Revista Española de Quimioterapia 22, 115-116.

Artois, M., Depner, K.R., Guberti, V., Hars, J., Rossi, S., Rutili, D., 2002. Classical swine fever (hog cholera) in wild boar in Europe. OIE Rev. Sci. Tech. 21, 287-303.

Artois, M., Bengis, R., Delahay, R., Duchêne, M., Duff, P., Ferroglio, E., Gortázar, C., Hutchings, M., Kock, R., Leighton, T., Mörner, T., Smith, G.C. 2009. Wildlife disease surveillance and monitoring, In: Delahay, R., Smith, G., Hutchings, M. (Eds.) Management of Disease in Wild Mammals. Springer, New York, p. 284.

Aurtenetxe, O., Barral, M., Vicente, J., de la Fuente, J., Gortázar, C., Juste, R.A., 2008. Development and validation of an enzyme-linked immunosorbent assay for antibodies against Mycobacterium bovis in European wild boar. BMC Vet. Res. 4, 43.

Austgen, L.E., Bowen, R.A., Bunning, M.L., Davis, B.S., Mitchell, C.J., Chang, G.J.J., 2004. Experimental Infection of cats and dogs with West Nile Virus. Emerg. Infect. Dis. 10, 82-86.

Ballesteros, C., Carrasco-García, R., Vicente, J., Carrasco, J., Lasagna, A., de la Fuente, J., Gortázar, C., 2009a. Selective piglet feeders improve age-related bait specificity and uptake rate in overabundant Eurasian wild boar populations. Wildl. Res. 36, 203-212.

Ballesteros, C., Garrido, J.M., Vicente, J., Romero, B., Galindo, R.C., Minguijón, E., Villar, M., Martín-Hernando, M.P., Sevilla, I., Juste, R., Aranaz, A., de la Fuente, J., Gortázar, C., 2009b. First data on Eurasian wild boar response to oral immunization with BCG and challenge with a Mycobacterium bovis field strain. Vaccine 27, 6662-6668.

228

Page 250: Los abajo firmantes, como directores de esta tesis

Bibliografía

Ballesteros, C., Vicente, J., Carrasco-García, R., Mateo, R., de la Fuente, J., Gortázar, C., 2010. Specificity and success of oral-bait delivery to Eurasian wild boar in Mediterranean woodland habitats. Eur. J. Wildl. Res. 57, 749-757.

Balseiro, A., García Marín, J.F., Solano, P., Garrido, J.M., Prieto, J.M., 2008. Histopathological classification of lesions observed in natural cases of paratuberculosis in free-ranging Fallow Deer (Dama dama). J. Comp. Pathol. 138, 180-188.

Balseiro, A., Rodríguez, O., González-Quirós, P., Merediz, I., Sevilla, I.A., Davé, D., Dalley, D.J., Lesellier, S., Chambers, M.A., Bezos, J., Muñoz, M., Delahay, R.J., Gortázar, C., Prieto, J.M., in press. Infection of Eurasian badgers (Meles meles) with Mycobacterium bovis and Mycobacterium avium complex in Spain. Vet. J. DOI: 10.1016/j.tvjl.2011.04.012.

Banks, M., Monsalve Torraca, L.S., Greenwood, A.G., Taylor, D.C., 1999. Aujeszky's disease in captive bears. Vet. Rec. 145, 362-365.

Barja, I., 2009. Prey and prey-age preference by the Iberian wolf Canis lupus signatus in a multiple-prey ecosystem. Wildl. Biol. 15, 147-154.

Beard, P.M., Rhind, S.M., Buxton, D., Daniels, M.J., Henderson, D., Pirie, A., Rudge, K., Greig, A., Hutchings, M.R., Stevenson, K., Sharp, J.M., 2001. Natural paratuberculosis infection in rabbits in Scotland. J. Comp. Pathol. 124, 290-299.

Bech-Nielsen, S., Fernandez, J., Martinez-Pereda, F., Espinosa, J., Perez Bonilla, Q., Sanchez-Vizcaino, J.M., 1995. A case study of an outbreak of African swine fever in Spain. British Vet. J. 151, 203-214.

Belant, J.L., Deese, A.R., 2010. Importance of wildlife disease surveillance. Human-Wildlife Interactions 4:165-169.

Bergagna, S., Zoppl, S., Ferrogllo, E., Gobetto, M., Dondo, A., Glannatale, E.D., Gennero, M.S., Grattarola, C., 2009. Epidemiologic survey for Brucella suis biovar 2 in a wild boar (Sus scrofa) population in Northwest Italy. J. Wildl. Dis. 45, 1178-1181.

Bień, J., 2007. The usefulness of ELISA test for early serological detection of Trichinella spp. infection in pigs. Wiad. Parazytol. 52, 205-212.

Blanco, J.C., Ballesteros, F., García-Serrano, A., Herrero, J., Nores, C., Palomero, G., 2011. Behaviour of brown bears killing wild ungulates in the Cantabrian Mountains, Southwestern Europe. Eur. J. Wildl. Res. 57, 669–673.

Blancou, J., 2001. History of trichinellosis surveillance. Parasite 8, 16-18. Blitvich, B.J., Juarez, L.I., Tucker, B.J., Rowley, W.A., Platt, K.B., 2009. Antibodies to West Nile

virus in raccoons and other wild peridomestic mammals in Iowa. J. Wildl. Dis. 45, 1163-1168.

Boadella, M., Casas, M., Martín, M., Vicente, J., Segalés, J., de la Fuente, J., Gortázar, C., 2010. Increasing contact with hepatitis E virus in red deer, Spain. Emerg. Infect. Dis. 16, 1994-1996. (Capítulo 3.1.)

Boadella, M., Gortázar, C., Acevedo, P., Carta, T., Martín-Hernando, M.P., de la Fuente, J., Vicente, J., 2011a. Six recommendations for improving monitoring of diseases shared with wildlife: examples regarding mycobacterial infections in Spain. Eur. J. Wildl. Res. 57, 697–706. (Capítulo 6)

Boadella, M., Lyashchenko, K., Greenwald, R., Esfandiari, J., Jaroso, R., Carta, T., Garrido, J.M., Vicente, J., de la Fuente, J., Gortázar, C., 2011b. Serologic tests for detecting antibodies

229

Page 251: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

against Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis in Eurasian wild boar (Sus scrofa scrofa). J. Vet. Diag. Invest. 23, 77-83.

Boadella, M., Acevedo, P., Vicente, J., Mentaberre, G., Balseiro, A., Arnal, M., Martínez, D., García-Bocanegra, I., Casal, C., Álvarez, J., Oleaga, Á., Lavín, S., Muñoz, M., Sáez-Llorente, J.L., de la Fuente, J., Gortázar, C., in press. Spatio-temporal trends of Iberian wild boar contact with Mycobacterium tuberculosis complex detected by ELISA. EcoHealth. DOI: 10.1007/s10393-011-0713-y. (Capítulo 4.4)

Bofill, D., Domingo, C., Cardeñosa, N., Zaragoza, J., De Ory, F., Minguell, S., Sánchez-Seco, M.P., Domínguez, A., Tenorio, A., 2006. Human West Nile virus infection, Catalonia, Spain [2]. Emerg. Infect. Dis. 12, 1163-1164.

Boitani, L., Trapanese, P., Mattei, L., 1995. Methods of population estimates of a hunted wild boar (Sus scrofa L.) population in Tuscany (Italy). J. Mount. Ecol. 3, 204-208.

Bolker, B.M., Grenfell, B.T., 1996. Impact of vaccination on the spatial correlation and persistence of measles dynamics. Proc. Natl. Acad. Sci. USA. 93, 12648-12653.

Bolzoni, L., De Leo, G.A., 2007. A cost analysis of alternative culling strategies for the eradication of classical swine fever in wildlife. Environ. Dev. Econom. 12, 653-671.

Borcard, D., Legendre, P., Drapeau, P., 1992. Partialling out the spatial component of ecological variation. Ecology 73, 1045-1055.

Bossard, M., Feranec, J., Otahel, J. (2000) CORINE Land Cover Technical Guide – Addendum 2000. Technical report No 40, Copenhagen (EEA).

Bouvier G., 1963. Transmission possible de la Tuberculose et de la Brucellose du gibier a l’home et aux animaux domestiques et sauvages. Bulletin de L´Office International des Epizooties 59:433-436.

Burnham, K.P., Anderson, D.R., 2002. Model selection and multimodel inference: a practical information-theoretic approach. 2nd edition. Springer.

Busquets, N., Alba, A., Allepuz, A., Aranda, C., Núñez, J.I., 2008. Usutu virus sequences in Culex pipiens (Diptera: Culicidae), Spain. Emerg. Infect. Dis. 14, 861-863.

Caley, P., Hickling, G.J., Cowan, P.E., Pfeiffer, D.U., 1999. Effects of sustained control of brushtail possums on levels of Mycobacterium bovis infection in cattle and brushtail possum populations from Hohotaka, New Zealand. N. Z. Vet. J. 47, 133-142.

Candela, M.G., Serrano, E., Martinez-Carrasco, C., Martin-Atance, P., Cubero, M.J., Alonso, F., Leon, L., 2008. Diseases coinfection is an important factor in epidemiological studies: the first serosurvey of the aoudad (Ammotragus lervia) Eur. J. Clin. Microbiol. Infect. 28, 481-489.

Capua, I., Fico, R., Banks, M., Tamba, M., Calzetta, G., 1997. Isolation and characterisation of an Aujeszky's disease virus naturally infecting a wild boar (Sus scrofa). Vet. Microbiol. 55, 141-146.

Carstensen, M., O'Brien, D.J., Schmitt, S.M., 2011. Public acceptance as a determinant of management strategies for bovine tuberculosis in free-ranging U.S. wildlife. Vet. Microbiol. 151, 200-204.

Carta, T., Aurtenetxe, O., Sobrino, R., Mamian, L., Gerrikagoitia, X., Balseiro, A., Oleaga, A., Sevilla, I., Barral, M., Garrido, J., Gortázar, C., 2011. Lack of evidence of paratuberculosis in wild canids from south-western Europe. Eur. J. Wildl. Res. 57, 683-688.

230

Page 252: Los abajo firmantes, como directores de esta tesis

Bibliografía

Carta, T., Martín-Hernando, M.P., Boadella, M., Fernández de Mera, I.G., Balseiro, A., Sevilla, I., Vicente, J., Maio, E., Vieira-Pinto, M., Alvarez, J., Pérez-de-la-Lastra, J.M., Garrido, J., Gortázar, C., in press. No evidence that wild red deer (Cervus elaphus) on the Iberian Peninsula are a reservoir of Mycobacterium avium subspecies paratuberculosis infection. Vet. J.

Castillo, L., Fernandez-Llario, P., Mateos, C., Carranza, J., Benitez-Medina, J.M., Garcia-Jimenez, W., Bermejo-Martin, F., Hermoso de Mendoza, J., 2011. Management practices and their association with Mycobacterium tuberculosis complex prevalence in red deer populations in Southwestern Spain. Prev. Vet. Med. 98, 58-63.

Cavrini, F., Gaibani, P., Longo, G., Pierro, A.M., Rossini, G., Bonilauri, P., Gerundi, G.E., Di Benedetto, F., Pasetto, A., Girardis, M., Dottori, M., Landini, M.P., Sambri, V., 2009. Usutu virus infection in a patient who underwent orthotropic liver transplantation, Italy, August-September 2009. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin, 14.

Cay, A.B., Letellier, C., 2009. Isolation of Aujeszky's disease virus from two hunting dogs in belgium after hunting wild boars. Vlaams Diergeneeskundig Tijdschrift 78, 194-195.

