anualidades contingetes

Upload: salomon-pimentel

Post on 07-Apr-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 anualidades contingetes

    1/45

    Actuarial mathematics 2Life insurance contracts

    Edward Furman

    Department of Mathematics and StatisticsYork University

    January 31, 2011

    Edward Furman Actuarial mathematics MATH 3280 1 / 4 5

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    2/45

    Definition 0.1 (Life insurance.)

    Life insurance is a contract that is designed to reduce the

    financial impact of an untimely death.

    The payment is a single one.

    The payment can be made either upon death or thereafter.

    Question

    Given a life status (u), what is its expected future lifetime? If theinsurance amount is one dollar: 1.) what is the r.v. representing

    the payment upon death of (u)? 2.) what is the r.v. representing

    the payment at the end of the year of death of (u)?

    Recall that, e.g., T(u) : Ru [0, ].

    Edward Furman Actuarial mathematics MATH 3280 2 / 4 5

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    3/45

    Solution

    The expected lifetime of (u) is E[T(u)].

    The payment upon death is vT(u).

    The payment at the end of the year of death is vK(u)+1.

    Recall that the price is the expected loss, for identity utility =

    fairness principle (or equivalence principle).

    Net premium for an insurance contract.

    The net premium for an immediately payable insurance is

    E[vT(u)] for a life status (u). Also, the net premium for an

    insurance payable at the end of the year of death isE

    [vK(u)+1

    ].I.e.,

    E[vT(u)] =

    Ru

    vttpu(u+ t)dt =

    Ru

    vtdtpu := Au.

    Edward Furman Actuarial mathematics MATH 3280 3 / 4 5

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    4/45

    Also

    E[v

    K(u)+1

    ] =

    kRuv

    k+1

    kpuqu+k =

    kRuv

    k+1

    kpu := Au.

    Example 0.1 (Whole life insurance.)

    Let (u) = (x). Then Ru = [0, ), and

    Ax := E[vT(u)] =

    0

    vttpx(x + t)dt,

    as well as

    Ax := E[vK(u)+1] =

    k=0

    vk+1kpxqx+k.

    Edward Furman Actuarial mathematics MATH 3280 4 / 4 5

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    5/45Edward Furman Actuarial mathematics MATH 3280 5 / 4 5

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    6/45

    Example 0.2 (n-year term insurance.)

    Let (u) = (1x : n). Thus Ru = [0, n) {}, and

    A1x:n

    := E[vT(u)] =

    n0

    vttpx(x + t)dt + 0,

    as well as

    A1x:n

    := E[vK(u)+1] =n1k=0

    vk+1kpxqx+k.

    Proposition 0.1

    We have that, for A 1x:0

    = 0 (why?), and for all x,

    A1x:n

    = vqx + vpxA 1x+1:n1

    .

    Edward Furman Actuarial mathematics MATH 3280 6 / 4 5

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    7/45

    Proof.

    A1x:n

    =n1k=0

    vk+1kpxqx+k = vqx +n1k=1

    vk+1kpxqx+k

    = vqx + vpx

    n1

    k=1

    vkk1px+1qx+k

    = vqx + vpx

    n2k=0

    vk+1kpx+1qx+k+1

    = vqx + vpxA 1x+1:n1

    ,

    as required.

    Edward Furman Actuarial mathematics MATH 3280 7 / 4 5

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    8/45

    Corollary 0.1

    We have that

    Ax = vqx + vpxAx+1.

    Proposition 0.2

    Under the UDD assumption for each year of age, we have that

    AuUDD

    =i

    Au.

    Proof.

    We have that

    tpu(u+ t)

    UDD

    = qu, 0 t 1, u = 0,1, . . . .

    Then

    Au = = 1

    0

    vttpu(u+ t)dt +

    1

    vttpu(u+ t)dt

    Edward Furman Actuarial mathematics MATH 3280 8 / 4 5

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    9/45

    Proof (cont.)

