hoja de calculo vigas de concreto

156
Ing. Alfredo Salinas Mafra APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO CONTENIDO CAPÍTULO 1.00 EL DISEÑO ESTRUCTURAL PAGINA 1.01 Objetivos del diseño estructural 1.02 Procedimiento del diseño estructural 2 1.03 Memoria de cálculo 2 CAPITULO 2.00 CARACTERÍSTICAS DEL CONCRETO Y ACERO 2.01 Introducción 10 2.02 Esfuerzo deformación del concreto 11 2.03 Módulo elástico 14 2.04 Acero de refuerzo 17 2.05 Deflexión en vigas CAPITULO 3.00 REQUISITOS DE RESISTENCIA Y FUNCIONAMIENTO 3.01 Diseño de elementos de concreto 19 3.02 Factores de resistencia requerida 20 3.03 Factores de resistencia de diseño 21 CAPITULO 4.00 COMPRESIÓN SIMPLE 4.01 Elementos sujetos a compresió. 21 4.02 Fórmulas del ACI-318-05 21 4.03 Ejemplos de columnas con carga axial. 23 24 CAPITULO 5.00 FLEXIÓN SIMPLE 5.01 Comportamiento y métodos de falla 27 5.02 Vigas a flexión simplemente armadas 38 5.03 Ejemplos de diseño CAPITULO 6.00 CORTANTE 6.01 Comportamiento y modos de falla 54 6.02 Resistencia del concreto y refuerzo con estribos 54 6.03 Ejemplos de diseño CAPITULO 7.00 COLUMNAS 7.01 Efectos de esbeltez 7.02 Compresión simple 7.03 Compresión y flexión 7.04 Ejemplos de diseño CAPITULO 8.00 LOSAS 8.01 Losas en una dirección 8.02 Ejemplos de diseño 8.03 Losas en dos direcciones 8.04 Ejemplos de diseño CAPITULO 9.00 ZAPATAS 9.01 Zapatas corridas 9.02 Zapatas aisladas 9.03 Zapatas con viga de equilibrio 9.04 Ejemplos de diseño

Upload: hoguer-sebastian

Post on 26-Oct-2015

174 views

Category:

Documents


16 download

TRANSCRIPT

Page 1: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra1

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

CONTENIDO

CAPÍTULO 1.00 EL DISEÑO ESTRUCTURAL PAGINA1.01 Objetivos del diseño estructural1.02 Procedimiento del diseño estructural 21.03 Memoria de cálculo 2

CAPITULO 2.00 CARACTERÍSTICAS DEL CONCRETO Y ACERO2.01 Introducción 102.02 Esfuerzo deformación del concreto 112.03 Módulo elástico 142.04 Acero de refuerzo 172.05 Deflexión en vigas

CAPITULO 3.00 REQUISITOS DE RESISTENCIA Y FUNCIONAMIENTO3.01 Diseño de elementos de concreto 193.02 Factores de resistencia requerida 203.03 Factores de resistencia de diseño 21

CAPITULO 4.00 COMPRESIÓN SIMPLE4.01 Elementos sujetos a compresión axia. 214.02 Fórmulas del ACI-318-05 214.03 Ejemplos de columnas con carga axial. 23

24CAPITULO 5.00 FLEXIÓN SIMPLE

5.01 Comportamiento y métodos de falla 275.02 Vigas a flexión simplemente armadas 385.03 Ejemplos de diseño

CAPITULO 6.00 CORTANTE6.01 Comportamiento y modos de falla 546.02 Resistencia del concreto y refuerzo con estribos 546.03 Ejemplos de diseño

CAPITULO 7.00 COLUMNAS7.01 Efectos de esbeltez7.02 Compresión simple7.03 Compresión y flexión7.04 Ejemplos de diseño

CAPITULO 8.00 LOSAS8.01 Losas en una dirección8.02 Ejemplos de diseño8.03 Losas en dos direcciones8.04 Ejemplos de diseño

CAPITULO 9.00 ZAPATAS9.01 Zapatas corridas9.02 Zapatas aisladas9.03 Zapatas con viga de equilibrio9.04 Ejemplos de diseño

Page 2: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra2

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

1.00 DISEÑO ESTRUCTURAL

1.01 Objetivos del diseño estructural

1.02 Procedimiento del diseño estructural

1.03 Memoria de cálculo

1.- Descripción del edificio

2.- Estructuración:

Definimos como diseño estructural el dimensionamiento del concreto y refuerzo de acero necesario para que una estructura tenga un comportamiento en las condiciones normales de servicio y que garantice la resistencia de las cargas vivas, muertas, accidentales y deformaciones esperadas, en las diferentes etapas de su vida útil, bajo esta definición es indispensable que el responsable del diseño estructural, conozca los métodos, procedimientos y especificaciones de diseño.

El proceso del diseño estructural principia con la formulación de objetivos que se pretenden alcanzar y las restricciones que se deben tomar en cuenta, definiendo la estructuración más conveniente, definiendo las acciones y las secciones de la estructura propuesta.

Previo al diseño estructural, se deberá realizar el análisis de la estructura para determinar las fuerzas internas de los elementos estructurales, la precisión que se trata de obtener depende de la importancia de la estructura y de la posibilidad de conocer las acciones que realmente actuarán sobre ella.

La fase final del diseño consiste en plasmar en forma sencilla el proceso descrito a las personas que van ejecutar la obra, los planos deberán ser claros y sencillos, indicando las especificaciones en que se basa el diseño, evitando errores y confusiones a los constructores.

La memoria de calculo es de vital importancia, ya que representa las bases que se toman para el desarrollo del análisis y diseño estructural del edificio, además, es el documento que respalda los criterios que sirvieron de base para la elaboración de los planos estructurales y la construcción del edificio.

Sin que sea ésta la única y exclusiva metodología para el desarrollo de la memoria de calculo que a continuación se presenta, podemos establecer, sin embargo la secuencia siguiente:

Se define el tipo de proyecto arquitectónico, número de niveles, sitio de la construcción y la información necesaria para su identificación.

Se deberá especificar claramente el tipo de estructuración del edificio, indicando si se rata de muros de carga, marcos rígidos ó combinación de ambos, el tipo ó sistema de piso a usar y la cimentación más conveniente de acuerdo con el tipo de subsuelo donde se desplantará el edificio, definiendo si son con zapatas corridas, zapatas aisladas y si va ó no a estar ligadas con trabes de cimentación, losas de cimentación, cajones de cimentación etc.

Page 3: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra3

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

3.- Materiales:

Concreto en cimentación

Concreto en estructura

Acero de refuerzo en estribos del # 2

Acero de refuerzo en varillas del # 2.5 y mayores

Mortero para la unión de mampostería Mortero (I,II ó III) =

Tipo y resistencia de la mampostería

Capacidad de carga del suelo Profundidad de desplante de la cimentación h = m

4.- Especificaciones:

5.- Valores de diseño para sismo y viento:

Sismo:

En éste punto se especificarán los materiales que se utilizarán en la construcción del edificio, como son: El concreto en cimentación y estructura, Acero de refuerzo en estribos y varilla corrugada, mortero para unir la mampostería, tipo y resistencia de la mampostería, etc.

f'c = Kg./cm2

f'c = Kg./cm2

fy = Kg./cm2

fy = Kg./cm2

Kg./cm2

f*m = Kg./cm2

En éste listado es conveniente indicar la capacidad de carga del suelo, información que será respaldada por los ensayes de muestras inalteradas del suelo obtenido en el lugar de la obra y realizadas por un Laboratorio de Mecánica de Suelos,

s = T/m2

Se anotarán las Normas y Especificaciones vigentes en el Municipio local, Estatales, Nacionales ó Internacionales que serán aplicadas en el análisis y diseño del edificio.

Especificaciones para cargas de diseño se aplicarán las del Reglamento de Construcciones para el D.F-06

Especificaciones para sismo y viento se aplicarán las Normas del Manual de Obras Civiles de C.F.E.-93

Para diseño de miembros estructurales de concreto armado, se aplicarán las especificaciones del ACI-318-05

Con base en las especificaciones antes mencionadas, se determinarán los valores aplicables para sismo y viento, tomando en cuenta la localización del edificio en la República Mexicana, altura sobre el nivel del mar, tipo de suelo y destino del edificio.

De acuerdo con las especificaciones del Manual de Obras Civiles de la C.F.E., los valores del coeficiente sísmico según la zona símica en el mapa de regionalización símica de la República Mexicana, el tipo de suelo para edificios del grupo B, está dado por la tabla 1.01 y figura1.01.

Page 4: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra4

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

C r

A

l 0.08 0.02 0.2 0.6 1/2.

ll 0.16 0.04 0.3 1.5 2/3.

lll 0.20 0.05 0.6 2.9 1

B

l 0.14 0.04 0.2 0.6 1/2.

ll 0.30 0.08 0.3 1.5 2/3.

lll 0.36 0.10 0.6 2.9 1

C

l 0.36 0.36 0.0 0.6 1/2.

ll 0.64 0.64 0.0 1.4 2/3.

lll 0.64 0.64 0.0 1.9 1

D

l 0.50 0.50 0.0 0.6 1/2.

ll 0.86 0.86 0.0 1.2 2/3.

lll 0.86 0.86 0.0 1.7 1

Se determinan los valores siguientes:

Zona sísmica para el Estado de México BSuelo tipo l, ll ó lllClasificación de la construcción según su destino A. B ó CClasificación de la construcción según su estructuración Del 1 al 10Coeficiente sísmico C = Según tablaFactor de comportamiento sísmico Q = 4, 3, 2, 1.5 ó 1

Viento:

Tabla 1.01 Espectros de diseño para estructuras del grupo "B" Manual de Obras Civiles de la C.F.E.

ZONA SÍSMICA

TIPO DE SUELO

aOTa

(seg)Tb

(seg)

Para estructuras del grupo "A" los valores de las ordenadas espectrales de esta tabla, deberán multiplicarse por 1.5

Edo. Méx.

Figura 1.01 Regionalización sísmica de la República MexicanaLATITUD

LONG

ITUD

Page 5: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra5

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Clasificación de la estructura según su importancia: A, B ó C

1, 2, 3, ó 4

L=Categoría del terreno según su rugosidad: 1, 2, 3, ó 4Altura total de la estructura: Z =Velocidad regional del viento para 50, 100 ó 200 años:Factor de topográfico:Temperatura media ambiental : t =Altura sobre el nivel del mar ASNM =Presión barométrica interpolada a la ASNM :Factor de tamaño :Factor de rugosidad:

En donde:

Factor de exposición:Velocidad de diseño del viento:

Factor de corrección por temperatura Y ASNM

Presión dinámica de base:

Tablas:

adClase de estructura

A B CAltitud W 1 0.099 0.101 0.105 2450 760 A 1.00 2 0.128 0.131 0.138 315500 720 B 0.95 3 0.156 0.16 0.171 3901000 675 C 0.90 4 0.17 0.177 0.193 4551500 6352000 6002500 565

Cuando así se requiera por el tipo de estructuración del edificio por ejemplo Naves industriales, bardas, espectaculares, tanques elevados etc., se determinarán los valores siguientes:

Clasificación de la estructura según su respuesta a la acción del viento: Clase de estructura según su tamaño A, B, ó C: longitud mayor en (m)

VR =FT =

W =FC =

Frz =

Su altura en función de la categoría del terreno y clase de estructura: d =

a =

Las presentes tablas deberán completarse con las especificaciones para viento del Diseño por Viento del Manual de Obras Civiles de la C.F.E.

Relación entre altitud y Pres. barométrica

Factor de tamaño

Categor.

TerrenoClase Estruct.

FC

G=0392W273+τ

=

Si :Z≤10

Si :10>Z<δ

Si :Z≥δ

F rz=1 .56 (10δ )2

F rz=1 .56 ( zδ )α

F rz=1 .56

Fa=Fc F rz=V D=FT FaV R=

qz=. 0048GV D2=

Page 6: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra6

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM3000 5303500 495

6.- Cargas de diseño:

Cargas muertas:

Elemento

Losa de concretoRellenos (tepojal)Firmes de concretoJunteo de mezcla Piso de loseta

Las cargas muertas son un conjunto de acciones principalmente derivadas del peso propio de la construcción, tales como losas, trabes, columnas, muros con sus recubrimientos, junteos y pisos, plafones, rellenos, firmes, herrerías, cristales, instalaciones y equipos fijos, etc. que están fijos durante la vida útil de la construcción.

El peso de estos elementos se calcula el volumen por el peso volumétrico respectivo, generalmente estas cargas se representan como cargas por unitarias en losas y uniformes distribuidas linealmente en trabes, si laguna trabe se apoya en otra trabe, entonces se representan como concentraciones.

Los pesos volumétricos se pueden obtener de los Reglamentos, Códigos o Textos, los valores que dan son los máximos y mínimos, siendo recomendable usar el valor medio o el máximo si no están definidos los planos constructivos del proyecto

Para dimensionar las secciones de trabes y columnas, así como espesores de losas se recomiendan usar las especificaciones de los Reglamentos de Construcción ó determinarlos de acuerdo con la experiencia del estructurista.

La estimación de pesos en las losas depende del espesor inicial del diseño estructural, pero también hay que tomar en cuenta las irregularidades derivadas del cimbrado, de las flechas después del descimbrado, el nivelado de la losa que en ocasiones requiere un firme para la renivelación de la misma, para estos casos el reglamento especifica una carga adicional de 20kg/m2 en la losa y 20 Kg./m2 si se coloca un firme, lo que da por resultado una carga total adicional de 40 Kg./m2.

Para calcular el peso en la losa, se debe tomar en cuenta el proceso constructivo, como son: el peso de la losa, muros divisorios, rellenos, firmes, acabados en el piso, acabados en los plafones, carga de equipos fijos, etc.

Una manera de calcular las cargas que obran sobre las losas, es hacer un listado de los elementos estructurales y acabados que intervienen, indicado su espesor y peso volumétrico en un metro cuadrado, como se indica en la tabla siguiente:

Espesor del

material m

Peso volumétrico

T/m3

Peso en azotea

T/m2

Peso en

entrepiso T/m2

Page 7: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra7

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEMAplanado en plafones Muros divisorios Instalaciones etc.Carga por reglamento

Carga muerta total

Cargas vivas:

Tipo de carga viva

El peso de los muros divisorios en las losas que son normalmente ligeros, se calcula con la longitud, el espesor del muro y el peso volumétrico del material y se divide entre el área del tablero donde gravitan los muros para obtener la caga por metro cuadrado, en caso de no tener definido la localización de los muros, se suponen unos muros en forma de cruz y se determina el peso unitario de los mismos.

El los muros de mampostería por ser mayor su peso, se deberán considerar por separado ya sea que actúen sobre la losa, en trabes ó en muros de carga.

Las cargas vivas dependen del uso o destino de la construcción, estas cargas se denominan variables, ya que su ubicación no es fija y puede variar de una losa a otra, el reglamento de las construcciones para el D.F. especifica los valores para los diferentes destinos de la construcción, los cuales contemplan cargas variables con respecto al tiempo y sus efectos estáticos y dinámicos, generalmente la especificación de éstas cargas son las más desfavorables, para que de ésta manera la estructura esté protegida de las variaciones de las cargas establecidas.

El Reglamento de las construcciones para el D.F. en su artículo 199 establece las cargas vivas que deberán emplearse para los diseños siguientes:

Wm Carga viva máxima: Se emplea para el diseño estructural para carga verticales, cálculo de asentamientos y diseño de cimentaciones

Wa Carga viva instantánea: Se emplea para el diseño para efectos de sismo ó viento

W Carga media: Se emplea para el cálculo de los asentamientos diferenciales.

La carga viva se indicará para los diferente usos del piso de los edificios, el Reglamento de las construcciones para el D.F. especifica si son para habitación, oficinas, comunicación para peatones, estadios y lugares de reunión, comercios, azoteas etc.

El reglamento permite una reducción de la carga viva para elementos que soporten áreas tributarias mayores a 36m2 ésta carga se determina con la fórmula siguiente:

Para una construcción determinada, se dan los valores de las cargas vivas, siendo una forma como se muestra:

Azotea horizontal

T/m2

Azotea inclinada

T/m2

Entrepiso horizontal

T/m2

Cualquier otro

T/m2

ωcv=100+420

√ A

Page 8: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra8

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEMTipo de carga viva

Carga viva máximaCarga viva instantáneaCarga media

7.- Análisis de la estructura:

8.- Planos estructurales

Descripción del plano

C-01 Planta de cimentación y detalles A 1

C-02 Planta de armado del primer nivel y detalles A 1

C-03 A 1

C-04 Planta de armado de azotea y detalles A 1

C-05 Planta de escaleras cortes y detalles A 1

Azotea horizontal

T/m2

Azotea inclinada

T/m2

Entrepiso horizontal

T/m2

Cualquier otro

T/m2

Una vez determinadas las cargas de diseño tanto gravitacionales como accidentales, se procede al análisis de la estructura, proceso que se puede realizar siguiendo un procedimientos de análisis, como el realizado a mano, es decir calcular las bajadas de carga hacia los elementos de apoyo de las losas y calcular por alguno de los métodos numéricos con el cross ó kani, los elementos mecánicos que obran sobre las trabes y columnas de la estructura, así como las reacciones en los apoyos.

Otro procedimiento de análisis es por medio de un software de análisis y diseño de estructuras, que nos permite realizar los cálculos de distribución de cargas, análisis de marcos y muros, combinaciones preestablecidas en el programa y el diseño de todos los elementos estructurales del edificio, en este caso es indispensable que los datos que se den al software, sean correctos, ya que de esta información depende la veracidad de los resultados que arroje el ordenador.

Con la información obtenida, se procede al dibujo de planos estructurales a detalle, definiendo el número el número de ellos en función de la complejidad del proyecto, realizando una programación que esta en función del tamaño del plano (generalmente de 60x90 cm.), de la escala a que se dibuje la planta, los detalles y cortes que se requieran.

Tomando como ejemplo el proyecto estructural de un edificio de concreto de tres niveles con dimensiones en planta de 15x20 m. estructurado por marcos rígidos formados por columnas y trabes, losas macizas apoyadas en las trabes y cimentación con zapatas aisladas ligadas con trabes de cimentación, el número mínimo de planos pude ser el siguiente:

Clave plano

Escala dibujo

Rev. Inicial

Rev. Obra

1:100 y 1:25

1:100 u otra

Planta de armado del segundo nivel y detalles

1:100 u otra

1:100 u otra

1:50 y 1:25

Page 9: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra9

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEMLa nomenclatura para designar el tipo de plano, se eligió la letra "C" de planos civiles.

La escala se elige de acuerdo con la dimensión del edificio procurando que el dibujo sea claro y entendible hasta por los maestros de obra, que son al fin el personal que ejecuta la construcción.

El tamaño tipo de letras y números será el mismo y usar cuanto más tres tamaños que se usarán en general para las dimensión y letreros, otro para un tipo de especificación especial y el tercero para designar plantas, detalles, cortes, títulos etc., de esta manera se logrará un plano armónico y bien presentado.

La revisión inicial se denomina con letras A, B, etc. y que se refiere a la revisión por parte del cliente ó su personal técnico; La revisión para obra serán las correcciones realizadas por el cliente y una vez corregidas, se emite el plano para obra con revisión 1 de aprobado para construcción, las posteriores revisiones por modificaciones en obra ó por incongruencias del plano no detectadas en el plano inicial, de les indica con revisión 2 ,3 etc. para que en obra se trabaje siempre con la última revisión.

Una revisión bien realizada es coloreando una copia heliográfica o bond con tres colores que son el amarillo, verde y rojo, que tienen las funciones siguientes:

Con el amarillo se marca todo lo que esta correcto en el plano, como son: ejes, dimensiones, trazos, letreros, títulos, pié de plano, etc. y deberá quedar ninguna anotación o trazo sin marcar.

El color verde indica los errores de dibujo, y eliminaciones que requiera el plano por cambios o modificaciones del mismo.

El color rojo indicará los cambios marcados en verde ó modificaciones y adiciones que deberán hacerle al plano.

Siguiendo ésta regla, se controlan mejor los errores que se cometan en los planos dando a la obra un documento más confiable que el usos común de revisar los planos utilizando únicamente la revisión y corrección visual.

Las revisiones se anotarán en el pie de plano, indicando el número de revisión, la descripción de los cambios por modificaciones ó adiciones realizadas, profesional que realizó la modificación y fecha de emisión, así como la aprobación por el responsable del proyecto y el cliente según su caso, es conveniente indicar dentro un pequeño triángulo el número de revisión en la zona del plano donde se localiza el cambio o modificación, indicando además este triángulo en la parte inferior del plano para que en forma vertical se localice la revisión en cuestión figura 1.02.

2

Page 10: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra10

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

REV. DESCRIPCIÓN REV/FECHA REV/FECHA

2 MODIF. …………………………. PLANO REV

1 APROB. CONSTRUC. C-05 2

2.00 CARACTERÍSTICAS DEL CONCRETO Y ACERO

2.01 Introducción

Figura 1.02 Revisión de planos

La característica principal del concreto simple es su gran resistencia a la compresión y débil en su resistencia a tensión, para resistir tensiones, se emplea el refuerzo con varillas de acero corrugado, colocado en las zonas donde se desarrollen las tensiones, por ejemplo en una viga simplemente apoyada el refuerzo se colocará en la parte inferior y en una viga continua o en voladizo se colocará el acero de refuerzo en la parte superior de los ejes de apoyo, a esto se le llama "concreto reforzado".

Figura 2.01 Comportamiento del concreto

El uso del refuerzo no se limita a tomar la tensión que el concreto no puede resistir, también se coloca en la zona de compresión del concreto aumentando la resistencia del elemento reforzado, además de reducir deformaciones a cargas de larga duración y proporcionar confinamiento lateral al concreto.

Eje Eje Eje

COMPRESIÓN COMPRESIÓN

COMPRESIÓN COMPRESIÓNTENSIÓN TENSIÓN

TENSIÓNTENSIÓN

ACERO

ACEROACERO

VOLADIZO

VIGA CONTINUA Y EN VOLADIZO

Eje

COMPRESIÓN

ACERO

Eje

TENSIÓN

LIBREMENTE APOYADA

2

Page 11: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra11

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

2.02 Esfuerzo deformación del concreto

Una modalidad del concreto reforzado es el "concreto presforzado y postensado", en donde el concreto se somete a una compresión en la zona de tensión antes de la aplicación de las cargas finales, de tal manera que la tensión se equilibre con la compresión previamente aplicada, es decir la tensión queda equilibrada con la compresión relazada en el concreto por medio del alambres o tendones de preesfuerzo.

El concreto es una mezcla de cemento, agregados inertes de grava, arena y agua de estos materiales los activos son el cemento y el agua que al mezclarse producen la reacción química, por medio de la cuál la lechada producida, fragua hasta alcanzar un estado de gran solidez, que junto con los inertes de grava y arena forman parte del producto final.

El agua en combinación química con el cemento representa aproximadamente el 33% del volumen total, al aumentar su contenido se hace más fluido y trabajable aumentando la contracción por fraguado y dejando en su lugar vacíos, influyendo negativamente en la resistencia final del concreto.

Con la mezcla del cemento y el agua, se inicia una reacción química exotérmica que determina el endurecimiento del concreto, el cual pierde su plasticidad y se hace más difícil su manejo, iniciando el fraguado inicial en la primera hora y el fraguado final es de aproximadamente 10 horas, cuando se presentan problemas que demandan tiempo adicional para el transporte y colado, se recurre al uso de retardantes del fraguado, compuestos de yeso o de anhídrido sulfúrico, cuando al contrario se solicita un acelerante del fraguado, se le adiciona sustancias alcalinas como el cloruro de calcio.

El peso volumétrico del concreto oscila entre 1.9 y 2.5 T/m3 dependiendo principalmente de los agradados pétreos que se empleen y de la compactación del mismo, el Reglamento de las Construcciones para el D.F. define dos clases de concreto: "clase l" con un peso volumétrico en estado fresco de 2.2 T/m3 y "clase ll" con un peso volumétrico comprendido entre 1.9 y 2.2 T/m3

(concreto ligero).

El proporcionamiento del concreto depende de la relación agua-cemento, por lo tanto el proporcionamiento de una mezcla de concreto, se reduce a elegir la relación agua-cemento para una resistencia dada, en seguida se define la granulometría de los agregados de tal manera que los vacíos entre ellos, sea lo menor posible, para hacer más trabajable la mezcla y por lo tanto más económica.

