desarrollo de control de procesos en strata cooper

Upload: randyruben

Post on 14-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    1/72

    1

    Developments in Process Control

    With particular reference to comminution and flotation

    (McGill Professional Development Seminar Mineral Processing Systems)

    by P. Thwaites, May 15th, 2009

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    2/72

    2

    Xstrata OrganizationalStructure

    Xstrata Executive Committee

    X Ni X Cu X Coal XTS X Alloys X Zn

    XPS XT

    XTS : Xstrata Technology Services Thras Moraitis - LondonXPS : Xstrata Process Support Frank McGlynn - SudburyXT : Xstrata Technology Joe Pease - Brisbane

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    3/72

    3

    Objectives of McGill Short Course

    The objectives of the Mineral ProcessingSystems, Professional Development Seminarare:

    To cover new and important developments in

    mineral processing in the areas of comminution,flotation, process control, environment andoptimization.

    Developments in Process Control, with particular

    reference to comminution and flotation: New sensor technologies, control strategies, optimization

    etc.

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    4/72

    4

    Opportunities to consider

    Operational Performance Excellence requires a solid performance of theregulatory layer AND process optimisation.

    For Plant Operators: Is your feed stable? Are your instruments calibrated and performing? Are you aware of wireless instruments (including vibration)? Is your control system up to date and stable? Are you in manual or auto control? Are your Operators acting on alarms or are they nuisance? Do you understand and accept your process variability? Are you operating within the design targets and process constraints

    (pumps, cyclones, supplies, roasters, furnaces etc.)?

    Are you using your surge capacity, . or running tight level control? Are you at optimum and are the controls robust? Are you benefiting from asset management systems? Are failure / fault detection systems implemented? Can you make the same product for less energy consumption?

    (P. Thwaites, AUTOMINING2008, Chile)

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    5/72

    5

    Downtime Reporter(Matrikon)

    Automatic downtimerecognition withdirect data fromProcess Control

    System

    PlantEquipment

    PLC/DCS

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    6/72

    6

    (Matrikon) Downtime Reporter:How do we improve OEE*?

    Improve Availability

    Downtime Paretoreport clearly identifiesthe big-ticket items

    causing the mostdowntime in the plant.

    Strategies can then be formulated that eliminatethese problems and thus improve availability.

    * OEE Overall Equipment Effectiveness = Availability x Performance x Qualityi.e. 100% = 100% x 100% x 100%OEE defines the expected performance of a machine, measures it and providesa loss structure for analysis, which leads to improvement.

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    7/72

    7

    Definition of Process Control

    (McKee, AMIRA P9L)

    Process control is a broad term which often meansdifferent things to different people.

    Process control is considered as the technology

    required to obtain information in real time on processbehaviour and then use that information to manipulate

    process variables with the objective of improving themetallurgical performance of the plant.

    Control for the purpose of process improvement.

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    8/72

    8

    Importance of Control Performance(Emerson)

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    9/72

    9

    Audits

    Audits are the first step to ensure control system

    investments meet expectations(Feb. 1999 CONTROL ENGINEERING Journal, by Dave Harrold)

    Shown are the defects per loop e.g.

    Filter Time Constant

    Integral Period Derivative Period

    Sampling Period

    Proportional Band

    Current Operating Mode

    0%

    16%

    7%

    4%

    0%

    34%

    39%

    0%

    5%

    10%

    15%

    20%

    25%

    30%

    35%

    40%

    45%

    0 1 2 3 4 5 6

    Number of Defects per Loop

    Frequency

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    10/72

    XPS PC GrpCapabilities &Services

    XPS PC Group www.myxps.ca

    1. Process Design & Commissioning

    2. Controls Auditing

    3. Control Loop Optimisation

    4. Advanced Controls

    5. Slow Process Response

    6. Off-Gas System Controls

    7. Grinding Controls

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    11/72

    11

    Process Control Will Not CorrectInherent Design / Flowsheet Problems

    (McKee, AMIRA P9L)

    There is a need to determine, and if necessary correct, thecondition of the plant as a pre-requisite to controldevelopment. A good example is the importance of classifieroperation and its effect on comminution circuit performance.

    Techniques exist (plant sampling, modelling and simulation)to audit the actual plant operation. Correcting plantlimitations should be seen as a first step in the control

    approach.

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    12/72

    12

    XPS : Process Support Groups

    Process Control - Identify and deliver robustprocess

    control technology and engineering solutions to achieveOperational Performance Excellence.

    Process Mineralogy - Design, implement and optimizemineral processing flowsheets by matching the flowsheetto the mineralogy.

    Extractive Metallurgy Provide specialized extractivemetallurgy services (hydro-and pyro-metallurgical).

    Flowsheet/project development using modeling andpiloting, new process development and plant optimization.

    Materials Technology - Improve the reliability ofcritical equipment through appropriate implementation

    of well proven materials engineering practices atessential stages of design, procurement and operation.