Chambers, M.A., Rogers, F., Delahay, R.J., Lesellier, S., Ashford, R., Dalley, D., Gowtage, S., Davé, D., Palmer, S., Brewer, J., Crawshaw, T., Clifton-Hadley, R., Carter, S., Cheeseman, C., Hanks, C., Murray, A., Palphramand, K., Pietravalle, S., Smith, G.C., Tomlinson, A., Walker, N.J., Wilson, G.J., Corner, L.A.L., Rushton, S.P., Shirley, M.D.F., Gettinby, G., McDonald, R.A., Hewinson, R.G., 2011. Bacillus Calmette-Guérin vaccination reduces the severity and progression of tuberculosis in badgers. Proc. Royal Society B: Biol. Sci. 278, 1913-1920.

Charlier, J., Troeng, J., Höglund, J., Demeler, J., Stafford, K., Coles, G., von Samson-Himmelstjerna, G., Merza, M., Vercruysse, J., 2009. Assessment of the within- and between-laboratory repeatability of a commercially available Ostertagia ostertagi milk ELISA. Vet. Parasitol. 164, 66-69.

Chen, H., Smith, G.J.D., Zhang, S.Y., Qin, K., Wang, J., Li, K.S., Webster, R.G., Peiris, J.S.M., Guan, Y., 2005. Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 436, 191-192.

Cherwonogrodzky, J.W., Dubray, G., Moreno, E., Mayer, H., 1990, Antigens of Brucella, In: Nielssen, K., Duncan, J.R. (Eds.) Animal Brucellosis. CRC Press, pp. 19-64.

Chiodini, R.J., Vankruiningen, H.J., Merkal, R.S., 1984. Paratuberculosis (Johne’s disease): The current status and future prospects. Cornell Veterinarian 74, 218-262.

Closa-Sebastià, F., Casas-Díaz, E., Cuenca, R., Lavín, S., Mentaberre, G., Marco, I., 2011. Antibodies to selected pathogens in wild boar (Sus scrofa) from Catalonia (NE Spain). Eur. J. Wildl. Res. 57, 977-981.

Coltman, D.W., Pilkington, J.G., Smith, J.A., Pemberton, J.M., 1999. Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53, 1259-1267.

Conner, M.M., Ebinger, M.R., Blanchong, J.A., Cross, P.C., 2008. Infectious disease in cervids of North America: data, models, and management challenges. Ann. N. Y. Acad. Sci. 1134, 146-172.

Corn, J.L., Stallknecht, D.E., Mechlin, N.M., Luttrell, M.P., Fischer, J.R., 2004. Persistence of pseudorabies virus in feral swine populations. J. Wildl. Dis. 40, 307-310.

231

Page 253: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Corn, J.L., Cumbee, J.C., Barfoot, R., Erickson, G.A., 2009. Pathogen exposure in feral swine populations geographically associated with high densities of transitional swine premises and commercial swine production. J. Wildl. Dis. 45, 713-721.

Corner, L.A.L., 2006. The role of wild animal populations in the epidemiology of tuberculosis in domestic animals: How to assess the risk. Vet. Microbiol. 112, 303-312.

Corner, L.A.L., Murphy, D., Costello, E., Gormley, E., 2009. Tuberculosis in european badgers (Meles meles) and the control of infection with bacille calmette-guérin vaccination. J. Wildl. Dis. 45, 1042-1047.

Corner, L.A.L., Murphy, D., Gormley, E., 2011. Mycobacterium bovis Infection in the Eurasian Badger (Meles meles): The Disease, Pathogenesis, Epidemiology and Control. J. Comp. Pathol. 144, 1-24.

Cotilla, I., Delibes-Mateos, M., Ramírez, E., Castro, F., Cooke, B.D., Villafuerte, R., 2010. Establishing a serological surveillance protocol for rabbit hemorrhagic disease by combining mathematical models and field data: Implication for rabbit conservation. Eur. J. Wildl. Res. 56, 725-733.

Cross, P.C., Edwards, W.H., Scurlock, B.M., Maichak, E.J., Rogerson, J.D., 2007. Effects of management and climate on elk brucellosis in the Greater Yellowstone Ecosystem. Ecol. Appl. 17, 957-964.

Cságola, A., Kecskeméti, S., Kardos, G., Kiss, I., Tuboly, T., 2006. Genetic characterization of type 2 porcine circoviruses detected in Hungarian wild boars. Arch. Virol. 151, 495-507.

Curry, P.S., Elkin, B.T., Campbell, M., Nielsen, K., Hutchins, W., Ribble, C., Kutz, S.J., 2011. Filter-paper blood samples for ELISA detection of brucella antibodies in caribou. J. Wildl. Dis. 47, 12-20.

Cutler, S.J., Whatmore, A.M., Commander, A.J., 2005. Brucellosis, new aspects of an old disease. J. Appl. Microbiol. 98, 1270–1281.

Cvetnic, Z., Mitak, M., Ocepek, M., Lojkic, M., Terzic, S., Jemersic, L., Humski, A., Habrun, B., Sostaric, B., Brstilo, M., Krt, B., Garin-Bastuji, B., 2003. Wild boars (Sus scrofa) as reservoirs of Brucella suis biovar 2 in Croatia. Acta Vet. Hung. 51, 465-473.

Cvetnic, Z., Toncic, J., Spicic, S., Lojkic, M., Terzic, S., Jemersic, L., Humski, A., Curic, S., Mitak, M., Habrun, B., Brstilo, M., Ocepek, M., Krt, B., 2004. Brucellosis in wild boar (Sus scrofa) in the Republic of Croatia. Veterinarni Medicina 49, 115-122.

de Deus, N., Seminati, C., Pina, S., Mateu, E., Martin, M., Segales, J., 2007. Detection of hepatitis E virus in liver, mesenteric lymph node, serum, bile and faeces of naturally infected pigs affected by different pathological conditions. Vet. Microbiol. 119, 105-114.

de Deus, N., Peralta, B., Pina, S., Allepuz, A., Mateu, E., Vidal, D., Ruiz-Fons, F., Martin, M., Gortázar, C., Segales, J., 2008. Epidemiological study of hepatitis E virus infection in European wild boars (Sus scrofa) in Spain. Vet. Microbiol. 129, 163-170.

De Jong, M.C.M., Kimman, T.G., 1994. Experimental quantification of vaccine-induced reduction in virus transmission. Vaccine 12, 761-766.

de las Parras, E.R., Rodriguez-Ferrer, M., Nieto-Martinez, J., Ubeira, F.M., Garate-Ormaechea, T., 2004. Trichinellosis outbreaks in Spain (1990-2001). Enfermedades Infecciosas y Microbiologia Clinica 22, 70-76.

232

Page 254: Los abajo firmantes, como directores de esta tesis

Bibliografía

Dedek, J., Löpelmann, H., Natterman, A., 1986. Serologische Untersuchungen auf Brucellose und Tularämie beim Schwarzwild. Mh. Vet. Med. 41, 150-153.

Deem, S.L., Noss, A.J., Villarroel, R., Uhart, M.M., Karesh, W.B., 2004. Disease Survey of Free-ranging Grey Brocket Deer (Mazama gouazoubira) in the Gran Chaco, Bolivia. J. Wildl. Dis. 40, 92-98.

Delahay, R.J., Cheeseman, C.L., Clifton-Hadley, R.S., 2001. Wildlife disease reservoirs: the epidemiology of Mycobacterium bovis infection in the European badger (Meles meles) and other British mammals. Tuberculosis 81, 43-49.

Delahay, R.J., De Leeuw, A.N.S., Barlow, A.M., Clifton-Hadley, R.S., Cheeseman, C.L., 2002. The status of Mycobacterium bovis infection in UK wild mammals: a review. Vet. J. 164, 90-105.

Delahay, R.J., Smith, G.C., Barlow, A.M., Walker, N., Harris, A., Clifton-Hadley, R.S., Cheeseman, C.L., 2007. Bovine tuberculosis infection in wild mammals in the South-West region of England: A survey of prevalence and a semi-quantitative assessment of the relative risks to cattle. Vet. J. 173, 287-301.

Delahay, R.J., Smith, G.C., Hutchings, M.R., 2009. The science of wildlife disease management. In: Management of Disease in Wild Mammals, Delahay R, Smith G and Hutchings M (eds). New York: Springer, pp 1-8.

Delibes-Mateos, M., Ferreras, P., Villafuerte, R., 2008. Rabbit populations and game management: The situation after 15 years of rabbit haemorrhagic disease in central-southern Spain. Biodiv. Conserv. 17, 559-574.

Dohoo, I., Martin, W., Stryhn, H., 2009. Veterinary Epidemiologic Research. VER Inc., Charlottetown, 865 p.

Dolan, L.A., 1993. Badgers and Bovine tuberculosis in Ireland: A review. In: The badger, Hayden TH (ed). Dublin: Royal Irish academy, pp 108-116.

Donnelly, C.A., Woodroffe, R., Cox, D.R., Bourne, F.J., Cheeseman, C.L., Clifton-Hadley, R.S., Wei, G., Gettinby, G., Gilks, P., Jenkins, H., Johnston, W.T., Le Fevre, A.M., McInerney, J.P., Morrison, W.I., 2006. Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature 439, 843-846.

Donnelly, C.A., Hone, J., 2010. Is there an association between levels of bovine tuberculosis in cattle herds and badgers? Stat. Comm. Infect. Dis. 2:3.

Drew, M.L., Jessup, D.A., Burr, A.A., Franti, C.E., 1992. Serological survey for brucellosis in feral swine, wild ruminants, and black bear of California, 1977 to 1989. J. Wildl. Dis. 28, 355-363.

Duarte, J., Angel Farfan, M., Mario Vargas, J., 2011. New data on mortality, home range, and dispersal of red-legged partridges (Alectoris rufa) released in a mountain range. Eur. J. Wildl. Res. 57, 675-678.

Dye, C., Bassili, A., Bierrenbach, A., Broekmans, J., Chadha, V., Glaziou, P., Gopi, P., Hosseini, M., Kim, S., Manissero, D., Onozaki, I., Rieder, H., Scheele, S., van Leth, F., van der Werf, M., Williams, B., 2008. Measuring tuberculosis burden, trends, and the impact of control programmes. The Lancet Infect. Dis. 8, 233-243.

233

Page 255: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

EFSA, 2009. Scientific Opinion / Statement / Guidance of the Panel on AHAW on a request from Commission on “Control and eradication of Classic Swine Fever in wild boar”. EFSA Journal 932, 94-140. Available online: www.efsa.europa.eu.

EFSA, 2010. Technical specifications for monitoring Community trends in zoonotic agents in foodstuffs and animal populations on request from EFSA. EFSA Journal 8: 1530-1545. Available online: www.efsa.europa.eu.

EFSA., 2011. The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2009. EFSA Journal 9, 2090. Available online: www.efsa.europa.eu.

Elbers, A.R.W., Dekkers, L.J.M., Van Der Giessen, J.W.B., 2000. Sero-surveillance of wild boar in the Netherlands, 1996-1999. OIE Rev. Sci. Tech. 19, 848-854.

Emerson, S.U., Purcell, R.H., 2003. Hepatitis E virus. Rev. Med. Virol. 13, 145-154. Enoe, C., Christensen, G., Andersen, S., Willeberg, P., 2003. The need for built-in validation of

surveillance data so that changes in diagnostic performance of post-mortem meat inspection can be detected. Prev. Vet. Med. 57, 117-125.

Etter, R.P., Drew, M.L., 2006. Brucellosis in elk of eastern Idaho. J. Wildl. Dis. 42, 271-278. Falconi, C., Oleaga, Á., López-Olvera, J.R., Casais, R., Prieto, M., Gortázar, C., 2010. Prevalence

of antibodies against selected agents shared between Cantabrian chamois (Rupicapra pyrenaica parva) and domestic goats. Eur. J. Wildl. Res. 56, 319-325.

FAO, 2008. African swine fever in the Caucasus. www.fao.org Farajollahi, A., Gates, R., Crans, W., Komar, N., 2004. Serologic evidence of West Nile virus and

St. Louis encephalitis virus infections in white-tailed deer (Odocoileus virginianus) from New Jersey, 2001. Vector Borne Zoonot. Dis. 4, 379-383.