La curva esfuerzo-deformación se obtiene del ensaye de cilindros de concreto sometidos a carga axial repartida uniformemente en la sección transversal mediante una placa rígida.

El calculo de los esfuerzos resultan de dividir la carga total aplicada, P, entre el área transversal del cilindro de concreto, A, y representan valores promedio obtenidos bajo la hipótesis de que la deformaciones es uniforme y de que las características esfuerzo-deformación del concreto son constantes en toda la masa.

La deformación unitaria ec se define como la relación del acortamiento total d y la longitud de la medida "l", hecha en el cilindro de concreto, como se muestra en la figura 2.02.

esfuerzo: f'c en Kg./cm2

15

P

Page 12: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra12

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Tensión en el concreto:

La curva que presenta de la figura, corresponde a una ensaye relativamente corto del orden de unos cuantos minutos desde el inicio hasta la ruptura, el concreto tiene un comportamiento elástico y no sigue la ley de Hook, sin embargo en un rango de aproximadamente del 40% del esfuerzo, la curva se puede confundir con la cuerda y sin mucho error se puede considerar su comportamiento como elástico, tal como se considera en el diseño por esfuerzos de trabajo que para miembros en flexión se toma un valor del 45% del esfuerzo f'c.

La curva esfuerzo-deformación debida a la prueba de compresión, llega a un esfuerzo máximo cuando la deformación unitaria ec llega a un valor del orden de 0.002, la ruptura del cilindro se manifiesta en la curva descendente varia entre el 0.003 y 0.004

La resistencia del concreto se incrementa en los primeros 90 días debido al proceso continuo de hidratación del cemento, éste incremento de resistencia esta en función del cuidado que se tenga en el curado y las condiciones de intercambio de agua con el ambiente después del colado, después de los tres meses , el aumento de la resistencia es relativamente pequeño.

El conocimiento de la resistencia a tensión en el concreto, es importante para el diseño en la tensión diagonal para el esfuerzo cortante, la prueba más común para determinar ésta tensión es el ensaye brasileño realizada por Lobo Carneiro de Brasil en 1948 (figura 2.03) y consiste en someter un cilindro a compresión lineal diametral, aplicando la carga a través de un material suave como el triplay o corcho, si el material fuera elástico, las tensiones serían uniformemente distribuidas a lo largo del plano diametral donde se aplica la carga, sin embargo, la relación no es lineal, como se muestra en la figura, donde se observa que se presentan esfuerzos de compresión en los extremos y las tensiones ftb a los 5/6 del diámetro del cilindro.

esfuerzo: f'c en Kg./cm2

100

200

300

400

0.00

1

0.00

2

0.00

3

0.00

4

Figura 2.02 Curva esfuerzo deformación en compresión de un cilindro a cargas de corta duración

l

d

P

30

P

área A

la curva y cuerda se confunden

esfuerzomáximo

ruptura ó colapso

curva

deformaciónunitaria

Triplay ócorcho duro

PTensión Compresión

5d6

ε c=δl

±40%

Page 13: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra13

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

En donde:

Esfuerzo de tensión del ensaye brasileño

P = Carga máxima aplicadad = Diámetro del cilindro (15 cm.)l = Longitud del cilindro (30 cm.)

Para concretos clase l:

Para concretos clase ll:

Resistencia a la compresión simple de un cilindro de 15x30 cm.

Contracción del concreto:

La resistencia deducida de la teoría elástica, fbt se calcula con la fórmula:

ftb =

Como se observa en la grafica de esfuerzos, el concreto no se comporta elásticamente, sin embargo lo que se pretende es tener una medida de resistencia a la tensión, que se logra satisfactoriamente con el ensaye brasileño.

El esfuerzo de tensión en forma aproximada para concretos con valores bajos de f'c es del orden del 0.10f'c y para valores altos diminuye a 0.007f'c.

Con materiales usados en el D.F. con agregados de la zona de Santa Fe y obtenidos del ensaye brasileño se dan los valores siguientes:

f'c =

La deformación por contracción es causada por la pérdida del agua, en parte por la reacción química y en parte por la evaporación a lo largo del tiempo, esta pérdida de agua, produce cambios volumétricos en la estructura interna del concreto y que a su vez son la causa de las deformaciones y agrietamientos en los elementos de concreto.

La cantidad del agua en la mezcla en un concreto de alta resistencia al contener menos agua que en un concreto de baja resistencia, tendrá menos contracciones que el segundo, otra causa de la contracción del concreto, es el medio ambiente si es húmedo tendrá una contracción menor que en un ambiente seco.

d=15

cm ftb ftb

P

Vista del cilindro de ensaye

2 201 6 10 14 18 22

Distribución de esfuerzos relativos ftb teoría elástica

Figura 2.03 Tensión directa por carga P y distribución de esfuerzos

f bt=2 Pπ dl

f tb=1.5√ f c'

f fb=1 .2√ f c'

5d6

5d62d3

2d3

d2

Page 14: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra14

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Flujo plástico:

Fatiga:

Deformación por cambios de temperatura:

2.03 Módulo elástico:

El ACI presenta la ecuación:

La contracción por deformación del concreto varía de 0.0002 a 0.0005 cm/cm, ésta deformación puede ser medida si se requiere un número exacto, pero en general resulta suficientemente exacto considerar un valor de 0.0003 cm/cm.

Para disminuir el efecto de contracción del concreto el curado inicial debe hacerse muy cuidadoso, ya que la contracción ocurre en las primeros meses de colado del concreto.

La deformación por flujo plástico en general, es ocasionado por el agua expulsada de los finos poros del concreto debido a cargas sostenidas, observando que para éste mismo nivel de carga, las deformaciones disminuyen con la edad de la aplicación de esta carga.

Otro factor que influye el flujo plástico, son los materiales que se usan para la mezcla del concreto y la humedad del medio ambiente.

La falla por fatiga es debido a un número muy grande de repeticiones de carga, cobrando mayor importancia a elementos como vigas de puentes, durmientes de ferrocarril y cimentaciones que están sujetas a vibraciones ó muchas repeticiones de cargas.

El cambio volumétrico del concreto por cambios de temperatura, los coeficientes térmicos oscilan entre 0.000007 y 0.000011 de deformación unitaria por grado centígrado de cambio de temperatura, valor que corresponde a concretos con peso volumétrico normal (2200 kg/m3), cuya aplicación es importante para determinar agrietamientos en estructuras a la intemperie sometidas a fuertes cambios de temperatura.

De la gráfica esfuerzo-deformación del concreto bajo cargas de corta duración, en el rango donde la curva se confunde con la cuerda y suponiendo un comportamiento elástico, se puede definir un valor del módulo elástico ó módulo secante.

El módulo secante de acuerdo con la ASTM (sociedad americana de prueba de materiales), recomienda la pendiente de la línea que une los dos puntos de la curva, una deformación ec = 0.00005 y al 40% de la carga máxima.

Para valores de wc comprendidos entre 1440 y 2480 kg/m3

Para concretos con densidad normal de más menos 2265 kg/m3

Ec=wc1.50 .14√ f c'

Ec=15100√ f c'

Page 15: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra15

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM2.04 Acero de refuerzo

El acero para reforzar concreto se utiliza en distintas formas; la más común es la barra o varilla que se fabrica tanto de acero laminado en caliente, como de acero trabajado en frío. Los diámetros usuales de barras producidas en México varían de 1/4" a 1 1/2" (algunos productores han fabricado barras corrugadas de 5/16", y 3/16") . Todas las barras, con excepción del alambran de 1/4" que generalmente es liso, tienen corrugaciones en la superficie para mejorar su adherencia al concreto.

El acero se caracteriza por su límite de esfuerzo de fluencia fy, las varillas laminadas en caliente pueden obtenerse con límites de fluencia desde 2300 hasta 4200 kg/cm2 y el acero en laminado en frío alcanza límites de fluencia de 4000 a 6000 kg/cm2

Una propiedad importante que debe tenerse en cuenta en refuerzos con detalles soldados es la soldabilidad. La soldadura de aceros trabajados en frío debe hacerse con cuidado. Otra propiedad importante es la facilidad de doblado, que es una medida indirecta de ductilidad y un índice de su trabajabilidad.

Una propiedad importante es la soldabilidad; Durante la elaboración de una soldadura ocurren muchas reacciones químicas y transformaciones en la estructura del acero, cuya combinación determina el éxito o fracaso de una soldadura. La experiencia ha conducido al establecimiento de rutinas que deben observarse:

a) Conocer la composición química de los aceros que se van a soldar. La soldabilidad del acero es muy susceptible al contenido de carbono. Los aceros de bajo carbono, (con menos del 0.25%) se sueldan con alta probabilidad de éxito. Los aceros de medio carbono (0.3 a 0.45%, C) y alto carbono (0.5 a 1.4% C ) tienen alto riesgo de agrietamiento y requieren cuidados especiales.

b) Las piezas que se van a soldar deben tener cortes biselados mostrados en la figura 2.04, además, en el momento de la soldadura, las superficies deben estar limpias y libres de óxidos.

Cortes de biseles en varillas de grueso calibre que sirven para ampliar la superficie de amarre durante la soldadura.

c) Los electrodos deben seleccionarse adecuadamente para que la resistencia de la soldadura concuerde con la de la varilla. Además, deben utilizarse con mucho cuidado. La humedad penetra fácilmente en el recubrimiento de los electrodos y propicia la entrada del hidrógeno durante la soldadura. El hidrógeno fragiliza el acero. Para evitar este problema los electrodos vienen de fábrica empacados en bolsas de plástico selladas. Cuando la bolsa se abre, los electrodos se exponen a la humedad ambiente y se deben utilizar en las próximas dos o tres horas. Si no es así, los electrodos se deben llevar a un horno secador. Las manchas de grasa y las despostilladuras también degradan los electrodos.

Figura 2.04 Biseles en varillas

Page 16: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra16

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Características de los aceros:

d) Certificar la calificación profesional de los soldadores, ya que se requiere de una gran destreza, visual y manual, y de un cúmulo de conocimientos, siendo esta actividad de alto riesgo profesional donde el deterioro de órganos como ojos y pulmones debe evitarse al máximo, con los equipos propios de la soldadura como los cascos, mascarillas con filtros de luz adecuados en las mirillas, etc.

e) Al inicio de cada obra conviene que se hagan varias soldaduras de ensayo que se verifiquen con pruebas de tensión hasta la ruptura. La soldadura tiene que ser de resistencia suficiente para que la ruptura de dos varillas soldadas ocurra fuera de una zona de unos diez centímetros alrededor de la unión. También debe ser posible hacer un doblez de 180° en la zona soldada sin que se rompa o se agriete. Cuando se sueldan varillas de diámetro mayor, lo mejor es hacer una radiografía de cada soldadura para asegurar la calidad.

Las mallas electro soldadas es un refuerzo muy utilizado en la construcción de muros y losas de concreto, existiendo también las armaduras para la fabricación de las viguetas de concreto prefabricadas, éstos material laminados en frío tiene un límite de fluencia de fy = 5000 kg/cm2 y fy = 6000 kg/cm2 respectivamente.

El acero de preesfuerzo que se emplea en las estructuras reesforzadas, su resistencia última varía entre 14000 y 22000 kg/cm2 y su límite de fluencia, definido por el esfuerzo correspondiente a una deformación permanente de es = 0.002, entre 12000 y 19000 kg/cm2.

La grafica esfuerzo deformación del acero laminado en caliente para diferentes límites de fluencia es como se muestra en la figura 2.05.

El acero de refuerzo más común es la varilla o barra que se fabrica tanto en acero laminado en caliente como en frío, todas las varillas a excepción del alambrón de 1/4", que es liso, tienen corrugaciones en la superficie para mejor adherencia al concreto, los diámetros más usuales y sus propiedades geométricas y de peso, se muestran en la tabla 2.01.

2000

4000

6000

10000

8000

fs (

kg/c

m2)

0.001 0.002 0.003

fy

fy

fy

Figura 2.05 Gráfica esfuerzo-deformación en aceros laminados en caliente

ε s=δ sL

f s=TAb

(kg/cm2)

Page 17: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra17

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Densidad media del acero 7850

Diámetro

Plg. mm.2 1/4 6.4 0.249 0.32 1.99

2.5 5/16 7.9 0.388 0.49 2.493 3/8 9.5 0.559 0.71 2.994 1/2 12.7 0.994 1.27 3.995 5/8 15.9 1.554 1.98 4.996 3/4 19.1 2.237 2.85 5.987 7/8 22.2 3.045 3.88 6.988 1 25.4 3.978 5.07 7.989 1 1/8 28.6 5.034 6.41 8.98

10 1 1/4 31.8 6.215 7.92 9.9711 1 3/8 34.9 7.520 9.58 10.9712 1 1/2 38.1 8.950 11.40 11.97

Recubrimiento del acero

Recubrimientos mínimos:

Para concretos construidos en sitio (no preesforzados):

Elemento de concreto r (cm)a) Concreto colocado y/o expuesto al suelo permanentemente 7.5

b) Concreto expuesto al suelo ó a la intemperieVarilla mayores al # 6 5.0Varilla menores al # 5 y alambres MW200 ó MD200

c)

Losas, muros y viguetasVarillas mayores al # 12 4.0Varillas del # 11 y menores 3.0

Tabla 2.01 Pesos, áreas y perímetroskg/m3

Núm. de

octavo

Peso en kg/m

Area

en cm2

Períme-

tro cm

El refuerzo debe tener un recubrimiento adecuado a fin de proteger al acero de los agentes exteriores como son la corrosión y el fuego, éste recubrimiento debe lo suficiente para tales fines, evitando también recubrimientos demasiado grandes ya que estos pueden provocar demasiadas grietas.

El recubrimiento debe medirse desde el borde exterior del concreto al borde de los estribos que confinan el refuerzo longitudinal

El ACI-318-07 en la sección 7.7.1, indica que para concreto construido en el sitio (no preesforzado). Debe proporcionarse el recubrimiento mínimo de concreto al refuerzo siempre que no sea menor al exigido para ambientes corrosivos u otras condiciones severas de exposición de cloruros, tales como sales descongelantes, agua salobre, agua de mar, o a salpicaduras de éstas fuentes, recomendando un recubrimiento mínimo de 5 cm para muros y losas y de 6.5 cm para otros elementos; Con respecto a la protección contra el fuego, cuando el reglamento general de construcción especifique un recubrimiento mayor a los indicados por el ACI, debe usarse ese espesor mayor.

Concreto no expuesto a la intemperie ni en contacto con el suelo

Page 18: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra18

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEMVigas, columnas

Armadura principal, estribo, espiral 4.0Cáscaras y placas delgadas

Varilla mayores al # 6 2.0Varilla menores al # 5 y alambres MW200 ó MD200 1.3

2.05 Deflexión en vigas

Elemento

En voladizo

Figura 2.06 El recubrimiento "r" se

mide del borde exterior del

concreto hasta la capa más

cercana de las varillas o estribos.

Es muy importante el control de las deflexiones de las vigas y losas que trabajan en una dirección, éste cuidado se debe limitar por dos razones: uno para no provocar daños en otros elementos de la estructura y en segundo lugar por motivos de orden estético.

En el primer caso es de gran importancia el control de la deflexiones cuando se colocan canceles ó ventanas por debajo de las trabes, en cuyo caso es muy común la rotura de los cristales, otro caso muy común es la construcción de muros superiores apoyados sobre la trabe, que ocasionan el agrietamiento del muro y el acabado del recubrimiento inferior de la losa.

En el segundo caso, también son importante las losas ya que de no determinar un peralte adecuado, pueden presentan deflexiones y agrietamientos que se desarrollan en los vértices de las mismas, es aconsejable en casos de claros importantes, dar contra flechas que contrarresten las deflexiones calculadas, desde luego que por efecto estético, se debe tener deflexiones menores en una residencia que en una bodega.

El ACI-318-07 especifica: Los elementos de concreto reforzado sometidos a flexión deben diseñarse para que tengan una rigidez adecuada con el fin de limitar cualquier deflexión que pudiese afectar adversamente la resistencia o el funcionamiento de la estructura.

La tabla siguiente muestra los peraltes mínimos que deben observarse en los elementos reforzados en una dirección, a menos que el calculo de las deflexiones indique que se pueden utilizar un espesor menor sin causar efectos adversos.

Tabla 9.5(a) Altura o espesores mínimos de vigas no preesforzadas o losas reforzadas en una dirección a menos que se calculen las deflexiones

Espesor mínimo, h.

Simplemente

apoyados

Con un extremo

continuo

Ambos extremos

continuos

Elementos que no soporten o estén ligados a divisiones u otro tipo de

elementos susceptibles de dañarse debido a deflexiones grandes

b

r

h

Page 19: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra19

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Elemento

l / 20 l / 24 l / 28 l / 20

l / 16 l / 18.5 l / 21 l / 8

Notas:

también en su artículo 9.5.2.2 establece que:

Tabla 9.5 (b) - Deflexión máxima admisible calculada

Tipo de elementoDeflexión considerada

l /360

Elementos que no soporten o estén ligados a divisiones u otro tipo de

elementos susceptibles de dañarse debido a deflexiones grandes

Losas macizas en una dirección

Vigas o losas nervadas en una dirección

Los valores dados en esta tabla se deben usar directamente en elementos de concreto de peso normal

(densidad wc = 2320 kg/m3) y refuerzo grado fy = 4200 kg/cm2. Para otras condiciones, los valores deben

modificarse como sigue:

a) Para concreto liviano estructural con densidad wc dentro del rango de 1440 a 1920 kg/m3, los valores de la tabla deben multiplicarse por (1.65 - 0.0003wc), pero no menor a 1.09 b) Para fy distinto de 4200 kg/cm2, los valores de esta tabla deben multiplicarse por (0.4+fy/700).

Cuando se calculen las deflexiones, aquellas que ocurran inmediatamente con la aplicación de las cargas deben calcularse mediante los métodos o fórmulas usuales para deflexiones elásticas, tomando en consideración los efectos de fisuración y del refuerzo en la rigidez del elemento.

Para elementos reforzados en dos direcciones (no preesforzados), que para losas en dos direcciones cuyos tableros no excedan en su relación largo a ancho un valor de 2, las deflexiones admisibles deberán ser:

Límite de deflexión

Cubiertas planas que no soporten ni estén ligadas a elementos no estructurales susceptibles de sufrir daños a deflexiones grandes

Deflexión debida a la

carga viva,

L

l /1801

Entrepisos que no soporten ni estén ligadas a

elementos no estructurales susceptibles de sufrir

daños a deflexiones grandes

Deflexión debida a la

carga viva,

L

Sistemas de entrepiso cubierta que soporte o esté ligado a elementos no estructurales susceptibles de sufrir daños a deflexiones grandes

La parte de la deflexión total que

ocurre después de la unión de los

elementos no estructurales ( la suma

de las deflexión a lo largo plazo debida

a todas las cargas permanentes, y de

la deflexión inmediata debida a

cualquier carga viva adicional)2

l / 4803

Sistemas de entrepiso cubierta que soporte o

esté ligado a elementos no estructurales

susceptibles de sufrir daños a deflexiones

grandes

l /2404

1) Este límite no tiene por objeto constituirse en un resguardo contra el encharcamiento de aguas. Este último

debe ser verificado mediante el cálculo de deflexiones adecuados, incluyendo las deflexiones debidas al agua

estancada, y considerando los efectos a largo plazo de todas las cargas permanentes, la contraflecha, las

tolerancias de construcción y la confiabilidad de las medidas tomadas en el drenaje.

Page 20: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra20

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

3.00 REQUISITOS DE RESISTENCIA Y FUNCIONAMIENTO3.01 Diseño de elementos de concreto reforzado:

3.02 Factores de resistencia requerida

El ACI-318-05 da los factores de carga y resistencia siguientes:

1) Este límite no tiene por objeto constituirse en un resguardo contra el encharcamiento de aguas. Este último

debe ser verificado mediante el cálculo de deflexiones adecuados, incluyendo las deflexiones debidas al agua

estancada, y considerando los efectos a largo plazo de todas las cargas permanentes, la contraflecha, las

tolerancias de construcción y la confiabilidad de las medidas tomadas en el drenaje.

2) Las deflexiones a largo plazo deben determinarse de acuerdo con 9.5.2.5 ó 9.5.4.3, pero se pueden reducir

en la cantidad de deflexión calculada que ocurra antes de unir los elementos no estructurales. Esta cantidad

se determina basándose en datos de ingeniería aceptables correspondiente a las características tiempo-

deflexión de elementos similares a los que se están considerando.

3) Este límite se puede exceder si se toman medidas adecuadas para prevenir daños a elementos apoyados o unidos

4) Pero no mayor que la tolerancia establecida para los elementos no estructurales. Este límite se puede exceder si se proporciona una contraflecha de modo que la deflexión total menos la contraflecha no exceda dicho límite.

Existen dos teorías para el diseño de estructuras de concreto reforzado: “La teoría elástica” llamada también “Diseño por esfuerzos de trabajo” y “La teoría plástica” ó “Diseño por resistencia”.

La teoría elástica es ideal para calcular los esfuerzos y deformaciones que se presentan en una estructura de concreto bajo las cargas de servicio, sin embargo esta teoría es incapaz de predecir la resistencia última de la estructura ya que la hipótesis de proporcionalidad entre esfuerzos y deformaciones es completamente errónea en la vecindad de la falla de la estructura.

La teoría por resistencia ó diseño al límite, es un método para calcular y diseñar secciones de concreto reforzado fundado en los estados límites de falla y estados límite de servicio, los de falla, corresponden al agotamiento de la capacidad de carga de la estructura ó que la estructura sin llegar al agotamiento, sufra daños irreversibles. Los estados límite de servicio, es cuando la estructura sufre deformaciones, agrietamientos, vibraciones ó daños que afecten su funcionamiento, pero no, su capacidad para soportar cargas.

En otras palabras, que la resistencia de cada uno de los elementos de una estructura sea mayor a las acciones que actúan sobre ella.

Los factores de resistencia requerida, son valores que multiplican a las acciones que obran sobre la estructura, para tomar en cuenta la variación de las cargas permanentes y variables (vivas y móviles) en la vida útil de la estructura.

Los factores de resistencia f son valores que reducen la resistencia de las fuerzas, para tomar en cuenta la naturaleza aproximada de las fórmulas utilizadas para el calculo de la resistencia, errores en las dimensiones de los elementos, procedimientos inadecuados durante la colocación y curado del concreto etc., también son utilizados para cuando los elementos son de falla frágil o de falla dúctil, reduciendo ó aumentando su valor.

Fuerzas internasde diseño

U

Resitencia de diseño

f¿

Page 21: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra21

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

U = Resistencia últimaD = Carga muertaL = Carga vivaF = Cargas debidas al peso y presión de fluidosT = Efectos acumulados de variación de temperatura.H = Cargas debidas al peso y empuje de suelos o de otros materiales

Cargas vivas en cubierta

S = Cargas pòr nieveR = Cargas por acumulación de lluviaW = Cargas por viento, E = Efecto de cargas producidas por sismo

a) Para aplicación de cargas combinadas ó independientes:

U = 1.4(D+F) (9 -1)

b)

(9 -2)

(9 -3)

U = 1.2D+1.6W+1.6L+0.5(Lr ó S ó R) (9 - 4)

U = 1.2D+1.0E+1.0L+0.2S (9 -5)

U = 0.9D +1.6W+1.6H (9 -6)

U = 0.9D+1.0E+1.6H (9 -7)

U = 1.2D+1.6L

(9 -5) eliminando S

(9 -7) eliminando H

3.03 Factores de resistencia de diseño

Secciones controladas por flexión: 0.90

Secciones controladas por compresión:a) Elementos con refuerzo en espiral 0.70

Factores de carga: La resistencia requerida U debe ser por lo menos igual al efecto de las cargas mayordas (combinaciones máximas).