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    13/72

    13

    XPS Process Mineralogy

    PROCESS

    MINERALOGY

    Sampling and Statistics

    MineralP

    roce

    ssing Mi

    neralScience

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    14/72

    14

    XPS Process MineralogyCrushing and Blending Plant

    Staged crushing and screening prevents overproduction of fines

    Drill core or ROM 150mm rock at 150 kg/hr

    Blending technology produces RSD of < 5% in test charges

    Any product size down to 1.7 mm split into any unit mass

    Semi-continuous operation

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    15/72

    15

    XPS Process MineralogyMineral Science

    Developing Flowsheets that Work the first time

    Modern Quantitative Mineralogy

    Strategic

    Virtual Flowsheeting/Flowsheet Implications

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    16/72

    16

    XPS Process MineralogyMineral Processing

    Developing Flowsheets that Work the first time

    High-Confidence Flotation Testing*

    Established 1995 95% confidence level Tried and tested Reproducible results Reliable scale-up

    * Lotter, N.O., 1995, A Quality Control Model for the Development of High-Confidence Flotation Test Data,M.Sc. Thesis, University of Cape Town, June 1995

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    17/72

    17

    XPS Process MineralogyMineral Processing

    - Commissioned 2005

    - 11 campaigns to date

    - Reproducible results- Proven ability to mimic

    operations

    Mini-Pilot Plant

    Demonstrating theOptimised Flowsheet

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    18/72

    18

    XPS Process Mineralogy Montcalm Project

    Flowsheeting fromDrill-Core to PilotPlant

    Finds optimumflowsheet, or findsbest performanceattainable withknown flowsheet

    Montcalm Project- Type 1 Startup*

    Comparison of Montcalm Start-up Curve with McNulty Curves

    0

    20

    40

    60

    80

    100

    120

    0 2 4 6 8 10 12 14

    Quarter after start-up

    NioutputinNia

    ndCuconc,%o

    fdesign

    Type 4

    Type 3

    Type 2

    Type 1Montcalm start-up

    Montcalm start-up - October 2004

    *Type 1 reaches design capacity ~4 quarters

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    19/72

    19

    Good Process ControlImplementation

    (McKee, AMIRA P9L)

    A good implementation requires a well definedoperating strategy and an associated control strategy.

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    20/72

    20

    Effective Process Control Cycle

    (for New Processes / Plants)

    Process Opt.(Production)

    Falconbridge Limited - Process Control

    poor controlbettercontrol

    higher production

    lower costs

    setpoint

    constraint

    best control

    time

    units

    Overall Process Control Objective

    Control OptimiseMeasure

    As-builts

    (Commissioning)

    P&IDs

    (Basic Eng)

    Control Config.

    (Construction-EPCM)

    Logic Diagrams

    (Detailed Eng-EPCM)

    Process Flowsheets &

    Control Philosophy(Development)

    Deliverable

    (Stage)

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    21/72

    21

    Overall Process Control Objective

    units

    Control Optimize

    poor controlbettercontrol

    higher production

    lower costs

    setpoint

    Process constraint

    best control

    time

    Measure

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    22/72

    22

    Poor to Optimized Control

    Best Practise:

    Necessary for:OperationalPerformanceExcellence

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    23/72

    23

    5 Essential Control Loop Elements

    & Consider the Whole Loop (ABB)

    ABBABB Corporate ResearchK. Forsman, 1998, No. 10

    Consider the whole loop

    PC-program in

    Advant OCS

    D/A

    I/P

    Positioner

    FT

    A/D

    Deadband

    Filter

    Ramp rate Filter

    Actuator

    Filter

    3-15 psi

    0-6 bar

    4-20 mA

    4-20 mA

    mV

    Five Essential*

    Control Loop Elements:

    1. Sensing element2. Transmitter3. Controller

    4. Final Control Element (e.g.Actuator or VSD)5. Process

    Only when all five elementsare performing their best will

    the control system meetexpectations!

    * February 1999 CONTROL ENGINEERINGby Dave Harrold.

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    24/72

    24

    Regulatory Control improvements(AG Mill Bearing Pressure measurement)

    Careful:

    1) Appropriate filtering;

    2) PI Data compaction.

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    25/72

    25

    Mill Feed -

    Manual Setpoint Control

    Opportunity in optimising feed tonnage has been estimated at $8.8m/yr!

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    26/72

    26

    General Process Control Hierarchy

    Field / Panel / DCS / PLC

    Instrumentation - Inputs / Outputs

    Advanced

    Regulatory

    Manual

    PlantOptimization

    Optimize

    Stabilize

    FunctionObjective

    Processes

    Optimizing Control

    Process

    Plant

    Optimization

    Cash Optimization

    EconomicsSite

    Loop Control

    Measure

    EconomicReturn

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    27/72

    27

    Era ofEra of ObjectivesObjectives ControlControlTechnologyTechnology

    Quantity Tonnage ofConcentrate

    PLC or

    DCS

    QualityTonnage + Quality

    Client Satisfaction

    Tonnage + Quality+

    Peak EconomicPerformance

    PeakPerformance

    OptimizingControl Systems

    OCS

    Metso minerals - Jan. 2004 Technology Presentation

    The evolution of

    control can besummarized in thisslide.