    Au =

    10

    vttpu(u+ t)dt +

    0

    vt+1t+1pu(u+ 1 + t)dt

    = 1

    0

    vttpu(u+ t)dt +

    0

    vt+1pu tpu+1(u+ 1 + t)dt

    =

    1

    0

    vttpu(u+ t)dt + vpu

    0

    vttpu+1(u+ 1 + t)dt

    UDD=

    1

    0

    vtqudt + vpuAu+1 = qu1

    0

    etdt + vpuAu+1

    =1 e

    qu + vpuAu+1 =

    1 v

    qu + vpuAu+1.

    Edward Furman Actuarial mathematics MATH 3280 9 / 4 5

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    10/45

    Proof (cont.)

    Thus we have that:

    Au

    UDD

    =

    i

    vqu + vpuAu+1.

    The domain for the latter relationship is: u = 0,1, . . . andA = 0. Further,

    Au UDD=i

    vqu + vpu

    ivq

    u+1 + vpu+1Au+2

    =i

    vqu +

    i

    v2puqu+1 + v

    2pupu+1Au+2

    =i

    v

    0p

    uq

    u+0+ v2p

    uq

    u+1+ v3p

    up

    u+1q

    u+2+ + 0

    =i

    k=0

    vk+1kpuqu+k =i

    Au,

    which completes the proof.Edward Furman Actuarial mathematics MATH 3280 10/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    11/45

    Example 0.3 (Pure endowment insurance.)

    Let (u) = (x :1n). Then it only makes sense to speak of the

    discrete case. The r.v. representing the future payment is

    vK(x:1n), Thus

    Ax:

    1n

    := vn

    k=nkpxqx+k = v

    nP[T(x) n] = vnnpx

    Example 0.4 (General endowment insurance.)

    Let (u) = (x : n). Then by definition of T(x : n) we have that

    Ax:n :=n

    0vttpx(x + t)dt + vnnpx = A1

    x:n+ A

    x:1n.

    Note that

    vT(x:n) = vT(1x:n) + vT(x:

    1n).

    Edward Furman Actuarial mathematics MATH 3280 11/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    12/45

    Example 0.5 (Example 0.4 (cont.))

    Do we have that

    T(x : n) = T( 1x : n) + T(x : 1n)?

    Also,

    Ax:n := E[vK(

    1x:n)+1 + vK(x:

    1n)], i.e.,

    Ax:n =n1k=0

    vk+1kpxqx+k + vn

    npx = A1x:n

    + Ax:

    1n.

    Note:

    Of course, we have that,

    limn

    A1x:n

    = Ax.

    Edward Furman Actuarial mathematics MATH 3280 12/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    13/45

    Proposition 0.3

    The variance of the r.v. representing the future payment due to

    death of(u) isVar[vT(u)] = 2Au (Au)

    2,

    where2Au is an insurance payable using = 2.

    Proof.We have that

    E[(vT(u))2] =

    Ru

    e2ttpu(u+ t)dt =

    Ru

    et

    tpu(u+ t)dt,

    that is an insurance payable with a new force of interest. This

    completes the proof.

    Edward Furman Actuarial mathematics MATH 3280 13/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    14/45

  • 8/6/2019 anualidades contingetes

    15/45

    Proposition 0.4

    The variance of the general endowment insurance is

    Var[vT(x:n]

    = 2A1x:n

    A1x:n

    2+ v2nnpx nqx 2A1

    x:nvnnpx.

    Proof.

    Note that

    Var[vT(x:n]

    = Var[vT(1x:n + vT(x:

    1n]

    = Var[vT(1

    x:n] + Var[vT(x:1

    n] + 2Cov[vT(1

    x:n, vT(x:1

    n)]

    = Var[vT(1x:n] + Var[vT(x:

    1n] 2E[vT(

    1x:n]]E[vT(x:

    1n],

    which completes the proof.

    Edward Furman Actuarial mathematics MATH 3280 15/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    16/45

    Insurances mentioned above can be used as building blocks to

    create other forms of insurances.