Fernandez-de-Mera, I.G., Gortázar, C., Vicente, J., Hofle, U., Fierro, Y., 2003. Wild boar helminths: risks in animal translocations. Vet. Parasitol. 115, 335-341.

Fernández-de-Mera, I.G., Vicente, J., Höfle, U., Fons, F.R., Ortiz, J.A., Gortázar, C., 2009. Factors affecting red deer skin test responsiveness to bovine and avian tuberculin and to phytohaemagglutinin. Prev. Vet. Med. 90, 119-126.

Fernández-Llario, P., Mateos-Quesada, P., 2003. Population structure of the wild boar (Sus scrofa) in two Mediterranean habitats in the western Iberian Peninsula. Folia Zool. 52, 143-148.

Ferroglio, E., Tolari, F., Bollo, E., Bassano, B., 1998. Isolation of Brucella melitensis From Alpine Ibex. J. Wildl. Dis. 34, 400-402.

Ferroglio, E., Rossi, L., Gennero, S., 2000. Lung-tissue extract as an alternative to serum for surveillance for brucellosis in chamois. Prev. Vet. Med. 43, 117-122.

Figuerola, J., Jiménez-Clavero, M.A., Rojo, G., Gómez-Tejedor, C., Soriguer, R., 2007. Prevalence of West Nile virus neutralizing antibodies in colonial aquatic birds in southern Spain. Avian Pathol. 36, 209-212.

Figuerola, J., Jiménez-Clavero, M.A., López, G., Rubio, C., Soriguer, R., Gómez-Tejedor, C., Tenorio, A., 2008. Size matters: West Nile Virus neutralizing antibodies in resident and migratory birds in Spain. Vet. Microbiol. 132, 39-46.

Fonseca, C., da Silva, A.A., Alves, J., Vingada, J., Soares, A.M.V.M., 2011. Reproductive performance of wild boar females in Portugal. Eur. J. Wildl. Res. 57, 363-371.

234

Page 256: Los abajo firmantes, como directores de esta tesis

Bibliografía

Forgách, P., Nowotny, N., Erdélyi, K., Boncz, A., Zentai, J., Szucs, G., Reuter, G., Bakonyi, T., 2009. Detection of Hepatitis E virus in samples of animal origin collected in Hungary. Vet. Microbiol. 143, 106-116

Fraile, L., Alegre, A., López-Jiménez, R., Nofrarías, M., Segalés, J., 2010. Risk factors associated with pleuritis and cranio-ventral pulmonary consolidation in slaughter-aged pigs. Vet. J. 184, 326-333.

Frey, C.F., Buholzer, P., Beck, R., Marinculić, A., Raeber, A.J., Gottstein, B., Schuppers, M.E., 2009a. Evaluation of a new commercial enzyme-linked immunosorbent assay for the detection of porcine antibodies against Trichinella spp. J. Vet. Diag. Invest. 21, 692-697.

Frey, C.F., Schuppers, M.E., Nockler, K., Marinculic, A., Pozio, E., Kihm, U., Gottstein, B., 2009b. Validation of a Western Blot for the detection of anti-Trichinella spp. antibodies in domestic pigs. Parasitol. Res. 104, 1269-1277.

Fritzemeier, J., Teuffert, J., Greiser-Wilke, I., Staubach, C., Schlüter, H., Moennig, V., 2000. Epidemiology of classical swine fever in Germany in the 1990s. Vet. Microbiol. 77, 29-41.

Gaffuri, A., Giacometti, M., Tranquillo, V.M., Magnino, S., Cordioli, P., Lanfranchi, P., 2006. Serosurvey of roe deer, chamois and domestic sheep in the central Italian Alps. J. Wildl. Dis. 42, 685-690.

Gall, D., Nielsen, K., Forbes, L., Davis, D., Elzer, P., Olsen, S., Balsevicius, S., Kelly, L., Smith, P., Tan, S., Joly, D., 2000. Validation of the fluorescence polarization assay and comparison to other serological assays for the detection of serum antibodies to Brucella abortus in bison. J. Wildl. Dis. 36, 469-476.

Gamble, H.R., Pozio, E., Bruschi, F., Nockler, K., Kapel, C.M.O., Gajadhar, A.A., 2004. International commission on trichinellosis: Recommendations on the use of serological tests for the detection of Trichinella infection in animals and man. Parasite-Journal De La Societe Francaise De Parasitologie 11, 3-13.

Garcia-Sanchez, R.N., Nogal-Ruiz, J.J., Manzano-Lorenzo, R., Arroyo Diaz, J.M., Perez Lopez, G., Sanchez Ruano, F.J., Ramiro Casas, A., Crespo Bascon, C., Bolas-Fernandez, F., Martinez-Fernandez, A.R., 2009. Trichinellosis survey in the wild boar from the Toledo mountains in south-western Spain (2007-2008): molecular characterization of Trichinella isolates by ISSR-PCR. J. Helminth. 83, 117-120.

Garcia-Yoldi, D., Marín, C.M., de Miguel, M.J., Munoz, P.M., Vizmanos, J.L., Lopez-Goñi, I., 2006. Multiplex PCR assay for the identification and differentiation of all Brucella species and the vaccine strains Brucella abortus S19 and RB51 and Brucella melitensis Rev1. Clin. Chem. 52, 779-781.

Garcia-Yoldi, D., Le Fleche, P., De Miguel, M.J., Munoz, P.M., Blasco, J.M., Cvetnic, Z., Marín, C.M., Vergnaud, G., Lopez-Goñi, I., 2007. Comparison of multiple-locus variable-number tandem-repeat analysis with other PCR-based methods for typing Brucella suis isolates. J. Clin. Microbiol. 45, 4070-4072.

Garcia-Yoldi, D., 2008. Tipificación molecular de Brucella y aplicación de la PCR al diagnóstico de la brucelosis. Universidad de Navarra, Veterinary Medicine thesis, Universidad de Navarra, Pamplona, Spain.

Garea Gonzalez, M.T., Filipe, A.R., 1977. Antibodies to arboviruses in northwestern Spain. Am. J. Trop. Med. Hyg. 26, 792-797.

235

Page 257: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Garin-Bastuji, B., Oudar, J., Richard, Y., Gastellu, J., 1990. Isolation of B. melitensis Biovar 3 From a Chamois (Rupicabra rupicabra) In The Southern French Alps. J. Wildl. Dis. 26, 116-118.

Garin-Bastuji, B., Delcueillerie, F., 2001. Human and animal brucellosis in France in 2000. Epidemiological situation - Control and eradication programmes. 31, 202-216.

Garin-Bastuji, B., Vaillant, V., Albert, D., Tourrand, B., Danjean, M.P., A, L., Rispal, P., Benquet, B., Maurin, M., De Valk, H., Mailles, A., 2006. Is brucellosis due the biovar 2 of Brucella suis an emerging zoonosis in France? Two case reports in wild boar and hare hunters. In: Proceedings of the International Society of Chemotherapy Disease Management Meeting, 1st International Meeting on Treatment of Human Brucellosis, Loannina, Greece.

Garrido, F., León-Vizcaíno L., 1979. Diagnóstico de paratuberculosis caprina en Andalucía. In: Proceedings of the VII Congreso Nacional de Microbiología. Cádiz: SEM, p 321.

Garrido, J.M., Sevilla, I.A., Beltrán-Beck, B., Minguijón, E., Ballesteros, C., Galindo, R.C., Boadella, M., Lyashchenko, K.P., Romero, B., Geijo, M.V., Ruiz-Fons, F., Aranaz, A., Juste, R.A., Vicente, J., de la Fuente, J., Gortázar, C., 2011. Protection against tuberculosis in Eurasian wild boar vaccinated with heat-inactivated Mycobacterium bovis. PLoS ONE 6, e24905

Gauss, C.B.L., Dubey, J.P., Vidal, D., Ruiz, F., Vicente, J., Marco, I., Lavin, S., Gortázar, C., Almeria, S., 2005. Seroprevalence of Toxoplasma gondii in wild pigs (Sus scrofa) from Spain. Vet. Parasitol. 131, 151-156.

Gavier-Widén, D., Cooke, M.M., Gallagher, J., Chambers, M.A., Gortázar, C., 2009. A review of infection of wildlife hosts with Mycobacterium bovis and the diagnostic difficulties of the 'no visible lesion' presentation. N. Z. Vet. J. 57, 122-131.

Geevarghese, G., Shaikh, B.H., Jacob, P.G., Bhat, H.R., 1994. Persistence of haemagglutination-inhibition antibodies to JE and WN viruses in naturally infected domestic pigs in Karnataka State, India. Acta Virol. 38, 235-237.

Gethöffer, F., Sodeikat, G., Pohlmeyer, K., 2007. Reproductive parameters of wild boar (Sus scrofa) in three different parts of Germany. Eur. J. Wildl. Res. 53, 287-297.

Gibbs, E.P., 1997. The public health risks associated with wild and feral swine. OIE Rev. Sci. Tech. 16, 594-598.

Gibbs, S.E.J., Marlenee, N.L., Romines, J., Kavanaugh, D., Corn, J.L., Stallknecht, D.E., 2006. Antibodies to West Nile virus in feral swine from Florida, Georgia, and Texas, USA. Vector Borne Zoonot. Dis. 6, 261-265.

Glass, C.M., McLean, R.G., Katz, J.B., Maehr, D.S., Cropp, C.B., Kirk, L.J., McKeirnan, A.J., Evermann, J.F., 1994. Isolation of pseudorabies (Aujeszky's disease) virus from a Florida panther. J. Wildl. Dis. 30, 180-184.

Godfroid, J., Michel, P., Uytterhaegen, L., Desmedt, C., Rasseneur, F., Boelaert, F., Saegerman, C., Patigny, X., 1994. Brucella suis biotipe 2 infection of wild boars (Sus scrofa) in Belgium. Ann. Med. Vet. 138, 263-268.

Godfroid, J., Kasbohrer, A., 2002. Brucellosis in the European Union and Norway at the turn of the twenty-first century. Vet. Microbiol. 90, 135-145.

Godfroid, J., Cloeckaert, A., Liautard, J.P., Kohler, S., Fretin, D., Walravens, K., Garin-Bastuji, B., Letesson, J.J., 2005. From the discovery of the Malta fever's agent to the discovery of

236

Page 258: Los abajo firmantes, como directores de esta tesis

Bibliografía

a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. Vet. Res. 36, 313-326.

Gómez, A., Kilpatrick, A.M., Kramer, L.D., Dupuis Ii, A.P., Maffei, J.G., Goetz, S.J., Marra, P.P., Daszak, P., Aguirre, A.A., 2008. Land use and West Nile virus seroprevalence in wild mammals. Emerg. Infect. Dis. 14, 962-965.

Gortázar, C., Herrero, J., Villafuerte, R., Marco, J., 2000. Historical examination of the status of large mammals in Aragon, Spain. Mammalia 64, 411-422.

Gortázar, C., Vicente, J., Fierro, Y., Leon, L., Cubero, M.J., Gonzalez, M., 2002. Natural Aujeszky's disease in a Spanish wild boar population, In: Gibbs, E.P.J., Bokma, B.H. (Eds.) Domestic Animal/Wildlife Interface: Issue for Disease Control, Conservation, Sustainable Food Production, and Emerging Diseases. New York Acad Sciences, New York, pp. 210-212.

Gortázar, C., Vicente, J., Samper, S., Garrido, J.M., Fernandez-de-Mera, I.G., Gavin, P., Juste, R.A., Martin, C., Acevedo, P., De La Puente, M., Hofle, U., 2005. Molecular characterization of Mycobacterium tuberculosis complex isolates from wild ungulates in south-central Spain. Vet. Res. 36, 43-52.

Gortázar, C., Acevedo, P., Ruiz-Fons, F., Vicente, J., 2006. Disease risks and overabundance of game species. Eur. J. Wildl. Res. 52, 81-87.