El significado de la resistencia requerida son los efectos directos, ó momentos y fuerzas internas en la estructurase y indican con las letras siguientes:

Lr =

Para combinaciones de cargas se elegirán las acciones que actuarán en la estructura eliminando las acciones que no sean aplicables a la estructura:

U = 1.2(D+F+T)+1.6(L+H)+0.5(Lr ó S ó R)

U = 1.2D+1.6(Lr ó S ó R)+(1.0L ó 0.8W)

Por ejemplo las cargas en edificios de concreto en zonas urbanas, se aplican para acciones gravitacionales, la combinación siguiente:

Y para combinaciones por sismo, cuando los efectos de carga por sismo se basen en los niveles de servicio de las fuerzas sísmicas, en lugar de 1.0E, se usa 1.4E en las ecuaciones (9-5) y (9-7)

proporcionada por un elemento, sus conexiones con otros elementos, así como sus secciones transversales, en términos de flexión, carga axial, cortante y torsión, debe tomarse como la resistencia nominal calculada de acuerdo con los requisitos y suposiciones de éste reglamento,

f =

f =

U = 0.9D 1.4E

U = 1.2D 1.4E+1.0L±

±

Page 22: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra22

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEMb) Otros elementos reforzados 0.65

Para cortante y torsión: 0.75

Aplastamiento en el concreto: 0.65

4.00 COMPRESIÓN SIMPLE

4.01 Elementos sujetos a compresión axial:

f =

f =

f =

El diseño de concreto reforzado por carga axial prácticamente es difícil de encontrarse en las estructuras normales, generalmente son miembros sometidos a carga axial y a momento flexionante producido por las cargas verticales, sismo ó viento, sin embargo es conveniente estudiar su comportamiento para la aplicación en la combinación de ambos efectos.

El comportamiento de las columnas sujetas a carga axial, cuya longitud es muy corta con relación de esbeltez de 2 para evitar el fenómeno de pandeo, se presentan tres curvas para tres tipos de columnas, sin refuerzo, con refuerzo vertical con estribos y refuerzo vertical y helicoidal, figura 4.01.

La curva "A" corresponde a una columna simple sin refuerzo, cuya carga máxima se alcanza cuando la deformación unitaria es del orden de 0.002 y la falla ó colapso se produce a una deformación unitaria entre .003 y 0.004. La resistencia de una columna disminuye al aumentar su esbeltez, hasta llegar a un valor mínimo de aproximadamente igual al 85% para una relación de esbeltez igual a dos, por consecuencia la resistencia de una columna de concreto simple sometida a compresión axial es igual Po = 0.85f'cAg, éste factor de reducción de 0.85, es el promedio de resultados de ensayes de miembros verticales.

0.002 0.004 0.006 0.008 0.010 0.012

Po

ec

A

B

C2

0.85f'cAg

0.85f'cAg+Asfy

C1

C3

Concretosimple

Concreto conrefuerzo vertical y transversal (estribos)

Concreto conrefuerzo vertical y transversal (Helicoidal)

Figura 4.01 Curva esfuerzo deformación unitaria de columnas cortas a compresión

Page 23: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra23

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Porcentaje de acero transversal:

En donde:

d = Diámetro del núcleo de concreto

área del refuerzo helicoidal

s = Paso entre estribos del zuncho

Por equilibrio de fuerzas:

Ordenando la ecuación como sigue:

La curva "B" representa la resistencia adicional del miembro de concreto por la resistencia del esfuerzo de fluencia fy multiplicada por el área del acero As, por lo tanto la resistencia alcanza un valor de: Po = 0.85f'cAg + Asfy, en donde Ag representa el área de la sección transversal del concreto sin descontar el área de acero As, el error que se comete es poco significativo del orden de alrededor del 5%.

La curva "C" es cuando se coloca acero de refuerzo transversal en forma helicoidal, la curva "C1" su comportamiento es similar a la columna con estribos llegando a un primer valor máximo con una deformación del orden de 0.002, aproximadamente a esta deformación, la hélice se deforma lateralmente provocando el desprendimiento del recubrimiento por la presión del núcleo de concreto confinado, de acuerdo con el área de refuerzo y separación entre el zunchos, puede alcanzar una segunda carga máxima como se indica en la curva "C2", por el contrario a menor área de acero transversal y mayor separación entre zunchos, la capacidad de carga de "C2" será menor a "C1",

La contribución de la hélice ó zuncho se determina por el porcentaje del volumen de acero en un paso de la hélice entre el volumen del núcleo de concreto en el paso de la hélice como se indica en la figura 4.02.

Ae =

Figura 4.02 Columna con refuerzo transversal en espiral

La presión de confinamiento del núcleo, se expresa en función de la tensión del refuerzo helicoidal, suponiendo que estas acciones sin mucho error están contenidas en un plano de su sección transversal, tomando en cuenta que el acero de la hélice ha alcanzado el límite de fluencia.

Sustituyendo el valor de rs y despejando f2 queda:

d

Aefy

d

Aefy

f2

sρ s=

π dAeπd2

4s=4 Aesd

f 2=ρ s f y2

4 Aesd

=2 f 2f y

2 Ae f y= f 2sd

Page 24: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra24

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

En donde:

Area del concreto confinado en la espiral

4.02 Fórmulas del ACI-318-05

(10.5)

En donde:

Ach =

Esfuerzo de fluencia del estribo

Para columnas no preesforzadas con refuerzo transversal con espiral:

0.70 (10.1)

Para columnas no preesforzadas con refuerzo transversal con estribos:

De acuerdo con los ensayes de un cilindro de concreto sometidos a compresión triaxial, muestran que la resistencia y la deformación unitaria crecen al aumentar la presión lateral de confinamiento, estos ensayes pueden representarse por medio de la expresión:

De acuerdo con la expresión anterior, el esfuerzo máximo de concreto simple es capaz de sin presión de confinamiento más de 4.1 veces el esfuerzo confinante f2, por consiguiente la contribución del esfuerzo de la hélice será aproximadamente:

La ecuación de f1 en función de la carga resistente Po queda como:

Ac =

El articulo 10.3.6.2, indica que: Para elementos no preesforzados con refuerzo en espiral, deberán cumplir entre otras, las disposiciones siguientes:

El área de refuerzo longitudinal Ast de la columna, no será menor que 0.01Ag ni mayor que 0.08Ag.

El número mínimo de varillas longitudinales será de 4 para columnas cuadradas con estribos, de 3 varillas para columnas triangulares y de 6 para columnas cuadradas ó circulares con hélice.

El espaciamiento mínimo entre hélices de la espiral no debe exceder de 7.5 cm ni menor a 2.5 cm, además ésta separación deberá permitir el paso del agregado máximo del concreto

Para elementos no preesforzados con estribos que cumplan con un diámetro mínimo del #3 para varillas menores al #10 y del #4 para varillas mayores

La longitud de traslape de 30 cm ó 48 veces el diámetro (db) de la hélice y la cuantía volumétrica del refuerzo en espiral rs, no será menor a:

Ag = Area bruta de la sección en cm2

Area del núcleo de la columna medido entre los bordes exteriores del estribo en cm2

f'c = Resistencia del concreto en kg/cm2

fyt =

f =

f 2=ρ s f y2

f 1=f c' +4 .1 f 2

4 .1 f 2=4 .1ρ s f y2

=2.05 ρ s f y

Po=f c' Ac+2 .05 ρs f y Ac

ρ s=0. 45( A g

Ach−1) f 'c

'

f yt

φPn ,máx=0 .80φ [0.85 f c' (Ag−A st )+ f y A st ]

φPn ,máx=0 .85φ [0.85 f c' (Ag−A st )+ f y A st ]

Page 25: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra25

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM0.65 (10.2)

4.02 Ejemplos de columnas con carga axial.

Datos de la sección: Datos de materiales:b = 30 cm Concreto: 200h = 40 cm Acero de refuerzo longitudinal: 4200r = 5 cm Acero de refuerzo transversal: 4200

30x40= 1200 Refuerzo longitudinal: 6 6Area de una varilla: 2.85023

40 Area de acero longitudinal: 17.1014Refuerzo transversal: E # 3

Area de una varilla: 0.71

30

0.014 > 0.01

a) Descontando el área de acero longitudinal:

0.65

0.80x0.65(0.85x200(1200--17.1)+4200x17.1) = 141,917.65 kg

141.918 T

b) sin descontar el área de acero longitudinal:

0.65

0.80x0.65(0.85x200x1200+4200x17.1) = 143,429.41 kg

143.429 T

Como puede verse la diferencia entre ambas fórmulas representa un porcentaje de:

1.07% Que no es significativo.

Datos de la sección: Datos de materiales:b = 30 cm Concreto: 250

f =

El calculo de la resistencia de una columna sometida a carga axial, es sin tomar en cuenta la esbeltez y únicamente analizar la aplicación de las fórmulas primeramente descontando el acero de refuerzo longitudinal y en segunda comparar el resultado sin descontar el acero de refuerzo longitudinal.

Ejemplo 4.1 Calcular la carga última máxima de una columna rectangular con estribos, de acuerdo con los datos siguientes:

f'c = kg/cm2

fy = kg/cm2

fyt = kg/cm2

Ag = cm2

As = cm2

As = cm2

As = cm2

Porcentaje de acero r:

pmin =

f =

fPn =

fPn =

f =

fPn =

Ejemplo 4.1 Calcular la carga última máxima de una columna con refuerzo helicoidal, de acuerdo con los datos siguientes:

f'c = kg/cm2

#

fPn =

φPn ,máx=0 .80φ [0.85 f c' (Ag−A st )+ f y A st ]

φPn ,máx=0 .80φ [0 .85 f c' A g+ f y A st ]

φPn ,máx=0 .80φ [0.85 f c' (Ag−A st )+ f y A st ]

(φPn ( Atotal )φPn (Aneta )−1)100=

ρ=A stAg

=

Page 26: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra26

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEMr = 5 cm Acero de refuerzo longitudinal: 4200

d= b-2r = 25 cm Acero de refuerzo longitudinal: 4200Refuerzo longitudinal: 6 5

Area de una varilla: 1.98Area de acero longitudinal: 11.876

Refuerzo transversal: E # 3 Espiral30 Area de una varilla: 0.71

25 0.016 > 0.01

Area bruta de la sección de concreto:

706.9

Area del núcleo confinado entre la hélice:

490.874

a) Descontando el área de acero longitudinal:

0.70

0.85x0.70(0.85x250(706.9 --11.88)+4200x11.88) = 117,549.85 kg

117.55 T

b) Sin descontar el área de acero longitudinal:

0.70

0.85x0.70(0.85x250x706.9+4200x11.88) = 119,051.42 kg

119.1 T

Como puede verse la diferencia entre ambas fórmulas representa un porcentaje de:

1.28% Que no es significativo.

Cálculo del porcentaje de acero transversal de la hélice:

0.0118

fy = kg/cm2

fyt = kg/cm2

Ab = cm2

Ast = cm2

Ab = cm2

Porcentaje de acero r:

pmin =

cm2

cm2

f =

fPn =

f =

fPn =

Se definió que el porcentaje de acero transversal, se determina con la relación del volumen del acero en un paso de la hélice entre el volumen del núcleo de concreto en un paso de hélice, y se llegó a la relación:

#

fPn =

fPn =

(φPn ( Atotal )φPn (Aneta )−1)100=

ρ=A stAg

=

πx 302

4=Ag=

π xb2

4=

φPn ,máx=0 .85φ [0.85 f c' (Ag−A st )+ f y A st ]

φPn=0 .85φ(0 .85 f c' A g+ f y A st )

ρ s=0. 45( A g

Ach−1) f 'c

'

f yt

ρ s=0. 45(706 .9490.9−1)2504200=

ρ s=4 A st

sd

Ach=πd2

4= πx 252

4=

Page 27: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra27

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Despejando la separación "s", la ecuación queda como:

9.67 cm @

La separación máxima no será mayor a 7.5 cm y la menor no será menor a 2.5 cm

2.5 < 9.67 > 7.5

Por lo que se colocara la espiral con varilla #3 @ 7.5 cm

5.00 FLEXIÓN SIMPLE

ρ s=4 A st

sd

s=4 A st

ρ sd=

4 x0 .710 .0118 x25

=

Page 28: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra28

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM5.01 Comportamiento y métodos de falla

Falla por tensión:

Falla por compresión:

Falla balanceada:

El comportamiento de las vigas de concreto armado sometidas a diferentes tipos de cargas, pueden fallar, a flexión por tensión en el acero de refuerzo y se les denomina vigas subreforzadas, si la falla es por compresión del concreto, se le denomina vigas sobre reforzadas y cuando la cuantía de acero de refuerzo a tensión esta entre los dos límites anteriores se les denomina viga balaceadas, a continuación describamos estos comportamientos.

Si el contenido de acero de la sección es bajo, el acero llega a su límite de fluencia fy, antes de que el concreto alcance su máxima capacidad f'c, al incrementarse las cargas, la viga presenta agrietamientos lo que hace que el acero en tensión fluya deformando notablemente a la viga, al incrementarse estas grietas, se reduce la profundidad del eje neutro, reduciendo la zona comprimida hasta alcanzar su límite de resistencia f'c del concreto, cuando esto ocurre, su capacidad de carga disminuye hasta que se produce el colapso por aplastamiento del concreto, en este tipo de vigas es posible tomar las precauciones necesarias antes de que la viga se colapse.

Si el contenido de acero de la sección es grande, el concreto puede alcanzar su capacidad máxima f'c antes que ceda el acero de refuerzo a tensión, en estas condiciones aumenta la profundidad del eje neutro, lo que provoca un aumento en la zona de compresión del concreto hasta alcanzar una deformación de aproximadamente 0.003, entonces la sección falla en forma frágil y en forma súbita. En éste tipo de vigas puede haber poca advertencia visible de la falla, debido a que los anchos de las grietas de flexión por tensión son pequeñas, debido al bajo esfuerzo del acero.

Cuando la cuantía del acero alcanza su resistencia de fluencia fy, y simultáneamente el concreto alcanza la deformación de compresión en su fibra extrema de ec=0.003, en éste caso, se dice que el elemento es balanceado.

Para evitar las vigas sobre reforzadas, el reglamento del ACI-318-05, limita el porcentaje de refuerzo al 75% del valor correspondiente a la sección balanceada.

Se incrementa laprofundidad "d" del eje neutro

Cargas exteriores

d

Figura5.01 Viga subreforzada

Figura 5.02 Viga sobrerreforzada

d

Disminuye laprofundidad "d" del eje neutro

Page 29: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra29

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

En donde:

4200 6000

200 0.0027 0.0033 0.0033 200 0.0019 0.0023 0.0023

250 0.0030 0.0033 0.0033 250 0.0021 0.0023 0.0023

300 0.0033 0.0033 0.0033 300 0.0023 0.0023 0.0023

350 0.0036 0.0033 0.0036 350 0.0025 0.0023 0.0025

400 0.0038 0.0033 0.0038 400 0.0027 0.0023 0.0027

450 0.0040 0.0033 0.0040 450 0.0028 0.0023 0.0028

500 0.0043 0.0033 0.0043 500 0.0030 0.0023 0.0030

Y para concretos mayores rige la relación:

y:

5.02 Vigas a flexión simplemente armadas

Por otra parte, para evitar vigas con un porcentajes de acero muy bajo y se llegue al caso de una viga subreforzada, el ACI-318-05, determina un porcentaje mínimo de:

Analizando ésta fórmula designando como r el porcentaje de acero, tenemos:

Tabulando para diversas resistencias del concreto y acero tabla 5.03:

Tabla 5.03 Porcentajes de acero para límite de fluencia fy del acero de

4200 y 6000 kg/cm2 resistencias del concreto f'c de 200 a 500 kg/cm2.

fy = kg/cm2 fy = kg/cm2

Concr. f'c

kg/cm2

Rige

rmím

Concr. f'c

kg/cm2

Rige

rmím

El porcentaje de acero para resistencias de concreto hasta 300 kg/cm2 desarrollada en la tabla 1 y límite de fluencia de acero de 4200 kg/cm2, el porcentaje de acero mínimo rige la relación:

Los mismos comentarios son para concretos con resistencias mayores a 300 kg/cm2 y acero de refuerzo con límite de fluencia de 6000 kg/cm2.

Para el diseño por resistencia el ACI-318-05, se basa en las disposiciones especificadas en el capítulo 10 de Flexión y Cargas Axiales, bajo las suposiciones de diseño por resistencia de elementos sometidos a flexión y cargas axiales de la hipótesis dadas en los artículos 10.2.2 a 10.2.7 siguientes:

a). Las deformaciones unitarias en el refuerzo y en el concreto se suponen directamente proporcionales a la distancia desde el eje neutro (excepto vigas de gran peralte), debe satisfacerse el equilibrio entre las fuerzas de compresión en el concreto y tensión en el acero.

As ,mín=0.8√ f c'f y

bw d ¿14f ybw d

As ,mín=ρbw d

ρ=0 .8√ f c'f y

≥14f y

14f y

0 .8 √ f c'f y

0 .8 √ f c'f y

14f y

ρmín=0.8√ f c'f y

ρmín=14f y

=144200

=0 .0033

146000

=0 .0023ρmín=14f y

= ρmín=0.8√ f c'f y

Page 30: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra30

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

b). La máxima deformación unitaria utilizable en la fibra extrema sometida a compresión del concreto se supone igual a 0.003 del valor de ruptura f'c.

c). El esfuerzo en el refuerzo cuando sea menor que fy, debe tomarse como Es veces la deformación unitaria del acero, (resulta razonable suponer que, para refuerzo corrugado, el esfuerzo es proporcional a la deformación unitaria, para esfuerzos por debajo de la resistencia de fluencia especificada fy.

d). La resistencia a la tensión del concreto no debe considerarse en los cálculos de elementos de concreto reforzado sometidos a flexión y a la carga axial.

e). La relación entre la distribución de los esfuerzos de compresión en el concreto y la deformación unitaria del concreto, se debe suponer rectangular, ( aun que no limita suponer una sección trapezoidal ó parabólica, éstas deberán coincidir con los resultados de ensayos representativos).

En la ruptura, los esfuerzos en el concreto no son proporcionales a las deformaciones unitarias, sin embargo la suposición rectangular de los esfuerzos, facilita las expresiones matemáticas con las cuales se obtienen valores de la resistencia bastante aproximadas.

f). La hipótesis anterior puede considerarse satisfecha para una distribución rectangular de esfuerzos definida como sigue:

La distancia desde la fibra de deformación unitaria máxima al eje neutro, c, se debe medir en dirección perpendicular al eje neutro.

El esfuerzo en el concreto se supone de 0.85f'c, uniformemente distribuido en una zona de compresión equivalente, limitada por los bordes de la sección transversal y por una línea paralela al eje neutro, a una distancia a = b1c de la fibra de deformación unitaria máxima de compresión, el valor de b1 se tomará como 0.85 para concretos hasta de 280 kg/cm2 y se reducirá una cantidad de 0.05 por cada 70 kg/cm2 en exceso de los 280 kg/cm2, sin embargo no deberá ser menor a 0.65.

La aplicación de éstas hipótesis en una sección balanceada de una viga rectangular, se ilustra en la figura 5.04.

Parte de un a viga de concreto armado y su sección transversal a

flexión simple

Diagrama esfuerzo

deformación

Distribución de esfuerzos de compresión

Rectángulo de compresión del

ACI

euc=0.003

c

es>fy

C=0.85f'cab

T=Asfy

b3=0.85

dh

r

b b3f'c

b2c

TT

C

0.85f'c

a=b1c

T

E.N.

C

d−a2

a2

Page 31: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra31

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Por equilibrio

C = T y

Sustituyendo los valores indicados en la figura anterior:

Despejando el valor de "a"

Ec. (1)

Sustituyendo el valor de la compresión "C" y simplificando queda:

Sustituyendo el valor de la ecuación (1)

Parte de un a viga de concreto armado y su sección transversal a

flexión simple

Diagrama esfuerzo

deformación

Distribución de esfuerzos de compresión

Rectángulo de compresión del

ACI

Figura 5.04 Diagrama de deformaciones y esfuerzos

De acuerdo con la hipótesis utilizada por el ACI-318-05 de una distribución rectangular de esfuerzos, la profundidad "a" del eje neutro es igual a b1 veces "c", el parámetro b1 depende de la resistencia nominal f'c, con un valor constante de 0.85 para concretos menores ó iguales a 280 kg/cm2, disminuyendo una cantidad de (1.05-f'c/1400) y no menor a 0.65, esta variación es con el objeto de tomar en cuenta la variación de la distribución esfuerzo-deformación, en la área de la curva y el área de la sección rectangular, al aumentar la resistencia del concreto.

C = 0.85f'cab T = Asfy

0.85f'cab = Asfy

El momento resistente de la sección ó nominal, es igual al producto de la fuerza de compresión del volumen de concreto al centroide del área de acero en tensión.

El porcentaje de acero se expresa como la relación del área de acero entre el área de la sección de concreto:

Llamando w a la relación del porcentaje r por fy entre f'c y sustituyendo r se tiene:

Arreglando la ecuación del momento nominal Mn para sustituir el valor de w queda:

0 .65≤β1=(1.05− f c'

1400 )≤0 .85

a=A s f y

0 .85 f 'cb

M n=C (d−a2 )=0 .85 f ' cab(d−a2 )=0 .85 f 'c abd(1− a2d )

M n=C (d−a2 )

ρ=A sdb

ω=ρf yf 'c

=A s f ybdf ' c

M n=f ' cAs f ybdf 'c

bd2(1− 11 .7

As f ybdf 'c )=f ' cωbd 2(1− ω

1.7 )

M n=0 .85 f ' cAs f y

0 .85 f ' cbbd (1− As f y

2x 0 .85 f ' cbd )

Page 32: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra32

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEMOrdenando:

Ec. (1)

De la figura de diagramas:

despejando el valor de "c":

Sustituyendo el valor de "a" en "c":

queda:

Si:

Que nos representa el momento resistente ó momento nominal de elementos rectangulares con refuerzo a flexión simple, de acuerdo con el ACI-318-05, ésta fórmula, se le deberá aplicar el factor de resistencia a f a flexión como se indica:

Es necesario determinar el porcentaje de acero máximo rb para una sección balanceada y evitar caer en el porcentaje de acero de una sección sobre reforzada, el determinar este límite superior, permite reducir el riesgo de fallas frágiles en las vigas de concreto armado.

El ACI-38-05, especifica usar un máximo del 75% del valor del porcentaje de la sección balanceada, la cuál, se obtiene a partir del diagrama de deformaciones aceptado en las hipótesis del ACI-318-07, figura 5.06.

Del diagrama deformación y esfuerzos relacionando linealmente la deformación del concreto y del acero tenemos:

Con el valor de ec y es la ecuación (1) queda:

wwff 59.01bdfM 2'cn

dh

r

b 0.85f'c

a=b1c

T

E.N.

C

ec=0.003

c

c-d

eces

Figura 5.06 Diagrama de deformaciones y esfuerzos

M n=f ' cAs f ybdf 'c

bd2(1− 11 .7

As f ybdf 'c )=f ' cωbd 2(1− ω

1.7 )

M n=f c' bd2ω (1−0 .59ω)

ε s=f yE s

E s=f yεs

cd=

ε cεc+εs

a=β1c c=aβ1

c=A s f y

β10 .85 f c' b

A s f y0 .85 β1 f c

' bd= 0 .003

0 .003+f yE s

ε c=0.003

a=A s f y

0 .85 f 'cb

d−a2

a2

Page 33: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra33

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEMEl módulo elástico del acero se expresa con el valor de :

Sustituyendo en la ecuación anterior:

De esta ecuación el área de acero entre el área de concreto representa el porcentaje de acero:

Sustituyendo y desarrollando la ecuación:

En donde:

300 325 350 375 400 425 450 475 500 525 550

0.836 0.818 0.800 0.782 0.764 0.746 0.729 0.711 0.693 0.675 0.657

4200

0.0226 0.0239 0.0252 0.0264 0.0275 0.0285 0.0295 0.0304 0.0312 0.0319 0.0325

5000

0.0176 0.0186 0.0196 0.0206 0.0214 0.0223 0.0230 0.0237 0.0243 0.0249 0.0254

6000

0.0134 0.0143 0.0150 0.0157 0.0164 0.0170 0.0176 0.0181 0.0186 0.0190 0.0194

Despejando el porcentaje "r".

Que representa la fórmula para calcular el porcentaje de acero para una sección balanceada a flexión simple, que de acuerdo con el ACI-318-05, el porcentaje máximo lo limita al 75% de rb.

Para concreto hasta: f'c = 280 kg/cm2.