    Example 0.6 (Deferred insurance.)

    An myear deferred nyears term insurance provides for a

    benefit following the death of the insured only if the insured dies

    at least myears following policy issue and before the end of the

    policy. Thus we have that

    m|nAx := A1u:m+n

    A1u:m

    =m+n1

    k=m

    vk+1kpuqu+k.

    The continuous counterpart is then:

    m|nAu := A1u:m+n

    A1u:m

    =

    m+nm

    vttpu(u+ t)dt.

    Edward Furman Actuarial mathematics MATH 3280 16/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    17/45

    Example 0.7 (Deferred whole life insurance.)

    Take n in the previous example, and get

    m|Au = Au A1u:m

    =

    k=mvk+1kpuqu+k,

    with the continuous counterpart given then by:

    m|Au = Au A1u:m

    =

    m

    vttpu(u+ t)dt.

    Edward Furman Actuarial mathematics MATH 3280 17/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    18/45

    Note, that we have been interested in calculating expectations

    of transformed future life time r.v.s. These r.v.s can be more

    general.

    Example 0.8 (Annually increasing whole life insurance.)

    Consider the r.v. (K(u) + 1)vK(u)+1. The present value is

    (IA)u := E[K(u) + 1)vK(u)+1] =

    k=0

    (k + 1)vk+1kpuqu+k.

    Example 0.9 (Continuously increasing whole life insurance.)

    Consider the r.v. T(u)vT(u), then

    (IA)u := E[T(u)vT(u)] =

    0

    tvttpu(u+ t)dt.

    Edward Furman Actuarial mathematics MATH 3280 18/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    19/45

    Example 0.10 (Annually increasing continuous whole life

    insurance.)

    Let the r.v. of interest be T(u) + 1VT(u). Then

    (IA)u := E[T(u) + 1VT(u)] =

    0

    t + 1 vttpu(u+ t)dt.

    Example 0.11 (m-thly per year increasing continuous whole life

    insurance.)Let the r.v. of interest be

    T(u)m+1m

    vT(u). Then:

    (I(m)A)u := E T(u)m+ 1

    mvT(u) =

    0

    tm+ 1

    mvttpu(u+t).

    Remark.

    Of course, for m, the just mentioned insurance reduces tothe continuously increasing one.

    Edward Furman Actuarial mathematics MATH 3280 19/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    20/45

    Proposition 0.5

    We have that

    (IA)u =

    0 s|Auds.

    Proof.

    (IA)u =

    0

    t0

    ds

    vttpu(u+ t)dt

    =

    0

    s

    vttpu(u+ t)dtds

    =

    0s|Auds,

    as required.

    Edward Furman Actuarial mathematics MATH 3280 20/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    21/45

    Figure: Auxiliary plot.

    Note:

    For the totally discrete counterpart, i.e., for (IA)u, we should

    again have (why?)

    (IA)u =

    j=0

    j|Au = Au + 1|Au + 2|Au + ...

    Edward Furman Actuarial mathematics MATH 3280 21/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    22/45

    Benefits must not be increasing.

    Example 0.12 (Annually decreasing n-year term insurance.)

    Let the r.v. of interest be (n K(u))vK(1u:n+1. Then

    (DA

    )1u:n :=E

    [(n

    K(u

    ))vK(

    1u:n+1

    ] =

    n1

    k=0(

    n

    k)vk+1

    kp

    uq

    u+k.

    Proposition 0.6

    We have that

    (DA)1u:n

    =n1j=0

    A1u:nj

    .

    Edward Furman Actuarial mathematics MATH 3280 22/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    23/45

    Proof.

    Note that

    n k =nk1

    j=0

    (1).

    Then

    (DA)1u:n

    =n1

    k=0

    (n k)vk+1kpuqu+k

    =

    n1k=0

    nk1j=0

    (1)vk+1kpuqu+k

    =n1j=0

    n

    j

    1k=0

    (1)vk+1kpuqu+k =n1j=0

    A1u:nj

    ,

    as needed.