Gortázar, C., Ferroglio, E., Hofle, U., Frolich, K., Vicente, J., 2007. Diseases shared between wildlife and livestock: a European perspective. Eur. J. Wildl. Res. 53, 241-256.

Gortázar, C., Torres, J., Vicente, J., Acevedo, P., Reglero, M., de la Fuente, J., Negro, J.J., Aznar-Martin, J., 2008. Bovine Tuberculosis in Doñana Biosphere Reserve: The Role of Wild Ungulates as Disease Reservoirs in the Last Iberian Lynx Strongholds. PLoS ONE 3, e2776.

Gortázar, C., Ferroglio, E., Lutton, C.E., Acevedo, P., 2010. Disease-related conflicts in mammal conservation. Wildl. Res. 37, 668-675.

Gortázar, C., Torres, M.J., Acevedo, P., Aznar, J., Negro, J.J., De La Fuente, J., Vicente, J., 2011a. Fine-tuning the space, time, and host distribution of mycobacteria in wildlife. BMC Microbiol. 11, 27.

Gortázar, C., Vicente, J., Boadella, M., Ballesteros, C., Galindo, R.C., Garrido, J., Aranaz, A., de la Fuente, J., 2011b. Progress in the control of bovine tuberculosis in Spanish wildlife. Vet. Microbiol. 151, 170-178.

Gortázar, C., Delahay, R., McDonald, R., Boadella, M., Wilson, G., Gavier-Widen, D., Acevedo, P., in press. The status of tuberculosis in European wildlife. Mammal. Rev. DOI: 10.1111/j.1365-2907.2011.00191.x

Gould, E.A., Gritsun, T.S., 2006. Taxonomy and Evolution of the Flaviviridae, In: Kalitzky, M., Borowski, P. (Eds.) Molecular Biology of the Flavivirus. Taylor & Francis Ltd, London, pp. 17-45.

Graham, M.H., 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809-2815.

Griffin, J.F.T., Chinn, D.N., Rodgers, C.R., 2004. Diagnostic strategies and outcomes on three New Zealand deer farms with severe outbreaks of bovine tuberculosis. Tuberculosis 84, 293-302.

237

Page 259: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Griffin, J.M., Williams, D.H., Kelly, G.E., Clegg, T.A., O'Boyle, I., Collins, J.D., More, S.J., 2005. The impact of badger removal on the control of tuberculosis in cattle herds in Ireland. Prev. Vet. Med. 67, 237-266.

Guberti, V., Rutili, D., Ferrari, G., Patta, C., Oggiano, A., 1998. Estimate the threshold abundance for the persistence of classical swine fever in the wild boar population of the eastern Sardinia. In: Measures to Control Classical Swine Fever in European Wild Boar (Perugia, Italy, European Commission, doc. IV/7196/98), pp. 54-61.

Gutiérrez-Guzmán, A.V., Vicente, J., Sobrino, R., Höfle, U., submitted. Exposure of wild carnivores and suids to West Nile virus or cross reacting Flaviviruses, Spain.

Halouzka, J., Juricova, Z., Jankova, J., Hubalek, Z., 2008. Serologic survey of wild boars for mosquito-borne viruses in South Moravia (Czech Republic). Veterinarni Medicina 53, 266-271.

Hars, J., Rossi, S. (2005) Actualites dans le domaine de la surveillance des maladies transmissibles en France (peste porcine classique, maladie d’Aujeszky, tuberculose, brucellose, leptospirose, trichinellose, influenza aviaire, virus West Nile). In: Proceedings of the 23èmes Recontres du GEEFSM, La Cortinada, Andorre, May 27 to 29.

Hartley, M., Gill, E., 2010. Assessment and mitigation processes for disease risks associated with wildlife management and conservation interventions. Vet. Rec. 166, 487-490.

Hayes, E.B., Komar, N., Nasci, R.S., Montgomery, S.P., O'Leary, D.R., Campbell, G.L., 2005. Epidemiology and transmission dynamics of West Nile virus disease. Emerg. Infect. Dis. 11, 1167-1173.

Hermoso de Mendoza, J., Parra, A., Tato, A., Alonso, J.M., Rey, J.M., Peña, J., García-Sánchez, A., Larrasa, J., Teixidó, J., Manzano, G., Cerrato, R., Pereira, G., Fernández-Llario, P., Hermoso de Mendoza, M., 2006. Bovine tuberculosis in wild boar (Sus scrofa), red deer (Cervus elaphus) and cattle (Bos taurus) in a Mediterranean ecosystem (1992-2004). Prev. Vet. Med. 74, 239-247.

Höfle, U., Blanco, J.M., Crespo, E., Naranjo, V., Jiménez-Clavero, M.A., Sanchez, A., de la Fuente, J., Gortázar, C., 2008. West Nile virus in the endangered Spanish imperial eagle. Vet. Microbiol. 129, 171-178.

Holzwarth, N., Pospischil, A., Marreros, N., Ryser-Degiorgis, M.P., Mavrot, F., Frey, J., Thoma, R., Borel, N., 2011. Alpine ibex (Capra i. ibex) is not a reservoir for chlamydial infections of domestic ruminants and humans. Eur. J. Wildl. Res. 57, 233-240.

Hosmer, D.W., Lemeshow, S., 2000. Applied Logistic Regression. Wiley Interscience, New York. Hoye, B.J., Munster, V.J., Nishiura, H., Klaassen, M., Fouchier, R.A.M., 2010. Surveillance of

wild birds for avian influenza virus. Emerg. Infect. Dis. 16, 1827-1834. Hubálek, Z., Treml, F., Juricova, Z., Hunady, M., Halouzka, J., Janik, V., Bill, D., 2002.

Serological survey of the wild boar (Sus scrofa) for tularaemia and brucellosis in South Moravia, Czech Republic. Veterinarni Medicina 47, 60-66.

Hugas, M., Tsigarida, E., Robinson, T., Calistri, P., 2009. The EFSA Scientific Panel on Biological Hazards first mandate: May 2003-May 2006. Insight into foodborne zoonoses. Trends in Food Science and Technology 20, 188-193.

Hurnikova, Z., Dubinsky, P., 2009. Long-term survey on Trichinella prevalence in wildlife of Slovakia. Vet. Parasitol. 159, 276-280.

238

Page 260: Los abajo firmantes, como directores de esta tesis

Bibliografía

Jemersic, L., Balatinec, J., Roic, B., Keros, T., 2011. Detection of Hepatitis E Virus in Domestic Swine and Wild Boars in Croatia. EcoHealth 7, S144-S144.

Jenkins, H.E., Woodroffe, R., Donnelly, C.A., Cox, D.R., Johnston, W.T., Bourne, F.J., Cheeseman, C.L., Clifton-Hadley, R.S., Gettinby, G., Gilks, P., Hewinson, R.G., McInerney, J.P., Morrison, W.I., 2007. Effects of culling on spatial associations of Mycobacterium bovis infections in badgers and cattle. J. Appl. Ecol. 44, 897-908.

Jewell, N.P., 2009. Statistics for Epidemiology, Washington: Chapman & Hall/CRC. Jiménez-Clavero, M.A., Tejedor, C.G., Rojo, G., Soriguer, R., Figuerola, J., 2007. Serosurvey of

West Nile virus in equids and bovids in Spain [3]. Vet. Rec. 161, 212. Jiménez-Clavero, M.A., Sotelo, E., Fernandez-Pinero, J., Llorente, F., Blanco, J.M., Rodriguez-

Ramos, J., Perez-Ramirez, E., Höfle, U., 2008. West Nile virus in golden eagles, Spain, 2007. Emerg. Infect. Dis. 14, 1489-1491.

Joly, D.O., Samuel, M.D., Langenberg, J.A., Rolley, R.E., Keane, D.P., 2009. Surveillance to detect chronic wasting disease in white-tailed deer in Wisconsin. J. Wildl. Dis. 45, 989-997.

Jothikumar, N., Cromeans, T.L., Robertson, B.H., Meng, X.J., Hill, V.R., 2006. A broadly reactive one-step real-time RT-PCR assay for rapid and sensitive detection of hepatitis E virus. J. Virol. Methods 131, 65-71.

Kaba, M., Davoust, B., Marié, J.L., Colson, P., 2010. Detection of hepatitis E virus in wild boar (Sus scrofa) livers. Vet. J. 186, 259-261.

Kaci, S., Nockler, K., Johne, R., 2008. Detection of hepatitis E virus in archived German wild boar serum samples. Vet. Microbiol. 128, 380-385.

Kaden, V., Lange, E., Hänel, A., Hlinak, A., Mewes, L., Hergarten, G., Irsch, B., Dedek, J., Bruer, W., 2009. Retrospective serological survey on selected viral pathogens in wild boar populations in Germany. Eur. J. Wildl. Res. 55, 153-159.

Kaptoul, D., Viladrich, P.F., Domingo, C., Niubó, J., Martínez-Yélamos, S., De Ory, F., Tenorio, A., 2007. West Nile virus in Spain: Report of the first diagnosed case (in Spain) in a human with aseptic meningitis. Scand. J. Infect. Dis. 39, 70-71.

Kim, Y.M., Jeong, S.H., Kim, J.Y., Song, J.C., Lee, J.H., Kim, J.W., Yun, H., Kim, J.S., 2011. The first case of genotype 4 hepatitis E related to wild boar in South Korea. J. Clin. Virol. 50, 253-256.

King, A.A., Fooks, A.R., Aubert, M., Wandeler, A.I., 2004. Historical Perspective of Rabies in Europe and the Mediterranean Basin, Paris: World Organization for Animal Health (OIE).

Kittelberger, R., Reichel, M.P., Joyce, M.A., Staak, C., 1997. Serological cross-reactivity between Brucella abortus and Yersinia enterocolitica 0/9: 3. Specificity of the in-vitro antigen-specific gamma interferon test for Bovine brucellosis. Diagnosis in experimentally Yersinia enterocolitica 0/9-Infected cattle. Vet. Microbiol. 57, 361-371.

Knell, S., Willems, H., Hertrampf, B., Reiner, G., 2005. Comparative genetic characterization of Porcine Circovirus type 2 samples from German wild boar populations. Vet. Microbiol. 109, 169-177.

239

Page 261: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Kock, R., Kebkiba, B., Heinonen, R., Bedane, B., 2002. Wildlife and pastoral society - Shifting paradigms in disease control. Domestic Animal/Wildlife Interface: Issue for Disease Control, Conservation, Sustainable Food Production, and Emerging Diseases 969, 24-33.

König, A., Romig, T., Thoma, D., Kellermann, K., 2005. Drastic increase in the prevalence of Echinococcus multilocularis in foxes (Vulpes vulpes) in southern Bavaria, Germany. Eur. J. Wildl. Res. 51, 277-282.

Koppel, C., Knopf, L., Ryser, M.P., Miserez, R., Thur, B., Stark, K.D.C., 2007. Serosurveillance for selected infectious disease agents in wild boars (Sus scrofa) and outdoor pigs in Switzerland. Eur. J. Wildl. Res. 53, 212-220.

Kramer-Schadt, S., Fernández, N., Eisinger, D., Grimm, V., Thulke, H.H., 2009. Individual variations in infectiousness explain long-term disease persistence in wildlife populations. Oikos 118, 199-208.

Krebs, J.R., 1997. Bovine tuberculosis in cattle and badgers. London: Ministry of Agriculture, Fisheries and Food, p 191.

Krebs, J.R., Anderson R, Clutton-Brock, T., Morrison, I., Young, D., Donnelly, C., Frost, S., Woodroffe, R., 1997. Bovine Tuberculosis in Cattle and Badgers. Her Majesty’s Stationary Office, London.

Kruger, T., 1998. Development of the hunting kill of wild boar (Sus scrofa L. 1758) and possible influencing factors in the present state of Saxony. Zeitschrift Fur Jagdwissenschaft 44, 151-166.

Kuiken, T., Leighton, F.A., Fouchier, R.A.M., LeDuc, J.W., Peiris, J.S.M., Schudel, A., Stöhr, K., Osterhaus, A.D.M.E., 2005. Pathogen surveillance in animals. Science 309, 1680-1681.