Para concreto mayor a f'c = 280 kg/cm2.

Desarrollando b1 para varios concretos y aceros su correspondiente rmáx: figura 5.0

Tabla 5.04 Determinación de los valores de b1 y rmáx.

Valores de b1 para diferentes concreto f'c en kg/cm2.

Valores de rmáx para acero: fy = kg/cm2

Valores de rmáx para acero: fy = kg/cm2

Valores de rmáx para acero: fy = kg/cm2

El momento resistente de la sección por equilibrio de momentos, deberá ser igual al momento exterior debido a las acciones que obra sobre la viga.

Mx = Suma de momentos con respecto al eje "x" centroidal

E s=2' 039 ,000kg/cm2

A sbd

f y0 .85β1 f c

'= 0 .003

0 .003+f y

2 ' 039 ,000

ρb=A sbd

ρb f y0 .85 f c

'= 0 .0036117+f y2 ' 039 ,000

ρb f y=0 .85 β1 f c

' (0 .003 x2 ' 039 ,000 )6117+ f y

β1=0 .85

β1=(1 .05− f c'

1400 )≥0 .65

ρb=0 .85 β1 f c

'

f y

61176117+f y

ρmáx=075 ρb

ΣM x=0

M u−φM n=0

Page 34: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra34

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Finalmente:

En donde "b" y "d" se expresan en cm.

Si se cumple estos límites, se el área de acero se calcula con:

Pasando el valor de fMn a la derecha de la ecuación:

Sustituyendo el valor de fMn:

Dividiendo la ecuación entre 0.59ff'cbd2 y despejado la variable w:

Ecuación que permite calcular el porcentaje de acero de refuerzo r para una sección balanceada en función de w.

este porcentaje deberá estar entre el rango del porcentaje de acero mínimo rmín y el porcentaje de acero máximo rmáx = 0.75rb.

Si se cumple ésta relación para secciones balanceadas, se calcula el área de acero de refuerzo que requiere la sección.

En las ecuaciones anteriores, el porcentaje de acero se puede calcular directamente sustituyendo el valor w en r, comparar que éste valor quede entre el porcentaje mínimo y máximo de acero y determinar el valor del área de acero.

El calculo del porcentaje r, en lugar de aplicar las fórmulas, se pueden obtener tabulando en una hoja de exel el valor del porcentaje de acero para diferente resistencias f'c del concreto y límites de fluencia fy del acero.

M u=φM n

M u=φf c' bd2ω (1−0 .59ω)

M u=φf c' bd2ω−0.59φf c

' bd2ω2

M u

0 .59φf c' bd2

= 10.59

ω−ω2

ω2− 10 .59ω

+M u

0 .59φf c' bd 2

=0

ω=

1o . 59

±√( 10.59 )

2

−4M u

0 .59φf c' bd2

2=

12 x 0.59

±√ 1

(2x 0 .59 )2−

4M u

4 x 0.59φf c' bd2

ρ=ωf c'

f y

ρmín≤ρ≤ρmáx

A s=ρbd

ρ=(0 .848−√0 .719− M u

0 .59φf c' bd2 ) f c

'

f yρmín≤ ¿ ρmáx

A s=ρbd

Page 35: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra35

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

con: 0.90

En donde:

para un valor de:

1. Los datos se anotan en la celda correspondiente de literales y números.

2004200

celda que da un valor de 7.50

Mínimo:

Celda F1: que da el valor de 0.0033

El procedimiento consiste en dar un orden en la relación Mu/bd2, de tal manera que nos arroje un valor igual ó mayor al porcentaje de acero mínimo rmín, pero menor o igual al porcentaje máximo de acero rmáx.

f =

Válida para concretos con resistencia menor a 280 kg/cm2

Como ejemplo se calcula la tabla para un concreto con resistencia de 200 kg/cm2 y un acero con límite de fluencia de 4200 kg/cm2, como se indica en la tabla 5.2, con el procedimiento siguiente:

f'c = kg/cm2

fy = kg/cm2

2. Se indica la columna donde se dan valores a Mu/bd2. dando valores en éste caso del 7 al 47 en incrementos por ejemplo de 0.5 o un poco menor dependiendo de la exactitud que se quiera obtener.

La serie de números verticales en la celda donde de anote el valor 7, para ejecutar la serie, se hace clic en la celda inferior de la columna del valor 7 y se suma el incremento que se elija, la expresión de la celda A8 queda como:

Una vez obtenido el valor de 7.50, se procede a deslizar hacia abajo el punto que se muestra en la parte inferior derecha de la celda con el cursor del ratón, para formar la serie de 7.50, 8.00, 8.50 etc. Fijando de antemano el número de cifras decimales que se desee, en este caso de dieron dos cifras decimales.

3. En la columna correspondiente al porcentaje de acero, se calcula la fórmula para determinar el porcentaje de acero r, verificando que el resultado sea mayor o igual al mínimo pero menor o igual al máximo

+14/C2

+A7+0.5

ρ=(0 .848−√0 .719− M u

0 .59φf c' bd2 ) f c

'

f yρmín≤ ¿ ρmáx

ρmáx=075 ρb

β1=0 .85

ρmín=14f y

ρmín=144200

=0 .0033

pb=0 .85 β1 f c

'

f y

61176117+ f y

Page 36: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra36

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEMMáximo:

celda F2: que da el valor de 0.0153

Quedando la celda como:

A C B C D E F G H I

1 200 0.0033

2 4200 0.0153

3 E = 2,039,000.00

4

5r r r

6

7 7.00 0.0019 30.00 0.0089 43.00 0.0137

8 7.50 0.0020 30.50 0.0091 43.50 0.0139

9 8.00 0.0022 31.00 0.0093 44.00 0.0141

10 8.50 0.0023 31.50 0.0094 44.50 0.0143

11 9.00 0.0025 32.00 0.0096 45.00 0.0145

12 9.50 0.0026 32.50 0.0098 45.50 0.0147

13 10.00 0.0027 33.00 0.0100 46.00 0.0149

14 10.50 0.0029 33.50 0.0101 46.50 0.0151

15 - - - - 47.00 0.0153

4. Una vez introducida la fórmula del porcentaje de acero, los valores constantes como f'c y fy, se inserta el símbolo de "$" entre la letra de la columna y el número de la fila, para que se conserve fija la celda en el calculo de la fórmula, quedando la celda "C6" como se muestra:

Se antepone el signo "+ ó =" y se opera (0.848-RAÍZ(0.719-Mu/bd2/(0.59*0.9*f'c)))f'c/fy

Para obtener los valores subsecuentes de la columna, se procede a deslizar hacia abajo el punto inferior derecho de la celda con el cursor del ratón, fijando el número de cifras que en este caso se dan cuatro cifras.

La construcción de la tabla 5.05 ,se realiza en tres ó cuatro columnas de tal manera que cubra los valores del porcentaje de acero desde el rmím al rmáx. y este número depende de la exactitud que se quiera obtener ver figura 5, además ver las tablas desarrolladas para acero de fy = 4200 kg/cm2 y concretos de f'c de 200, 250, 300, y 350 kg/cm2. que nos permiten facilitar los cálculos que se desarrollan manualmente.

Tabla 5.05 Calculo del porcentaje de acero r en función de la relación Mu/bd2.

f'c = kg/cm2 rmín =

fy = kg/cm2 rmáx =

kg/cm2

La tabla 5.06 se muestran los resultados para determinar el porcentaje de acero "r" para un concreto f'c = 200 kg/cm2 y acero de refuerzo fy = 4200 kg/cm2, en el anexo se muestran las tablas para otros concretos y acero de refuerzo.

Para calcular el peralte de la trabe se pueden aplicar los criterios del ACI-318-07 para control de deflexiones dados en la tabla , también de puede calcular a partir de la formula desarrollada para secciones balanceadas, despejando el peralte "d" de la ecuación:

+0.75*0.85*0.85*C1/C2*(6117/(6117+C2))

+(0.848-RAIZ(A6/(0.59*0.9*C$1)))C$1/C$2

ρmáx=0 .750 .85 x 0.85 x2004200

61176117+4200

=0 .0153

M u

bd2M u

bd2M u

bd2

M u=φf c' bd2ω (1−0 .59ω)

Page 37: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra37

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Despejando "d":

En donde:

200 0.0020 losas espesor constante 0.85

4200 0.0033 trabes 0.212 0.0153 trabes

r r r r

7.20 0.0020 17.16 0.0048 27.13 0.0080 37.09 0.0114

7.41 0.0020 17.38 0.0049 27.34 0.0080 37.30 0.0115

7.62 0.0021 17.59 0.0050 27.55 0.0081 37.52 0.0116

7.84 0.0021 17.80 0.0050 27.76 0.0082 37.73 0.0117

8.05 0.0022 18.01 0.0051 27.98 0.0082 37.94 0.0117

8.26 0.0022 18.22 0.0051 28.19 0.0083 38.15 0.0118

8.47 0.0023 18.44 0.0052 28.40 0.0084 38.36 0.0119

8.68 0.0024 18.65 0.0053 28.61 0.0085 38.58 0.0120

8.90 0.0024 18.86 0.0053 28.82 0.0085 38.79 0.0121

9.11 0.0025 19.07 0.0054 29.04 0.0086 39.00 0.0121

9.32 0.0025 19.28 0.0055 29.25 0.0087 39.21 0.0122

9.53 0.0026 19.50 0.0055 29.46 0.0087 39.42 0.0123

9.74 0.0027 19.71 0.0056 29.67 0.0088 39.64 0.0124

9.96 0.0027 19.92 0.0057 29.88 0.0089 39.85 0.0125

10.17 0.0028 20.13 0.0057 30.10 0.0090 40.06 0.0125

10.38 0.0028 20.34 0.0058 30.31 0.0090 40.27 0.0126

10.59 0.0029 20.56 0.0059 30.52 0.0091 40.48 0.0127

10.80 0.0030 20.77 0.0059 30.73 0.0092 40.70 0.0128

11.02 0.0030 20.98 0.0060 30.94 0.0092 40.91 0.0129

11.23 0.0031 21.19 0.0061 31.16 0.0093 41.12 0.0130

11.44 0.0032 21.40 0.0061 31.37 0.0094 41.33 0.0130

11.65 0.0032 21.62 0.0062 31.58 0.0095 41.54 0.0131

11.86 0.0033 21.83 0.0063 31.79 0.0095 41.76 0.0132

12.08 0.0033 22.04 0.0063 32.00 0.0096 41.97 0.0133

12.29 0.0034 22.25 0.0064 32.22 0.0097 42.18 0.0134

12.50 0.0035 22.46 0.0065 32.43 0.0098 42.39 0.0135

12.71 0.0035 22.68 0.0065 32.64 0.0098 42.60 0.0135

12.92 0.0036 22.89 0.0066 32.85 0.0099 42.82 0.0136

13.14 0.0036 23.10 0.0067 33.06 0.0100 43.03 0.0137

13.35 0.0037 23.31 0.0067 33.28 0.0101 43.24 0.0138

13.56 0.0038 23.52 0.0068 33.49 0.0101 43.45 0.0139

13.77 0.0038 23.74 0.0069 33.70 0.0102 43.66 0.0140

13.98 0.0039 23.95 0.0069 33.91 0.0103 43.88 0.0140

14.20 0.0039 24.16 0.0070 34.12 0.0104 44.09 0.0141

En ésta ecuación, el peralte "d" depende del porcentaje de acero que se proporcione a la viga, éste porcentaje deberá estar entre el mínimo y el máximo permisible, y que dependiendo del claro y las cargas exteriores que obran sobre la viga, además del ancho "b", la resistencia del concreto y del acero, fijar el porcentaje para obtener el peralte "d" más eficiente y económico.

Tabla 5.06 Porcentaje de acero para secciones balanceadas

Concreto: f'c = kg/cm2 rmín = b1 =

Varilla: fy = kg/cm2 rmín = rmáx =

rmín

rmín

*

d=√ Mu

φf c' bω (1−0 .59ω)

M u

bd2M u

bd2M u

bd2M u

bd2

ω=ρf yf c'

ρmáx=075 ρb

M u=φf c' bd2ω (1−0 .59ω)

Page 38: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra38

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM14.41 0.0040 24.37 0.0071 34.34 0.0104 44.30 0.0142

14.62 0.0041 24.58 0.0071 34.55 0.0105 44.51 0.0143

14.83 0.0041 24.80 0.0072 34.76 0.0106 44.72 0.0144

15.04 0.0042 25.01 0.0073 34.97 0.0107 44.94 0.0145

15.26 0.0043 25.22 0.0073 35.18 0.0107 45.15 0.0146

15.47 0.0043 25.43 0.0074 35.40 0.0108 45.36 0.0147

15.68 0.0044 25.64 0.0075 35.61 0.0109 45.57 0.0147

15.89 0.0044 25.86 0.0075 35.82 0.0110 45.78 0.0148

16.10 0.0045 26.07 0.0076 36.03 0.0110 46.00 0.0149

16.32 0.0046 26.28 0.0077 36.24 0.0111 46.21 0.0150

16.53 0.0046 26.49 0.0078 36.46 0.0112 46.42 0.0151

16.74 0.0047 26.70 0.0078 36.67 0.0113 46.63 0.0152

16.95 0.0048 26.92 0.0079 36.88 0.0113 46.84 0.0153

250 0.0020 losas espesor constante 0.85

4200 0.0033 trabes 0.268 0.0191 trabes

r r r r

7.33 0.0020 20.19 0.0057 33.06 0.0097 45.92 0.0141

7.60 0.0021 20.46 0.0057 33.33 0.0098 46.19 0.0142

7.87 0.0021 20.73 0.0058 33.59 0.0098 46.46 0.0143

8.13 0.0022 21.00 0.0059 33.86 0.0099 46.73 0.0144

8.40 0.0023 21.27 0.0060 34.13 0.0100 46.99 0.0145

8.67 0.0024 21.53 0.0061 34.40 0.0101 47.26 0.0146

8.94 0.0024 21.80 0.0061 34.67 0.0102 47.53 0.0147

9.21 0.0025 22.07 0.0062 34.93 0.0103 47.80 0.0148

9.47 0.0026 22.34 0.0063 35.20 0.0104 48.07 0.0149

9.74 0.0026 22.61 0.0064 35.47 0.0105 48.33 0.0150

10.01 0.0027 22.87 0.0065 35.74 0.0106 48.60 0.0151

10.28 0.0028 23.14 0.0065 36.01 0.0106 48.87 0.0152

10.55 0.0029 23.41 0.0066 36.27 0.0107 49.14 0.0153

10.81 0.0029 23.68 0.0067 36.54 0.0108 49.41 0.0154

11.08 0.0030 23.95 0.0068 36.81 0.0109 49.67 0.0155

11.35 0.0031 24.21 0.0069 37.08 0.0110 49.94 0.0156

11.62 0.0032 24.48 0.0070 37.35 0.0111 50.21 0.0157

11.89 0.0033 24.75 0.0070 37.61 0.0112 50.48 0.0158

12.15 0.0033 25.02 0.0071 37.88 0.0113 50.75 0.0159

12.42 0.0034 25.29 0.0072 38.15 0.0114 51.01 0.0160

12.69 0.0035 25.55 0.0073 38.42 0.0115 51.28 0.0161

12.96 0.0036 25.82 0.0074 38.69 0.0116 51.55 0.0162

13.23 0.0036 26.09 0.0075 38.95 0.0116 51.82 0.0164

13.49 0.0037 26.36 0.0075 39.22 0.0117 52.09 0.0165

13.76 0.0038 26.63 0.0076 39.49 0.0118 52.35 0.0166

14.03 0.0039 26.89 0.0077 39.76 0.0119 52.62 0.0167

14.30 0.0039 27.16 0.0078 40.03 0.0120 52.89 0.0168

14.57 0.0040 27.43 0.0079 40.29 0.0121 53.16 0.0169

14.83 0.0041 27.70 0.0080 40.56 0.0122 53.43 0.0170

15.10 0.0042 27.97 0.0080 40.83 0.0123 53.69 0.0171

15.37 0.0042 28.23 0.0081 41.10 0.0124 53.96 0.0172

rmáx

* Indica el incremento de Mu/bd2 para el cálculo de la tabla

Tabla 5.07Porcentaje de acero para secciones balanceadas

Concreto: f'c = kg/cm2 rmín = b1 =

Varilla: fy = kg/cm2 rmín = rmáx =

rmín

rmín

*

2u

bdM

2u

bdM

2u

bdM

2u

bdM

Page 39: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra39

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM15.64 0.0043 28.50 0.0082 41.37 0.0125 54.23 0.0173

15.91 0.0044 28.77 0.0083 41.63 0.0126 54.50 0.0174

16.17 0.0045 29.04 0.0084 41.90 0.0127 54.77 0.0175

16.44 0.0046 29.31 0.0085 42.17 0.0128 55.03 0.0176

16.71 0.0046 29.57 0.0085 42.44 0.0129 55.30 0.0177

16.98 0.0047 29.84 0.0086 42.71 0.0130 55.57 0.0179

17.25 0.0048 30.11 0.0087 42.97 0.0131 55.84 0.0180

17.51 0.0049 30.38 0.0088 43.24 0.0131 56.11 0.0181

17.78 0.0049 30.65 0.0089 43.51 0.0132 56.37 0.0182

18.05 0.0050 30.91 0.0090 43.78 0.0133 56.64 0.0183

18.32 0.0051 31.18 0.0091 44.05 0.0134 56.91 0.0184

18.59 0.0052 31.45 0.0091 44.31 0.0135 57.18 0.0185

18.85 0.0053 31.72 0.0092 44.58 0.0136 57.45 0.0186

19.12 0.0053 31.99 0.0093 44.85 0.0137 57.71 0.0187

19.39 0.0054 32.25 0.0094 45.12 0.0138 57.98 0.0189

19.66 0.0055 32.52 0.0095 45.39 0.0139 58.25 0.0190

19.93 0.0056 32.79 0.0096 45.65 0.0140 58.52 0.0191

5.03 Ejemplos de diseño de vigas simplemente armadas

Ejemplo 5.1

Datos:

b = 20 cm Acero de refuerzo: 2 5h = 30 cm 1.98

200 1.59 cm4200 3.96

2039000

20

30 25

5

recubrimiento total0.79 r = 5 cm

4.79 4.00 d = h - r = 25 cm

Solución:a) Por medio de la cuña rectangular

Profundidad del eje neutro:

Por equilibrio de fuerzas C = T

rmáx

* Indica el incremento de Mu/bd2 para el cálculo de la tabla

Determinar el momento último de una viga rectangular simplemente armada, investigando si la viga falla a tensión o a compresión.

Ab = cm2

f'c = kg/cm2 db =fy = kg/cm2 As = cm2

Es =

#

c-d

ec=0.003

c

eces

0.85f'c

a=b1c

T=Asfy

E.N.

kg/cm2

0 .85 f c' ab=A s f y

d−a2

a2

C=0 .85 f c' ab

Page 40: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra40

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Suponiendo que el acero fluye:

Sustituyendo los valores:4.89 cm

y

Como: 200 < 280 0.85

Sustituyendo:5.75 cm

0.002 < 0.003 Lo que indica falla a tensión

b) Calculo del momento resistente ó momento nominal:

337505.6 0.90

3.38 T-m

Aplicando las fórmulas y tablas de momentos resistentes:

Porcentaje de acero:

0.0079

Acero mínimo:0.0033

Acero máximo:

200 < 280

0.85

0.0204

0.0153

0.0033 < 0.0079 < 0.0153 Sección balanceada

El momento nominal ó momento resistente se expresa como:

Para calcular el tipo de falla de la viga, se calcula la deformación máxima del concreto cuando el acero de refuerzo fluye. Del diagrama de deformaciones de la figura anterior se tiene:

Despejando ec:

f'c = kg/cm2 kg/cm2 b1 =

f =

El resultado en kg-cm, el equivalente en T-m, basta dividir entre 1000 para transformar kilogramos a Toneladas y dividir nuevamente entre 100 para trasformar centímetros a metros, como se indica.

Como f'c = kg/cm2 kg/cm2

b' =

rmín = r = rmáx =

wwff 59.01bdfM 2'cn

r

=

kg-cm

a=As f y

0 .85 f 'cb

0 .85 f c' ab=A s f y

a=3 .96 x 42000 .85 x 200x 20

=

εcε s= cd−c εc

=cε sd−c

c=aβ1

c=4 .890.85

=

ε y=f yEs

=42002039000

=

M u=φA s f y(d−a2 )=0 .90x 3.96 x 4200 x (25− 4 .892 )=

ρ=A sbd

= 3 .9620x 25

=

ρmín=14f y

=144200

=

ρ=0 .85 β1 f c

'

f y

61176117+ f y

M u=337505 .61000 x100

=

ρmáx=0 .75 ρ

=0 .85 x0 .85 x2004200

61176117+4200

=

Page 41: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra41

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

0.1663 y 0.90

337395.9

3.37 T-m

Para 0.0079 26.92

336450.0

3.36 T-m

Ejemplo 5.2

6.00 Datos de diseño:Materiales:

250

238752

4.0

0 4200

20390000.85

Cargas de muertas y vivas de diseño.Cargas muertas:

4.0

0

Espesor de la losa:

Planta 0.111 m

Tomar: h = 0.12 m

25 Acabados: Espesores:Piso de mármol ó terrazo 0.020 mJunteo de cemento-arena 0.020 m

h

Losa de concreto armado 0.120 mplafón de yeso 0.020 m

y w vale: f =

Utilizando la tablas de la figura 5.06 se tiene:

r =

Resultados prácticamente iguales, observando que la utilizando las tablas para cálculo de porcentajes de acero se llega al resultado más rápidamente..

Diseñar una viga rectangular simplemente armada que soporta la carga de una losa de entrepiso destinada a aulas, con relleno de tepojal , firme de concreto de 5 cm. Y acabado con loseta de mármol de 2.5 cm de espesor, el plafón tendrá un acabado con aplanado de yeso de 2.5 cm y como condición del proyecto arquitectónico el peralte máximo no será mayor a 40 cm, como se indica a continuación:

Concreto f'c = kg/cm2

Módulo elástico Ec =

Acero de refuerzo fy = kg/cm2

Módulo elástico Es =b1 =

Este se puede calcular como la relación del perímetro del tablero de la losa entre 180 pero no menor a 9 cm.

wwff 59.01bdfM 2'cn

1

=

kg-cm

kg-cm

kg/cm2

kg/cm2

ω=ρf yf c' =0.0079

4200200

=

φM n=0.90 x 200x 20 x252 x 0 .1663 x (1−0 .59 x0 .1663)=

φM n=337395 .91000 x 100

=

M u=26 .92 x20 x252=

M u=336450 .01000 x100

=

h=Perímetro180

=4 .0 x2+6 .0 x2180

=

M u

bd2

Page 42: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra42

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Corte -1-

6.00 0.013 0.013

4.0

0

2.5

0

Tablero de la losa

Sección de muro

Longitud de muros 5.00+4.00 = 10.00 mEspesor total de muro 0.013+0.013 = 0.026 mVolumen de muro 10x0.026x2.5= 0.65Peso volumétrico yeso 1.50Peso del muro 0.65x1.50 = 0.98 TArea del tablero de losa A = 6.00x4.00 = 24.00Carga unitaria en losa 0.98/24.00 = 0.041

Se un valor de 0.05

Cargas muertas:

Concepto

Piso de mármol ó terrazo 0.020 2.20 0.044Junteo de cemento-arena 0.020 2.00 0.040Losa de concreto armado 0.120 2.40 0.288plafón de yeso 0.020 1.50 0.030Muro de tabla roca - - 0.050

- - 0.040Suma de carga muerta 0.492

D = 0.492Cargas vivas:

L = 0.25

U = 1.2 D + 1.6L = 1.2x0.492+1.6x0.25 = 0.990

Como se trata de oficinas se deberá tomar en cuenta los muros divisorios que en general son ligeros y movibles, en éste caso se suponen muros de tabla roca, colocados en forma de cruz en cada tablero de losa como se indica a continuación.