    The first shift wasfrom quantity onlyto quantity and

    quality, bothapplied in a DCSor PLC.

    However, to shiftfrom maintainingquality to peakperformancerequiressomething morethan a DCS orPLC: an optimizingcontrol system.

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    28/72

    28

    Enabling Technologies - ABB

    (Overall Process Unit Control)

    MPC (Model Based)

    Control:

    Several tools are available:

    Mintek (FloatStar) Emerson (DeltaV MPC)

    ABB (Linkman, Expert Optimizer)

    Invensys (Connoisseur)

    Honeywell (Profit Suite)

    Gensym (G2)

    Prediktor

    Metso (Adaptive Predictive Model)

    Production cost

    Lower

    FeedbackHigher

    Lower

    Higher

    Feedforward &Cascade

    Cross-Coupled

    Multi VariableTechniques

    Knowledge

    BasedExpert Control

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    29/72

    29

    Model Predictive Controller

    Constraint Management(LR or QP methods)

    CVs, MVs & DVs

    Optimal Setpoint& MV Target

    LP Optimizer

    Connoisseur Environment

    Connoisseur (Invensys) Overview

    Regulatory Control System

    Neural Net

    Adaptive Cont

    C P

    M

    Fuzzy Logic

    Director Calc

    10*349304

    1454

    LD

    dxSj

    ++

    Non-linear

    Inferential

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    30/72

    30

    Elements Necessary for Successful

    Process Control in Mineral Plants(P. Thwaites, IFAC MMM07, Plenary Address, Quebec City)

    ProcessControl ->

    OperationalPerformance

    Excellence

    Tools:Instruments;

    Systems etc.

    People:Control / Process

    Knowledge

    Successes:Results &

    Examples

    Actions:

    Support

    Management;

    Technology Transfer

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    31/72

    31

    Enabling Technologies

    (McKee, 1999). In grinding, control of AG/SAG mill circuits is the dominantarea. While some systems have emerged which provide a reasonable level ofcontrol, there is still much not understood about the dynamic behaviour ofthese mills, and there is considerable scope for further development.

    1. Multivariable Controller in a PLC Function Block (Bartsch):

    SAG feed control, is generally done using an Expert system.

    These systems often deliver improved control and 4 to 5%increased throughput (e.g. Collahuasi and Raglan Mills);

    XPS has recently implemented a complex controller in a

    (Concept) control block, negating the costs of an auxiliaryExpert System, and training / support of this system.

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    32/72

    32

    Entire Grinding Controls Focus:

    (Liberation efficiency and throughput)

    150 mt

    Surge BinSAG Mill

    24 diameter

    (2240 kW)

    Metso Double Deck

    Vibrating Screen (8 x 16)

    1- 8 x 40 mm

    2- 5 x 4 mm, 3 x 8 mm

    Sandvik Cone Crusher

    Hydrocone H4800

    (250 kW)

    6 x 15 Krebs GMAX

    Cyclones

    Vort: 4.5, Apx: 3

    Ball Mill

    14 dia. x 21

    (2240 kW)

    Flotation

    Underground

    Storage Bins

    A B

    11-CV-03

    21-CV-01

    21-CV-04

    21-CV-0521-CV-06

    21-CV-02

    Cyclone Feed Density Control

    MICFI

    DI

    DI

    LI

    PI

    DIC

    DIC

    RSP

    PIC

    LICSelectLogic

    SY

    OUT

    OUT

    OUT

    OUT

    ADJUST FEED SPOR

    CYC FEEDDENSITYSP

    H/LLim

    H/LLim

    Ref: FTC Report Raglan: CycloneDensity Control,E.Bartsch, 11 November 2005

    Cyc O/F Density byP/Box water addition

    Cyc O/F Density byP/Box water addition

    Cyc Feed Density by

    trimming O/F density SPCyc Feed Density by

    trimming O/F density SP

    CONSTRAIN circulatingload by trimming Cyc

    Feed Density SP

    FFE Impact Meter

    Wipfrag

    (Size analysis) ASRi

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    33/72

    33

    SAG Feed Rate Control (PID)

    SAG Control - December 27, 2005

    100

    110

    120

    130

    140

    150

    160

    170

    180

    04:48:00 09:36:00 14:24:00 19:12:00 00:00:00 04:48:00 09:36:00

    Time

    Tonnag

    e-mtph

    4300

    4350

    4400

    4450

    4500

    SAG

    KPA

    Tonnage

    kPa

    Setpoint = 4450 kPa

    SAG Feed SAG Load

    mpth kPa

    Average 131.3 4 454

    Std Dev. 9.7 24Minimum 100.5 4 392

    Maximum 152.7 4 503

    In Cascade control (constant kPa),

    The SAG tonnage varies tremendouslyto maintain the requested setpoint.