Kukushkin, S., Baborenko, E., Baybikov, T., Mikhalishin, V., Domskiy, I., 2009. Seroprevalence of antibodies to main porcine infectious pathogens in wild boar in some regions of Russia. Acta Silvatica et Lignaria Hungarica 5, 147-152.

Kurdova-Mintcheva, R., Jordanova, D., Ivanova, M., 2009. Human trichinellosis in Bulgaria-Epidemiological situation and trends. Vet. Parasitol. 159, 316-319.

Laddomada, A., Patta, C., Oggiano, A., Caccia, A., Ruiu, A., Cossu, P., Firinu, A., 1994. Epidemiology of classical swine fever in Sardinia: a serological survey of wild boar and comparison with African swine fever. Vet. Rec. 134, 183-187.

Laddomada, A., 2000. Incidence and control of CSF in wild boar in Europe. Vet. Microbiol. 73, 121-130.

Lari, A., Lorenzi, D., Nigrelli, D., Brocchi, E., Faccini, S., Poli, A., 2006. Pseudorabies virus in European wild boar from Central Italy. J. Wildl. Dis. 42, 319-324.

Larsen, T., Kjos-Hanssen, B., 1983. Trichinella sp. in polar bears from Svalbard,in relation to hide length and age. Polar Res. 1, 89-96.

Lavín, S., Blasco, J.M., Velarde, R., Mentaberre, G., Casas, E., Marco, I., 2006. Descripción del primer caso de Brucelosis en la liebre europea (Lepus aeuropaeus) en la Península Ibérica. Información Veterinaria, 18-21.

Le Potier, M.F., Mesplede, A., Vannier, P., 2006. Classical swine fever and other pestiviruses, In: Straw, B.E., Zimmerman, J.J., D’Allaire, S., Taylor, D.J. (Eds.) Diseases of swine. Blackwell Publishing, Oxford, UK, pp. 309–322.

240

Page 262: Los abajo firmantes, como directores de esta tesis

Bibliografía

Legendre, P., Legendre, L., 1998. Numerical ecology, second English edition Edition. Elsevier Science, Amsterdam.

Leighton, A., 1995. Surveillance of wild animal diseases in Europe. Rev Sci Tech 14:819-830. Leong, D., Diaz, R., Milner, K., Rudbach, J., Wilson, J.B., 1970. Some Structural and Biological

Properties of Brucella Endotoxin. Infection Immunity 1, 174-182. Leopold, A., 1933. Game Management. Charles Scribner’s Sons. Reprinted in 1986 by University

of Wisconsin Press, Madison, USA. Leuenberger, R., Boujon, P., Thur, B., Miserez, R., Garin-Bastuji, B., Rufenacht, J., Stark, K.D.C.,

2007. Prevalence of classical swine fever, Aujeszky's disease and brucellosis in a population of wild boar in Switzerland. Vet. Rec. 160, 362-368.

Lindstrom, E.R., Andren, H., Angelstam, P., Cederlund, G., Hornfeldt, B., Jaderberg, L., Lemnell, P.A., Martinsson, B., Skold, K., Swenson, J.E., 1994. Disease reveals the predator - sarcoptic mange, red fox predation, and prey populations. Ecology 75, 1042-1049.

Lipej, Z., Segalés, J., Jemeršić, L., Olvera, A., Roić, B., Novosel, D., Mihaljević, Ž., Manojlović, L., 2007. First description of postweaning multisystemic wasting syndrome (PMWS) in wild boar (Sus scrofa) in croatia and phylogenetic analysis of partial PCV2 sequences. Acta Vet. Hung. 55, 389-404.

López, G., López-Parra, M., Fernández, L., Martínez-Granados, C., Martínez, F., Meli, M.L., Gil-Sánchez, J.M., Viqueira, N., Díaz-Portero, M.A., Cadenas, R., Lutz, H., Vargas, A., Simón, M.A., 2009. Management measures to control a feline leukemia virus outbreak in the endangered Iberian lynx. Anim. Conserv. 12, 173-182.

Lopez-Olvera, J.R., Vidal, D., Vicente, J., Perez, M., Lujan, L., Gortazar, C.E., 2009. Serological survey of selected infectious diseases in mouflon (Ovis aries musimon) from south-central Spain. Eur. J. Wildl. Res. 55, 75-79.

López-Olvera, J.R., Vives, L., Serrano, E., Fernández-Sirera, L., Picart, L., Rossi, L., Marco, I., Bigas, E., Lavín, S., 2011. Trichinella sp. in red foxes (Vulpes vulpes) from Catalonia, NE Spain. Parasitol. Res. 108, 1589-1591.

López-Soria, S., Segalés, J., Rose, N., Viñas, M.J., Blanchard, P., Madec, F., Jestin, A., Casal, J., Domingo, M., 2005. An exploratory study on risk factors for postweaning multisystemic wasting syndrome (PMWS) in Spain. Prev. Vet. Med. 69, 97-107.

Lozano, A., Filipe, A.R., 1998. Antibodies against West Nile Virus and other arthropod-borne viruses among the inhabitants of the Ebro Delta. Revista Española de Salud Pública 72, 245-250.

Lugton, I.W., Wilson, P.R., Morris, R.S., Nugent, G., 1998. Epidemiology and pathogenesis of Mycobacterium bovis infection of red deer (Cervus elaphus) in New Zealand. N. Z. Vet. J. 46, 147-156.

Lutz, W., Wurm, R., 1996. Serological investigations to demonstrate the presence of antibodies to the viruses causing Porcine Reproductive and Respiratory Syndrome, Aujeszky's Disease, Hog cholera, and Porcine Parvovirus among wild boar (Sus scrofa, L., 1758) in Northrhine-Westfalia. Eur. J. Wildl. Res. 42, 123-133.

241

Page 263: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Lutz, W., Junghans, D., Schmitz, D., Müller, T., 2003. A long-term survey of pseudorabies virus infections in European wild boar of western Germany. Zeitschrift Fur Jagdwissenschaft 49, 130-140.

Mackintosh, C.G., De Lisle, G.W., Collins, D.M., Griffin, J.F.T., 2004. Mycobacterial diseases of deer. N. Z. Vet. J. 52, 163-174.

Maichak, E.J., Scurlock, B.M., Rogerson, J.D., Meadows, L.L., Barbknecht, A.E., Edwards, W.H., Cross, P.C., 2009. Effects of management, behavior and scavening on risk of Brucellosis transmission in elk of western Wyoming. J. Wildl. Dis. 45 (2), 398-410.

Maio, E., Carta, T., Balseiro, A., Sevilla, I.A., Romano, A., Ortiz, J.A., Vieira-Pinto, M., Garrido, J.M., de la Lastra, J.M.P., Gortázar, C., 2011. Paratuberculosis in European wild rabbits from the Iberian Peninsula. Res. Vet. Sci. 91, 212-218.

Marín, C.M., Jiménez-De-Bagüés, M.P., Barberán, M., Blasco, J.M., 1996. Comparison of Two Selective Media For the Isolation of Brucella melitensis From Naturally Infected Sheep and Goats. Vet. Rec. 138, 409-411.

Marin, M.S., McKenzie, J., Gao, G.F., Reid, H.W., Antoniadis, A., Gould, E.A., 1995. The virus causing encephalomyelitis in sheep in Spain: a new member of the tick-borne encephalitis group. Res. Vet. Sci. 58, 11-13.

Martelli, F., Caprioli, A., Zengarini, M., Marata, A., Fiegna, C., Di Bartolo, I., Ruggeri, F.M., Delogu, M., Ostanello, F., 2008. Detection of Hepatitis E virus (HEV) in a demographic managed wild boar (Sus scrofa scrofa) population in Italy. Vet. Microbiol. 126, 74-81.

Martín-Atance, P., Palomares, F., González-Candela, M., Revilla, E., Cubero, M.J., Calzada, J., León-Vizcaíno, L., 2005. Bovine tuberculosis in a free ranging red fox (Vulpes vulpes) from Doñana National Park (Spain). J. Wildl. Dis. 41, 435-436.

Martin-Hernando, M.P., Hofle, U., Vicente, J., Ruiz-Fons, F., Vidal, D., Barral, M., Garrido, J.M., de La Fuente, J., Gortázar, C., 2007. Lesions associated with Mycobacterium tuberculosis complex infection in the European wild boar. Tuberculosis 87, 360-367.

Martín-Hernando, M.P., Torres, M.J., Aznar, J., Negro, J.J., Gandía, A., Gortázar, C., 2010. Distribution of lesions in Red and Fallow Deer naturally infected with Mycobacterium bovis. J. Comp. Pathol. 142, 43-50.

Matsuura, Y., Suzuki, M., Yoshimatsu, K., Arikawa, J., Takashima, I., Yokoyama, M., Igota, H., Yamauchi, K., Ishida, S., Fukui, D., Bando, G., Kosuge, M., Tsunemitsu, H., Koshimoto, C., Sakae, K., Chikahira, M., Ogawa, S., Miyamura, T., Takeda, N., Li, T.C., 2007. Prevalence of antibody to hepatitis E virus among wild sika deer, Cervus nippon, in Japan. Arch. Virol. 152, 1375-1381.

McDonald, R.A., Delahay, R.J., Carter, S.P., Smith, G.C., Cheeseman, C.L., 2008. Perturbing implications of wildlife ecology for disease control. Trends Ecol. Evol. 23, 53-56.

Meng, X.J., 2000. Heterogeneity of porcine reproductive and respiratory syndrome virus: implications for current vaccine efficacy and future vaccine development. Vet. Microbiol. 74, 309-329.

Meng, X.J., Lindsay, D.S., 2009. Wild boars as sources for infectious diseases in livestock and humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 2697-2707.

242

Page 264: Los abajo firmantes, como directores de esta tesis

Bibliografía

Mentaberre, G., Serrano, E., Velarde, R., Marco, I., Lavin, S., Mateos, A., De Juan, L., Domínguez, L., Olivé, X., Romeva, J., 2010. Absence of TB in Iberian ibex (Capra pyrenaica) in a high-risk area. Vet. Rec. 166, 700.

Meyer, W., Schmidt, J., Kacza, J., Busche, R., Naim, H.Y., Jacob, R., 2011. Basic structural and functional characteristics of the epidermal barrier in wild mammals living in different habitats and climates. Eur. J. Wildl. Res. 57, 873-885.

Millán, J., Candela, M.G., Palomares, F., Cubero, M.J., Rodríguez, A., Barral, M., de la Fuente, J., Almería, S., León-Vizcaíno, L., 2009. Disease threats to the endangered Iberian lynx (Lynx pardinus). Vet. J. 182, 114-124.

Miller, D.L., Radi, Z.A., Baldwin, C., Ingram, D., 2005. Fatal West Nile virus infection in a white-tailed deer (Odocoileus virginianus). J. Wildl. Dis. 41, 246-249.

Milner, J.M., Bonenfant, C., Mysterud, A., Gaillard, J.M., Csányi, S., Stenseth, N.C., 2006. Temporal and spatial development of red deer harvesting in Europe: Biological and cultural factors. J. Appl. Ecol. 43, 721-734.

Moller, L.N., Petersen, E., Gamble, H.R., Kapel, C.M.O., 2005. Comparison of two antigens for demonstration of Trichinella spp. antibodies in blood and muscle fluid of foxes, pigs and wild boars. Vet. Parasitol. 132, 81-84.

Montagnaro, S., Sasso, S., De Martino, L., Longo, M., Lovane, V., Ghlurmino, G., Plsanelli, G., Nava, D., Baldl, L., Pagninl, U., 2010. Prevalence of antibodies to selected viral and bacterial pathogens in wild boar (Sus scrofa) in Campania Region, Italy. J. Wildl. Dis. 46, 316-319.