Lm =em =Vm = m3

gtc = T/m3

Wtr =m2

wtr = T/m2

wtr = T/m2

Espe-sor

(m)

Peso Volum. T/m3

Carga unitaria

T/m2

Carga por reglamento (0.20+.0.20)T/m2

T/m2

Carga viva para un piso destinado a aulas según el Reglamento de Construcciones para el D. F: T/m2

Para iniciar el diseño es necesario calcular las cargas factorizadas, de acuerdo con las especificaciones del ACI-318-2005

T/m2

Page 43: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra43

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

6.00 bisectriz2.0

2.0

4.0

16.00

A Carga total:

2.0

15.846 T

Carga unitaria:

4.0

2.641 T/m

Planta de losa

2.641 T/m Momento flexionante:

6.00

11.885 T-m

11

.88

5

1188480

Diagrama de momento flexionante

37.5 cm

De la fórmula:en donde 0.90

ancho de trabe b = 25 cm

En donde:

La carga sobre la viga se determina con una distribución trapezoidal basada en el trazo de bisectrices en los vértices del tablero de la losa, como se indica en la figura siguiente:

Area del trapecio superior más inferior:

m2

Wu

wu Wu=AU=16.0x0.99 =

wu =

Mu =

Mu =

El peralte de la losa se puede determinar mediante la tabla 9.5(a) de las especificaciones del ACI-318-2005, para vigas y losas nervadas simplemente apoyadas en donde, h = L/16 este peralte determinado de esta manera, permite el control de las deflexiones cuando éstas no se calculen.

Otra forma de determinar el peralte de la viga es suponiendo un porcentaje de acero de refuerzo, que puede ser un 50% del rmáx, ó con otro valor de acuerdo con la experiencia del diseñador de estructuras.

f =

kg-cm

M u=ωu L

2

8

d=√ M u

φf c' bω (1−0 .59ω)

ρ=0 .85 β1 f c

'

f y

61176117+ f y

ωu=W u

L=

h=L16

=

A=( 6 .0+2 .02x2 .0)x 2=

15 .8466 .0

=

Page 44: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra44

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

0.85 para 250 < 280

0.0191

para : 0.0096

0.1606

Peralte de la viga:

38.12 cm

De los comentarios anteriores se elije la sección siguiente:

Acero para dimensionar: Croquis del recubrimiento: Dimensión de la viga:Ref. # 6 h = 40 cm

1.91 cm 4.91 cmEst.# 3 dar: r = 5 cm

0.95 cm 1.9 0.95 d = h - r = 35 cm

3.0 cm 3.0 4.9 b = 25 cm

a) Área de acero por fórmulas:

0.90

0.1948

0.0116

Acero mínimo:0.0033

Acero máximo para una sección balanceada

0.85

0.0191

b' = f'c = kg/cm2 kg/cm2

r =0.50rmáx =

El cálculo del peralte por medio de ésta fórmula es muy variable, de cuerdo con porcentaje de acero de refuerzo "r", ya que el peralte aumenta al disminuir el porcentaje de acero para un momento determinado.

De acuerdo con los resultados obtenidos de h = 37.5 cm y de d = 38.12 cm , el peralte muchas veces no coincide con el peralte del proyecto arquitectónico, por lo que es conveniente diseñar la viga con el propuesto en el proyecto arquitectónico, pudiendo variar el ancho de la trabe, para estar dentro del rango de las secciones balanceadas, y revisar las deflexiones máximas producidas por las cargas y en su caso de ser necesario, incrementar el peralte sin que se vea afectado el diseño arquitectónico.

dbl = r = rmín+dbe+dbl/2 =

dbe =

rmín =

f =

b1 =

rmáx =

ω=0 .848−√0.719− M u

0.59φf c' bd 2

ρ=ωf c'

f y

ρmín=14f y

=144200

=

ω=ρf yf c'=

0 .75 x( 0 .85 x0 .85 x200420061176117+4200 )=

ρmáx=0 .75 ρb=0 .75( 0 .85 β1 f c'f y

61176117+ f y )

ρmáx=0 .75( 0 .85 x0 .85 x2504200x61176117+4200 )=

0 .0096 x4200250

=

d=√11884800 .9 x250 x25 x 0 .1606 x (1−0.59 x0 .1606=

ω=0 .848−√0.719−11884800.59 x0 .9 x250 x 25x 352=

=0.1948 x2504200

=

Page 45: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra45

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Límites para una sección balanceada:

0.0033 < 0.0116 < 0.0191 Sección balanceada

Área de acero:10.15

38.81

La tabla con un valor de: 38.81 se obtiene 0.0116Áreas de acero:

10.11

Acero de refuerzo en la viga:

Utilizando varillas del # 6 2.85

Número de varillas: 3.55

Colocar 4 6

11.40 > 10.11

Armado de la viga:

600 25

404 6

ARMADO DE VIGA

Revisión de la deflexión de la viga de acuerdo con lo especificado por el ACI-318-2005.

El momento de inercia efectivo.

En donde:

89322.9 250

31.62

Área de acero calcula 11.40

rmín = r = rmáx =

As =rbd = 0.01116x25x35 = cm2

b) por la tabla 5.07 calculando el valor de Mu/bd2 y determinando el valor de r se tiene:

r =

As =rbd = 0.0116x25x35 = cm2

Ab = cm2

As =3x2.85 = cm2 cm2

El Mcr se expresa como

Ma = momento máximo sin factorizar

Concreto f'c = kg/cm2

kg/cm2

yt es la profundidad del eje neutro y se obtiene de la sección transformada de la viga:

As = cm2

=

Var. #

EJE EJE

#

cm4I g=bh3

12

f r=2√ f c' =2√250=

I e=(M cr

M a)3

I g+[1−(M cr

M a)3 ]I cr ¿ lg

N=A sAb

=

M cr=f r lgy t

0 .75 x( 0 .85 x0 .85 x200420061176117+4200 )=

1188480

25 x352=

=25x 352

12=

M u

bd2

Page 46: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra46

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Módulos elásticosAcero: 2039000Concreto: 238752

b = 25 cmh = 40 cmr = 5 cmd = 35 cm

Sección transversal de la viga transformada

Relación de módulos "n"

8.54

Cálculo del momento de inercia de la sección transformada:

Profundidad "c" del eje neutro "EN"

Desarrollando la ecuación:

Haciendo: dando solución a la ecuación de segundo grado

Sustituyendo valores a J

3.89466 cm

14.1813 cm

Profundidad del eje neutro:20.82 cm

Momento crítico de la sección transformada

135678 1.35678 T-m

D+L = 0.492+0.25 = 0.742

Área tributaria del trapecio calculada con anterioridad.A = 16.00

Es =Ec =

Tomando el momento estático del área de compresión del concreto y la sección de acero transformada con respecto al eje neutro se expresa como:

yt = d - c = 35 - 14.18 =

Calculo del momento máximo "Ma" sin factorizar:

T/m2

m2

kg-cm =

kg/cm2

kg/cm2

=

b

d

c

nAs

E.N.

h

r

d-c

bnA

J s =

b

d

c

nAs

E.N.

h

r

d-c

n=E sEc

=2039000238752

=

c=−J+√J2+2Jd

cbc2=(d−c )nAs

b2c2+nA sc−nA sd=0

c2+2nAsbc−2

nA sbd=0

J=nA sb

8 .54 x 11.4025

=

c=−3.895+√3 .8952+2x 3 .895x 35=

31 .62 x 89322.920 .82

=M cr=f r lgy t

Page 47: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra47

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEMCarga total

W = (D+L)A =0.742x16.0 = 11.872 T

Carga unitaria sobre la viga

en donde 6.00 m

1.97867 T/m

8.904 T-m = 890400

De la figura de la sección transformada, se determina el momento de inercia crítico

14.18

desarrollando queda como:

65967 < 89323

Calculando:

0.0035

Momento de inercia efectivo vale:

66050 < 89323

La flecha máxima por carga muerta más carga viva sin factorizar se calcula como:

2.12 cm

La correspondiente a la carga viva se obtiene con la relación:

0.7134 cm

1.67 cm > 0.71 cm

lt = L =

Dando valores Ma vale:

cm4

Calculando el momento de inercia efectivo: "le"

cm4

Se tiene el caso de entrepisos que no soportan y que no tiene contacto con elementos no estructurales expuestos a daños por deflexiones grandes, la flecha máxima debida a la carga viva vale:

Dcv=DL=

kg-cm

cm4

2 2

2

cm4

M a=ωL2

8

ΔD+L=5M a L

2

48 Ec lcr

Δmáx=L360

=600360

=

I e=(M cr

M a)3

I g+[1−(M cr

M a)3 ]I cr ¿ lg

ΔL=( ωcvωcm+ωcm

)ΔD+L=

ω=Wlt

ω=WL

=11.876 .00

=

=1 .979x 6 .002

8=

I cr=25 x14 .183

3+8 .54 x11.40 x (35−14 .18 )2=

(M cr

M a)3

= ( 1 .3578 .904 )3

=

I e= (. 0035 ) x89323+ [1−( . 0035 ) ]65967=

= 5 x 890400x 6002

48 x238752 x66050=

( 0 .250 .492+0 .25 )x 2 .12=

lcr=bc3

3+nA s (d−c )

lcr=(bc 312 )(bc c24 )+nA s (d−c )=3bc3+bc3

12+nA s (d−c )

Page 48: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra48

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

44661

0.25

Área tributaria de la viga: Carga total Claro de la viga

A = 16.00 W = 4.00 T L = 6.00 m

Carga unitaria en la viga

0.67 T/m

6.667 kg/cm 238752

1.06 cm < 1.67 cm

Ejemplo 5.3

Materiales:4.00 4.00

250238752

42002039000

5.0

0 0.85

Planta de entrepisoEspesor

Ladrillo de barro 0.020 mJunteo con mortero 0.020 mEntortado de concreto 0.030 mRelleno para pendiente 0.100 m

En forma aproximada el momento de inercia efectivo se puede tomar como el 50% de del momento de inercia de la sección de la viga.

Ie = 0.5Ig = 0.50x89323 = cm4

Con la fórmula para calculo de deflexiones en vigas apoyadas y con carga uniforme se calcula con la expresión:

wcv = T/m2

cm2

wcv = Ec =

Dmáx =

Diseñar una viga rectangular simplemente armada en forma práctica, para soportar la carga de losa, muro de tabique rojo recocido aplanado de yeso y losa de entrepiso, destinada a casa habitación, de acuerdo con el croquis que se muestra a continuación:

Concreto f'c = kg/cm2

Módulo elástico Ec =Acero de refuerzo fy = kg/cm2

Módulo elástico Es =b1 =

Elementos estructurales y no estructurales

wuazt wuazt

1|

kg/cm2

kg/cm2

kg/cm2

Δmáx=L360

=600360

=

ωcv=4 .006 .00

=

Δcv=5ωcv L

4

384 Ec I e

Δcv=5 x6 .667 x 6004

384 x238752 x 44661=

Page 49: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra49

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEMLosa de concreto 0.100 mAplanado de yeso 0.020 m

2.3

0 Muro de tabique rojo 0.120 mAplanado de yeso 0.050 m

Piso 0.020 mJunteo con mortero 0.020 m

0.3

5 Firme de concreto 0.050 mRelleno para nivelar 0.250 mLosa de concreto 0.100 mAplanado de yeso 0.020 m

Corte -1-

0.0

5

0.4

0

0.2

50

.10

Detalle "A"Cargas de diseño:

Determinación del espesor de la losa de concreto, para calcular el peso propio:

0.10 m

Cargas muertas:Cargas muertas de acuerdo con los datos del proyecto arquitectónico:

Concepto

Losa de concreto 0.100 2.40 0.240 0.240Relleno para pendiente 0.100 1.20 0.120 -Entortado de concreto 0.030 2.00 0.060 -Ladrillo de barro 0.020 1.50 0.030 -Junteo con mortero 0.020 2.00 0.040 0.040Aplanado de yeso 0.020 1.50 0.030 0.030Relleno para nivelar 0.250 1.20 - 0.300Firme de concreto 0.050 2.00 - 0.100Piso 0.020 2.00 - 0.040

- - 0.020 0.040Suma de carga muerta (D) 0.540 0.790

Cargas vivas:

wumur

wuent wuent

Espe-sor

(m)

Peso Volum. T/m3

Carga azotea

T/m2

Carga Entrep.

T/m2

Carga por reglamento (0.20+.0.20)T/m2

Carga viva para un piso destinado a casa habitación el Reglamento de Construcciones para el D. F, especifica los valores siguientes:

DET. "A"

b

h=Perímetro180

=4 .0 x2+5 .0 x2180

=

Page 50: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra50

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEMAzotea: L = 0.10Entrepiso: L = 0.17

Azotea: U = 1.2 D + 1.6L = 1.2x0.54+1.6x0.10 = 0.81Entrepiso: U = 1.2 D + 1.6L = 1.2x0.79+1.6x0.17 = 1.22

Azotea:

5.00bisectriz

Área del triangulo para las dos áreas:

2.0

0

4.0

0 12.001.0A Carga total:

2.0

0

9.696 T

Carga unitaria:

4.0

0 A 1.939 T/m

Planta losa de azotea

Entrepiso:5.00

bisectriz

Área del triángulo:

2.0

0

4.0

0 10.001.00

A Carga total:

2.0

0

12.200 T

Carga unitaria:A

4.0

0 2.440 T/m

Planta losa de entrepiso

T/m2

T/m2

Para iniciar el diseño es necesario calcular las cargas factorizadas, de acuerdo con las especificaciones del ACI-318-2005

T/m2

T/m2

La carga sobre la viga se determina con una distribución trapezoidal basada en el trazo de bisectrices en los vértices del tablero de la losa, como se indica en la figura siguiente:

m2

Wu

wu Wu=AU=12.00x0.81 =

Wu

m2

Wu

wu Wu=AU=10.00x1.22 =

Wu

ωu=W u

L=

ωu=W u

L=

11.480

5.00

5.00 1.00A 2x2

2

9.696

5.00

5.00 1.00A 2x2

2

Page 51: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra51

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

0.02 0.13 0.02

2.3

0

Peso de muro y aplanado

Tipo

Muro 0.13 2.3 1.50 0.45

0.3

5 yeso 0.04 2.3 1.50 0.14Carga unitaria 0.59

Carga factorizada para carga muerta:

U = 1.4D =1.4x0.59 = 0.821 T/mCarga total sobre la trabe de entrepiso:

Azotea 1.939 T/mMuro 0.821 T/m

Entrepiso 2.440 T/mCarga total 5.200 T/m

Calculo del momento máximo factorizado:

16.251 T-m

5.200 T/m

5.00

1625094

Diagrama de momento flexionante

Peralte de la viga simplemente apoyada según tabla 9.5(a)

31.25 "b" de la viga

Peso del muro (se desprecia la contribución de la rigidez del muro confinado entre castillos, si los hubiera):

wuazt wuazt

wum

ur

Esp. m.

Altura m.

P, Vol. T/m3

Peso T/m

wuent wuent

wuazt =wumur =wuent =wut =

Mu =

wu =

Mu = kg-cm

M u=ωu L

2

8

h=L16

=50016

=

25.20x5.00

8

¿

Page 52: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra52

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Croquis del recubrimiento: Refuerzo para dimensionar: Dimensiones de la viga:Ref. # 6 b = 25 cm

1.91 cm Peralte obligado: h = 40 cm

Est.# 3 4.905 cm

1.9 0.95 0.95 cm Se propone r = 5 cm

3.0 4.9 3.0 cm d = h-r = 35 cm

53.06

con un valor de: 53.06 se obtiene 0.0168

Acero mínimo:0.0033

Acero máximo para una sección balanceada

0.85

0.0191

0.0033 < 0.0168 < 0.0191 Sección balanceada

Área de acero:14.68

Acero de refuerzo en la viga:

Varillas del # 5 1.98

Colocando 3 varillas del # 5 5.94

Adicionales # 6 2.85

Bastones: 8.74

Colocando 3 varillas del # 6 8.55

14.49 < 14.68

Colocar 3 5 más 3 6

Momentos resistentes ó nominales de la sección con el refuerzo de varillas de refuerzo:

Tomando en cuenta que el peralte de la viga por proyecto arquitectónico no deberá exceder de 35 cm, y puesto que la trabe es hacia arriba, su ancho puede variar de acuerdo con las necesidades del diseño.

dbl =

r = rmín+dbe+dbl/2 =

dbe =

rmín =

La relación del momento último "Mu" entre el producto de del ancho "b" por el cuadrado de "d" vale:

De la tabla 5.07r =

b1 =

rmáx =

rmín = r = rmáx =

As =rbd = 0.0168x25x35 = cm2

Ab = cm2

As1 = cm2

Ab = cm2

As2 = As-As1 = cm2

As2 = cm2

Ast = cm2 cm2

=

varillas longitudinales # varillas en bastón #

0 .75 x( 0 .85 x0 .85 x200420061176117+4200 )=

ρmáx=0 .75 ρb=0 .75( 0 .85 β1 f c'f y

61176117+ f y )

ρmín=14f y

=144200

=

2

1625094

25x35u

2

M

bd

Page 53: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra53

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEMcon:

3 del # 5 5.94Datos de diseño:

0.90250

0.0068 4200

0.1140

732751.2

En toneladas metro se expresa como: 7.328 T-mcon:

3 del # 6 8.55

0.0098

0.1642

1021680.2

En toneladas metro se expresa como: 10.217 T-m

El momento resistente total tiene un valor de:

6.183+4.244 = 17.544 T-m > 16.251 T-m

En donde: Y = Es el momento último calculado 16.251 T-my = 8.92 T-mX = Es la mitad de la longitud de la viga = 5.00/2 = 2.50 mx = Distancia a determinar.

10.22y

16.257.33

x x

As = cm2

f = f'c = kg/cm2

fy = kg/cm2

fMn = 0.90x250x25x352 x0.0068x(1 - 0.59x0.0068) =

fMn1 =

As = cm2

fMn = 0.90x250x25x352 x0.1642x(1 - 0.59x0.1642) =

fMn2 =

fMnt = Mu =

Para determinar la longitud de los bastones, se aplica la relación obtenida de la geometría de la parábola, en donde relacionando las ordenadas entre los cuadrados de las abscisas, se calcula la distancia x, como se indica a continuación:

Mu =Mu - fMn1 =

Con el momento último de diseño dado en el diagrama de momento flexionante y con los valores de los momentos resistentes de la varillas, se procede a calcular el valor de "x".

fMn2 =

Y = Mu =fMn1 =

wwff 59.01bdfM 2'cn

kg-cm

kg-cm

3#6

3#5 6.18 T-m

10.43 T-m

ω=ρf yf c'

ρ=A sbd

=5 .9430 x 35

=

=0.00664200200

=

ρ=A sbd

=5 .7030 x 35

=

=0.044 x4200200

=

yY= x2

X2

ω=ρf yf c'

Page 54: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra54

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM2.50 2.50

5.00

1.06 m

A esta distancia se le suma la longitud de anclaje especificada por el ACI-318-2005.

35.00 cm19.05 cm # 5 1.59 cm

Rige: 35.00 cm = 0.35 m 1.06+0.35 = 1.41 m

300 cm

Longitud del gancho extremo a 90º para varillas del #3 al #8

27.0 cm

El detalle de armado a flexión simple de la viga se ilustra a continuación.

500 25

40

27

3 5 3 6

100 300 100

ARMADO DE VIGA

Deflexión por carga viva máxima.

En donde:Azotea: 0.10Entrepiso: 0.17Total 0.27

Área tributaria de la viga:A = 10.00

Carga total8.00x0.27 = 2.700 T

Momento tomado por las 2 varillas del #5

ld = d =ld = 12db = 12x1.59 = db =

ld =Longitud total ld =

Conviene dar cantidades enteras para fines prácticos con l = 1.50 m. ó 150 cm. son las unidades más comunes en estructuras de concreto, por lo tanto la longitud del bastón será:

ld =2x150 =

ld = 17x1.59 =

Revisión de la deflexión de la viga por carga viva de servicio, tomando el momento de inercia efectivo aproximadamente igual al 50% del momento de inercia de la sección.

wcv = T/m2

wcv = T/m2

wcvt = T/m2

cm2

W =Awcvt =

12db

4db

db

17db

EJE EJE

##

2

2

7.33 x

16.25 2.50

2 7.33x 2.50 x

16.25

Δcv=5ωcv L

4

384 Ec I e

Page 55: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra55

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEMClaro de la viga

L = 5.00 mCarga unitaria en la viga

0.54 T/m

5.40 kg/cm

133333.3

0.5x107187.5 = 66667

238752Deflexión:

0.28 cm

1.66667 cm > 0.28 cm

Deflexión por carga viva más carga muerta de servicio:

Azotea: 0.54Entrepiso: 0.79

1.33Carga total de losas:

13.30 TCarga unitaria en la viga

2.66 T/m

Muro: 0.59 T/m3.25 T/m

3.13+0.54 = 3.79 T/m37.87 kg/cm

1.94 cm < 1.67 cm

No se requiere dar contra flecha a la viga.

6.00 CORTANTE6.01 Comportamiento y modos de falla

carga aplicada

wcvt =

Ie = 0.5Ig = cm4

Ec =

El caso de entrepisos que no soportan y que no tienen contacto con elementos no estructurales expuestos a daños por deflexiones grandes, la flecha máxima debida a la carga viva de acuerdo con el ACI-318-2005:

Dcvt =

wcm = T/m2

wcm = T/m2

wcml = T/m2

W =Awcml =

wcmm =wcmt =

W =A(wcmtwcvt ) =wcmt =

Dmáx =

El ACI-318-2005 en sus comentarios describe que; Cuando una viga de concreto es sometida a cargas se presentan dos tipos de agrietamientos inclinado: agrietamiento por cortante en el alma y agrietamiento de corte por flexión, este tipo de agrietamientos se ilustran en la figura 6.01.

kg/cm2

cm4

Δmáx=L360

=400360

=

I g=30 x 353

12=

ωcvt=2.164 .00

=

Δcvt=5 x5 .40 x 4004

384 x213546 x53594=

ωcmt=10 .164 .00

=

Δcv+cm=5 x36 .67 x 4004

384 x213546 x53594=

Page 56: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra56

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

apoyo simple apoyo continuo

(a) (b) (a) (c)

6.02 Resistencia del concreto y refuerzo con estribos

Meje neutro

V

Las hipótesis en que se basa esta analogía con la armadura son las siguientes:

a) La porción de concreto comprimido toma sólo esfuerzos normales de compresión.b) El refuerzo longitudinal de la viga toma únicamente esfuerzos normales de tensiónc) Todas las tensiones producidas por las grietas son resistidas por el refuerzo transversald)

cortante en alma

flexión y flexión-cortante

cortante en alma

flexión y flexión-cortante

figura 6.01 tipos de agrietamiento en vigas de concreto

a).- El agrietamiento por cortante en el alma empieza en un punto inferior del elemento cuando los esfuerzos principales de tracción exceden la resistencia a tracción del concreto.

b).-. El agrietamiento de cortante `por flexión se inicia con un agrietamiento por flexión, cuando se produce el agrietamiento por agrietamiento por flexión, se incrementan los esfuerzos cortantes en el concreto arriba de la fisura.

c).- La fisura de cortante por flexión se desarrolla cuando el esfuerzo combinado de cortante y tracción excede la resistencia a la tracción del concreto.

El mecanismo de falla de una viga con refuerzo transversal fue propuesta por Ritter en 1899, basado en la idealización conocida como analogía de la armadura, en la propone una viga con refuerzo transversal, en la cuál existen grietas causadas por las tracciones cuando estas exceden la resistencia del concreto.

La analogía con la armadura se establece en la cuerda inferior con el refuerzo longitudinal de la viga, las diagonales de tensión con el refuerzo transversal de los estribos y como diagonal en compresión la porción del concreto entre las fisuras inclinadas, como de muestra en la figura 6.02

figura 6.02 Analogía con la armadura

Las grietas inclinadas forman un ángulo q con el refuerzo longitudinal y el refuerzo transversal un ángulo a.

Las grietas inclinadas se extiende desde el refuerzo longitudinal de tensión hasta el centroide de la zona de compresión (eje neutro).

qa

s s s s

z

Page 57: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra57

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEMe)

Mq a

(1)

(2)

Por equilibrio de fuerzas horizontales

(3)

De acuerdo con la hipótesis (e):

(4)

Sustituyendo (2) y (4) en (3).

Se desprecia el efecto de peso propio o de cargas distribuidas entre grietas inclinadas consecutivas, es decir , el incremento de momentos entre dos secciones a una distancia "s" es igual a "Vs", en donde V es la fuerza cortante en la zona entre las dos secciones consideradas, como se indica en la figura 6.03.

