la recta y sus ecuaciones

48
UNIDAD 12 LA RECTA Y SUS ECUACIONES Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos específicos: 1. Recordarás a qué se llama sistema de coordenadas rectangulares, ejes coordenados y cuadrantes, y cómo se localizan los puntos del plano. 2. Recordarás y aplicarás las fórmulas para determinar la distancia entre dos puntos cualesquiera del plano coordenado y las coordenadas del punto que divide a un segmento en una razón r. 3. Recordarás la definición de línea recta y de pendiente de una recta. 4. Recordarás y aplicarás las diferentes formas de la ecuación de una recta dadas dos condiciones que la definen. 5. Recordarás y aplicarás la forma general de la ecuación de una recta y las condiciones necesarias y suficientes para las posiciones relativas entre dos rectas en el plano. 6. Recordarás la definición y aplicaciones de la expresión de una recta en la forma normal y cómo obtenerla a partir de la forma general.

Upload: vuongthuy

Post on 11-Feb-2017

232 views

Category:

Documents


0 download

TRANSCRIPT

UNIDAD 12

LA RECTA Y SUS ECUACIONES

Objetivo general.

Al terminar esta Unidad resolverás ejercicios y problemas

correspondientes a las rectas en el plano y sus ecuaciones.

Objetivos específicos:

1. Recordarás a qué se llama sistema de coordenadas rectangulares, ejes

coordenados y cuadrantes, y cómo se localizan los puntos del plano.

2. Recordarás y aplicarás las fórmulas para determinar la distancia entre dos puntos

cualesquiera del plano coordenado y las coordenadas del punto que divide a un

segmento en una razón r.

3. Recordarás la definición de línea recta y de pendiente de una recta.

4. Recordarás y aplicarás las diferentes formas de la ecuación de una recta dadas

dos condiciones que la definen.

5. Recordarás y aplicarás la forma general de la ecuación de una recta y las

condiciones necesarias y suficientes para las posiciones relativas entre dos rectas

en el plano.

6. Recordarás la definición y aplicaciones de la expresión de una recta en la forma

normal y cómo obtenerla a partir de la forma general.

12. 2

Objetivo 1. Recordarás a qué se llama sistema de coordenadas rectangulares, ejes

coordenados y cuadrantes, y cómo se localizan los puntos en el plano.

Una característica básica de la Geometría Analítica es el uso de un sistema coordenado. En

los cursos de Álgebra y Trigonometría se ha utilizado el sistema de coordenadas

rectangulares - llamado también sistema cartesiano en honor al filósofo y matemático

René Descartes (1596-1650) - que consiste en dos rectas, llamadas ejes, que se cruzan

formando ángulos rectos. Generalmente un eje se coloca en forma horizontal y el otro

vertical; el primero se llama eje de las abscisas y se representa con la letra x, y el segundo

se denomina eje de las ordenadas y se representa con la letra y. El punto en que se cruzan

las rectas define al origen del sistema.

Figura 1.1

Cuando en cada eje coordenado se representan los números reales, cada punto del plano

tiene asociada una y sólo una pareja ordenada de números, llamados coordenadas; y

viceversa, a cada par de números le corresponde uno, y sólo un punto del plano. El primer

número de la pareja es la abscisa del punto, e indica la distancia del eje y al punto; el

segundo número es la ordenada, y corresponde a la distancia del punto al eje x. La pareja

ordenada se denota como (x, y).

Eje y

Eje x

Eje de las abscisas

Eje de las ordenadas

Origen

12. 3

Sobre el eje de las abscisas, a la derecha del origen se localizan los reales positivos y a la

izquierda los negativos. Sobre el eje de las ordenadas, los reales positivos se encuentran

hacia arriba del origen y los negativos hacia abajo.

Los ejes coordenados dividen al plano en cuatro partes llamadas cuadrantes, que se

numeran del I al IV en sentido contrario a las manecillas del reloj (Figura 1.2). Los puntos

que se encuentran en el primer cuadrante tiene abscisa y ordenada positivas; los puntos en

el segundo cuadrante tienen abscisa negativa y ordenada positiva; en el tercer cuadrante

tanto la abscisa como la ordenada son negativas, y en el cuarto cuadrante la abscisa es

positiva y la ordenada negativa.

Figura 1.2

Trazar un punto en el plano significa medir las distancias indicadas por sus coordenadas: a

partir del eje y para la abscisa, y a partir del eje x para la ordenada.

Ejemplos:

1.) Para localizar en el plano coordenado los puntos:

P1(2, –3); P2(–3, 0); P3(–2, 1); P4(2, –1),

I

x > 0 y > 0

II

x < 0 y > 0

III

x < 0 y < 0

IV

x > 0 y < 0

12. 4

e indicar el cuadrante en que se encuentran se debe partir del origen y ubicar en

primer lugar la abscisa en el eje horizontal – hacia la derecha del origen si es

positiva, o hacia la izquierda si es negativa – y después, a partir de tal punto sobre el

eje x, subir, o bajar, el número de unidades que indique la ordenada del punto –

según sea positiva o negativa – siempre en forma paralela al eje y.

Así, para ubicar el punto P1(2, -3), a partir del origen se debe avanzar hacia la

derecha 2 unidades sobre el eje x, y de este punto bajar 3 unidades en paralelo con

el eje y. El punto se localiza en el IV cuadrante.

El punto P2(–3, 0) se encuentra retrocediendo 3 unidades desde el origen sobre el

eje x y, como su ordenada es 0, no se separa de dicho eje.