    Edward Furman Actuarial mathematics MATH 3280 23/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    24/45

    Figure: Annually decreasing 8-year term insurance.

    Edward Furman Actuarial mathematics MATH 3280 24/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    25/45

    Proposition 0.7

    Let the actuarial present value r.v. be generally given by

    Z = b(K(u) + 1)vT(u). And assume the UDD approximation for

    each integer u. Then

    E[b(K(u) + 1)vT(u)]UDD

    =i

    E[b(K(u) + 1)vK(u)+1]

    for any life status (u).

    Proof (cont.)

    Recall that T = K + J with J U(0,1) because of the UDD.We have also proven that under the UDD K and J are

    independent. Namely

    P[K = k, J j] = kpu qu+k j = P[K = k]P[J j].

    Edward Furman Actuarial mathematics MATH 3280 25/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    26/45

    Proof (cont.)

    Also

    E[b(K(u) + 1)vT(u)

    ]= E[b(K(u) + 1)vK(u)+1+J(u)1]

    = E[b(K(u) + 1)vK(u)+1vJ(u)1]UDD

    = E[b(K(u) + 1)vK(u)+1]E[vJ(u)1]

    = E[b(K(u) + 1)vK(u)+1]E[(1 + i)1J(u)],

    where

    E

    [(1

    +i)

    1J(u)

    ] =1

    0 (1

    +i)

    1sds=

    10

    d(1 + i)1s

    ln(1 + i) ,

    which is

    E[(1 + i)1J(u)] = i/.

    Edward Furman Actuarial mathematics MATH 3280 26/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    27/45

    Corollary 0.3

    Thus, we easily have that

    AxUDD

    =i

    Ax,

    with b(K + 1) 1. And also

    (IA)xUDD

    = i

    (IA)x,

    with b(K + 1) = K + 1.

    Question:

    What about (IA)x?

    Edward Furman Actuarial mathematics MATH 3280 27/45

    Proposition 0.8

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    28/45

    Proposition 0.8

    Under the UDD, we have that

    (IA)x

    UDD=

    i

    (IA)

    x1 + i

    i

    1

    A

    x .

    Proof.

    The r.v. corresponding to the price above is

    Z = TvT = (K + J)vK+J = (K + 1)vK+J + (J 1)vK+J

    = (K + 1)vK+J (1 J)vK+1vJ1

    = (K + 1)vK+1(1 + i)1J (1 J)vK+1(1 + i)1J.

    Also, note that 1 J

    U(0,1). Indeed

    P[1 J j] = P[J 1 j] = j.

    Recall that J and K are independent because of the UDD

    assumption and take expectationsEdward Furman Actuarial mathematics MATH 3280 28/45

    Proof (cont.)

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    29/45

    Proof (cont.)

    E[Z]UDD

    = E[(K + 1)vK+1(1 + i)1J] E[vK+1]E[(1 J)(1 + i)1J]

    =i

    (IA)x AxE[(1 J)(1 + i)

    1J]

    =i

    (IA)x AxE[(J)(1 + i)

    J]

    =i

    (IA)x Ax

    10

    jd(1 + i)j

    ln(1 + i)

    =i

    (IA)x

    Ax

    ln(1 + i) 1

    0

    jd(1 + i)j=

    i

    (IA)x

    Ax

    ln(1 + i)

    j(1 + i)j|10

    10

    (1 + i)jdj

    =i

    (IA)xAx

    ln(1 + i)(1 + i) i

    ln(1 + i) .

    Edward Furman Actuarial mathematics MATH 3280 29/45

    An insurance can be payable m thly

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    30/45

    An insurance can be payable m-thly.

    Example 0.13 (m-thly payable whole life insurance.)

    The price of an m-thly payable whole life insurance is

    A(m)x :=

    k=0

    (v1/m)k+1 km

    px 1m

    qx+ k

    m.