Morandi, F., Verin, R., Sarli, G., Canetti, N., Scacco, M., Panarese, S., Poli, A., 2010. Porcine circovirus type 2 (PCV2) antigen localisation and post-weaning multisystemic wasting syndrome (PMWS) in free-ranging wild boar (Sus scrofa ssp scrofa) in Italy. Eur. J. Wildl. Res. 56, 717-724.

Mörner, T., Obendorf, D., Artois, M., Woodford, M., 2002. Surveillance and monitoring of wildlife diseases. OIE Rev. Sci. Tech. 21, 67-76.

Müller, T., Teuffert, J., Ziedler, K., Possardt, C., Kramer, M., Staubach, C., Conraths, F.J., 1998. Pseudorabies in the European wild boar from Eastern Germany. J. Wildl. Dis. 34, 251-258.

Müller, T., Conraths, F.J., Hahn, E.C., 2000. Pseudorabies virus infection (Aujeszky’s disease) in wild swine. Infect. Dis. Rev. 2, 27–34.

Müller, T., Selhorst, T., Pötzsch, C., 2005. Fox rabies in Germany - an update. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin. 10, 229-231.

Müller, T., Klupp, B.G., Freuling, C., Hoffmann, B., Mojcicz, M., Capua, I., Palfi, V., Toma, B., Lutz, W., Ruiz-Fon, F., Gortrzar, C., Hlinak, A., Schaarschmidt, U., Zimmer, K., Conraths, F.J., Hahn, E.C., Mettenleiter, T.C., 2010. Characterization of pseudorabies virus of wild boar origin from Europe. Epidemiol. Infect. 138, 1590-1600.

Müller, T., Hahn, E., Tottewitz, F., Kramer, M., Klupp, B., Mettenleiter, T., Freuling, C., 2011. Pseudorabies virus in wild swine: a global perspective. Arch. Virol. 156, 1691-1705.

243

Page 265: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Müller, T.F., Teuffert, J., Zellmer, R., Conraths, F.J., 2001. Experimental infection of European wild boars and domestic pigs with pseudorabies viruses with differing virulence. Am. J. Vet. Res. 62, 252-258.

Muñoz, P., DeMiguel, M.J., Blasco, J.M., Marín, C.M., 2003. Porcine brucellosis in Spain: serological and bacteriological study of 11 outbreaks. In: X Jornadas sobre Producción Animal, Zaragoza, pp. 417-419.

Muñoz, P., Marín, C.M., Monreal, D., Gonzalez, D., Garin-Bastuji, B., Diaz, R., Mainar-Jaime, R.C., Moriyon, I., Blasco, J.M., 2005. Efficacy of several serological tests and antigens for diagnosis of bovine brucellosis in the presence of false-positive serological results due to Yersinia enterocolitica O:9. Clin Diagn Lab Immun 12, 141-151.

Muñoz, P., Boadella, M., Arnal, M., de Miguel, M., Revilla, M., Martinez, D., Vicente, J., Acevedo, P., Oleaga, A., Ruiz-Fons, F., Marin, C., Prieto, J., de la Fuente, J., Barral, M., Barberan, M., Fernandez de Luco, D., Blasco, J., Gortázar, C., 2010. Spatial distribution and risk factors of Brucellosis in Iberian wild ungulates. BMC Infect. Dis. 10, 46. (Capítulo 4.3).

Murrell, K.D., Lichtenfels, R.J., Zarlenga, D.S., Pozio, E., 2000. The systematics of the genus Trichinella with a key to species. Vet. Parasitol. 93, 293-307.

Myers, K., 1962. A survey of myxomatosis and rabbit infestation trends in the eastern Riverina, New South Wales, 1951-1960. Wildlife Research Melbourne 7, 1-12.

Naranjo, V., Gortázar, C., Vicente, J., de la Fuente, J., 2008. Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex. Vet. Microbiol. 127, 1-9.

Naser, SA, Ghobrial, G, Romero, C, Valentine, JF., 2004. Culture of Mycobacterium avium subspecies paratuberculosis from the blood of patients with Crohn’s disease. Lancet 364: 1039–1044.

Neumann, E.J., Bonistalli, K.N., 2009. Effect of blood sample handling post-collection on Erysipelothrix rhusiopathiae antibody titres. Vet. J. 180, 325-329.

Nielsen, K., Smitha, P., Yua, W., Nicolettib, P., Elzerc, P., Viglioccod, A., Silvad, P., Bermudeze, R., Renteriae, T., Morenoe, F., Ruizf, A., Massengillg, C., Muenksg, Q., Kennyh, K., Tollersrudi, T., Samartinoj, L., Condej, S., Draghi de Benitezk, G., Galla, D., Perezl, B., Rojasm, X., 2004. Enzyme immunoassay for the diagnosis of brucellosis: chimeric Protein A–Protein G as a common enzyme labeled detection reagent for sera for different animal species. Vet. Microbiol. 101 123–129.

Nielsen, O., Stewart, R.E.A., Nielsen, K., Measures, L., Duignan, P., 2001. Serologic survey of Brucella spp. antibodies in some marine mammals of North America. J. Wildl. Dis. 37, 89-100.

Nockler, K., Serrano, F.J., Boireau, P., Kapel, C.M.O., Pozio, E., 2005. Experimental studies in pigs on Trichinella detection in different diagnostic matrices. Vet. Parasitol. 132, 85-90.

Nockler, K., Reckinger, S., Broglia, A., Mayer-Scholl, A., Bahn, P., 2009. Evaluation of a Western Blot and ELISA for the detection of anti-Trichinella-IgG in pig sera. Vet. Parasitol. 163, 341-347.

Nugent, G., 2011. Maintenance, spillover and spillback transmission of bovine tuberculosis in multi-host wildlife complexes: A New Zealand case study. Vet. Microbiol. 151, 34-42.

OIE, 2009. Porcine Brucellosis, Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 1108-1114.

244

Page 266: Los abajo firmantes, como directores de esta tesis

Bibliografía

OIE, 2010. Event summary: Aujeszky's disease, France. Oleaga, A., Casais, R., Gonzalez-Quiros, P., Prieto, M., Gortázar, C., 2008. Sarcoptic mange in

red deer from Spain: Improved surveillance or disease emergence? Vet. Parasitol. 154, 103-113.

O'Reilly, L.M., Daborn, C.J., 1995. The epidemiology of Mycobacterium bovis infections in animals and man: A review. Tuberc. Lung Dis. 76, 1-46.

Ozkul, A., Yildirim, Y., Pinar, D., Akcali, A., Yilmaz, V., Colak, D., 2006. Serological evidence of West Nile Virus (WNV) in mammalian species in Turkey. Epidemiol. Infect. 134, 826-829.

Palmer, M.V., 2007. Tuberculosis: A reemerging disease at the interface of domestic animals and wildlife. Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission 315, 195-215.

Panda, S.K., Thakral, D., Rehman, S., 2007. Hepatitis E virus. Rev. Med. Virol. 17, 151-180. Pannwitz, G., Mayer-Scholl, A., Balicka-Ramisz, A., Nöckler, K., 2010. Increased prevalence of

Trichinella spp., northeastern Germany, 2008. Emerg. Infect. Dis. 16, 936-942. Pannwitz, G., Freuling, C., Denzin, N., Schaarschmidt, U., Nieper, H., Hlinak, A., Burkhardt, S.,

Klopries, M., Dedek, J., Hoffmann, L., Kramer, M., Selhorst, T., Conraths, F.J., Mettenleiter, T., Müller, T., 2011. A long-term serological survey on Aujeszky's disease virus infections in wild boar in East Germany. Epidemiol. Infect., 1-11.

Parra, A., García, A., Inglis, N.F., Tato, A., Alonso, J.M., Hermoso de Mendoza, M., Hermoso de Mendoza, J., Larrasa, J., 2006. An epidemiological evaluation of Mycobacterium bovis infections in wild game animals of the Spanish Mediterranean ecosystem. Res. Vet. Sci. 80, 140-146.

Pecorari, M., Longo, G., Gennari, W., Grottola, A., Sabbatini, A., Tagliazucchi, S., Savini, G., Monaco, F., Simone, M., Lelli, R., Rumpianesi, F., 2009. First human case of Usutu virus neuroinvasive infection, Italy, August-September 2009. Euro surveillance: bulletin européen sur les maladies transmissibles = European communicable disease bulletin 14.

Peña, L., Garcia, P., Jiménez, M.A., Benito, A., Alenza, M.D.P., Sánchez, B., 2006. Histopathological and immunohistochemical findings in lymphoid tissues of the endangered Iberian lynx (Lynx pardinus). Comp. Immunol. Microbiol. Infect. Dis. 29, 114-126.

Peralta, B., Casas, M., De Deus, N., Martín, M., Ortuño, A., Pérez-Martín, E., Pina, S., Mateu, E., 2009. Anti-HEV antibodies in domestic animal species and rodents from Spain using a genotype 3-based ELISA. Vet. Microbiol. 137, 66-73.

Pérez-Martín, J.E., Serrano, F.J., Reina, D., Mora, J.A., Navarrete, I., 2000. Sylvatic trichinellosis in southwestern Spain. J. Wildl. Dis. 36, 531-534.

Petrini, S., Barocci, S., Gavaudan, S., Villa, R., Briscolini, S., Sabbatini, M., Mattozzi, C., Barchiesi, F., Salamida, S., Ferrari, M., Paniccià, M., Pezzotti, G., 2009. Detection of porcine circovirus type 2 (PCV2) from wild boars in central Italy. Eur. J. Wildl. Res., 1-5.

Pfeiffer, DU, Robinson, TP, Stevenson, M, Stevens, KB, Rogers, DJ, Clements, ACA , 2008. Spatial Analysis in Epidemiology, New York: Oxford University Press.

Pikula, J., Beklova, M., Holesovska, Z., Skocovska, B., Treml, F., 2005. Ecology of brucellosis of the European hare in the Czech Republic. Veterinarni Medicina 50, 105-109.

245

Page 267: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Pinto, J., Bonacic, C., Hamilton-West, C., Romero, J., Lubroth, J., 2008. Climate change and animal diseases in South America. OIE Rev. Sci. Tech. 27, 599-613.

Pozio, E., 2007. World distribution of Trichinella spp. infections in animals and humans. Vet. Parasitol. 149, 3-21.

Rafter, P., Marucci, G., Brangan, P., Pozio, E., 2005. Rediscovery of Trichinella spiralis in red foxes (Vulpes vulpes) in Ireland after 30 years of oblivion. Journal of Infection 50, 61-65.

Ramisz, A., Szymborski, J., Balicka-Ramisz, A., 2001. Trichinellosis in swine and wild boars in Poland from 1993 to 1998. Wiadomosci Parazytologiczne 47, 233-235.

Ramisz, A., Grupiński, T., Balicka-Ramisz, A., Udała, J., Luarans, Ł., 2011. Prevalence of Trichinella sp. in red foxes and wild boars in the Western Pomerania Region. Bulletin of the Veterinary Institute in Pulawy 55, 199-201.

Real, R., Barbosa, A.M., Vargas, J.M., 2006. Obtaining environmental favourability functions from logistic regression. Environ. Ecol. Stat. 13, 237-245.

Real, R., Márquez, A., Olivero, J., Estrada, A., 2010. Are species distribution models in climate warming scenarios useful for informing emission policy planning? An uncertainty assessment using fuzzy logic. Ecography 33, 304-314.

Reiczigel, J., 2003. Confidence intervals for the binomial parameter: some new considerations. Stat. Med. 22, 611-621.

Reiner, G., Fresen, C., Bronnert, S., Willems, H., 2009. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection in wild boars. Vet. Microbiol. 136, 250-258.

Reiner, G., Bronnert, B., Hohloch, C., Fresen, C., Haack, I., Willems, H., Reinacher, M., 2010. Qualitative and quantitative distribution of PCV2 in wild boars and domestic pigs in Germany. Vet. Microbiol. 145, 1-8.