Del mismo modo, P3(–2, 1) se localiza 2 unidades a la izquierda del origen sobre el

eje de las abscisas y subiendo una unidad en paralelo con el eje y.

Finalmente, P4(2, –1) se encuentra 2 unidades a la derecha del origen y una unidad

hacia abajo del eje x.

Los cuatro puntos mencionados se representan en la siguiente figura:

Figura E1.1

12. 5

2.) Si A(2, 2) y B(5, 2) son dos vértices de un cuadrado, se pueden encontrar las

coordenadas de los otros dos vértices. (Dos soluciones posibles)

Es conveniente localizar los puntos en el plano cartesiano para visualizar las

condiciones del problema y lo que se pide determinar. Como los puntos A y B

tienen la misma ordenada, el lado que definen es paralelo al eje x y su longitud es de

3 unidades.

Figura E1.2a

Con esta información se pueden encontrar los otros dos vértices y, como se puede

ver en la Figura E1.2b, una posibilidad es que se encuentren arriba de A y de B, en

cuyo caso sus coordenadas se obtienen sumando la longitud del lado a la ordenada

de los vértices conocidos:

C(2, 2 + 3) = (2, 5) y D(5, 2 + 3) = (5, 5)

O bien que se ubiquen hacia abajo, para lo cual se deberá restar la longitud del lado

a las ordenadas de A y de B:

C’(2, 2 – 3) = (2, –1) y D’(5, 2 – 3) = (5, –1)

12. 6

Figura E1.2b

3.) Dados los puntos P1(1, –3) y P2(4, –3), es posible encontrar las coordenadas del

punto con el que P1 y P2 forman un triángulo isósceles, en el que P2 sea el vértice de

un ángulo recto. (Dos soluciones posibles)

Un triángulo isósceles tiene dos lados iguales y, si además tiene un ángulo recto, los

dos lados iguales son los que forman dicho ángulo. Por las coordenadas de los

puntos y al representarlos en una gráfica, se encuentra que la longitud de los lados

iguales es 4 – 1 = 3. Como P2 es el vértice del ángulo recto, el tercer vértice P3, se

encuentra hacia arriba o hacia abajo de él, a 3 unidades de distancia. Por ello, las

coordenadas de cada caso son:

P3(4, –3 + 3) = (4, 0) ó P3(4, –3 – 3) = (4, –6)

12. 7

Figura E1.3

4.) Si se localizan los puntos (–5, –7) y (3, 9) y se unen con una recta y se hace lo

mismo con los puntos (–3, 7) y (2, –8), a partir de la gráfica se pueden encontrar las

coordenadas del punto donde se intersectan.

Figura E1.4

Como se puede ver en la figura, las rectas que unen cada par de puntos se

intersectan en el punto (–1, 1)

12. 8

5.) Para localizar en el plano cartesiano el punto: A

47,

59 puesto que

8.159

y 75.147 ,

las coordenadas de A son dos números racionales cuyo cociente es finito, es posible

localizarlos en cada eje con cierta aproximación, considerando las coordenadas del

punto como (–1.8, 1.75).

Figura E1.5

6.) Para localizar en el plano cartesiano el punto: B 2,1 , como se sabe que 2 es un

número irracional, también le corresponde un punto en el eje de los números reales.

Para localizarlo en el eje de las ordenadas se puede recurrir al Teorema de Pitágoras

( 222 bac ), ya que en un triángulo rectángulo cuyos catetos midan 1, su

hipotenusa medirá exactamente 2 .

En la Figura E1.6 se localiza el punto B(1, 2 ) y se muestra el procedimiento que se

siguió para ello.

12. 9

Figura E1.6

Objetivo 2. Recordarás y aplicarás las fórmulas para determinar la distancia entre

dos puntos cualesquiera del plano coordenado y las coordenadas del punto

que divide a un segmento en una razón r.

a) Distancia entre dos puntos.

Dados dos puntos cualesquiera del plano coordenado, uno de los siguientes tres casos

puede ocurrir:

1. Que ambos puntos tengan la misma ordenada: A(x1, y1), B(x2, y1). La distancia entre

tales puntos se determina tomando el valor absoluto de la diferencia de las abscisas:

Figura 2.1

12. 10

12 xxd

2. Que los puntos tengan la misma abscisa: A(x1, y1), B(x1, y2). En este caso la distancia

se obtiene tomando el valor absoluto de la diferencia de las ordenadas:

Figura 2.2

12 yyd

3. Que A y B sean dos puntos cualesquiera en el plano cartesiano: A(x1, y1), B(x2, y2).

Para calcular la distancia entre ellos, se considera el punto C(x2, y1) que corresponde a

la intersección de las rectas paralelas a los ejes que pasan por los puntos A y B,

respectivamente (Figura 2.3), con las que se forma un triángulo rectángulo y C es el

vértice del ángulo recto. La distancia d que se busca es la hipotenusa del triángulo,

por lo que se utiliza el Teorema de Pitágoras: “La suma de los cuadrados de los

catetos es igual al cuadrado de la hipotenusa”:

2 2 2d a b

12. 11

Figura 2.3

Las longitudes de los catetos a y b se obtienen aplicando los casos 1. y 2.:

a = AC = 12 xx , y b = BC = 12 yy

Al sustituir, queda:

212

212

2 yyxxd

y al tomar la raíz cuadrada, dado que se trata de una distancia, sólo se considera la raíz

cuadrada positiva:

212

212 yyxxd

Ejemplos:

1.) Encontrar la distancia entre los puntos: A(9, –2) y B(9, 11)