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    34/72

    34

    Why Online Feed Size Distribution?

    Plot-0

    TONNAGE ALIM.BROYEUR AUTOG

    PUISSANCE BROYEUR AUTOGENE

    PRESS. D'HUILE PALIER DECH

    Alimentation Moulin AG D75

    9/29/2002 9:30:00 AM 9/29/2002 9:30:00 PM12.00 Hour(s)

    PRI-21WIC0204.SP

    Mtph

    PRI-21ML01.AV

    kW

    PRI-21PIT0457C.AV

    kPa

    PRI-21VT28.D75.AVG

    m

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0

    200

    1600

    2500

    0

    4500

    0.035

    0.085

    130.00000

    2163.43750

    4363.49463

    0.04566

    PRI-21WIC0204.SP

    Mtph

    PRI-21ML01.AV

    kW

    PRI-21PIT0457C.AV

    kPa

    PRI-21VT28.D75.AVG

    m

    Bearing Pressure

    Mill PowerMill Feed Set-point

    D75 Size Fraction

    Large size

    fraction (D75)INCREASING

    Mill Load &Power

    INCREASING

    Large sizefraction (D75)

    DECREASING

    Mill Load &

    PowerDECREASING

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    35/72

    35

    SAG Charge Multivariable FuzzyController (Bartsch, CMP 2007)

    Inputs

    (Measurements)

    Outputs

    (Set-points)

    Fuzzyfication

    Fuzzy Rules

    De-fuzzification

    Power

    Charge

    Impactmeter

    Granulometry(prediction !)

    Assays

    Feed Rate

    Density

    (water addn)Crusher Gap

    Mill Speed

    Programmed inexisting plant PLCs

    ASRi (Automatic Setpoint Regulation)

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    36/72

    36

    Crusher Gap Control:

    Kidd Mill -> Strathcona Mill -> Raglan Mill

    Field Device

    DCSDisplay

    (via OPC)

    ASRi (Automatic Setpoint Regulation)

    Sandvik Technology - Crushing Plants

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    37/72

    37

    Cyclone Feed Density Control

    Mill Objectives *:

    1. Increase the fineness of the grind to P80 = 752. Reduce Cyclone Feed Density to improve

    classification efficiency.

    * Ref: Report Raglan Optimization Project : Raglan Site Visit L Urbanowski, Jan 14 2006

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    38/72

    38

    Cyclone Feed Density Control

    Typical Control Strategy:

    LI LIC

    SY

    DIC

    DI

    Water addition monitored /

    controlled to the pumpbox?:

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    39/72

    39

    Cyclone Feed Density Control..or Cyclone Overflow Density Control?

    Deficiencies in existing Strategy:Controlling cyclone feed density directlyby water addition not

    considered best practice.

    1. The feed density is slow to respond which means the loopcannot be tuned for load disturbance

    2. The influence of adding water changes depending on your millcapacity:A. spare grinding capacity it will trim the feed density as

    expected.B. at or over capacity -; it will increase circulating load and

    density, resulting in more water addition .

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    40/72

    40

    Cyclone Feed Density Control

    Requirements of a Density Control Strategy

    1. Control water addition by using the moreresponsiveprocess variable (overflowdensity).

    2. Consider the circulation load to avoidoverloading the ball mill.

    3. Maximize circulating load in order to maximisemill efficiency.

    4. Filter measured variables appropriately (i.e.match the process response times)

    Ref: FTC Report Raglan: Cyclone Density Control, E. Bartsch, 11 November 2005

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    41/72

    41

    Cyclone Feed Density Control(Best Practice)

    MICFI

    DI

    DI

    LI

    PI

    DIC

    DIC

    RSP

    PIC

    LICSelectLogic

    SY

    OUT

    OUT

    OUT

    OUT

    ADJUST FEED SPOR

    CYC FEED DENSITY SP

    H/LLim

    H/LLim

    Ref: FTC Report Raglan: Cyclone Density Control, E. Bartsch, 11 November 2005

    1. Control water byusing the moreresponsive process

    variable (CycloneOverflow Density).

    2. Use the output ofthe Cyclone FeedDensitycontrolleras the remote(ext.) set-point forCyclone OverflowDensitycontroller.(This cascade is moresuited to the slowdynamics of the loop.)

    3. Use a CirculatingLoadcontroller toeither trim FeedRate or CycloneFeed Densityset-point. N.B. feed willneed adjusting ifcirculating load doesnot reach steady state.

    4. Filter appropriately

    1

    2

    3

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    42/72

    42

    Raglan Cyclone Feed Density ControlRef: FTC (XPS) Report Raglan: Cyclone Density Control, E. Bartsch, 11 November 2005

    0

    100

    200

    300

    400

    500

    600

    700

    1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77

    February - March

    40.0

    50.0

    60.0

    70.0

    80.0

    90.0

    100.0

    110.0

    120.0

    130.0

    Circ Load

    Circ Load SP

    D80

    Reduced* p80 by 10 microns = 0.6% Ni rec increase worth approx. $2,000,000 pa.