Reiner, G., Bronnert, B., Hohloch, C., Reinacher, M., Willems, H., 2011. Distribution of ORF2 and ORF3 genotypes of porcine circovirus type 2 (PCV-2) in wild boars and domestic pigs in Germany. Vet. Microbiol. 148, 372-376.

Reuter, G., Fodor, D., Forgach, P., Katai, A., Szucs, G., 2009. Characterization and zoonotic potential of endemic hepatitis E virus (HEV) strains in humans and animals in Hungary. J. Clin. Virol.

Reyes-Garcia, R., Perez-de-la-Lastra, J.M., Vicente, J., Ruiz-Fons, F., Garrido, J.M., Gortázar, C., 2008. Large-scale ELISA testing of Spanish red deer for paratuberculosis. Vet. Immunol. Immunopathol. 124, 75-81.

Rhyan, J.C., Spraker, T.R., 2010. Emergence of diseases from wildlife reservoirs. Vet. Pathol. 47, 34-39.

Risco, D., Llario, P.F., Velarde, R., García, W.L., Benítez, J.M., García, A., Bermejo, F., Cortés, M., Rey, J., De Mendoza, J.H., Gómez, L., 2011. Outbreak of Swine Erysipelas in a Semi-Intensive Wild Boar Farm in Spain. Transbound. Emerg. Dis. 58, 445-450.

Robertson, M.P., Villet, M.H., Palmer, A.R., 2004. A fuzzy classification technique for predicting species' distributions: applications using invasive alien plants and indigenous insects. Divers. Distribut. 10, 461-474.

Rochlin, I., Turbow, D., Gomez, F., Ninivaggi, D., Campbell, S., 2011. Predictive Mapping of Human Risk for West Nile Virus (WNV) Based on Environmental and Socioeconomic Factors. PLoS ONE 6, e23280.

246

Page 268: Los abajo firmantes, como directores de esta tesis

Bibliografía

Rockx, B., Van Asten, L., Van Den Wijngaard, C., Godeke, G.J., Goehring, L., Vennema, H., Van Der Avoort, H., Van Pelt, W., Koopmans, M., 2006. Syndromic surveillance in the Netherlands for the early detection of West Nile virus epidemics. Vector Borne Zoonot. Dis. 6, 161-169.

Rodriguez-Hidalgo, P., Gortázar, C., Tortosa, F.S., Rodriguez-Vigal, C., Fierro, Y., Vicente, J., 2010. Effects of density, climate, and supplementary forage on body mass and pregnancy rates of female red deer in Spain. Oecologia 164, 389-398.

Rodríguez-Sánchez, B., Gortázar, C., Ruiz-Fons, F., Sánchez-Vizcaíno, J.M., 2010. Bluetongue virus serotypes 1 and 4 in red deer, Spain. Emerg. Infect. Dis. 16, 518-520.

Rodwell, T.C., Whyte, I.J., Boyce, W.M., 2001. Evaluation of population effects of bovine tuberculosis in free-ranging African buffalo (Syncerus caffer). J. Mammal. 82, 231-238.

Rogan, W.J., Gladen, B., 1978. Estimating prevalence from the results of a screening test. Am. J. Epidemiol. 107, 71-76.

Rohani, P., May, R.M., Hassell, M.P., 1996. Metapopulations and equilibrium stability: The effects of spatial structure. J. Theor. Biol. 181, 97-109.

Rohonczy, E.B., Balachandran, A.V., Dukes, T.W., Payeur, J.B., Rhyan, J.C., Saari, D.A., Whiting, T.L., Wilson, S.H., Jarnagin, J.L., 1996. A comparison of gross pathology, histopathology, and mycobacterial culture for the diagnosis of tuberculosis in elk (Cervus elaphus). Canadian J.Vet. Res. 60, 108-114.

Romero, B., Aranaz, A., Sandoval, A., Álvarez, J., de Juan, L., Bezos, J., Sánchez, C., Galka, M., Fernández, P., Mateos, A., Domínguez, L., 2008. Persistence and molecular evolution of Mycobacterium bovis population from cattle and wildlife in Doñana National Park revealed by genotype variation. Vet. Microbiol. 132, 87-95.

Root, J.J., Hall, J.S., McLean, R.G., Marlenee, N.L., Beaty, B.J., Gansowski, J., Clark, L., 2005. Serologic evidence of exposure of wild mammals to flaviviruses in the central and eastern United States. Am. J. Trop. Med. Hyg. 72, 622-630.

Rosell, C., Herrero, J. (2002), Sus scrofa, In: Palomo, L.J., Gisbert, J. (Eds.) Atlas de los mamíferos terrestres de España. Dirección General de la Conservación de la Naturaleza-SECEM-SECEMU, Madrid.

Rosenberg, M.S., 2001. PASSAGE. Pattern Analysis, Spatial Statistics, and Geographic Exegesis. Version 1.1. Department of Biology, Arizona State University, Tempe, AZ.

Ruiz-Fons, F., Vicente, J., Vidal, D., Hofle, U., Villanua, D., Gauss, C., Segales, J., Almeria, S., Montoro, V., Gortázar, C., 2006. Seroprevalence of six reproductive pathogens in European wild boar (Sus scrofa) from Spain: the effect on wild boar female reproductive performance. Theriogenology 65, 731-743.

Ruiz-Fons, F., Vidal, D., Hofle, U., Vicente, J., Gortázar, C., 2007. Aujeszky's disease virus infection patterns in European wild boar. Vet. Microbiol. 120, 241-250.

Ruiz-Fons, F., Rodríguez, O., Mateu, E., Vidal, D., Gortázar, C., 2008a. Antibody response of wild boar (Sus scrofa) piglets vaccinated against Aujeszky's disease virus. Vet. Rec. 162, 484-485.

Ruiz-Fons, F., Segalés, J., Gortázar, C., 2008b. A review of viral diseases of the European wild boar: effects of population dynamics and reservoir role. Vet. J. 176, 158-169.

247

Page 269: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Ruiz-Fons, F., Vidal, D., Vicente, J., Acevedo, P., Fernandez-de-Mera, I.G., Montoro, V., Gortázar, C., 2008c. Epidemiological risk factors of Aujeszky's disease in wild boars (Sus scrofa) and domestic pigs in Spain. Eur. J. Wildl. Res. 54, 549-555.

Ruiz-Fons, F., Reyes-Garcia, A.R., Alcaide, V., Gortázar, C., 2008d. Spatial and temporal evolution of bluetongue virus in wild ruminants, Spain. Emerg. Infect. Dis. 14, 951-953.

Rutjes, S.A., Lodder-Verschoor, F., Lodder, W.J., van der Giessen, J., Reesink, H., Bouwknegt, M., de Roda Husman, A.M., 2010. Seroprevalence and molecular detection of hepatitis E virus in wild boar and red deer in The Netherlands. J. Virol. Methods 168, 197-206.

Saenz de Buruaga, M., Lucio, A.J., Purroy, F.J., 1991. Reconocimiento de sexo y edad en especies cinegéticas, 1st Edition. Ediciones Leonesas SA, 127 p.

Sáez-Royuela, C., Telleria, J.L., 1986. The increased population of the wild boar (Sus scrofa l) in Europe. Mammal. Rev. 16, 97-101.

Sánchez, R., Nauwynck, H., Pensaert, M., 2001. Serological survey of porcine circovirus 2 antibodies in domestic and feral pig populations in Belgium. In: Proceedings of the European Society of Vet. Virol., p. 122.

Santaella, J., McLean, R., Hall, J.S., Gill, J.S., Bowen, R.A., Hadow, H.H., Clark, L., 2005. West Nile virus serosurveillance in Iowa white-tailed deer (1999-2003). Am. J. Trop. Med. Hyg. 73, 1038-1042.

Santos, N., Correla-Neves, M., Ghebremichael, S., Källenius, G., Svenson, S.B., Almeida, V., 2009. Epidemiology of Mycobacterium bovis infection in wild boar (Sus scrofa) from Portugal. J. Wildl. Dis. 45, 1048-1061.

Santos, N., Geraldes, M., Afonso, A., Almeida, V., Correia-Neves, M., 2010. Diagnosis of Tuberculosis in the Wild Boar (Sus scrofa): a Comparison of Methods Applicable to Hunter-Harvested Animals. PLoS ONE 5, e12663.

Schielke, A., Sachs, K., Lierz, M., Appel, B., Jansen, A., Johne, R., 2009. Detection of hepatitis E virus in wild boars of rural and urban regions in Germany and whole genome characterization of an endemic strain. Virology Journal 6.

Scholz, H.C., Hubalek, Z., Sedlacek, I., Vergnaud, G., Tomaso, H., Al Dahouk, S., Melzer, F., Kampfer, P., Neubauer, H., Cloeckaert, A., Maquart, M., Zygmunt, M.S., Whatmore, A.M., Falsen, E., Bahn, P., Gollner, C., Pfeffer, M., Huber, B., Busse, H.J., Nockler, K., 2008. Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Int. J. Syst. Evol. Microbiol. 58, 375-382.

Scillitani, L., Monaco, A., Toso, S., 2010. Do intensive drive hunts affect wild boar (Sus scrofa) spatial behaviour in Italy? Some evidences and management implications. Eur. J. Wildl. Res. 56, 307-318.

Sedlak, K., Bartova, E., Machova, J., 2008. Antibodies to selected viral disease agents in wild boars from the Czech Republic. J. Wildl. Dis. 44, 777-780.

Seminati, C., Mateu, E., Peralta, B., de Deus, N., Martin, M., 2008. Distribution of hepatitis E virus infection and its prevalence in pigs on commercial farms in Spain. Vet. J. 175, 130-132.

Seuberlich, T., Tratschin, J.D., Thür, B., Hofmann, M.A., 2002. Nucleocapsid protein-based enzyme-linked immunosorbent assay for detection and differentiation of antibodies

248

Page 270: Los abajo firmantes, como directores de esta tesis

Bibliografía

against European and North American porcine reproductive and respiratory syndrome virus. Clin. Diagn. Lab. Immunol. 9, 1183-1191.

Smith, J.L., 2001. A review of hepatitis E virus. J. Food Prot. 64, 572-586. Sobrino, R., Martín-Hernando, M.P., Vicente, J., Gortázar, C., Aurtenetxe, O., Garrido, J.M.,

2008. Bovine tuberculosis in a badger (Meles meles) in Spain. Vet. Rec. 163, 159-160. Sobrino, R., Acevedo, P., Escudero, M.A., Marco, J., Gortázar, C., 2009. Carnivore population

trends in Spanish agrosystems after the reduction in food availability due to rabbit decline by rabbit haemorrhagic disease and improved waste management. Eur. J. Wildl. Res. 55, 161-165.

Sofia, M., Billinis, C., Psychas, V., Birtsas, P., Sofianidis, G., Leontides, L., Knowles, N., Spyrou, V., 2008. Detection and genetic characterization of porcine circovirus 2 isolates from the first cases of postweaning multisystemic and wasting syndrome in wild boars in Greece. J. Wildl. Dis. 44, 864-870.

Sotelo, E., Llorente, F., Rebollo, B., Camuñas, A., Venteo, A., Gallardo, C., Lubisi, A., Rodríguez, M.J., Sanz, A.J., Figuerola, J., Jiménez-Clavero, M.Á., 2011. Development and evaluation of a new epitope-blocking ELISA for universal detection of antibodies to West Nile virus. J. Virol. Methods 174, 35-41.

MARM, Spanish Ministry of the Environment and Rural and Marine Affairs, 2011a. Reports on Spanish sanitary programs. http://rasve.mapa.es/Publica/Sanidad/sitnat.asp.

MARM, Spanish Ministry of the Environment and Rural and Marine Affairs., 2011b, Spanish National Wildlife Disease Surveillance Scheme. http://rasve.mapa.es/Publica/Programas.

Steinmetz, H.W., Bakonyi, T., Weissenböck, H., Hatt, J.M., Eulenberger, U., Robert, N., Hoop, R., Nowotny, N., 2011. Emergence and establishment of Usutu virus infection in wild and captive avian species in and around Zurich, Switzerland-Genomic and pathologic comparison to other central European outbreaks. Vet. Microbiol. 148, 207-212.