Como los puntos tienen la misma abscisa, su distancia se encuentra aplicando la

expresión del caso 2:

12 yyd = 211 = 211 = 13

2.) Encontrar el perímetro del triángulo que determinan los puntos A(2, 2), B(0, 5) y

C(–2, 2)

12. 12

Figura E2.2

El perímetro de un polígono es la suma de las longitudes de sus lados. El lado AC es

paralelo al eje x. Su longitud se encuentra aplicando la fórmula del primer caso:

2 1AC x x = 22 = 4 = 4

Los otros dos lados del triángulo no son paralelos a alguno de los ejes, por lo que se

debe aplicar la fórmula del caso 3 para encontrar su longitud:

22 5202 AB = 94 = 13

22 2520 BC = 94 = 13

Como el triángulo tiene dos lados iguales, es un triángulo isósceles. Su perímetro es:

Perímetro = 1324 ; aproximadamente 11.21 unidades

3.) Encontrar el área del triángulo que forman los puntos A(-2, 2), B(1, 0) y C(0, 5)

El área de un triángulo es la mitad del producto de la base por la altura:

2hbA

12. 13

Figura E2.3

En la gráfica se observa que, aparentemente, el vértice A corresponde a un ángulo

recto y, en un triángulo rectángulo, uno de los catetos es la base y el otro la altura.

Para comprobar que efectivamente es un triángulo rectángulo se puede utilizar el

Teorema de Pitágoras, verificando que la suma de los cuadrados de los catetos sea

igual al cuadrado de la hipotenusa:

22 2021 AB = 49 = 13

22 2520 AC = 94 = 13

22 0510 BC = 251 = 26

Como en un triángulo rectángulo la hipotenusa siempre es mayor que cualquiera de

los catetos, se hace 26c y:

222131326

26 = 13 + 13

Con lo que se demuestra que el triángulo efectivamente es rectángulo. Así, su área

es igual a:

2hbA

= 2

1313 = 2

13 = 6.5 unidades

12. 14

b) Coordenadas del punto que divide a un segmento en una razón dada.

Por razón se entiende un cociente de dos números expresado en forma de fracción

común, por ejemplo:

1 3 6 9; ; ;2 4 1 8

Cuando se dice que un punto P divide al segmento AB en la razón r, significa que

AP rPB

Figura 2.4

La razón es el cociente de la distancia que hay del inicio del segmento (A) al punto que

lo divide (P), entre la distancia del mismo punto de división (P) al punto final del

segmento (B).

Obsérvese que si

PABPr 1

y si P no es el punto medio del segmento, entonces 1rr , por lo que es importante

conocer cuál es el punto de inicio del segmento y cuál el final.

12. 15

Si A(x1, y1) y B(x2, y2) son los extremos de un segmento AB , las coordenadas de un

punto P(x, y) que divide a este segmento en la razón dada PBAPr son:

rrxxx

1

21 ; rryyy

1

21

Cuando P es el punto medio del segmento, PBAPr = 1

11

Y las fórmulas se reducen a

221 xxx

; 2

21 yyy

Como se está considerando la dirección del segmento, las razones deben tomarse con el

signo que resulte, positivo o negativo. La razón tiene signo negativo cuando el punto

está fuera del segmento.

Ejemplos:

1.) Si el punto medio de un segmento sobre el eje x es (7, 0) y uno de los extremos

tiene abscisa 2, se pueden encontrar las coordenadas del otro extremo de la

siguiente manera:

Los datos del problema son las coordenadas de un extremo del segmento, el punto

A(2, 0) (porque el segmento está sobre el eje x), y las del punto medio (7, 0).

Como la abscisa del punto medio es:

221 xxx

Entonces:

22

7 2x ;

12. 16

2214 x ;

122 x

y, dado que el segmento está sobre el eje x, la ordenada del punto medio es 0, de

modo que el otro extremo del segmento es B(12, 0) .

2.) Para encontrar las coordenadas de los puntos de trisección del segmento que va de

A(–2, 3) a B(6, –3), es necesario recordar que los puntos de trisección son los que

dividen al segmento en tres partes iguales, por lo tanto son dos puntos.

Por la definición de razón, el primer punto P1 se encuentra a una “parte” de

distancia del inicio del segmento, y a dos “partes” del final del segmento, por lo

que

BPAPr

1

1 = 21

Las coordenadas de P1 son:

rrxxx

1

21 =

211

6212

=

23

32 =

231

32

rryyy

1

21 =

211

3213

=

23

233

=

2323

= 1

P1

1,

32

Para encontrar las coordenadas del segundo punto P2, se observa que ahora la

distancia del punto de inicio a P2 es de dos “partes” y de P2 al punto final es de

una “parte”, es decir

12. 17

212r

y las coordenadas de este otro punto que divide al segmento son:

rrxxx

1

21 = 21

622 =

310

rryyy

1

21 = 21

323 = 1

363

P2

1,

310

Como se puede corroborar en la representación gráfica, estos puntos dividen al

segmento en tres partes iguales.

Figura E2.4

3.) Si A(–4, 2) y B(4, 6) son los extremos de un segmento dirigido de A a B, se pueden

encontrar las coordenadas del punto P que divide a este segmento en una razón

cualquiera, como podría ser la razón r = –3

PBAPr = –3

rrxxx

1

21 = 31

434 = 8

216

rryyy

1

21 = 31

632 = 8

216

12. 18

Entonces P(8, 8) que, como se ve en la figura, está fuera del segmento. Esto se

debe al hecho de que la razón sea negativa.