    (* ref feasibility study benchmarking 2004)

    P80 80microns

    P80 68microns

    P80 90microns

    %Circ

    Load

    Controllerplaced in

    service

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    43/72

    43

    Oscillating on/off Cyclone Switching

    => Oscillations in Cyclone AND Process Feed rates

    - Cyclones (often) operating below their design pressure (40-60 instead of 100 kPa):

    Increased short-circuiting of water & undersized particles;

    IsaMill feed density decreases below design value;

    Low IsaMill feed density may create pumping issues (& trip on low flow/pressure);

    - Cyclone pressure should be controlled using the cyclone feed-rate.- Implement Surge Tank Control (using 150 m3 of tank) NOT Tight Level Control.

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    44/72

    44

    Strathcona Mill Regrind Cyclone Overflow DensityResults - 3 days operation (including startup)

    Plot-0

    BREG CYCPRESSURE BREG CYCO/FDENSITY

    1/18/02 7:16:18 PM 1/21/02 7:16:18 PM3.00Day(s)

    CGCYCRBmv~C_PIC_2057:B_PID2057.MEAS

    kPa

    CGCYCRBmv~C_DIC_2060:B_AIN2060_1.PNT

    % solids

    50

    100

    150

    200

    250

    300

    0

    350

    20

    50

    192.74

    29.0277

    CGCYCRBmv~C_PIC_2057:B_PID2057.MEAS

    kPa

    CGCYCRBmv~C_DIC_2060:B_AIN2060_1.PNT

    % solids

    Plot-0

    B REGCYC PRESSURE B REGCYC O/F DENSITY

    3/21/02 7:16:18 PM 3/24/02 7:16:18 PM3.00 Day(s)

    CGCYCRBmv~C_PIC_2057:B_PID2057.MEAS

    kPa

    CGCYCRBmv~C_DIC_2060:B_AIN2060_1.PNT

    % solids

    50

    100

    150

    200

    250

    300

    0

    350

    20

    50

    148.07

    38.3157

    CGCYCRBmv~C_PIC_2057:B_PID2057.MEAS

    kPa

    CGCYCRBmv~C_DIC_2060:B_AIN2060_1.PNT

    % solids

    Improved startup

    CycloneFeedPressure

    Cyclone

    Overflowdensity

    Overflow Density:

    9% density

    improvement

    65% reduction instandard deviation

    Enabling Technologies

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    45/72

    45

    Enabling Technologies

    Excellent practise is an OPPORTUNITY in our Canadian Mills!

    2. On-Demand Sampling Automation:

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    46/72

    46

    Enabling Technologies

    3. Camera Imaging, flotationlevel & reagent controls

    - Feed size analysis;

    - Froth camera imaging;

    - Optical System forcathode quality:

    39

    Froth Camera Imaging Technology

    CSQA:Cathode SurfaceQuality Analyzer(Aplik)

    Fl t t th T E i

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    47/72

    47

    Float to the Top Energise your

    Flotation PerformanceAuthors: A Okely, A Rinne, A Peltola (Outotec)

    The relevant cost factors for a flotation plant are investment, energy, reagentconsumption, and maintenance.

    The chart below shows the breakdown of these factors, based on typical ownershipcosts of a large mechanical flotation machine (100-200 m3) over a 25 yearlifespan.

    If we look at the energy

    efficiency we find that threeaspects are critical:

    1. Air dispersion2. Rotational speed of the

    mechanism3. Component wear

    Optimal air dispersion is one of the basic requirements for goodmetallurgical performance. Plants operating with forced air cells have

    often noticed that the best results are achieved using individual andvarying air feed rate in each cell.

    Canty Vision Froth Camera

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    48/72

    48

    Canty Vision Froth Camera

    (Strathcona Mill)

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    49/72

    49

    Flotation Level Controls

    Level Control:

    Absolute basics for Flotation.

    The movement of the pulp level setpoint provides opportunities forflotation optimization if there is tight control in each cell. (Ref., PT, 1983)

    R h L l Di b

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    50/72

    50

    Rougher Level Disturbance

    Setpoint

    Level

    FrothVelocity

    1. Velocity (mass pull)changes by over1000%!

    2. Baseline pull isonly 0.5 1 cm/s! :Level SP too low?

    Escondida Froth Velocity is Cascaded to

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    51/72

    51

    yControl Flotation Cell

    (metso minerals & Ramon A. Brito Minera Escondida)

    SP AireSP Velocidad

    SP Nivel

    PV Velocidad

    Tapon

    Celda WEMCO

    Camara

    Escondida: Instalacin en la FlotacinPrimaria Lneas 1,2,3,4,5,6

    (54 Cameras)

    Rougher flotation

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    52/72

    52

    Rougher flotationTest Control strategy step1

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    53/72

    53

    Froth velocity control

    Feed

    grade

    Froth

    veloc.