M+DM

T+DT T=Asfs

Figura 6.03 Análisis del nudo de la armadura análoga.

De la figura 6.03, por equilibrio de fuerzas verticales:

AvFssena = Fcsenq

T+DT = Avcosa+Fccosq +T

DT = Avcosa+Fccosq

Se admite que las grietas por tracción se forman aproximadamente a 45º, por lo que tan45º = 1.0 y la ecuación queda finalmente:

De esta expresión se deduce que cuando la resistencia a tracción del concreto en las grietas inclinadas, la carga máxima del elemento ocurre cuando fs = fy,

Lo anterior presupone que tanto el concreto en compresión como el acero en tensión que forman la cuerda superior e inferior de la analogía de la armadura, deberán ser capaces de soportar los incrementos originados por el desarrollo de las grietas inclinadas

Fc Avfs

Fc=AV F s cosα

senθ

ΔT=ΔMz

=Vsz

Vsz=Av f scosα+

Av f s senα cosθ

senθ

Vsz=Av f s(cosα+ senα

senθ /cosθ )V=

Av f s z

s (cos α+ senαtanθ )

(cosα+senα )V=Av f s z

s

Page 58: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra58

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Miembros sin refuerzo transversal

En donde:Factor de resistencia para cortante y torsión co un valor de 0.75resistencia nominal, correspondiente a la carga de agrietamiento (kg)

Ancho en viga rectangulares ó alma en secciones T (cm)

d =

Con ésta procedimiento ha permitido el desarrollo de expresiones para calcularla su resistencia con aproximación suficiente para fines prácticos.

El reglamento del ACI-318-2005 especifica un procedimiento simplificado para determinar la fuerza cortante resistente ó nominal de la sección de concreto, para elementos sujetos únicamente a flexión, mediante la siguiente ecuación.

f =Vc =

f'c = Resistencia del concreto a la compresión en kg/cm2.

bw =

Peralte efectivo medido desde el refuerzo longitudinal a tensión al extremo del concreto en compresión (cm)

Para miembros sin refuerzo transversal, la resistencia especificada en la fórmula anterior, se acostumbra a correlacionarla con la resistencia del concreto a tensión que produce el agrietamiento inclinado con la raíz cuadrada de la resistencia del concreto a compresión.

El cortante máximo según el reglamento del ACI-318-2005 especifica que el cortante crítico se sitúa a una distancia "d" de la cara del apoyo. Sin embargo en apoyos cuya naturaleza es tal que no se inducen esfuerzos de compresión, como vigas las vigas que están colgadas del elemento horizontal ó vertical como el caso de vigas secundarias, la sección crítica debe tomarse en la cara interior del elemento horizontal o vertical. En el caso vigas con carga concentradas en el rango de la distancia "d", la sección crítica deberá tomarse en la cara del apoyo.

Figura 6.03-a Localización de la sección crítica para fuerza cortante en vigas apoyadas y en la intersección de columna-trabe

Figura 6.03-b Localización de la sección crítica para fuerza cortante en vigas colgadas y en vigas con carga puntual en la zona de la distancia "d".

d

Vu

Vu

dd

Vu

P

Vu

dVu

φV c=φ0 .50√ f c' bwd

Page 59: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra59

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

Donde:resistencia del cero de refuerzo en el alma de la viga

fy = Límite de fluencia del acero transversal

a =

s =

En el caso de estribos ó barras dobladas colocados a 45º la ecuación queda

La ecuación queda:

En el caso de estribos colocados a 90º la ecuación queda

sen 90º = 0.0cos 90º = 1.0

El valor de la ecuación se reduce a:

Para miembros con refuerzo transversal, la contribución del acero en el alma se calcula con la analogía de la armadura, el ACI-318-2005 sustituye el valor de "z" con el peralte efectivo "d" y el valor de fs con fy con esta simplificación se obtiene

Vs =Av = Área total del refuerzo en el alma (sumando las áreas con el número

de veces que se coloca el estribo o barra doblada en el mismo lugar) ver figura 6.04.

una rama (Av) dos ramas (Av) tres ramas (Av)

Figura 6.04 Área de acero del refuerzo transversal estribos ó barras dobladas

Ángulo que forma el estribo del refuerzo en el alma con el refuerzo longitudinal del alma

Separación de los estribos ó barra dobladas, medidos en la dirección paralela del refuerzo longitudinal

barras dobladas

estribos inclinados ó verticales

ss

V s=Av f yd

s(senα+cosα )

V s=Av f yd

s

sen45º=cos45º=0 .7071

( sen45º+cos45º )=0 .7071+0 .7071=1. 4142

V s=1.4142Av f yd

s

(sen 90º+cos90 º )=0 .0+1 .0=1 .0

Page 60: Hoja de Calculo Vigas de Concreto

Ing. Alfredo Salinas Mafra60

APUNTES DE CONCRETO REFORZADO FACULTAD DE ARQUITECTURA Y DISEÑO UAEM

De acuerdo con el ACI-318-05, se observan las indicaciones siguientes:

Contribución del acero

Esfuerzo máximo en el acero de los estribos no será mayor:

La resistencia proporcionada por el concreto y el acero en el alma de la viga será suma de Vc más Vs, representa la resistencia nominal Vn de las vigas con refuerzo en el alma

V n=V c+V s

vs≤2.2√ f c'