Figura E2.5

Objetivo 3. Recordarás la definición de pendiente de una recta y de línea recta.

Se llama ángulo de inclinación de una recta al ángulo que se forma por la parte positiva del

eje x y la recta, cuando ésta se considera dirigida hacia arriba. Se designa por la letra griega

α.

Figura 3.1

12. 19

Se llama pendiente o coeficiente angular de una recta, a la tangente de su ángulo de

inclinación. Se designa comúnmente por la letra m, por lo tanto m = tan α.

Figura 3.2

Se llama línea recta al lugar geométrico de los puntos tales que, tomados dos puntos

diferentes cualesquiera del lugar, el valor de la pendiente m resulta siempre constante.

Dados dos puntos de una recta, 111 , yxP y 222 , yxP , la pendiente se calcula como

12

12

xxyym

, 21 xx

Por lo tanto, si yxP , es un punto cualquiera de dicha recta, las coordenadas del punto P

satisfacen la ecuación

1

1

xxyym

o bien

11 xxmyy (1)

que es la ecuación de la recta que pasa por 111 , yxP y tiene pendiente m. Esta expresión se

llama forma punto–pendiente de la ecuación de una recta.

12. 20

Figura 3.3

Objetivo 4. Recordarás y aplicarás las diferentes formas de la ecuación de una recta,

dadas dos condiciones que la definen.

Una recta en particular tiene una pendiente dada, pasa por un número infinito de puntos, e

intersecta a cada uno de los ejes coordenados en un punto específico. Conocidas dos

cualesquiera de estas condiciones, es posible determinar la ecuación de la recta que las

cumple.

Ejemplos:

1.) Para determinar la ecuación de la recta cuya pendiente es –3 y pasa por el punto

(11, –8):

La ecuación de la recta que pasa por el punto P1 y tiene pendiente m está dada por

la fórmula (1)

11 xxmyy

12. 21

Entonces, la ecuación de la recta con pendiente –3 y que pasa por el punto

P1(11, –8) se obtiene sustituyendo estos valores en la ecuación:

1138 xy

3338 xy

la ecuación pedida es:

3 25y x

2.) Para determinar la ecuación de la recta tal que el ángulo que forma con el eje x es

de 72 y pasa por el punto (1, 1):

Figura E4.1

Como la pendiente de la recta es la tangente del ángulo que forma con el eje x, se

obtiene el valor de la tangente de 72º:

tan 72° = 3.0777 = m

12. 22

Como en el ejemplo anterior, se sustituyen en la forma punto–pendiente los

valores de m y las coordenadas del punto:

10777.31 xy 1 3.0777 3.0777y x

la ecuación pedida es:

3.0777 2.0777y x

3.) Para determinar la ecuación de la recta que pasa por los puntos (4, 2) y (–5, 7):

Figura E4.2

Para aplicar la fórmula (1) se necesita conocer la pendiente y un punto; cualquiera

de los dos puntos servirá para la ecuación. Sólo se requiere calcular la pendiente,

la cual se puede determinar con los dos puntos dados. El cálculo se puede realizar

directamente en la fórmula (1) sustituyendo la expresión de m:

1

12

121 xx

xxyyyy

(2)

Esta ecuación se llama forma dos puntos de la ecuación de una recta.

12. 23

Si se utiliza P1 para sustituir en la ecuación:

454

722

xy

4952 xy

920

952 xy

Y si se quita el denominador del segundo miembro para tener una ecuación con

coeficientes enteros:

205189 xy 9 5 38y x

4.) Para determinar la ecuación de la recta cuya pendiente es 17 y su intersección con

el eje y se encuentra a 2 unidades del origen.

Como no se precisa si la intersección con el eje y es en la parte positiva o en la

parte negativa del eje, o bien el punto de intersección es P1(0, 2), o es P2(0, –2).

En cualquier caso, se cuenta con las dos condiciones necesarias para determinar la

ecuación de la recta: la pendiente y un punto. Si el punto es P1(0, 2), la ecuación

es

0712 xy

xy712

Si esta ecuación se reacomoda de manera que en el primer miembro quede

solamente la variable y, quedarán explícitos tanto el valor de la pendiente como la

ordenada del punto donde la recta intersecta al eje y (esta intersección se denota

por b y, en este caso, b = 2):

12. 24

271

xy

Si se toma el punto P2(0, –2), la ecuación en la forma punto-pendientes es

0712 xy

Y si, como antes, se reacomoda de forma que aparezcan explícitamente la

pendiente y la ordenada al origen, ahora b = –2 y la ecuación es:

271

xy

Debido a las dos condiciones que se requieren para utilizarla, la expresión

bmxy

se denomina forma pendiente–ordenada al origen de la ecuación de una recta.

5.) Para determinar la ecuación de la recta tal que los segmentos que determina sobre

los ejes x y y son 2 y –3 respectivamente.

A diferencia del ejemplo anterior, en éste, los signos de los segmentos indican que

el punto de intersección sobre el eje x es hacia el lado positivo y el segmento

medido sobre el eje y es hacia abajo.

Figura E4.3

12. 25

Los puntos en los que la recta intersecta a cada eje son P1(2, 0) y P2(0, –3). Con

ellos se emplea la forma dos puntos de la ecuación de una recta:

112

121 xx

xxyyyy

Y tomando alguno, por ejemplo P1, la ecuación de la recta es:

220030

xy

223

xy

323

xy

Si se toma el punto P2:

0233 xy

xy233

323

xy

Que, por supuesto, es la misma ecuación que se obtuvo con el punto P1.