    Level

    SP

    Air SP

    Tails

    %Ni

    Flotation Control: Points on Control

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    54/72

    54

    Structure and importance of layering(Gilles)

    Flow Control

    MetallurgicalControl

    Ratio Control

    Set Point:

    cc/min

    Measurement:Tonnage orTonnage*Head Grade

    Set Point:Gram/Ton

    Measurement:(Tail or Conc

    Assay)

    Set Point:Operator Recovery orGrade Target

    All of the Met. Loops are PI/PID controllers for supportability.

    If problems occur, operators may turn off one level of control at a time, independently for

    each reagent.

    Addendum:

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    55/72

    55

    Addendum:Thickener Controls

    For effective Thickener control 3 measurements are important:

    1. Inventory (Inferred from pressure measurement in the Cone) controls underflow pump speed.2. Bed level

    controls flocculent addition rate.3. Overflow clarity

    indication/warning of poor control.

    None of the above measurementsare trivial and require attention toequipment selection and installation.

    Typical Bed Mass Level Measurement on aThi k

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    56/72

    56

    Thickener

    Shown is anE&H Deltabar S

    smart (2 wire)differentialpressuretransmitter.

    It is ideally used to

    measure level,pressure ordifferential pressure.

    Uses a flushmounted ceramicdiaphragm sincethey out last themetallic diaphragmsby at least 10 years.

    (Ref. M. Gribbons)

    Enabling Technologies

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    57/72

    57

    Enabling Technologies

    4. Flow Measurement:

    SONARSONAR A New Class of Meters with Distinct Application AdvantagesA New Class of Meters with Distinct Application Advantages

    SONAR

    Gas Void Fraction GVF-100

    ENTRAINED AIR Meters

    Gas Holdup MeterGH-100

    Volumetric Flow Meter

    Ultrasonic

    Coriolis

    Vortex

    MultivariableDP

    Magmeter

    Ref: Christian [email protected]

    SONARtrac Enables Accurate MassSONARtrac Enables Accurate Mass

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    58/72

    58

    SONARtrac Enables Accurate MassSONARtrac Enables Accurate Mass

    Balance in the Presence of AirBalance in the Presence of Air

    Application:Hydrocyclone Feed Line

    Challenge: Variable entrained air levels causing errors in density reading and hydrocyclone split This affects both flotation performance as well as ball mill circulating load

    0

    2 0 0 0

    4 0 0 0

    6 0 0 0

    8 0 0 0

    1 0 0 0 0

    1 2 0 0 0

    1 4 0 0 0

    1 6 0 0 0

    1 8 0 0 0

    1 /2 5 /2 0 0 6 4:4 8 :0 0 1 /2 5 /2 0 0 6 6:0 0 :0 0 1 /2 5 /20 0 6 7 :1 2 :0 0 1 /25 /20 0 6 8 :2 4 :0 0 1 /25 /2 00 6 9 :3 6 :0 0

    T im e

    Volumetr

    icFlow(gpm)

    0.0%

    0.5%

    1.0%

    1.5%

    2.0%

    2.5%

    3.0%

    3.5%

    4.0%

    4.5%

    5.0%

    GasVolu

    mneFraction(%)

    V F ( g p m )

    G as Volum e Frac t ion

    Flow Rate

    Entrained Air %

    Enabling Technologies

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    59/72

    59

    Enabling Technologies

    5. Rotating Equipment Machinery Health:

    Enabling Technologies

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    60/72

    60

    Enabling Technologies

    6. Wireless Instrumentation:

    GITE-322-05-PRE-15

    HighServiceINDUSTRIAL SUPPORT COMPANY

    2.- Proposed Solution

    Electronic Wear Sensor (EWS) embedded in liners andlifters fastening bolts

    GITE / DES

    Main components of the EWS: Transducer

    8-12 levels

    CPU (coder & signal processing)statistical filtering

    RF Transmitter,FM FSK, 916 MHz, 1mW,

    anti-collision algorithmSensor Life: 18 month

    Business Case 3:Smart Wear Sensor

    Rev0 Fecha 100807 Pgina 19 de 29

    C St d E l

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    61/72

    61

    Case Study Example

    CBU: Xstrata Nickel (Sudbury operations)Site: Strathcona Mill

    Project: Primary Grinding ControlStatus: Completed in 2008Comments:

    Maintain Consistent Grind to Flotation Adjust, & optimise Rod Mill Feed

    Automatically to Capacity of GrindingCircuit Eliminate Process Upsets due to Ore

    Variability (i.e. Mill Overloads) Reduced energy consumption by 7.1% &

    7.5% in the rod & ball mills respectively

    Implement on 2 grinding lines Presented at the Jan. 2009 meeting of the

    Canadian Mineral Processors.8.48.17.87.57.26.96.6

    1.6

    1.4

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    BM kW/t

    Density

    7.773 0.2732

    7.189 0.2862

    Mean StDev

    Old Ctrol

    New Ctrol

    Status

    Histogram of BM kW/tNormal

    3.363.243.123.002.882.762.64

    3.5

    3.0

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    RM kW/t

    Density

    3.123 0.1275

    2.900 0.1168

    Mean StDev

    Old Ctrol

    New Ctrol

    Status

    Histogram of RM kW/tNormal

    Rod Mill (Power/tonne):

    Ball Mill (Power/tonne):

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    62/72

    62

    Strathcona Mill Grinding Circuit

    McIvor and Finch, 1991: Besides achieving the desired mineral d80size, it is clearly desirable to produce as narrow a size distribution as

    possible to squeeze the maximum amount of the mineral value intothe highest recovery region.