f yt≤4200kg/cm2

Page 61: Hoja de Calculo Vigas de Concreto

61 ING. ALFREDO SALINAS MAFRA

ANEXOS DE CONCRETO REFORZADO FDA

200 0.0020 losas espesor constante 0.85

4200 0.0033 trabes 0.212 0.0153 trabes

r r r r

7.20 0.0020 17.16 0.0048 27.13 0.0080 37.09 0.0114

7.41 0.0020 17.38 0.0049 27.34 0.0080 37.30 0.0115

7.62 0.0021 17.59 0.0050 27.55 0.0081 37.52 0.0116

7.84 0.0021 17.80 0.0050 27.76 0.0082 37.73 0.0117

8.05 0.0022 18.01 0.0051 27.98 0.0082 37.94 0.0117

8.26 0.0022 18.22 0.0051 28.19 0.0083 38.15 0.0118

8.47 0.0023 18.44 0.0052 28.40 0.0084 38.36 0.0119

8.68 0.0024 18.65 0.0053 28.61 0.0085 38.58 0.0120

8.90 0.0024 18.86 0.0053 28.82 0.0085 38.79 0.0121

9.11 0.0025 19.07 0.0054 29.04 0.0086 39.00 0.0121

9.32 0.0025 19.28 0.0055 29.25 0.0087 39.21 0.0122

9.53 0.0026 19.50 0.0055 29.46 0.0087 39.42 0.0123

9.74 0.0027 19.71 0.0056 29.67 0.0088 39.64 0.0124

9.96 0.0027 19.92 0.0057 29.88 0.0089 39.85 0.0125

10.17 0.0028 20.13 0.0057 30.10 0.0090 40.06 0.0125

10.38 0.0028 20.34 0.0058 30.31 0.0090 40.27 0.0126

10.59 0.0029 20.56 0.0059 30.52 0.0091 40.48 0.0127

10.80 0.0030 20.77 0.0059 30.73 0.0092 40.70 0.0128

11.02 0.0030 20.98 0.0060 30.94 0.0092 40.91 0.0129

11.23 0.0031 21.19 0.0061 31.16 0.0093 41.12 0.0130

11.44 0.0032 21.40 0.0061 31.37 0.0094 41.33 0.0130

11.65 0.0032 21.62 0.0062 31.58 0.0095 41.54 0.0131

11.86 0.0033 21.83 0.0063 31.79 0.0095 41.76 0.0132

12.08 0.0033 22.04 0.0063 32.00 0.0096 41.97 0.0133

12.29 0.0034 22.25 0.0064 32.22 0.0097 42.18 0.0134

12.50 0.0035 22.46 0.0065 32.43 0.0098 42.39 0.0135

12.71 0.0035 22.68 0.0065 32.64 0.0098 42.60 0.0135

12.92 0.0036 22.89 0.0066 32.85 0.0099 42.82 0.0136

13.14 0.0036 23.10 0.0067 33.06 0.0100 43.03 0.0137

13.35 0.0037 23.31 0.0067 33.28 0.0101 43.24 0.0138

13.56 0.0038 23.52 0.0068 33.49 0.0101 43.45 0.0139

13.77 0.0038 23.74 0.0069 33.70 0.0102 43.66 0.0140

13.98 0.0039 23.95 0.0069 33.91 0.0103 43.88 0.0140

14.20 0.0039 24.16 0.0070 34.12 0.0104 44.09 0.0141

14.41 0.0040 24.37 0.0071 34.34 0.0104 44.30 0.0142

14.62 0.0041 24.58 0.0071 34.55 0.0105 44.51 0.0143

14.83 0.0041 24.80 0.0072 34.76 0.0106 44.72 0.0144

15.04 0.0042 25.01 0.0073 34.97 0.0107 44.94 0.0145

15.26 0.0043 25.22 0.0073 35.18 0.0107 45.15 0.0146

15.47 0.0043 25.43 0.0074 35.40 0.0108 45.36 0.0147

15.68 0.0044 25.64 0.0075 35.61 0.0109 45.57 0.0147

15.89 0.0044 25.86 0.0075 35.82 0.0110 45.78 0.0148

16.10 0.0045 26.07 0.0076 36.03 0.0110 46.00 0.0149

16.32 0.0046 26.28 0.0077 36.24 0.0111 46.21 0.0150

16.53 0.0046 26.49 0.0078 36.46 0.0112 46.42 0.0151

16.74 0.0047 26.70 0.0078 36.67 0.0113 46.63 0.0152

16.95 0.0048 26.92 0.0079 36.88 0.0113 46.84 0.0153

Tabla 5.06 Porcentaje de acero para secciones balanceadas

Concreto: f'c = kg/cm2 rmín = b1 =

Varilla: fy = kg/cm2 rmín = rmáx =

rmín

rmín

rmáx

*M u

bd2M u

bd2M u

bd2M u

bd2

Page 62: Hoja de Calculo Vigas de Concreto

62 ING. ALFREDO SALINAS MAFRA

ANEXOS DE CONCRETO REFORZADO FDA

250 0.0020 losas espesor constante 0.85

4200 0.0033 trabes 0.268 0.0191 trabes

r r r r

7.33 0.0020 20.19 0.0057 33.06 0.0097 45.92 0.0141

7.60 0.0021 20.46 0.0057 33.33 0.0098 46.19 0.0142

7.87 0.0021 20.73 0.0058 33.59 0.0098 46.46 0.0143

8.13 0.0022 21.00 0.0059 33.86 0.0099 46.73 0.0144

8.40 0.0023 21.27 0.0060 34.13 0.0100 46.99 0.0145

8.67 0.0024 21.53 0.0061 34.40 0.0101 47.26 0.0146

8.94 0.0024 21.80 0.0061 34.67 0.0102 47.53 0.0147

9.21 0.0025 22.07 0.0062 34.93 0.0103 47.80 0.0148

9.47 0.0026 22.34 0.0063 35.20 0.0104 48.07 0.0149

9.74 0.0026 22.61 0.0064 35.47 0.0105 48.33 0.0150

10.01 0.0027 22.87 0.0065 35.74 0.0106 48.60 0.0151

10.28 0.0028 23.14 0.0065 36.01 0.0106 48.87 0.0152

10.55 0.0029 23.41 0.0066 36.27 0.0107 49.14 0.0153

10.81 0.0029 23.68 0.0067 36.54 0.0108 49.41 0.0154

11.08 0.0030 23.95 0.0068 36.81 0.0109 49.67 0.0155

11.35 0.0031 24.21 0.0069 37.08 0.0110 49.94 0.0156

11.62 0.0032 24.48 0.0070 37.35 0.0111 50.21 0.0157

11.89 0.0033 24.75 0.0070 37.61 0.0112 50.48 0.0158

12.15 0.0033 25.02 0.0071 37.88 0.0113 50.75 0.0159

12.42 0.0034 25.29 0.0072 38.15 0.0114 51.01 0.0160

12.69 0.0035 25.55 0.0073 38.42 0.0115 51.28 0.0161

12.96 0.0036 25.82 0.0074 38.69 0.0116 51.55 0.0162

13.23 0.0036 26.09 0.0075 38.95 0.0116 51.82 0.0164

13.49 0.0037 26.36 0.0075 39.22 0.0117 52.09 0.0165

13.76 0.0038 26.63 0.0076 39.49 0.0118 52.35 0.0166

14.03 0.0039 26.89 0.0077 39.76 0.0119 52.62 0.0167

14.30 0.0039 27.16 0.0078 40.03 0.0120 52.89 0.0168

14.57 0.0040 27.43 0.0079 40.29 0.0121 53.16 0.0169

14.83 0.0041 27.70 0.0080 40.56 0.0122 53.43 0.0170

15.10 0.0042 27.97 0.0080 40.83 0.0123 53.69 0.0171

15.37 0.0042 28.23 0.0081 41.10 0.0124 53.96 0.0172

15.64 0.0043 28.50 0.0082 41.37 0.0125 54.23 0.0173

15.91 0.0044 28.77 0.0083 41.63 0.0126 54.50 0.0174

16.17 0.0045 29.04 0.0084 41.90 0.0127 54.77 0.0175

16.44 0.0046 29.31 0.0085 42.17 0.0128 55.03 0.0176

16.71 0.0046 29.57 0.0085 42.44 0.0129 55.30 0.0177

16.98 0.0047 29.84 0.0086 42.71 0.0130 55.57 0.0179

17.25 0.0048 30.11 0.0087 42.97 0.0131 55.84 0.0180

17.51 0.0049 30.38 0.0088 43.24 0.0131 56.11 0.0181

17.78 0.0049 30.65 0.0089 43.51 0.0132 56.37 0.0182

18.05 0.0050 30.91 0.0090 43.78 0.0133 56.64 0.0183

18.32 0.0051 31.18 0.0091 44.05 0.0134 56.91 0.0184

18.59 0.0052 31.45 0.0091 44.31 0.0135 57.18 0.0185

18.85 0.0053 31.72 0.0092 44.58 0.0136 57.45 0.0186

19.12 0.0053 31.99 0.0093 44.85 0.0137 57.71 0.0187

* Indica el incremento de Mu/bd2 para el cálculo de la tabla

Tabla 5.07Porcentaje de acero para secciones balanceadas

Concreto: f'c = kg/cm2 rmín = b1 =

Varilla: fy = kg/cm2 rmín = rmáx =

rmín

rmín

*M u

bd2M u

bd2M u

bd2M u

bd2

Page 63: Hoja de Calculo Vigas de Concreto

63 ING. ALFREDO SALINAS MAFRA

ANEXOS DE CONCRETO REFORZADO FDA19.39 0.0054 32.25 0.0094 45.12 0.0138 57.98 0.0189

19.66 0.0055 32.52 0.0095 45.39 0.0139 58.25 0.0190

19.93 0.0056 32.79 0.0096 45.65 0.0140 58.52 0.0191

300 0.0020 losas espesor constante 0.836

4200 0.0033 trabes 0.333 0.0226 trabes

r r r r

7.35 0.0020 23.00 0.0064 38.65 0.0113 54.30 0.0166

7.68 0.0021 23.33 0.0065 38.98 0.0114 54.64 0.0168

8.02 0.0022 23.67 0.0066 39.32 0.0115 54.97 0.0169

8.35 0.0023 24.00 0.0067 39.65 0.0116 55.30 0.0170

8.68 0.0023 24.33 0.0068 39.98 0.0117 55.63 0.0171

9.02 0.0024 24.67 0.0069 40.32 0.0118 55.97 0.0173

9.35 0.0025 25.00 0.0070 40.65 0.0119 56.30 0.0174

9.68 0.0026 25.33 0.0071 40.98 0.0120 56.63 0.0175

10.01 0.0027 25.66 0.0072 41.32 0.0121 56.97 0.0176

10.35 0.0028 26.00 0.0073 41.65 0.0123 57.30 0.0178

10.68 0.0029 26.33 0.0074 41.98 0.0124 57.63 0.0179

11.01 0.0030 26.66 0.0075 42.31 0.0125 57.97 0.0180

11.35 0.0031 27.00 0.0076 42.65 0.0126 58.30 0.0181

11.68 0.0032 27.33 0.0077 42.98 0.0127 58.63 0.0183

12.01 0.0033 27.66 0.0078 43.31 0.0128 58.96 0.0184

12.35 0.0034 28.00 0.0079 43.65 0.0129 59.30 0.0185

12.68 0.0035 28.33 0.0080 43.98 0.0130 59.63 0.0186

13.01 0.0035 28.66 0.0081 44.31 0.0131 59.96 0.0188

13.34 0.0036 28.99 0.0082 44.65 0.0133 60.30 0.0189

13.68 0.0037 29.33 0.0083 44.98 0.0134 60.63 0.0190

14.01 0.0038 29.66 0.0084 45.31 0.0135 60.96 0.0191

14.34 0.0039 29.99 0.0085 45.64 0.0136 61.30 0.0193

14.68 0.0040 30.33 0.0086 45.98 0.0137 61.63 0.0194

15.01 0.0041 30.66 0.0087 46.31 0.0138 61.96 0.0195

15.34 0.0042 30.99 0.0088 46.64 0.0139 62.29 0.0197

15.68 0.0043 31.33 0.0089 46.98 0.0141 62.63 0.0198

16.01 0.0044 31.66 0.0091 47.31 0.0142 62.96 0.0199

16.34 0.0045 31.99 0.0092 47.64 0.0143 63.29 0.0201

16.67 0.0046 32.32 0.0093 47.98 0.0144 63.63 0.0202

17.01 0.0047 32.66 0.0094 48.31 0.0145 63.96 0.0203

17.34 0.0048 32.99 0.0095 48.64 0.0146 64.29 0.0205

17.67 0.0049 33.32 0.0096 48.97 0.0147 64.63 0.0206

18.01 0.0050 33.66 0.0097 49.31 0.0149 64.96 0.0207

18.34 0.0051 33.99 0.0098 49.64 0.0150 65.29 0.0209

18.67 0.0052 34.32 0.0099 49.97 0.0151 65.62 0.0210

19.00 0.0053 34.66 0.0100 50.31 0.0152 65.96 0.0211

19.34 0.0054 34.99 0.0101 50.64 0.0153 66.29 0.0213

19.67 0.0055 35.32 0.0102 50.97 0.0155 66.62 0.0214

20.00 0.0055 35.65 0.0103 51.31 0.0156 66.96 0.0215

20.34 0.0056 35.99 0.0104 51.64 0.0157 67.29 0.0217

20.67 0.0057 36.32 0.0105 51.97 0.0158 67.62 0.0218

21.00 0.0058 36.65 0.0106 52.30 0.0159 67.96 0.0219

21.34 0.0059 36.99 0.0107 52.64 0.0160 68.29 0.0221

rmáx

* Indica el incremento de Mu/bd2 para el cálculo de la tabla

Tabal 5.08 Porcentaje de acero para secciones balanceadas

Concreto: f'c = kg/cm2 rmín = b1 =

Varilla: fy = kg/cm2 rmín = rmáx =

rmín

rmín

*M u

bd2M u

bd2M u

bd2M u

bd2

Page 64: Hoja de Calculo Vigas de Concreto

64 ING. ALFREDO SALINAS MAFRA

ANEXOS DE CONCRETO REFORZADO FDA21.67 0.0060 37.32 0.0108 52.97 0.0162 68.62 0.0222

22.00 0.0061 37.65 0.0109 53.30 0.0163 68.95 0.0224

22.33 0.0062 37.99 0.0111 53.64 0.0164 69.29 0.0225

22.67 0.0063 38.32 0.0112 53.97 0.0165 69.62 0.0226

350 0.0020 losas espesor constante 0.800

4200 0.0033 trabes 0.380 0.0252 trabes

r r r r

7.30 0.0020 25.16 0.0070 43.02 0.0125 60.88 0.0185

7.68 0.0021 25.54 0.0071 43.40 0.0126 61.26 0.0187

8.06 0.0022 25.92 0.0072 43.78 0.0127 61.64 0.0188

8.44 0.0023 26.30 0.0073 44.16 0.0128 62.02 0.0189

8.82 0.0024 26.68 0.0075 44.54 0.0130 62.40 0.0191

9.20 0.0025 27.06 0.0076 44.92 0.0131 62.78 0.0192

9.58 0.0026 27.44 0.0077 45.30 0.0132 63.16 0.0194

9.96 0.0027 27.82 0.0078 45.68 0.0133 63.54 0.0195

10.34 0.0028 28.20 0.0079 46.06 0.0135 63.92 0.0196

10.72 0.0029 28.58 0.0080 46.44 0.0136 64.30 0.0198

11.10 0.0030 28.96 0.0081 46.82 0.0137 64.68 0.0199

11.48 0.0031 29.34 0.0082 47.20 0.0138 65.06 0.0201

11.86 0.0032 29.72 0.0084 47.58 0.0140 65.44 0.0202

12.24 0.0033 30.10 0.0085 47.96 0.0141 65.82 0.0203

12.62 0.0034 30.48 0.0086 48.34 0.0142 66.20 0.0205

13.00 0.0035 30.86 0.0087 48.72 0.0143 66.58 0.0206

13.38 0.0036 31.24 0.0088 49.10 0.0145 66.96 0.0208

13.76 0.0037 31.62 0.0089 49.48 0.0146 67.34 0.0209

14.14 0.0038 32.00 0.0090 49.86 0.0147 67.72 0.0210

14.52 0.0040 32.38 0.0092 50.24 0.0148 68.10 0.0212

14.90 0.0041 32.76 0.0093 50.62 0.0150 68.48 0.0213

15.28 0.0042 33.14 0.0094 51.00 0.0151 68.86 0.0215

15.66 0.0043 33.52 0.0095 51.38 0.0152 69.24 0.0216

16.04 0.0044 33.90 0.0096 51.76 0.0154 69.62 0.0218

16.42 0.0045 34.28 0.0097 52.14 0.0155 70.00 0.0219

16.80 0.0046 34.66 0.0099 52.52 0.0156 70.38 0.0221

17.18 0.0047 35.04 0.0100 52.90 0.0157 70.76 0.0222

17.56 0.0048 35.42 0.0101 53.28 0.0159 71.14 0.0223

17.94 0.0049 35.80 0.0102 53.66 0.0160 71.52 0.0225

18.32 0.0050 36.18 0.0103 54.04 0.0161 71.90 0.0226

18.70 0.0051 36.56 0.0104 54.42 0.0163 72.28 0.0228

19.08 0.0052 36.94 0.0106 54.80 0.0164 72.66 0.0229

19.46 0.0054 37.32 0.0107 55.18 0.0165 73.04 0.0231

19.84 0.0055 37.70 0.0108 55.56 0.0167 73.42 0.0232

20.22 0.0056 38.08 0.0109 55.94 0.0168 73.80 0.0234

20.60 0.0057 38.46 0.0110 56.32 0.0169 74.18 0.0235

20.98 0.0058 38.84 0.0112 56.70 0.0171 74.56 0.0237

21.36 0.0059 39.22 0.0113 57.08 0.0172 74.94 0.0238

21.74 0.0060 39.60 0.0114 57.46 0.0173 75.32 0.0240

22.12 0.0061 39.98 0.0115 57.84 0.0175 75.70 0.0241

rmáx

* Indica el incremento de Mu/bd2 para el cálculo de la tabla

Tabla 5.09 Porcentaje de acero para secciones balanceadas

Concreto: f'c = kg/cm2 rmín = b1 =

Varilla: fy = kg/cm2 rmín = rmáx =

rmín

rmín

*

M u

bd2M u

bd2M u

bd2M u

bd2

Page 65: Hoja de Calculo Vigas de Concreto

65 ING. ALFREDO SALINAS MAFRA

ANEXOS DE CONCRETO REFORZADO FDA22.50 0.0062 40.36 0.0116 58.22 0.0176 76.08 0.0243

22.88 0.0063 40.74 0.0118 58.60 0.0177 76.46 0.0244

23.26 0.0064 41.12 0.0119 58.98 0.0179 76.84 0.0246

23.64 0.0066 41.50 0.0120 59.36 0.0180 77.22 0.0248

24.02 0.0067 41.88 0.0121 59.74 0.0181 77.60 0.0249

24.40 0.0068 42.26 0.0122 60.12 0.0183 77.98 0.0251

24.78 0.0069 42.64 0.0124 60.50 0.0184 78.36 0.0252

200 0.0020 losas espesor constante 0.85

5000 0.0028 trabes 0.190 0.0119 trabes

r r r r

8.70 0.0020 17.63 0.0042 26.56 0.0065 35.49 0.0091

8.89 0.0020 17.82 0.0042 26.75 0.0066 35.68 0.0092

9.08 0.0021 18.01 0.0043 26.94 0.0066 35.87 0.0092

9.27 0.0021 18.20 0.0043 27.13 0.0067 36.06 0.0093

9.46 0.0022 18.39 0.0044 27.32 0.0067 36.25 0.0093

9.65 0.0022 18.58 0.0044 27.51 0.0068 36.44 0.0094

9.84 0.0023 18.77 0.0045 27.70 0.0068 36.63 0.0095

10.03 0.0023 18.96 0.0045 27.89 0.0069 36.82 0.0095

10.22 0.0024 19.15 0.0046 28.08 0.0070 37.01 0.0096

10.41 0.0024 19.34 0.0046 28.27 0.0070 37.20 0.0096

10.60 0.0024 19.53 0.0047 28.46 0.0071 37.39 0.0097

10.79 0.0025 19.72 0.0047 28.65 0.0071 37.58 0.0097

10.98 0.0025 19.91 0.0048 28.84 0.0072 37.77 0.0098

11.17 0.0026 20.10 0.0048 29.03 0.0072 37.96 0.0099

11.36 0.0026 20.29 0.0049 29.22 0.0073 38.15 0.0099

11.55 0.0027 20.48 0.0049 29.41 0.0073 38.34 0.0100

11.74 0.0027 20.67 0.0050 29.60 0.0074 38.53 0.0100

11.93 0.0028 20.86 0.0050 29.79 0.0074 38.72 0.0101

12.12 0.0028 21.05 0.0051 29.98 0.0075 38.91 0.0102

12.31 0.0029 21.24 0.0051 30.17 0.0075 39.10 0.0102

12.50 0.0029 21.43 0.0052 30.36 0.0076 39.29 0.0103

12.69 0.0029 21.62 0.0052 30.55 0.0076 39.48 0.0103

12.88 0.0030 21.81 0.0053 30.74 0.0077 39.67 0.0104

13.07 0.0030 22.00 0.0053 30.93 0.0078 39.86 0.0105

13.26 0.0031 22.19 0.0054 31.12 0.0078 40.05 0.0105

13.45 0.0031 22.38 0.0054 31.31 0.0079 40.24 0.0106

13.64 0.0032 22.57 0.0055 31.50 0.0079 40.43 0.0107

13.83 0.0032 22.76 0.0055 31.69 0.0080 40.62 0.0107

14.02 0.0033 22.95 0.0056 31.88 0.0080 40.81 0.0108

14.21 0.0033 23.14 0.0056 32.07 0.0081 41.00 0.0108

14.40 0.0034 23.33 0.0057 32.26 0.0081 41.19 0.0109

14.59 0.0034 23.52 0.0057 32.45 0.0082 41.38 0.0110

14.78 0.0035 23.71 0.0058 32.64 0.0083 41.57 0.0110

14.97 0.0035 23.90 0.0058 32.83 0.0083 41.76 0.0111

15.16 0.0036 24.09 0.0059 33.02 0.0084 41.95 0.0112

15.35 0.0036 24.28 0.0059 33.21 0.0084 42.14 0.0112

15.54 0.0036 24.47 0.0060 33.40 0.0085 42.33 0.0113

15.73 0.0037 24.66 0.0060 33.59 0.0085 42.52 0.0113

15.92 0.0037 24.85 0.0061 33.78 0.0086 42.71 0.0114

rmáx

* Indica el incremento de Mu/bd2 para el cálculo de la tabla

Tabla 5.06 Porcentaje de acero para secciones balanceadas

Concreto: f'c = kg/cm2 rmín = b1 =

Varilla: fy = kg/cm2 rmín = rmáx =

rmín

rmín

*

M u

bd2M u

bd2M u

bd2M u

bd2

Page 66: Hoja de Calculo Vigas de Concreto

66 ING. ALFREDO SALINAS MAFRA

ANEXOS DE CONCRETO REFORZADO FDA16.11 0.0038 25.04 0.0061 33.97 0.0086 42.90 0.0115

16.30 0.0038 25.23 0.0062 34.16 0.0087 43.09 0.0115

16.49 0.0039 25.42 0.0062 34.35 0.0088 43.28 0.0116

16.68 0.0039 25.61 0.0063 34.54 0.0088 43.47 0.0117

16.87 0.0040 25.80 0.0063 34.73 0.0089 43.66 0.0117

17.06 0.0040 25.99 0.0064 34.92 0.0089 43.85 0.0118

17.25 0.0041 26.18 0.0064 35.11 0.0090 44.04 0.0119

17.44 0.0041 26.37 0.0065 35.30 0.0090 44.23 0.0119

250 0.0020 losas espesor constante 0.85

5000 0.0028 trabes 0.248 0.0149 trabes

r r r r

8.90 0.0020 20.56 0.0048 32.21 0.0079 43.87 0.0112

9.15 0.0021 20.80 0.0049 32.46 0.0080 44.12 0.0113

9.40 0.0021 21.05 0.0050 32.71 0.0080 44.36 0.0114

9.64 0.0022 21.30 0.0050 32.96 0.0081 44.61 0.0115

9.89 0.0023 21.55 0.0051 33.20 0.0082 44.86 0.0115

10.14 0.0023 21.80 0.0052 33.45 0.0082 45.11 0.0116

10.39 0.0024 22.04 0.0052 33.70 0.0083 45.36 0.0117

10.64 0.0024 22.29 0.0053 33.95 0.0084 45.60 0.0118

10.88 0.0025 22.54 0.0053 34.20 0.0084 45.85 0.0118

11.13 0.0026 22.79 0.0054 34.44 0.0085 46.10 0.0119

11.38 0.0026 23.04 0.0055 34.69 0.0086 46.35 0.0120

11.63 0.0027 23.28 0.0055 34.94 0.0086 46.60 0.0121

11.88 0.0027 23.53 0.0056 35.19 0.0087 46.84 0.0121

12.12 0.0028 23.78 0.0057 35.44 0.0088 47.09 0.0122

12.37 0.0028 24.03 0.0057 35.68 0.0089 47.34 0.0123

12.62 0.0029 24.28 0.0058 35.93 0.0089 47.59 0.0124

12.87 0.0030 24.52 0.0059 36.18 0.0090 47.84 0.0125

13.12 0.0030 24.77 0.0059 36.43 0.0091 48.08 0.0125

13.36 0.0031 25.02 0.0060 36.68 0.0091 48.33 0.0126

13.61 0.0031 25.27 0.0060 36.92 0.0092 48.58 0.0127

13.86 0.0032 25.52 0.0061 37.17 0.0093 48.83 0.0128

14.11 0.0033 25.76 0.0062 37.42 0.0093 49.08 0.0128

14.36 0.0033 26.01 0.0062 37.67 0.0094 49.32 0.0129

14.60 0.0034 26.26 0.0063 37.92 0.0095 49.57 0.0130

14.85 0.0034 26.51 0.0064 38.16 0.0096 49.82 0.0131

15.10 0.0035 26.76 0.0064 38.41 0.0096 50.07 0.0132

15.35 0.0036 27.00 0.0065 38.66 0.0097 50.32 0.0132

15.60 0.0036 27.25 0.0066 38.91 0.0098 50.56 0.0133

15.84 0.0037 27.50 0.0066 39.16 0.0098 50.81 0.0134

16.09 0.0037 27.75 0.0067 39.40 0.0099 51.06 0.0135

16.34 0.0038 28.00 0.0068 39.65 0.0100 51.31 0.0136

16.59 0.0039 28.24 0.0068 39.90 0.0101 51.56 0.0136

16.84 0.0039 28.49 0.0069 40.15 0.0101 51.80 0.0137

17.08 0.0040 28.74 0.0070 40.40 0.0102 52.05 0.0138

17.33 0.0040 28.99 0.0070 40.64 0.0103 52.30 0.0139

17.58 0.0041 29.24 0.0071 40.89 0.0103 52.55 0.0140

17.83 0.0042 29.48 0.0072 41.14 0.0104 52.80 0.0141

rmáx

* Indica el incremento de Mu/bd2 para el cálculo de la tabla

Tabla 5.06 Porcentaje de acero para secciones balanceadas

Concreto: f'c = kg/cm2 rmín = b1 =

Varilla: fy = kg/cm2 rmín = rmáx =

rmín

rmín

*

M u

bd2M u

bd2M u

bd2M u

bd2

Page 67: Hoja de Calculo Vigas de Concreto

67 ING. ALFREDO SALINAS MAFRA

ANEXOS DE CONCRETO REFORZADO FDA18.08 0.0042 29.73 0.0072 41.39 0.0105 53.04 0.0141

18.32 0.0043 29.98 0.0073 41.64 0.0106 53.29 0.0142

18.57 0.0044 30.23 0.0074 41.88 0.0106 53.54 0.0143

18.82 0.0044 30.48 0.0074 42.13 0.0107 53.79 0.0144

19.07 0.0045 30.72 0.0075 42.38 0.0108 54.04 0.0145

19.32 0.0045 30.97 0.0076 42.63 0.0109 54.28 0.0146

19.56 0.0046 31.22 0.0076 42.88 0.0109 54.53 0.0146

19.81 0.0047 31.47 0.0077 43.12 0.0110 54.78 0.0147

20.06 0.0047 31.72 0.0078 43.37 0.0111 55.03 0.0148

20.31 0.0048 31.96 0.0078 43.62 0.0112 55.28 0.0149

300 0.0020 losas espesor constante 0.836

5000 0.0028 trabes 0.303 0.0176 trabes

r r r r

8.90 0.0020 23.14 0.0054 37.38 0.0091 51.62 0.0132

9.20 0.0021 23.44 0.0055 37.69 0.0092 51.93 0.0133

9.51 0.0022 23.75 0.0056 37.99 0.0093 52.23 0.0134

9.81 0.0022 24.05 0.0057 38.29 0.0094 52.53 0.0134

10.11 0.0023 24.35 0.0057 38.59 0.0095 52.83 0.0135

10.42 0.0024 24.66 0.0058 38.90 0.0095 53.14 0.0136

10.72 0.0024 24.96 0.0059 39.20 0.0096 53.44 0.0137

11.02 0.0025 25.26 0.0060 39.50 0.0097 53.74 0.0138

11.32 0.0026 25.57 0.0060 39.81 0.0098 54.05 0.0139

11.63 0.0027 25.87 0.0061 40.11 0.0099 54.35 0.0140

11.93 0.0027 26.17 0.0062 40.41 0.0100 54.65 0.0141

12.23 0.0028 26.47 0.0063 40.71 0.0100 54.96 0.0142

12.54 0.0029 26.78 0.0063 41.02 0.0101 55.26 0.0143

12.84 0.0029 27.08 0.0064 41.32 0.0102 55.56 0.0144

13.14 0.0030 27.38 0.0065 41.62 0.0103 55.86 0.0145

13.45 0.0031 27.69 0.0066 41.93 0.0104 56.17 0.0146

13.75 0.0032 27.99 0.0067 42.23 0.0105 56.47 0.0147

14.05 0.0032 28.29 0.0067 42.53 0.0105 56.77 0.0148

14.35 0.0033 28.60 0.0068 42.84 0.0106 57.08 0.0148

14.66 0.0034 28.90 0.0069 43.14 0.0107 57.38 0.0149

14.96 0.0034 29.20 0.0070 43.44 0.0108 57.68 0.0150

15.26 0.0035 29.50 0.0070 43.74 0.0109 57.99 0.0151

15.57 0.0036 29.81 0.0071 44.05 0.0110 58.29 0.0152

15.87 0.0037 30.11 0.0072 44.35 0.0111 58.59 0.0153

16.17 0.0037 30.41 0.0073 44.65 0.0111 58.89 0.0154

16.48 0.0038 30.72 0.0074 44.96 0.0112 59.20 0.0155

16.78 0.0039 31.02 0.0074 45.26 0.0113 59.50 0.0156

17.08 0.0040 31.32 0.0075 45.56 0.0114 59.80 0.0157

17.38 0.0040 31.63 0.0076 45.87 0.0115 60.11 0.0158

17.69 0.0041 31.93 0.0077 46.17 0.0116 60.41 0.0159

17.99 0.0042 32.23 0.0078 46.47 0.0117 60.71 0.0160

18.29 0.0042 32.53 0.0078 46.77 0.0117 61.02 0.0161

18.60 0.0043 32.84 0.0079 47.08 0.0118 61.32 0.0162

18.90 0.0044 33.14 0.0080 47.38 0.0119 61.62 0.0163

19.20 0.0045 33.44 0.0081 47.68 0.0120 61.92 0.0164

rmáx

* Indica el incremento de Mu/bd2 para el cálculo de la tabla

Tabla 5.06 Porcentaje de acero para secciones balanceadas

Concreto: f'c = kg/cm2 rmín = b1 =

Varilla: fy = kg/cm2 rmín = rmáx =

rmín

rmín

*

M u

bd2M u

bd2M u

bd2M u

bd2

Page 68: Hoja de Calculo Vigas de Concreto

68 ING. ALFREDO SALINAS MAFRA

ANEXOS DE CONCRETO REFORZADO FDA19.51 0.0045 33.75 0.0082 47.99 0.0121 62.23 0.0165

19.81 0.0046 34.05 0.0082 48.29 0.0122 62.53 0.0166

20.11 0.0047 34.35 0.0083 48.59 0.0123 62.83 0.0167

20.41 0.0048 34.66 0.0084 48.90 0.0124 63.14 0.0168

20.72 0.0048 34.96 0.0085 49.20 0.0125 63.44 0.0169

21.02 0.0049 35.26 0.0086 49.50 0.0125 63.74 0.0170

21.32 0.0050 35.56 0.0086 49.80 0.0126 64.05 0.0171

21.63 0.0051 35.87 0.0087 50.11 0.0127 64.35 0.0172

21.93 0.0051 36.17 0.0088 50.41 0.0128 64.65 0.0173

22.23 0.0052 36.47 0.0089 50.71 0.0129 64.95 0.0174

22.54 0.0053 36.78 0.0090 51.02 0.0130 65.26 0.0175

22.84 0.0054 37.08 0.0090 51.32 0.0131 65.56 0.0176

350 0.0020 losas espesor constante 0.800

5000 0.0030 trabes 0.347 0.0196 trabes

r r r r

8.90 0.0020 25.21 0.0059 41.52 0.0101 57.83 0.0147

9.25 0.0021 25.56 0.0060 41.87 0.0102 58.17 0.0148

9.59 0.0022 25.90 0.0061 42.21 0.0103 58.52 0.0149

9.94 0.0023 26.25 0.0062 42.56 0.0104 58.87 0.0150

10.29 0.0023 26.60 0.0062 42.91 0.0105 59.22 0.0151

10.63 0.0024 26.94 0.0063 43.25 0.0105 59.56 0.0152

10.98 0.0025 27.29 0.0064 43.60 0.0106 59.91 0.0153

11.33 0.0026 27.64 0.0065 43.95 0.0107 60.26 0.0154

11.68 0.0027 27.99 0.0066 44.29 0.0108 60.60 0.0155

12.02 0.0027 28.33 0.0067 44.64 0.0109 60.95 0.0156

12.37 0.0028 28.68 0.0068 44.99 0.0110 61.30 0.0157

12.72 0.0029 29.03 0.0068 45.34 0.0111 61.64 0.0158

13.06 0.0030 29.37 0.0069 45.68 0.0112 61.99 0.0159

13.41 0.0031 29.72 0.0070 46.03 0.0113 62.34 0.0160

13.76 0.0031 30.07 0.0071 46.38 0.0114 62.69 0.0161

14.10 0.0032 30.41 0.0072 46.72 0.0115 63.03 0.0162