Otra alternativa sería calcular la pendiente de la recta a partir de los dos puntos y

después sustituir el valor de m y el de b (b= –3) en la forma pendiente–ordenada al

origen.

Cuando, como en este ejemplo, se conocen la abscisa y la ordenada al origen, se

utiliza la llamada forma simétrica de la ecuación de una recta, que se obtiene a

partir de la forma dos puntos, igualando a 1 el segundo miembro. Así, si la

intersección con el eje x es el punto (a, 0) y la intersección con el eje y es el punto

(0, b), la ecuación de la recta es:

1by

ax

12. 26

6.) Para encontrar la ecuación de la recta en la forma simétrica, si los segmentos que

determina sobre los ejes x y y son 2 y –3 respectivamente:

En el ejemplo 5, se aplicó la forma dos puntos obteniendo:

323

xy

Si se multiplica por 2 para tener sólo coeficientes enteros:

632 xy

La forma simétrica se obtiene igualando a 1 la ecuación, de modo que deberán

dejarse los términos en x y en y en el primer miembro y dividir entre –6 toda la

ecuación:

66

62

63

yx

Para que la ecuación muestre claramente las intersecciones con los ejes, conviene

que en la segunda fracción se deje el signo menos en el denominador:

132

yx

Como se puede ver, cada variable está dividida por la intersección de la recta con

el eje correspondiente.

7.) Para encontrar la ecuación de la recta que pasa por los puntos (–3, 0) y (0, 5):

Es claro que los puntos dados son las intersecciones con el eje x y con el eje y,

respectivamente. La forma de la ecuación de la recta que se puede utilizar

directamente cuando se conocen sus intersecciones con los ejes coordenados es la

forma simétrica:

1by

ax

12. 27

donde:

a ≡ intersección con el eje x,

b ≡ intersección con el eje y,

Entonces, la ecuación de la recta es

153

yx

Resumen de fórmulas:

Si se conocen: La forma que conviene emplear es:

La pendiente m y un punto 11 xxmyy

Dos puntos 112

121 xx

xxyyyy

La pendiente m y la intersección b con el eje y bmxy

Las intersecciones a con el eje x, y b con el eje

y 1

by

ax

Objetivo 5. Recordarás y aplicarás la forma general de la ecuación de una recta y las

condiciones necesarias y suficientes para las posiciones relativas entre dos

rectas en el plano.

Generalmente la ecuación de una recta se expresa igualando a cero el segundo miembro.

En los ejemplos del objetivo anterior, el resultado se daría como sigue:

12. 28

En el Ejemplo 1:

3338 xy → 0253 yx

En el Ejemplo 2:

0777.30777.31 xy → 00777.20777.3 yx

En el Ejemplo 3:

205189 xy → 03895 yx

En el Ejemplo 4:

271

xy → 0271

yx → 0147 yx

En el Ejemplo 5:

323

xy → 0323

yx → 0623 yx

En el Ejemplo 6:

132

yx → 0623 yx

En el Ejemplo 7:

153

yx → 01535 yx → 01535 yx

Una ecuación en una o dos variables de primer grado igualada a cero, se llama forma

general de la ecuación de una recta. Su expresión genérica es:

0 CByAx

12. 29

donde al menos uno de los coeficientes, A ó B , debe ser diferente de cero y C puede o no

ser cero. Esta expresión también se denomina ecuación lineal.

Dada una ecuación lineal en la forma general con B ≠ 0, al expresarla en la forma punto-

pendiente se encuentra que:

0 CByAx

CAxBy

BCx

BAy

la pendiente m de la recta está dada por el cociente

BAm

y su ordenada al origen, b , es el cociente

BCb

Si ahora se expresa en la forma simétrica para conocer sus intersecciones con los ejes

coordenados:

0 CByAx

CByAx

CC

CBy

CAx

1

BCy

ACx

La intersección con el eje x es ACa , y la intersección con el eje y es

BCb

12. 30

Ejemplos:

1.) Dada la ecuación de la recta 01856 yx , se pueden encontrar su pendiente y

el punto de intersección con el eje y.

Como la ecuación está dada en la forma general donde A = 6; B = –5; C = 18, la

solución se encuentra aplicando las fórmulas anteriores.

La pendiente de la recta es:

BAm =

56

= 56

Y el punto de intersección con el eje y es:

BCb =

518

= 5

18

2.) Dada la recta 42313 xy , se pueden encontrar la pendiente, sus

intersecciones con los ejes coordenados y representarla en el plano cartesiano.

La ecuación de la recta no está en la forma punto-pendiente ni en la forma

pendiente-ordenada al origen; de manera que lo más conveniente es expresarla en

la forma general y aplicar las fórmulas para determinar la pendiente y las

intersecciones con los ejes.

Para ello, se multiplica la ecuación por el denominador de la fracción, se iguala a

cero y se reducen términos semejantes:

42313 xy

8326 xy

08263 yx

12. 31

01063 yx

Con la ecuación de la recta en la forma general, donde A = 3; B = 6 y C = –10, se

encuentra que

BAm =

63

=21

310

310

ACa

BCb

35

610

La representación en el plano se puede hacer fácilmente con las dos intersecciones

sobre los ejes:

Figura E5.1

3.) Al analizar la ecuación: yxxyx 5162 2 , si se efectúan las

operaciones indicadas queda:

yxxyxx 51644 22

Si se pasan todos los términos al primer miembro y se reducen términos

semejantes:

12. 32

0165422 yyxxxx

0179 yx

lo que se obtiene es la ecuación de una recta en la forma general

0179 yx

Por tanto, la expresión yxxyx 5162 2 representa una recta.