    Inadequate mineral liberation in itself leads to higher energyconsumptions, as finer grinding has to be performed for liberation.

    24521017514010570350

    0.16

    0.12

    0.08

    0.04

    0.00

    RMF (Tons/hr)

    Density

    173.3 33.95 719

    188.2 2.866 721

    MeanS tDev N

    1Before

    2After

    Status

    6057545148454239

    0.8

    0.6

    0.4

    0.2

    0.0

    COFD (%Solids)

    D

    ensity

    49.81 4.844 704

    47.14 0.4740 721

    Mean StDev N

    1Before

    2After

    Status

    Histogram of RMF (Tons/hr)Normal

    Histogram of COFD (%Solids)Normal

    Strathcona Grinding Circuit

    Process ModelingProcess ModelingProcess ModelingProcess Modeling

    0.5

    0.6

    0.7

    0.8Step Response

    PBLs730 10

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    63/72

    63

    Strathcona Grinding Circuit

    Process Modeling:

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000040

    50

    60

    70

    80

    y1

    Input and output signals

    0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000140

    150

    160

    170

    180

    Time

    u1

    PumpPumpPumpPump----boxboxboxbox

    level (PBL)level (PBL)level (PBL)level (PBL)

    Rod millRod millRod millRod mill

    feedfeedfeedfeed

    ((((RMFspRMFspRMFspRMFsp))))

    0 500 1000 1500 2000 2500 3000 350043

    44

    45

    46

    47

    48

    49

    y1

    Input and output signals

    0 500 1000 1500 2000 2500 3000 3500115

    120

    125

    130

    135

    140

    145

    Time

    u1

    CycloneCycloneCycloneCyclone

    OF densityOF densityOF densityOF density

    (COFD)(COFD)(COFD)(COFD)

    PumpPumpPumpPump----boxboxboxbox

    waterwaterwaterwater

    ((((PBWspPBWspPBWspPBWsp))))

    0 5000 10000 15000-15

    -10

    -5

    0

    5

    10

    15

    Time

    Measured and simulated model output

    0 500 1000 1500 2000 2500 3000 3500 4000-3

    -2

    -1

    0

    1

    2

    3

    Time

    Measured and simulated model output

    COF Particle Size and Pulp Density

    Correlation between COF Particle Size and Pulp Density

    72.00

    74.00

    76.00

    78.00

    80.00

    82.00

    84.00

    86.00

    35.00 40.00 45.00 50.00 55.00

    COF Density (% solids)

    COFP.S

    ize(%-150m

    esh)

    Data from Strathcona Mill November 2007 Grinding surveys

    Two SISO, simple PI controllers:1. Cyclone Over Flow Density (COFD) by

    manipulating the Pump-Box Water(PBWsp)

    2. Rod Mill Feed (RMFsp) based on the

    Pump-Box Level (PBLsp)

    Grinding Control Objective:

    Maximize the throughput (quantitativeobj.) while maintaining

    the cyclone OF density at target(qualitative obj.)

    11

    0 100 200 300 400 5 00 600 7 00 8 00 900 1 00 0-0.2

    -0.18

    -0.16

    -0.14

    -0.12

    -0.1

    -0.08

    -0.06

    -0.04

    -0.02

    0

    Time

    Step Response

    0 500 1000 1500 2000 2500 30000

    0.1

    0.2

    0.3

    0.4

    Time

    s

    e

    RMFsp

    PBLs

    4851

    73.0 10

    +

    =

    s

    e

    PBWsp

    COFD s

    1251

    18.0 15

    +

    =

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    64/72

    64

    Old Control Strategy

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    65/72

    65

    New Control Strategy

    B f Old C t l

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    66/72

    66

    Before - Old Control

    OLD CONTROL

    PBL manipulating PBWPBL manipulating PBWPBL manipulating PBWPBL manipulating PBW

    Some control, but not process control

    Fixed tonnage and oscillating cyclone overflow density

    Mill feed shut down intermittently to handle mill overloads Upsetting all downstream flotation processes

    Increase of milling rate can take hours

    After New Control

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    67/72

    67

    After New Control

    11

    NEW CONTROLNEW CONTROLNEW CONTROLNEW CONTROL1. COFD manipulating PBW and1. COFD manipulating PBW and1. COFD manipulating PBW and1. COFD manipulating PBW and