Swedish National Veterinary Institute (SVA), 2010. Surveillance of zoonotic and other animal disease agents in Sweden 2009. http://www.sva.se/en.

Szweda, W., Lipowski, A., Ciecierski, H., Zalewski, K., Pirus, T., 1998. European wild boar (Sus scrofa L.) as a reservoir of Herpesvirus suis 1. Medycyna Weterynaryjna 54, 541-544.

Takahashi, T., Sunama, P., Satra, J., Cholsindhu, N., Kongthon, S., Jitnupong, W., Yamamoto, K., Kijima, M., Furuuchi, S., 1999. Serotyping and Pathogenicity of Erysipelothrix Strains Isolated from Tonsils of Slaughter Pigs in Thailand. J. Vet. Med. Sci. 61, 1007-1011.

Tayce, J., Acevedo, P., Vicente, J., Gortázar, C., 2008. Minimum sampling effort for reliable non-invasive estimations of excretion abundance of Elaphostrongylus cervi L1 in red deer (Cervus elaphus) populations. J. Helminthol. 82, 255-261.

Teehee, M.L., Bunning, M.L., Stevens, S., Bowen, R.A., 2005. Experimental infection of pigs with West Nile virus. Brief Report. Arch. Virol. 150, 1249-1256.

Tei, S., Kitajima, N., Takahashi, K., Mishiro, S., 2003. Zoonotic transmission of hepatitis E virus from deer to human beings. Lancet 362, 371-373.

Teo, C.G., 2010. Much meat, much malady: changing perceptions of the epidemiology of hepatitis E. Clin. Microbiol. Infect. 16, 24-32.

249

Page 271: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

Teyssou, R., Morvan, J., Leleu, J.P., Roumegou, P., Goullin, B., Carteron, B., 1989. About a case of Human brucellosis due to Brucella suis biovar-2. Medecine Et Maladies Infectieuses 19, 160-161.

Tompkins, D.M., Ramsey, D.S.L., Cross, M.L., Aldwell, F.E., De Lisle, G.W., Buddle, B.M., 2009. Oral vaccination reduces the incidence of tuberculosis in free-living brushtail possums. Proceedings of the Royal Society B: Biological Sciences 276, 2987-2995.

Tryland, M., Kleivane, L., Alfredsson, A., Kjeld, M., Arnason, A., Stuen, S., Godfroid, J., 1999. Evidence of Brucella infection in marine mammals in the North Atlantic Ocean. Vet. Rec. 144, 588-592.

Turcitu, M.A., Wellenberg, G.J., Barboi, G., Codreanu, M.D., Vuta, V.B., Nicolae, S., Barbuceanu, F., Coste, H., Cioranu, R., in press. Genetic diversity of porcine circovirus type 2 (PCV2) in the Romanian wild boar population. Res. Vet. Sci.

Uzoigwe, JC, Khaitsa, ML, Gibbs, PS., 2007. Epidemiological evidence for Mycobacterium avium subspecies paratuberculosis as a cause of Crohn’s disease. Epidemiol. Infect. 135, 1057–1068.

Valverde, J.A., 1967. Estructura de una comunidad mediterránea de vertebrados terrestres. Doñana Acta Vertebrata 1, 1-129.

Van Bressem, M.E., Van Waerebeek, K., Raga, J.A., Godfroid, J., Brew, S.D., MacMillan, A.P., 2001. Serological evidence of Brucella species infection in odontocetes from the south Pacific and the Mediterranean. Vet Rec. 148, 657-661.

Van Houten, C.K.J., Lee Belden, E., Kreeger, T.J., Williams, E.S., Edwards, W.H., Thorne, E.T., Cook, W.E., Mills, K.W., 2003. Validation of a Brucella abortus competitive enzyme-linked immunosorbent assay for use in Rocky Mountain elk (Cervus elaphus nelsoni). J. Wildl. Dis. 39, 316-322.

Vázquez González, A., Ruiz, S., Herrero, L., Moreno, J., Molero, F., Magallanes, A., Sánchez-Seco, M.P., Figuerola, J., Tenorio, A., 2011. West Nile and Usutu viruses in mosquitoes in Spain, 2008-2009. Am. J. Trop. Med. Hyg. 85, 178-181.

Vengust, G., Valencak, Z., Bidovec, A., 2006. A serological survey of selected pathogens in wild boar in Slovenia. J. Vet. Med. Ser. B-Infect. Dis. Vet. Public Health 53, 24-27.

Vicente, J., Leon-Vizcaino, L., Gortázar, C., Cubero, M.J., Gonzalez, M., Martin-Atance, P., 2002. Antibodies to selected viral and bacterial pathogens in European wild boars from southcentral Spain. J. Wildl. Dis. 38, 649-652.

Vicente, J., Segales, J., Hofle, U., Balasch, M., Plana-Duran, J., Domingo, M., Gortázar, C., 2004. Epidemiological study on porcine circovirus type 2 (PCV2) infection in the European wild boar (Sus scrofa). Vet. Res. 35, 243-253.

Vicente, J., Ruiz-Fons, F., Vidal, D., Hofle, U., Acevedo, P., Villanua, D., Fernandez-De-Mera, I.G., Martin, M.P., Gortázar, C., 2005. Serosurvey of Aujeszky's disease virus infection in European wild boar in Spain. Vet. Rec. 156, 408-412.

Vicente, J., Hofle, U., Garrido, J.M., Fernandez-de-Mera, I.G., Juste, R., Barral, M., Gortázar, C., 2006. Wild boar and red deer display high prevalences of tuberculosis-like lesions in Spain. Vet. Res. 37, 107-119.

250

Page 272: Los abajo firmantes, como directores de esta tesis

Bibliografía

Vicente, J., Delahay, R.J., Walker, N.J., Cheeseman, C.L., 2007a. Social organization and movement influence the incidence of bovine tuberculosis in an undisturbed high-density badger Meles meles population. J. Anim. Ecol. 76, 348-360.

Vicente, J., Hofle, U., Garrido, J.M., Fernandez-de-Mera, I.G., Acevedo, P., Juste, R., Barral, M., Gortázar, C., 2007b. Risk factors associated with the prevalence of tuberculosis-like lesions in fenced wild boar and red deer in south central Spain. Vet. Res. 38, 451-464.

Vicente, J., Carrasco, R., Acevedo, P., Montoro, V., Gortázar, C., 2011, Big Game Waste Production: Sanitary and Ecological Implications, In: Kumar, S. (Ed.) Integrated waste management. InTech, Rijeca, pp. 97-128.

Vieira-Pinto, M., Alberto, J., Aranha, J., Serejo, J., Canto, A., Cunha, M.V., Botelho, A., in press. Combined evaluation of bovine tuberculosis in wild boar (Sus scrofa) and red deer (Cervus elaphus) from Central-East Portugal. Eur. J. Wildl. Res. DOI: 10.1007/s10344-011-0532-z.

Villafuerte, R., Calvete, C., Gortázar, C., Moreno, S., 1994. First epizootic of rabbit hemorrhagic disease in free-living populations of oryctolagus cuniculus at Doñana National Park, Spain. J. Wildl. Dis. 30, 176-179.

Vos, A., 1995. Population dynamics of the red fox (Vulpes vulpes) after the disappearance of rabies in county Garmisch-Partenkirchen, Germany, 1987-1992. Ann. Zool. Fenn. 32, 93-97.

Wacker, K., Rodriguez, E, Garate, T, Geue, L, Tackmann, K, Selhorst, T, Staubach, C, Conraths FJ., 1999. Epidemiological analysis of Trichinella spiralis infections of foxes in Brandenburg, Germany. Epidemiol. Infect. 123, 139-147.

Ward, A.I., Smith, G.C., 2011. Predicting the status of wild deer as hosts of Mycobacterium bovis infection in Britain. Eur. J. Wildl. Res., 1-9. DOI: 10.1007/s10344-011-0553-7.

White, P.J., Wallen, R.L., Geremia, C., Treanor, J.J., Blanton, D.W., 2011. Management of Yellowstone bison and brucellosis transmission risk - Implications for conservation and restoration. Biol. Conserv. 144, 1322-1334.

Widén, F., Sundqvist, L., Matyi-Toth, A., Metreveli, G., Belák, S., Hallgren, G., Norder, H., 2011. Molecular epidemiology of Hepatitis E virus in humans, pigs and wild boars in Sweden. Epidemiol. Infect. 139, 361-371.

Williams, D., Acevedo, P., Gortázar, C., Escudero, M.A., Labarta, J.L., Marco, J., Villafuerte, R., 2007. Hunting for answers: rabbit (Oryctolagus cuniculus) population trends in northeastern Spain. Eur. J. Wildl. Res. 53, 19-28.

WinEpiscope software 2011. http://www.clive.ed.ac.uk Wobeser, G.A., 1994. Disease in Wild Animals, Investigation and management, 1st edition

Edition. Springer, New York, 393 p. Woodford, M.H., 2009. Veterinary aspects of ecological monitoring: The natural history of

emerging infectious diseases of humans, domestic animals and wildlife. Trop. Anim. Health Prod. 41, 1023-1033.

Woodroffe, R., Donnelly, C.A., Jenkins, H.E., Johnston, W.T., Cox, D.R., Bourne, F.J., Cheeseman, C.L., Delahay, R.J., Clifton-Hadley, R.S., Gettinby, G., Gilks, P., Hewinson, R.G., McInerney, J.P., Morrison, W.I., 2006. Culling and cattle controls influence tuberculosis risk for badgers. Proc. Natl. Acad. Sci. USA. 103, 14713-14717.

251

Page 273: Los abajo firmantes, como directores de esta tesis

Tesis doctoral

252

Wyss, D., Giacometti, M., Nicolet, J., Burnens, A., Pfyffer, G.E., Audige, L., 2000. Farm and slaughter survey of bovine tuberculosis in captive deer in Switzerland. Vet. Rec. 147, 713-717.

Yu, C., Zimmerman, C., Stone, R., Engle, R.E., Elkins, W., Nardone, G.A., Emerson, S.U., Purcell, R.H., 2007. Using improved technology for filter paper-based blood collection to survey wild Sika deer for antibodies to hepatitis E virus. J. Virol. Methods 142, 143-150.

Zadeh, L.A., 1965. FUZZY SETS. Information and Control 8, 338-&. Zanella, G., Durand, B., Hars, J., Moutou, F., Garin-Bastuji, B., Duvauchelle, A., Ferme, M.,

Karoui, C., Boschiroli, M.L., 2008. Mycobacterium bovis in wildlife in France. J. Wildl. Dis. 44, 99-108.

Zanin, E., Capua, I., Casaccia, C., Zuin, A., Moresco, A., 1997. Isolation and characterization of Aujeszky's disease virus in captive brown bears from Italy. J. Wildl. Dis. 33, 632-634.

Zarnke, R.L., Saliki, J.T., Macmillan, A.P., Brew, S.D., Dawson, C.E., Ver Hoef, J.M., Frost, K.J., Small, R.J., 2006. Serologic survey for Brucella spp., phocid herpesvirus-1, phocid herpesvirus-2, and phocine distemper virus in harbor seals from Alaska, 1976-1999. J. Wildl. Dis. 42, 290-300.

Zupancic, Z., Jukic, B., Lojkic, M., Cac, Z., Jemersic, L., Staresina, V., 2002. Prevalence of antibodies to classical swine fever, Aujeszky's disease, porcine reproductive and respiratory syndrome, and bovine viral diarrhoea viruses in wild boars in Croatia. J. Vet. Med. Ser. B 49, 253-256.

Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed effects models and extensions in ecology with R, 1st edition Edition. Springer, New York, 574 p.

Zwiebel, L.J., Takken, W., 2004. Olfactory regulation of mosquito-host interactions. Insect Biochem. Mol. Biol. 34, 645-652.

Page 274: Los abajo firmantes, como directores de esta tesis