Dadas dos rectas, puede ocurrir uno y sólo uno de los siguientes casos:

1. Las rectas son paralelas

2. Las rectas son coincidentes (es la misma recta)

3. Las rectas se cortan en uno y solamente un punto y, al cruzarse, el ángulo que

forman es

a) de 90º, por lo tanto son perpendiculares

b) diferente de 90º

Conocidas las rectas 0 CByAx y 0''' CyBxA , la(s) condición(es) necesaria(s)

y suficiente(s) para estos casos son:

1. Paralelas

Para esto se requiere que sus pendientes sean iguales, m = m΄.

m = m΄ → ''

BA

BA

'' B

BAA

lo cual ocurre cuando los coeficientes de x y de y son proporcionales.

2. Coincidentes

Para esto se necesita que tengan la misma pendiente y un punto común, es decir:

m = m΄

y, que por ejemplo, para el punto en que cada recta intersecta al eje x se tenga:

12. 33

0,

AC =

0,

''

AC

Por la igualdad de pendientes:

''

BA

BA

→ '' B

BAA

y, por la igualdad del punto:

''

AC

AC

→ '' C

CAA

Como dos cantidades iguales a una tercera son iguales entre sí, se tiene que:

''' CC

BB

AA

Por lo tanto, para que dos rectas coincidan, sus coeficientes correspondientes

deben ser proporcionales.

3. Se intersecten en un punto y sólo uno:

Dos rectas se intersectan solamente en un punto cuando no son paralelas.

Entonces, por el caso 1, dos rectas se intersectan en un punto cuando los

coeficientes de x y de y no son proporcionales:

0'' BAAB

a) Formando un ángulo de 90º (rectas perpendiculares).

Dos rectas son perpendiculares si sus pendientes son recíprocas y de signo

contrario:

m = '

1m

m m΄ = – 1

1''

BA

BA

12. 34

1''

BBAA

'' BBAA

0'' BBAA

Y esto ocurre cuando la suma de los productos de los coeficientes

respectivos de x y de y, es cero.

b) Formando un ángulo diferente de 90º.

Si

0'' BAAB y ' ' 0AA BB

.Ejemplos:

1.) Para encontrar el valor de k para que la recta 0181 ykkx sea paralela

a la recta 0734 yx , como dos rectas son paralelas si los coeficientes de x

y y son proporcionales, es decir, si '' B

BAA → 0'' BAAB , se pueden

tomar los coeficientes de la primera recta como A y B: A = k y B = k – 1; y los

de la segunda como A’ y B’: A’ = 4 y B’ = 3. Entonces:

0'' BAAB

0143 kk

0443 kk

04 k

4k

y

31 k

La recta es:

01834 yx

12. 35

Se puede observar que los coeficientes de x y de y son iguales en las dos rectas

y que

0'' BAAB

03434

Las dos rectas sólo difieren en el término independiente.

2.) Para determinar si las rectas R1 que pasa por los puntos (1, 1) y (4, 4) y R2 que

pasa por (0, 4) y (3, 1) son perpendiculares entre sí conviene analizar los datos

que se proporcionan para resolver el problema de la manera más eficiente.

Si los datos fueran las ecuaciones de las rectas, lo más sencillo sería verificar si

la condición 0'' BBAA se cumple o no. Pero como la información son dos

puntos de cada recta, lo mejor es utilizar la condición de que las rectas serán

perpendiculares si m = '

1m

. Entonces:

12

121 xx

yymR

= 1414

= 1

33

y

0341

2

Rm = 133

Por lo que

2

1

1

RR m

m ; 1"1

RR mm ,

y las rectas sí son perpendiculares.

3.) Si la ecuación de la recta R1 es 01175 yx , se puede escribir la ecuación

de todas las rectas paralelas a ella de la siguiente manera:

12. 36

Como dos rectas son paralelas cuando sus pendientes son iguales, o sea que sus

coeficientes de x y de y son tales que:

'' BB

AA

y si la ecuación de todas las rectas paralelas a R1 se representa como

0 CByAx , los coeficientes de R1 serán A’= 5 y B’= –7, de modo que

'' BB

AA →

75

BA ,

de donde

75

BA

Al sustituir A por su equivalente en 0 CByAx :

07

5

CByxB

Que también puede expresarse como:

0775 CByBx

0775

BCy

BBx

BB

0775 BCyx

Dado que BC7

es una constante arbitraria, se le puede llamar k y la ecuación

anterior queda como

075 kyx

De modo que todas las rectas paralelas a R1: 01175 yx , son aquellas que

difieren de ésta únicamente en el término independiente.

Como una recta está determinada unívocamente por dos condiciones

independientes, cuando sólo se establece una única condición geométrica existe

12. 37

una infinidad de rectas que la satisfacen a las que se llama familia o haz de

rectas.