    2.RMF based on PBL2.RMF based on PBL2.RMF based on PBL2.RMF based on PBL

    Process control

    Controlled cyclone overflow density (particle size) and maximisedrod mill feed rate

    No more mill feed shutdowns controller prevents mill overloads

    No more grindouts

    Controller reacts quickly to changes in ore hardness

    Easier to operate, consistently for each shift

    Key Results

    200

    180

    160

    55

    45

    35S

    PT(t/h)

    RMWi

    RMWi

    RMF SPT (t/h)

    V ariable

    Time Series Plot of RMWi, RMF SPT (t/h)

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    68/72

    68

    Key Results(Over a Longer Period)

    Period: (Jan.07-May.08 vs Jun.08-Sept.08)

    Increase in circuitthroughput of7.7%:

    (168 to 181 tph); fully realised upon treatment

    of Ni Rim South ore;

    Grinding circuit feed toflotation (COFD) maintainedat target density: reduction in variability from

    2.0 to 0.8;

    An increase in energy efficiency(kW/t) of:

    7.1% for the rod mill and

    7.5% for the PBM;

    No Mill overloads;

    No degradation in Ni or Cu

    Recoveries.

    09/24/0806/13/0804/18/0802/25/0812/09/0710/02/0707/29/0706/08/0704/14/0703/01/0701/10/07

    140

    120

    25

    15

    Date

    RMFS R

    198192186180174168162156

    0.060

    0.045

    0.030

    0.015

    0.000

    RMF SPT (t/h)

    Density 168.2 5.756 517

    181.2 7.098 77

    Mean StDev N

    1Before

    2After

    Status

    Histogram of RMF SPT (t/h)Normal

    09/24/0806/13/0804/18/0802/25/0812/09/0710/02/0707/29/0706/08/0704/14/0703/01/0701/10/07

    60

    50

    40

    30

    Date

    COFD(%)

    525048464442

    0.48

    0.36

    0.24

    0.12

    0.00

    COFD (%)

    Density 46.61 2.008 517

    46.22 0.7656 77

    Mea n S tDev N

    1Before

    2After

    Status

    Time Series Plot of COFD (%)

    Histogram of COFD (%)Normal

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    69/72

    69

    Feedback CommentsOperators:

    This has made the operations of the mills that much

    easier and efficient!DD

    It is working great and it is helping flotation as well. RA

    This is better and the right way to do it. SH

    To do better than the controller, I have to take samplesevery 15 minutes. BR

    I thought this will not work, but it is working very well.JM

    Phil Thwaites (Manager Process Control):

    Xstrata operates many grinding circuits. I believe thatbenefits such as these (as also demonstrated at RaglanMill & Kidd Mill) can be duplicated at several other plantswith similar grinding circuits.We often see very poor cyclone and grinding circuitcontrols that have not been tuned or optimised.In this project we have found the best way to control

    these two circuits the sweet spots (after all these yearsof operation).

    Perceptive Engineerings Focus:

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    70/72

    70

    p g g

    (Vision - Sandoz)

    Optimisation

    & Scheduling

    Advanced Process

    Control

    Conventional

    Regulatory Controls

    Management

    Information Systems

    Intelligent& Soft Sensors

    Conventional Sensors

    & Instrumentation

    Operating Constraints

    Valve position

    Setpoints

    Performance Reports

    Operating Plans

    0 20 40 60 80 100 120 140 160 1800

    5

    10

    15

    20

    25

    30

    35

    40

    Time

    SPE

    SPEConfidence Limit

    Early Warning Process

    Condition Monitors

    Classification for

    Quality Control0 20 40 60 80 100 120

    10

    15

    20

    25

    30

    35

    40

    Sample No.

    FeO

    Soft Sensors

    Integrated Condition Monitoring

    and Advanced Process Control

    Control System

    Integration

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    71/72

    71

    Concluding Remarks

    Plant automation is often seen as the project deliverable,when what is really required is plant control.

    There are many approaches, instrumentation, and multiplecontrol systems, together with numerous advanced controlpackages to select from.

    Process control is more than just tools. Successful plant implementation is reliant on these together

    with: process knowledge, a solid control engineering background /experience, and

    the operations team willing to act / implement / support theimplementations.

    Together, robust solutions can be realised, minimising

    process variation and optimising process performance. This will result in an easier, efficient and safer process to operate.

    (P. Thwaites, AUTOMINING2008, Chile)

  • 7/30/2019 Desarrollo de Control de Procesos en Strata Cooper

    72/72

    72

    At previous (high) metal prices the results from good

    control, and Operation Performance Excellence are

    substantial!

    At current metal prices good control and Operational

    Performance Excellence is essential!

    Operational Performance Excellence requires a solid

    performance of the regulatory layer AND process optimisation.

    Organizational structure and human resources are important

    in achieving Operational Performance Excellence.

    Thank you.