    Note that this is not the expectation of the transformed K(x),but rather an expectation of a transformation of

    K(m)(x) = K(x)m+ J(x), where this time J(x) counts thenumber of total m-thly periods (x) was alive. Thus

    A(m)x := E[(v1/m)Km+J+1] = E[(v)K+(J+1)/m]

    =

    k=0

    mj=0

    vk+(j+1)/mP[K = k, J = j].

    Edward Furman Actuarial mathematics MATH 3280 30/45

    Proposition 0.9

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    31/45

    p

    We have that under the UDD for integer ages,

    A(m)

    x

    UDD=

    i

    i(m)A

    x,

    where i(m) = m((1 + i)1/m 1).

    Proof.

    We have that

    E[vK+(J+1)/m] =

    k=0

    m1j=0

    vk+(j+1)/mkpx j/m|1/mqx+k = A(m)x .

    In addition, under the UDD

    j/m|1/mqx+k = (j+1)/mqx+k (j)/mqx+k

    UDD=

    j + 1

    m

    qx+kj

    m

    qx+k =1

    m

    qx+k.

    Edward Furman Actuarial mathematics MATH 3280 31/45

    Proof (cont.)

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    32/45

    ( )

    Thus

    A

    (m)

    x

    UDD

    =

    k=0

    v

    k+1m1j=0

    v

    (j+1)/m1

    kpx

    1

    mqx+k

    =

    k=0

    vk+1kpxqx+k

    m1j=0

    (1 + i)1(j+1)/m1

    m

    =

    k=0

    vk+1kpxqx+k(1 + i)m1j=0

    (v(1/m))j+11

    m

    =

    k=0

    vk+1kpxqx+k(1 + i)1

    m

    v1/m1 v(m1+1)/m

    1 v1/m

    =

    k=0

    vk+1kpxqx+k(1 + i)1

    m

    1 v

    v1/m(1 v1/m).

    Moreover Edward Furman Actuarial mathematics MATH 3280 32/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    33/45

    Proof.

    A(m)x

    UDD=

    k=0

    vk+1kpxqx+k(1 + i)1

    m

    1 v

    (1 + i)1/m 1

    =

    k=0

    vk+1kpxqx+k(1 v)(1 + i)

    i(m)

    =

    k=0

    vk+1kpxqx+ki

    i(m)=

    i

    i(m)Ax,

    which completes the proof.

    Edward Furman Actuarial mathematics MATH 3280 33/45

    Proposition 0.10

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    34/45

    We have that

    Ax:y + Ax:y = Ax + Ay,

    as well asAx:y + Ax:y = Ax + Ay.

    Proof.

    Because of the definition of say T(x : y) and T(x : y), we have

    thatvT(x:y) + vT(x:y) = vT(x) + vT(y).

    Taking expectations throughout then completes the proof.

    Example 0.14An insurance that pays one dollar upon the death of the first of

    (x) and (y) is

    Ax:y := E[vT(x:y)] =

    0

    vttpx:y((x : y) + t)dt.

    Edward Furman Actuarial mathematics MATH 3280 34/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    35/45

    Example 0.15

    An insurance that pays one dollar upon the death of the last

    one of (x) and (y) is

    Ax:y := E[vT(x:y)] =

    0

    vttpx:y((x : y) + t)dt.

    Example 0.16

    An insurance that pays one dollar upon the death of (x) if

    he/she dies first is A1x:y

    . Of course it is an expectation of vT(1x:y).

    The latter is vT(x) if T(x) < T(y) and v = 0 if T(x) T(y).

    Thus

    A1x:y

    := E[vT(1x:y)] =

    0

    vt

    t

    fT(x),T(y)(t, s)dsdt

    Edward Furman Actuarial mathematics MATH 3280 35/45

    Ex (cont )

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    36/45

    Ex. (cont.)