14.45 0.0033 30.76 0.0073 47.07 0.0116 63.38 0.0163

14.80 0.0034 31.11 0.0074 47.42 0.0117 63.73 0.0164

15.15 0.0035 31.46 0.0075 47.76 0.0118 64.07 0.0165

15.49 0.0036 31.80 0.0075 48.11 0.0119 64.42 0.0166

15.84 0.0036 32.15 0.0076 48.46 0.0120 64.77 0.0168

16.19 0.0037 32.50 0.0077 48.81 0.0121 65.11 0.0169

16.53 0.0038 32.84 0.0078 49.15 0.0122 65.46 0.0170

16.88 0.0039 33.19 0.0079 49.50 0.0123 65.81 0.0171

17.23 0.0040 33.54 0.0080 49.85 0.0124 66.16 0.0172

17.57 0.0040 33.88 0.0081 50.19 0.0125 66.50 0.0173

17.92 0.0041 34.23 0.0082 50.54 0.0126 66.85 0.0174

18.27 0.0042 34.58 0.0083 50.89 0.0127 67.20 0.0175

18.62 0.0043 34.93 0.0083 51.23 0.0128 67.54 0.0176

18.96 0.0044 35.27 0.0084 51.58 0.0129 67.89 0.0177

19.31 0.0045 35.62 0.0085 51.93 0.0129 68.24 0.0178

19.66 0.0045 35.97 0.0086 52.28 0.0130 68.58 0.0179

20.00 0.0046 36.31 0.0087 52.62 0.0131 68.93 0.0181

rmáx

* Indica el incremento de Mu/bd2 para el cálculo de la tabla

Tabla 5.06 Porcentaje de acero para secciones balanceadas

Concreto: f'c = kg/cm2 rmín = b1 =

Varilla: fy = kg/cm2 rmín = rmáx =

rmín

rmín

*.M u

bd2M u

bd2M u

bd2M u

bd2

Page 69: Hoja de Calculo Vigas de Concreto

69 ING. ALFREDO SALINAS MAFRA

ANEXOS DE CONCRETO REFORZADO FDA20.35 0.0047 36.66 0.0088 52.97 0.0132 69.28 0.0182

20.70 0.0048 37.01 0.0089 53.32 0.0133 69.63 0.0183

21.05 0.0049 37.35 0.0090 53.66 0.0134 69.97 0.0184

21.39 0.0050 37.70 0.0091 54.01 0.0135 70.32 0.0185

21.74 0.0050 38.05 0.0092 54.36 0.0136 70.67 0.0186

22.09 0.0051 38.40 0.0093 54.70 0.0137 71.01 0.0187

22.43 0.0052 38.74 0.0093 55.05 0.0138 71.36 0.0188

22.78 0.0053 39.09 0.0094 55.40 0.0139 71.71 0.0190

23.13 0.0054 39.44 0.0095 55.75 0.0140 72.05 0.0191

23.47 0.0055 39.78 0.0096 56.09 0.0141 72.40 0.0192

23.82 0.0056 40.13 0.0097 56.44 0.0142 72.75 0.0193

24.17 0.0056 40.48 0.0098 56.79 0.0143 73.10 0.0194

24.52 0.0057 40.82 0.0099 57.13 0.0145 73.44 0.0195

24.86 0.0058 41.17 0.0100 57.48 0.0146 73.79 0.0196

200 0.0020 losas espesor constante 0.85

6000 0.0023 trabes 0.18 0.0091 trabes

r r r r

8.60 0.0020 16.84 0.0033 25.08 0.0051 33.31 0.0070

8.78 0.0020 17.02 0.0033 25.26 0.0051 33.48 0.0071

8.95 0.0021 17.19 0.0034 25.43 0.0052 33.66 0.0071

9.13 0.0021 17.37 0.0034 25.61 0.0052 33.83 0.0072

9.30 0.0021 17.54 0.0035 25.78 0.0053 34.01 0.0072

9.48 0.0022 17.72 0.0035 25.96 0.0053 34.18 0.0073

9.65 0.0022 17.89 0.0035 26.13 0.0053 34.36 0.0073

9.83 0.0023 18.07 0.0036 26.31 0.0054 34.53 0.0073

10.00 0.0023 18.24 0.0036 26.48 0.0054 34.71 0.0074

10.18 0.0023 18.42 0.0036 26.66 0.0055 34.88 0.0074

10.35 0.0024 18.59 0.0037 26.83 0.0055 35.06 0.0075

10.53 0.0024 18.77 0.0037 27.01 0.0055 35.23 0.0075

10.70 0.0025 18.94 0.0038 27.18 0.0056 35.41 0.0076

10.88 0.0025 19.12 0.0038 27.36 0.0056 35.58 0.0076

11.05 0.0026 19.29 0.0038 27.53 0.0057 35.76 0.0077

11.23 0.0026 19.47 0.0039 27.71 0.0057 35.93 0.0077

11.40 0.0026 19.64 0.0039 27.88 0.0057 36.11 0.0077

11.58 0.0027 19.82 0.0039 28.06 0.0058 36.28 0.0078

11.75 0.0027 19.99 0.0040 28.23 0.0058 36.46 0.0078

11.93 0.0028 20.17 0.0040 28.41 0.0059 36.63 0.0079

12.10 0.0028 20.34 0.0041 28.58 0.0059 36.81 0.0079

12.28 0.0028 20.52 0.0041 28.76 0.0059 36.98 0.0080

12.45 0.0029 20.69 0.0041 28.93 0.0060 37.16 0.0080

12.63 0.0029 20.87 0.0042 29.11 0.0060 37.33 0.0081

12.80 0.0030 21.04 0.0042 29.28 0.0061 37.51 0.0081

12.98 0.0030 21.22 0.0042 29.46 0.0061 37.68 0.0082

13.15 0.0031 21.39 0.0043 29.63 0.0062 37.86 0.0082

13.33 0.0031 21.57 0.0043 29.81 0.0062 38.03 0.0082

13.50 0.0031 21.74 0.0044 29.98 0.0062 38.20 0.0083

13.68 0.0032 21.92 0.0044 30.16 0.0063 38.38 0.0083

13.85 0.0032 22.09 0.0044 30.33 0.0063 38.55 0.0084

rmáx

* Indica el incremento de Mu/bd2 para el cálculo de la tabla

Tabla 5.06 Porcentaje de acero para secciones balanceadas

Concreto: f'c = kg/cm2 rmín = b1 =

Varilla: fy = kg/cm2 rmín = rmáx =

rmín

Incr.M u

bd2M u

bd2M u

bd2M u

bd2

Page 70: Hoja de Calculo Vigas de Concreto

70 ING. ALFREDO SALINAS MAFRA

ANEXOS DE CONCRETO REFORZADO FDA14.03 0.0033 22.27 0.0045 30.51 0.0064 38.73 0.0084

14.20 0.0033 22.44 0.0045 30.68 0.0064 38.90 0.0085

14.38 0.0034 22.62 0.0046 30.86 0.0064 39.08 0.0085

14.55 0.0034 22.79 0.0046 31.03 0.0065 39.25 0.0086

14.73 0.0034 22.97 0.0046 31.21 0.0065 39.43 0.0086

14.90 0.0035 23.14 0.0047 31.38 0.0066 39.60 0.0087

15.08 0.0035 23.32 0.0047 31.56 0.0066 39.78 0.0087

15.25 0.0036 23.49 0.0047 31.73 0.0067 39.95 0.0088

15.43 0.0036 23.67 0.0048 31.91 0.0067 40.13 0.0088

15.60 0.0037 23.84 0.0048 32.08 0.0067 40.30 0.0088

15.78 0.0037 24.02 0.0049 32.26 0.0068 40.48 0.0089

15.95 0.0038 24.19 0.0049 32.43 0.0068 40.65 0.0089

16.13 0.0038 24.37 0.0049 32.61 0.0069 40.83 0.0090

16.30 0.0038 24.54 0.0050 32.78 0.0069 41.00 0.0090

16.48 0.0039 24.72 0.0050 32.96 0.0070 41.18 0.0091

16.67 0.0039 24.89 0.0051 33.13 0.0070 41.35 0.0091

250 0.0020 losas espesor constante 0.85

6000 0.0023 trabes 0.220 0.0114 trabes

r r r r

10.30 0.0020 20.75 0.0041 31.26 0.0064 41.60 0.0088

10.52 0.0020 20.97 0.0041 31.48 0.0064 41.82 0.0089

10.74 0.0020 21.19 0.0042 31.70 0.0065 42.04 0.0089

10.96 0.0021 21.41 0.0042 31.92 0.0065 42.26 0.0090

11.18 0.0021 21.63 0.0043 32.14 0.0066 42.48 0.0090

11.40 0.0022 21.85 0.0043 32.36 0.0066 42.70 0.0091

11.62 0.0022 22.07 0.0044 32.58 0.0067 42.92 0.0091

11.84 0.0023 22.29 0.0044 32.80 0.0067 43.14 0.0092

12.06 0.0023 22.51 0.0044 33.02 0.0068 43.36 0.0092

12.28 0.0024 22.73 0.0045 33.24 0.0068 43.58 0.0093

12.50 0.0024 22.95 0.0045 33.46 0.0069 43.80 0.0093

12.72 0.0024 23.17 0.0046 33.68 0.0069 44.02 0.0094

12.94 0.0025 23.39 0.0046 33.90 0.0070 44.24 0.0095

13.16 0.0025 23.61 0.0047 34.12 0.0070 44.46 0.0095

13.38 0.0026 23.83 0.0047 34.34 0.0071 44.68 0.0096

13.60 0.0026 24.05 0.0048 34.56 0.0071 44.90 0.0096

13.82 0.0027 24.27 0.0048 34.78 0.0072 45.12 0.0097

14.04 0.0027 24.49 0.0049 35.00 0.0072 45.34 0.0097

14.26 0.0027 24.71 0.0049 35.22 0.0073 45.56 0.0098

14.48 0.0028 24.93 0.0050 35.44 0.0073 45.78 0.0098

14.70 0.0028 25.15 0.0050 35.66 0.0074 46.00 0.0099

14.92 0.0029 25.37 0.0051 35.88 0.0074 46.22 0.0100

15.14 0.0029 25.59 0.0051 36.10 0.0075 46.44 0.0100

15.36 0.0030 25.81 0.0052 36.32 0.0075 46.66 0.0101

15.58 0.0030 26.03 0.0052 36.54 0.0076 46.88 0.0101

15.80 0.0031 26.25 0.0053 36.76 0.0076 47.10 0.0102

16.02 0.0031 26.47 0.0053 36.98 0.0077 47.32 0.0102

16.24 0.0031 26.69 0.0053 37.20 0.0077 47.54 0.0103

16.46 0.0032 26.91 0.0054 37.42 0.0078 47.76 0.0104

rmín

rmáx

* Indica el incremento de Mu/bd2 para el cálculo de la tabla

Tabla 5.06 Porcentaje de acero para secciones balanceadas

Concreto: f'c = kg/cm2 rmín = b1 =

Varilla: fy = kg/cm2 rmín = rmáx =

rmín

*

M u

bd2M u

bd2M u

bd2M u

bd2

Page 71: Hoja de Calculo Vigas de Concreto

71 ING. ALFREDO SALINAS MAFRA

ANEXOS DE CONCRETO REFORZADO FDA16.68 0.0032 27.13 0.0054 37.64 0.0078 47.98 0.0104

16.90 0.0033 27.35 0.0055 37.86 0.0079 48.20 0.0105

17.12 0.0033 27.57 0.0055 38.08 0.0079 48.42 0.0105

17.34 0.0034 27.79 0.0056 38.30 0.0080 48.64 0.0106

17.56 0.0034 28.01 0.0056 38.52 0.0080 48.86 0.0106

17.78 0.0035 28.23 0.0057 38.74 0.0081 49.08 0.0107

18.00 0.0035 28.45 0.0057 38.96 0.0082 49.30 0.0108

18.22 0.0036 28.67 0.0058 39.18 0.0082 49.52 0.0108

18.44 0.0036 28.89 0.0058 39.40 0.0083 49.74 0.0109

18.66 0.0036 29.11 0.0059 39.62 0.0083 49.96 0.0109

18.88 0.0037 29.33 0.0059 39.84 0.0084 50.18 0.0110

19.10 0.0037 29.55 0.0060 40.06 0.0084 50.40 0.0111

19.32 0.0038 29.80 0.0060 40.28 0.0085 50.62 0.0111

19.54 0.0038 30.05 0.0061 40.50 0.0085 50.84 0.0112

19.79 0.0039 30.30 0.0061 40.72 0.0086 51.06 0.0112

20.04 0.0039 30.54 0.0062 40.94 0.0086 51.28 0.0113

20.28 0.0040 30.79 0.0063 41.16 0.0087 51.50 0.0114

20.53 0.0040 31.04 0.0063 41.38 0.0087 51.72 0.0114

300 0.0020 losas espesor constante 0.836

6000 0.0023 trabes 0.270 0.0134 trabes

r r r r

10.30 0.0020 22.99 0.0045 35.68 0.0072 48.37 0.0102

10.57 0.0020 23.26 0.0046 35.95 0.0073 48.64 0.0102

10.84 0.0021 23.53 0.0046 36.22 0.0073 48.91 0.0103

11.11 0.0021 23.80 0.0047 36.49 0.0074 49.18 0.0104

11.38 0.0022 24.07 0.0047 36.76 0.0075 49.45 0.0104

11.65 0.0022 24.34 0.0048 37.03 0.0075 49.72 0.0105

11.92 0.0023 24.61 0.0048 37.30 0.0076 49.99 0.0106

12.19 0.0023 24.88 0.0049 37.57 0.0076 50.26 0.0106

12.46 0.0024 25.15 0.0049 37.84 0.0077 50.53 0.0107

12.73 0.0024 25.42 0.0050 38.11 0.0078 50.80 0.0108

13.00 0.0025 25.69 0.0051 38.38 0.0078 51.07 0.0108

13.27 0.0025 25.96 0.0051 38.65 0.0079 51.34 0.0109

13.54 0.0026 26.23 0.0052 38.92 0.0080 51.61 0.0110

13.81 0.0026 26.50 0.0052 39.19 0.0080 51.88 0.0110

14.08 0.0027 26.77 0.0053 39.46 0.0081 52.15 0.0111

14.35 0.0027 27.04 0.0053 39.73 0.0081 52.42 0.0112

14.62 0.0028 27.31 0.0054 40.00 0.0082 52.69 0.0112

14.89 0.0029 27.58 0.0055 40.27 0.0083 52.96 0.0113

15.16 0.0029 27.85 0.0055 40.54 0.0083 53.23 0.0114

15.43 0.0030 28.12 0.0056 40.81 0.0084 53.50 0.0115

15.70 0.0030 28.39 0.0056 41.08 0.0084 53.77 0.0115

15.97 0.0031 28.66 0.0057 41.35 0.0085 54.04 0.0116

16.24 0.0031 28.93 0.0057 41.62 0.0086 54.31 0.0117

16.51 0.0032 29.20 0.0058 41.89 0.0086 54.58 0.0117

16.78 0.0032 29.47 0.0059 42.16 0.0087 54.85 0.0118

17.05 0.0033 29.74 0.0059 42.43 0.0088 55.12 0.0119

17.32 0.0033 30.01 0.0060 42.70 0.0088 55.39 0.0119

rmín

rmáx

* Indica el incremento de Mu/bd2 para el cálculo de la tabla

Tabla 5.06 Porcentaje de acero para secciones balanceadas

Concreto: f'c = kg/cm2 rmín = b1 =

Varilla: fy = kg/cm2 rmín = rmáx =

rmín

rmín

*

M u

bd2M u

bd2M u

bd2M u

bd2

Page 72: Hoja de Calculo Vigas de Concreto

72 ING. ALFREDO SALINAS MAFRA

ANEXOS DE CONCRETO REFORZADO FDA17.59 0.0034 30.28 0.0060 42.97 0.0089 55.66 0.0120

17.86 0.0034 30.55 0.0061 43.24 0.0089 55.93 0.0121

18.13 0.0035 30.82 0.0062 43.51 0.0090 56.20 0.0121

18.40 0.0036 31.09 0.0062 43.78 0.0091 56.47 0.0122

18.67 0.0036 31.36 0.0063 44.05 0.0091 56.74 0.0123

18.94 0.0037 31.63 0.0063 44.32 0.0092 57.01 0.0124

19.21 0.0037 31.90 0.0064 44.59 0.0093 57.28 0.0124

19.48 0.0038 32.17 0.0064 44.86 0.0093 57.55 0.0125

19.75 0.0038 32.44 0.0065 45.13 0.0094 57.82 0.0126

20.02 0.0039 32.71 0.0066 45.40 0.0095 58.09 0.0126

20.29 0.0039 32.98 0.0066 45.67 0.0095 58.36 0.0127

20.56 0.0040 33.25 0.0067 45.94 0.0096 58.63 0.0128

20.83 0.0041 33.52 0.0067 46.21 0.0097 58.90 0.0129

21.10 0.0041 33.79 0.0068 46.48 0.0097 59.17 0.0129

21.37 0.0042 34.06 0.0069 46.75 0.0098 59.44 0.0130

21.64 0.0042 34.33 0.0069 47.02 0.0098 59.71 0.0131

21.91 0.0043 34.60 0.0070 47.29 0.0099 59.98 0.0131

22.18 0.0043 34.87 0.0070 47.56 0.0100 60.25 0.0132

22.45 0.0044 35.14 0.0071 47.83 0.0100 60.52 0.0133

22.72 0.0044 35.41 0.0072 48.10 0.0101 60.79 0.0134

350 0.0020 losas espesor constante 0.800

6000 0.0025 trabes 0.311 0.0150 trabes

r r r r

10.50 0.0020 25.12 0.0049 39.73 0.0080 54.35 0.0114

10.81 0.0020 25.43 0.0050 40.04 0.0081 54.66 0.0114

11.12 0.0021 25.74 0.0050 40.36 0.0081 54.97 0.0115

11.43 0.0022 26.05 0.0051 40.67 0.0082 55.28 0.0116

11.74 0.0022 26.36 0.0052 40.98 0.0083 55.59 0.0117

12.06 0.0023 26.67 0.0052 41.29 0.0083 55.91 0.0117

12.37 0.0023 26.98 0.0053 41.60 0.0084 56.22 0.0118

12.68 0.0024 27.29 0.0053 41.91 0.0085 56.53 0.0119

12.99 0.0025 27.60 0.0054 42.22 0.0086 56.84 0.0120

13.30 0.0025 27.92 0.0055 42.53 0.0086 57.15 0.0120

13.61 0.0026 28.23 0.0055 42.84 0.0087 57.46 0.0121

13.92 0.0027 28.54 0.0056 43.15 0.0088 57.77 0.0122

14.23 0.0027 28.85 0.0057 43.47 0.0088 58.08 0.0123

14.54 0.0028 29.16 0.0057 43.78 0.0089 58.39 0.0124

14.85 0.0028 29.47 0.0058 44.09 0.0090 58.70 0.0124

15.17 0.0029 29.78 0.0059 44.40 0.0090 59.02 0.0125

15.48 0.0030 30.09 0.0059 44.71 0.0091 59.33 0.0126

15.79 0.0030 30.40 0.0060 45.02 0.0092 59.64 0.0127

16.10 0.0031 30.71 0.0061 45.33 0.0093 59.95 0.0127

16.41 0.0031 31.03 0.0061 45.64 0.0093 60.26 0.0128

16.72 0.0032 31.34 0.0062 45.95 0.0094 60.57 0.0129

17.03 0.0033 31.65 0.0063 46.26 0.0095 60.88 0.0130

17.34 0.0033 31.96 0.0063 46.58 0.0095 61.19 0.0130

17.65 0.0034 32.27 0.0064 46.89 0.0096 61.50 0.0131

17.96 0.0034 32.58 0.0065 47.20 0.0097 61.81 0.0132

rmáx

* Indica el incremento de Mu/bd2 para el cálculo de la tabla

Tabla 5.06 Porcentaje de acero para secciones balanceadas

Concreto: f'c = kg/cm2 rmín = b1 =

Varilla: fy = kg/cm2 rmín = rmáx =

rmín

rmín

*M u

bd2M u

bd2M u

bd2M u

bd2

Page 73: Hoja de Calculo Vigas de Concreto

73 ING. ALFREDO SALINAS MAFRA

ANEXOS DE CONCRETO REFORZADO FDA18.28 0.0035 32.89 0.0065 47.51 0.0098 62.13 0.0133

18.59 0.0036 33.20 0.0066 47.82 0.0098 62.44 0.0134

18.90 0.0036 33.51 0.0067 48.13 0.0099 62.75 0.0134

19.21 0.0037 33.82 0.0067 48.44 0.0100 63.06 0.0135

19.52 0.0038 34.14 0.0068 48.75 0.0100 63.37 0.0136

19.83 0.0038 34.45 0.0069 49.06 0.0101 63.68 0.0137

20.14 0.0039 34.76 0.0069 49.37 0.0102 63.99 0.0138

20.45 0.0039 35.07 0.0070 49.69 0.0103 64.30 0.0138

20.76 0.0040 35.38 0.0071 50.00 0.0103 64.61 0.0139

21.07 0.0041 35.69 0.0071 50.31 0.0104 64.93 0.0140

21.38 0.0041 36.00 0.0072 50.62 0.0105 65.24 0.0141

21.70 0.0042 36.31 0.0073 50.93 0.0106 65.55 0.0142

22.01 0.0043 36.62 0.0073 51.24 0.0106 65.86 0.0142

22.32 0.0043 36.93 0.0074 51.55 0.0107 66.17 0.0143

22.63 0.0044 37.25 0.0075 51.86 0.0108 66.48 0.0144

22.94 0.0044 37.56 0.0075 52.17 0.0108 66.79 0.0145

23.25 0.0045 37.87 0.0076 52.48 0.0109 67.10 0.0146

23.56 0.0046 38.18 0.0077 52.80 0.0110 67.41 0.0146

23.87 0.0046 38.49 0.0077 53.11 0.0111 67.72 0.0147

24.18 0.0047 38.80 0.0078 53.42 0.0111 68.04 0.0148

24.49 0.0048 39.11 0.0079 53.73 0.0112 68.35 0.0149

24.81 0.0048 39.42 0.0079 54.04 0.0113 68.66 0.0150 rmáx

* Indica el incremento de Mu/bd2 para el cálculo de la tabla

Page 74: Hoja de Calculo Vigas de Concreto

74

EjemploCalcular el armado de la viaga con los datos que se indican a continuación:

A B Dimensiones:5.00 L = 5.00 m

3l = 4.00 m

4.0

0 0.15

Dimensión de la viga:b = 25 cm

2 Peralte mínimo:

0.3125 m h = 35 cm

4.0

0

Peralte de la losa:

0.10 m

1 h = 10 cmPLANTA DE ENTREPISO

25 Acabados: Espesores:Piso de mármol ó terrazo 0.020 mJunteo de cemento-arena 0.020 m

h

Losa de concreto armado 0.000 mplafón de yeso 0.020 m

Corte -1-

Cargas muertas:Cargas muertas de acuerdo con los datos del proyecto arquitectónico:

Concepto

Piso de mármol ó terrazo 0.020 2.00 0.040Junteo de cemento-arena 0.020 2.00 0.040Losa de concreto armado 0.100 2.40 0.240plafón de yeso 0.020 1.50 0.030Muros divisorios - - 0.150

- - 0.040Suma de carga muerta (D) 0.540

Cargas vivas:

Considerar una crga adicional por muros divisorios sobre la losa de:

wmuros = T/m2

Espe-sor

(m)

Peso Volum. T/m3

Carga Entrep. T/m2

Carga por reglamento (0.20+.0.20)T/m2

Carga viva para un piso destinado a casa oficinas, el Reglamento de Construcciones para el D. F, especifica los valores siguientes:

1

Lh

16

losa

Perímetro L l L lh

180 180

Page 75: Hoja de Calculo Vigas de Concreto

75

Entrepiso: L = 0.25

Losa de entrepiso: U = 1.2 D + 1.6L = 1.05

Muro: U = 1.4 D = 0.15 T/m

Bajada de cargas a la viga del eje-2Area del trapecio:

A B 7.505.00

3. Peso del trapecio

7.86 T

4.0

0 2.50 Carga uniforme sobre la losa:A = 7.50W = 7.86

2.0

0 1.57 T/m1.57

2

1.57W = 7.86 3.14 T/m

4.0

0 A = 7.50

Carga total 3.14 T/m

1Materiales:

Concreto 200

Calculo del momento máximo factorizado: Módulo elástico 213546

Acero de refuerzo 4200

0.850

3.14 T/m

5.009.83 T-m

982500

Diagrama de momento flexionante

T/m2

Para iniciar el diseño es necesario calcular las cargas factorizadas, de acuerdo con las especificaciones del ACI-318-2008

wul = T/m2

wut=

m2

W = Awul =

wu1=

La carga total es la suma del trapecio entre 1 y 2 más 2 -3

wu2=

wut =

f'c = kg/cm2

Ec =

fy = kg/cm2

b1 =

wu =

Mu = kg-cm

kg/cm2

2

utu

LM

8

w

u1

W

Lw

B b L l lA h

2 2 2

ut u1 u2w w w

utu

LV

2

w

Page 76: Hoja de Calculo Vigas de Concreto

76

7.86 T

7860 T

Diagrama de fuerzas cortantes

Croquis del recubrimiento: Refuerzo para dimensionar: Dimensiones de la viga:Ref. # 6 b = 25 cm

1.91 cm Peralte obligado: h = 35 cm

Est.# 2 4.59 cm

1.9 0.64 0.64 cm Se propone r = 4.6 cm

3.0 4.6 3.0 cm d = h-r = 30.4 cm

42.53 T-m

con un valor de: 42.53 se obtiene 0.0135

Acero mínimo:0.0033

Acero máximo para una sección balanceada

0.85

0.0153

0.0033 < 0.0135 < 0.0153 Sección balanceada

Área de acero:10.22

Acero de refuerzo en la viga:

Varillas del # 5 1.98 5.1647 Varillas

Colocando 3 varillas del # 5 5.94

Adicionales # 6 2.85

Bastones: 4.28

Vu =

Tomando en cuenta que el peralte de la viga por proyecto arquitectónico no deberá exceder de 35 cm, y puesto que la trabe es hacia arriba, su ancho puede variar de acuerdo con las necesidades del diseño.

dbl =

r = rmín+dbe+dbl/2 =

dbe =

rmín =

La relación del momento último "Mu" entre el producto de del ancho "b" por el cuadrado de "d" vale:

De la tabla 5.07r =

b1 =

rmáx =

rmín = r = rmáx =

cm2

Ab = cm2

As1 = cm2

Ab = cm2

As2 = As-As1 = cm2

0 .75 x( 0 .85 x0 .85 x200420061176117+4200 )=

ρmáx=0 .75 ρb=0 .75( 0 .85 β1 f c'f y

61176117+ f y )

ρmín=14f y

=144200

=

u

2

M

bd

s

b

AN

A

sA bdr

utu

LV

2

w

Page 77: Hoja de Calculo Vigas de Concreto

77

Colocando 2 varillas del # 6 5.70

11.64 > 10.22

Colocar 3 5 más 2 6

Momentos resistentes ó nominales de la sección con el refuerzo de varillas de refuerzo:con:

3 del # 5 5.94

Datos de diseño:0.90

200

0.0078 4200

0.1641

616290.8

En toneladas metro: 6.16 T-m

2 del # 6 5.70

0.0075

0.1575

594175.6

En toneladas metro: 5.94 T-m

El momento resistente total tiene un valor de:

6.183+4.244 = 12.105 T-m > 9.825 T-m

En donde: Y = Es el momento último calculado 9.825 T-m

y = 3.66 T-m

X = Es la mitad de la longitud de la viga = 2.50 mx = Distancia a determinar.

2 6 11.88 T-m

y

5.9

4

As2 = cm2

Ast = cm2 cm2

As = cm2

f =

f'c = kg/cm2

fy = kg/cm2

fMn =

fMn1 =

As = cm2

fMn =

fMn2 =

fMnt = Mu =

Para determinar la longitud de los bastones, se aplica la relación obtenida de la geometría de la parábola, en donde relacionando las ordenadas entre los cuadrados de las abscisas, se calcula la distancia x, como se indica a continuación:

Mu =

Mu - fMn1 =

Con el momento último de diseño dado en el diagrama de momento flexionante y con los valores de los momentos resistentes de la varillas, se procede a calcular el valor de "x".

fMn1+ Mn2) =

wwff 59.01bdfM 2'cn

kg-cm

kg-cm

varillas longitudinales # varillas en bastón #

#

#

yY= x2

X2

bA

bd

r

y

'

c

f

fw r

bA

bd

r

y

'

c

f

fw r

Page 78: Hoja de Calculo Vigas de Concreto

78

3 5 5.94 T-m

9.8

3

6.1

6

x x2.50 2.50

l = 5.00 Momento tomado por las 2 varillas 6

1.98 m

A esta distancia se le suma la longitud de anclaje especificada por el ACI-318-2008.

30.4 cm

varillas del # 6 1.91 cm

22.9 cm

Rige: 30.4 cm = 0.30 m

Longitud total 2.28 m

lt = 4.57 mConviene dar cantidades enteras para fines prácticos de:

4.45 cm

Longitud del gancho extremo a 90º para varillas del #3 al #8

32.4 cm

El detalle de armado a flexión simple de la viga se ilustra a continuación.

Acero superior por contración y temperatura:

0.002

1.52

Usando varilla del # 4 1.27

1.1999 2 Var. # 4

fMn1 =

Y= Mu =

ld = d =

db =

ld = 12db = 12x1.59 =

ld =

lb = x + ld =

Como se calculo para la mitad del claro, la longitud total sera dos veces lb:

lbastón=

ld = 17x1.59 =

cm2

Ab = cm2

colocar

12db

4db

db

17db

#

#

2

n1

u

Mlx x

2 M

mínr

sA bdr

s

b

AN

A

Page 79: Hoja de Calculo Vigas de Concreto

79

500 25

2 4

35

32

3 5 2 6

28 445 28

3 14ARMADO DE VIGA

Diseño por cortante:

Cortante resistente por el concreto: 4272 kg

14.00 T 0.75

4.27 T

9.73

usando estribos # 3 0.71

En 2 ramas 1.43

14.029 < 15

colocar estribos # 3 a cada 14

Vu = f =

V' = Vu - Vc =

Ab = cm2

Ab = cm2

cm @ cm @

cm @

EJE EJE

##

#

E# @

'

c cV 0.53 f bd f

b yA f ds

V '

f máx

ds

2

'

c

c

0.53 f bdV

1000

f

cV 0.53x0.9 200x25x30.4

Page 80: Hoja de Calculo Vigas de Concreto

Alumno Fecha 28-Mar-12Alumno Grupo CalificaciónCalcular el armado de la viaga con los datos que se indican a continuación:

A B Dimensiones:5.00 L = 5.00 m

3l = 4.00 m

4.0

0 0.25

Dimensión de la viga:b = 20 cm

2 Peralte mínimo:

m h = cm

4.0

0

Peralte de la losa:

m

1 h = cmPLANTA DE ENTREPISO

20 Acabados: Espesores:Piso de mármol ó terrazo 0.020 mJunteo de cemento-arena 0.020 m

0

Losa de concreto armado 0.000 mplafón de yeso 0.020 m

Corte -1-

Cargas muertas: Cargas vivas:

Concepto

Piso de mármol ó terrazo 0.020 2.00 0.040Junteo de cemento-arena 0.020 2.00 0.040Losa de concreto armado 0.000 2.40 0.000plafón de yeso 0.020 1.50 0.030Muros divisorios - - 0.250

- - 0.040 Entrepiso: L = 0.25Suma de carga muerta (D) 0.400

Se pide:1.- Cargas factorizdas2.- Calcular cargas muertas de diseño3.- Bajada de cargas a la trabe del eje - 24.- Calculo del momento flexionante y fuerza cortante, así como dibujar diagramas.5.- Calculo del porcentaje de acero y area de acero requerida6.- Arreglo de varillas de refuerzo7.- Calculo de la separción de los estribos usando E#28.- Croquis de ramados.

Considerar una crga adicional por muros divisorios sobre la losa de:

wmuros = T/m2

Espe-sor

(m)

Peso Volum. T/m3

Carga Entrep. T/m2

Carga viva para un piso

destinado a oficinas, el

Reglamento de

Construcciones para el

D. F, especifica los

valores siguientes:

Carga por reglamento (0.20+.0.20)T/m2 T/m2

1

Lh

16

losa

Perímetro L l L lh

180 180