En este ejemplo, la familia de rectas con pendiente 75

75

m es:

075 kyx

4.) Para comprobar que cada una de las rectas:

a) 0179165 yx

b) 0557

yx

c) 044720

yx

son paralelas a la recta R1: 0975 yx basta encontrar expresiones

equivalentes para ellas con los coeficientes de x y de y iguales o proporcionales a

los de R1.

a) 0179165 yx

Como 65 es múltiplo de 5 (ya que 65 = 5 x 13), y 91 es múltiplo de 7 en

la misma proporción (91 = 7 x 13) se tiene:

5 1

' 5 13 13AA

y

7 1

' 7 13 13BB

entonces:

'' BB

AA

y las rectas son paralelas.

b) 0557

yx

12. 38

Por comodidad, puede encontrarse una expresión equivalente con

coeficiente 5 (para eliminar la fracción en el coeficiente de y). Al

multiplicar por 5 ambos miembros de la ecuación y simplificar, queda:

05

575 yx

02575 yx

Se obtiene que A = A’ , B = B’ y las rectas son paralelas.

c) 044720

yx

Como en el anterior, en este caso es sencillo encontrar las operaciones

que se deben efectuar para llegar a una ecuación equivalente con

coeficientes proporcionales a 5 para x y a –7 para y al eliminar el

denominador del coeficiente de x:

207 7 4 7 4 7 07

x y

20 28 28 0x y

Puesto que

'' BB

AA

se corrobora que R1 y la recta propuesta son paralelas.

Objetivo 6. Recordarás la definición y aplicaciones de la expresión de una recta en la

forma normal y cómo obtenerla a partir de la forma general.

La forma normal de la ecuación de una recta se obtiene conociendo su distancia al origen,

la cual se mide trazando una perpendicular -llamada normal- a la recta, desde el origen y el

ángulo de inclinación de dicha normal. La distancia se designa por p y el ángulo por ω,

como se ilustra en la Figura 6.1.

12. 39

Figura 6.1

A partir de estos datos, la forma normal de la ecuación de una recta se escribe como

0cos pysenx

Donde p es un número positivo igual a la longitud de la normal, desde el origen hasta la

recta, y ω es el ángulo positivo (menor de 360º), medido desde la parte positiva del eje x

hasta la normal.

Ejemplos:

1.) Para encontrar la ecuación de una recta, si la longitud de su normal es 8 y su ángulo

de inclinación ω = 60º se tienen los dos datos que se requieren para determinarla.

Sólo hace falta calcular el valor del coseno y del seno de 60º, lo cual se puede hacer

con ayuda de unas tablas o de una calculadora.

12. 40

Como

sen 60º = 0.866 32

cos 60º = 0.5 12

Al sustituir los valores correspondientes en la forma que tiene la ecuación normal

se obtiene:

1 3 8 02 2

x y

Si se eliminan los denominadores, multiplicando por 2 a todos los términos, se

obtiene la ecuación de la misma recta en su forma general:

3 16 0x y

2.) Para obtener la ecuación en la forma normal de la recta que es tangente en el punto

(–3, 4) a una circunferencia con centro en el origen y radio 5, es posible auxiliarse

con la figura que se muestra:

Figura E6.1a

Como en cualquier circunferencia el radio es perpendicular a las tangentes, entonces

la normal es el radio y p = 5.

12. 41

Los valores del seno y del coseno de ω se obtienen directamente considerando el

punto de tangencia (–3, 4) y el punto (–3, 0) que proyecta en el eje x ese punto de

tangencia:

Figura E6.1b

Entonces,

sen ω = py1 =

54 y cos ω =

px1 =

53

y la ecuación en forma normal de la recta tangente al círculo en el punto (–3, 4) es:

0554

53

yx

Para expresarla en la forma general conviene multiplicar por –5 para eliminar los

denominadores y dejar el primer término positivo:

02543 yx

Suele ser preferible manejar la ecuación de una recta en la forma general. Sin embargo, la

forma normal es especialmente útil para resolver algunos problemas, como por ejemplo el

cálculo de la distancia de una recta a un punto dado, o las ecuaciones de las bisectrices de

12. 42

los ángulos que forman dos rectas al cortarse. La distancia de una recta a un punto es la

longitud del segmento perpendicular a la recta que va desde dicha recta hasta el punto.

Para estas aplicaciones se utilizan los siguientes teoremas, cuya demostración se puede

consultar en algún libro de Geometría Analítica.

Teorema 1. La forma general de la ecuación de una recta, 0 CByAx , puede

reducirse a la forma normal dividiéndola por el radical 22 BAr :

2 20Ax By C

A B

o bien:

0222222

BACy

BABx

BAA

donde el signo que antecede al radical se elige de la siguiente manera:

a) Si C ≠ 0, r es de signo contrario a C

b) Si C = 0 y B ≠ 0, r es del mismo signo de B

c) Si C = B = 0, r y A tienen el mismo signo

Teorema 2. La distancia d (en valor absoluto) de una recta 0 CByAx a un

punto dado P1(x1, y1,), puede obtenerse con la siguiente expresión:

1 1

2 2

Ax By Cd

A B

Teorema 3. La distancia dirigida d de la recta 0 CByAx al punto P1(x1, y1) se

obtiene de la fórmula

2211

BACByAxd

donde el signo del radical se elige de acuerdo con lo establecido en el Teorema 1.

12. 43

La interpretación del signo de d en el cálculo de una distancia dirigida es ésta:

a) Si la recta pasa por el origen:

Si d es positiva, el punto P1 está arriba de la recta.

Si d es negativa, P1 está abajo de la recta.

b) Si la recta dada no pasa por el origen:

Si d es positiva, el punto P1 y el origen están en lados opuestos de la

recta.

Si d es negativa, el punto P1 y el origen están del mismo lado de la recta.

Ejemplos:

3.) Para determinar la forma normal de la ecuación de la recta

063 yx

basta aplicar la expresión del Teorema 1:

0222222

BACy

BABx

BAA

y recordar que el signo del radical, si C ≠ 0, como en este caso, se elige contrario al

de C, de modo que la ecuación de la recta en la forma normal es:

031

631

331

1222222

yx

1 3 6 010 10 10

x y

0106

103

10

yx

4.) Para encontrar la distancia de la recta 060125 yx al punto (3, 2), como sólo

se pide la distancia (no dirigida), se utiliza el Teorema 2:

1 1

2 2

Ax By Cd

A B

12. 44

donde A = 5, B = 12 y C = 60, en tanto que x1 = 3 y y1 = 2. Al sustituir estos

valores en la expresión para d, se encuentra que:

d =

22 125

6021235

=

16999

= 1399 unidades lineales

5.) Para encontrar la distancia entre las rectas

R1: 0843 yx y R2: 0986 yx

se observa, primero, que R1 y R2 son paralelas porque los coeficientes de las

variables x, y en la segunda ecuación son múltiplos de los respectivos coeficientes

en la primera: 6 = 2(3), y –8 = 2( –4), de modo que la distancia entre ellas se puede

determinar con la expresión del Teorema 2 conociendo un punto de alguna y

utilizando la ecuación de la otra.

Puesto que es indistinto, se puede tomar a R1 para la ecuación y determinar un punto

de R2 lo cual se logra dando un valor arbitrario a una de las variables.

Así, si se despeja y en la recta R2: 0986 yx se tiene:

xy 698

xy 698

869 xy

Ahora dando a x cualquier valor, por ejemplo x = 1:

8

169 y =

815

Entonces, 151 , 8 es un punto de la recta R2 y lo que sigue es aplicar la fórmula

correspondiente para la distancia, 1 1

2 2

Ax By Cd

A B

, con la ecuación de R1:

0843 yx .

12. 45

Como A = 3, B = –4, C = 8 y, además, x1 = 1, y1 = 8

15 , al sustituir estos valores

se obtiene:

22 43

88

15413

d = 169

82

153

=

527

= 107

La distancia entre las rectas R1: 0843 yx y R2: 0986 yx es de siete

décimos (unidades de longitud).

6.) La ecuación de la recta paralela a la recta 012125 yx y distante 4 unidades de

ella tiene dos soluciones posibles debido a que a cada lado de dicha recta se

encuentra una paralela a 4 unidades de distancia.

Los datos del problema son: A = 5, B = 12, C = 12 , d = ±4 (dado que no se

especifica cuál de las dos paralelas se busca, se deben considerar las dos

posibilidades para d, es decir que sea igual a +4 o a –4).

El punto P1(x1, y1,) se tomará como un punto cualquiera, arbitrario, de la recta

buscada, es decir se tomará como P ,x y . Además, en la fórmula

2211

BACByAxd

, el signo del radical será positivo puesto que C < 0.

Sustituyendo los datos:

4125

1212522

yx

)13)(4(12125 yx

12. 46

Al tomar el signo positivo la ecuación que resulta es:

05212125 yx

064125 yx

y, con el signo negativo:

05212125 yx

040125 yx

Entonces las ecuaciones de las dos rectas paralelas a 012125 yx y distantes 4

unidades de ella son:

064125 yx y 040125 yx

7.) Dadas las rectas R1: 032 yx y R2: 022 yx , es posible encontrar la

ecuación de la bisectriz del ángulo agudo entre ellas utilizando la fórmula de la

distancia de una recta a un punto.

La bisectriz de un ángulo es la recta que lo divide en dos ángulos iguales. Como se

puede observar en la figura E6.2a, las rectas al cruzarse definen dos ángulos que son

suplementarios, uno menor de 90º y otro mayor de 90º; se pide encontrar la bisectriz

del primero (el señalado como en la figura).

Figura E6.2a

12. 47

Dado que los puntos de la bisectriz se encuentran a la misma distancia de ambas

rectas, entonces para un punto cualquiera P(x, y) de la bisectriz, se debe cumplir

que:

Distancia del punto P(x, y) a R1 = Distancia del punto P(x, y) a R2

y se puede aplicar el Teorema 3 teniendo en cuenta el signo de la distancia dirigida,

para saber si en esta igualdad los dos miembros son del mismo signo o si tienen

signos diferentes. El signo de la distancia dirigida dependerá de que los puntos de la

bisectriz y el origen se encuentren del mismo lado o en lados opuestos con respecto

a cada recta.

En la figura E6.2b se muestra un punto arbitrario de la bisectriz. Como las rectas no

pasan por el origen, la distancia dirigida d es positiva tanto para R1 como para R2,

porque el punto P y el origen se encuentran en lados opuestos de cada recta, de

modo que en la igualdad los dos miembros tendrán el mismo signo.

Figura E6.2b

Tomando en cuenta que para R1, A=1, B=2, C= 3 y, para R2, A=1, B= 2 , C= 2 :

12. 48

22 2132

yx = 22 2122

yx

y por ser C ≠ 0 en ambas rectas, el signo del radical en cada miembro se elige

contrario al de C.

2 35

x y

= 2 25

x y

al eliminar los denominadores queda:

2232 yxyx

014 y

que es la ecuación de la bisectriz pedida.

Vale la pena notar que si se hubiera escogido otro punto arbitrario de la bisectriz,

como el que se muestra en la figura E6.2c, entonces las dos distancias dirigidas

hubieran sido negativas, porque el punto P y el origen estarían del mismo lado para

cada recta y, de cualquier forma, al hacer la igualdad los dos miembros tendrían el

mismo signo, por lo que se obtiene el mismo resultado para cualquier.

Figura E6.2c