    The latter expression is rewritten as

    A1x:y := E[vT(

    1x:y

    ] =

    0v

    tt

    fT(x),T(y)(t, s)dsdt

    =

    0

    vt

    t

    fT(y)|T(x)(s| t)ds fT(x)(t)dt

    ind=

    0

    vtt

    fT(y)

    (s)ds fT(x)

    (t)dt

    =

    0

    vtFT(y)(t) fT(x)(t)dt

    =

    0

    vttpy tpx(x + t)dt,

    i.e., if (x) dies at any time t when (y) is alive, then vt dollars arepayed. Check at home that if = 0, then A1

    x:y= q1

    x:y.

    Edward Furman Actuarial mathematics MATH 3280 36/45

    Example 0.17

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    37/45

    An insurance payable upon death of (y) if it precedes the deathof (x) is

    Ax:

    2y

    := E[vT(x:2y)] =

    0

    vt

    t

    0

    fT(x),T(y)(s, t)dsdt.

    Proposition 0.11

    Under independence of the future lifetimes of(x) and(y), wehave thatA

    x:2y

    ind= Ay A

    x:1y.

    Proof.

    By definition

    Ax:

    2y

    =

    0

    vtt

    0

    fT(x)| T(y)(s| t)ds fT(y)(t)dt.

    Edward Furman Actuarial mathematics MATH 3280 37/45

    Proof.

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    38/45

    By independence and in actuarial notation

    Ax:

    2

    y

    =

    0

    vttqx tpy(y + t)dt

    =

    0

    vt(1 tpx) tpy(y + t)dt,

    as required.

    Remark.

    The result holds for dependent future lifetimes too. Prove at

    home by looking at the corresponding r.v.s.

    Proposition 0.12

    Under independence of the future lifetimes of(x) and(y), wehave that

    Ax:

    2y

    ind=

    0

    sAy spx(x + s)ds.Edward Furman Actuarial mathematics MATH 3280 38/45

    Proof.

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    39/45

    From the previous proposition, changing the order of integration

    and by substitution u = t s,

    Ax:

    2y

    =

    0

    vttqx tpy(y + t)dt

    ind=

    0

    vtt

    0spx(x + s)ds tpy(y + t)dt

    =

    0

    s

    vtspx(x + s) tpy(y + t)dtds

    =

    0

    0

    vu+sspx(x + s) u+spy(y + u+ s)duds

    =

    0 v

    s

    spy spx(x + s)

    0 v

    u

    upy+s(y + u+ s)duds

    =

    0

    vsspy spx(x + s)Ay+sds.

    Also, we can write the deferred insurance as

    Edward Furman Actuarial mathematics MATH 3280 39/45

    P f t

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    40/45

    Proof. cont.

    sAy = Ay A1y:s

    =

    0

    vu+su+spy(y + u+ s)du

    = vsspy

    0

    vuupy+s(y + u+ s)du

    = vsspyAy+s.

    This completes the proof.

    Remark.We will often use the notation sEx := v

    sspx. This is refereed to

    as the stochastic discount factor.

    Edward Furman Actuarial mathematics MATH 3280 40/45

    Example 0.18

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    41/45

    Assume m sources of decrement and a whole life insurance

    contract due to each one. Also, let b(x + t)(j), j = 1, . . . ,m bethe payment due to the decrement j. Then the overall price is

    A =m

    j=1

    0

    b(x + t)(j)vttpx

    (j)(x + t)dt.

    Example 0.19Let b(x + t)(1) = t and b(x + t)(2) = 0 for all t> 0. AssumeUDD for each year of death. Then

    A =

    0tvttpx(1)(x + t)dt =

    k=0

    k+1k

    tvttpx(1)(x + t)dt

    =

    k=0

    10

    (k + s)vk+sk+spx

    (1)(x + k + s)ds

    Edward Furman Actuarial mathematics MATH 3280 41/45

    Example 0.20 (Example. cont.)

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    42/45

    Example 0.20 (Example. cont.)

    Then by the UDD

    tpx(x + t)UDD

    = qx,

    and

    A =

    k=0vkkp

    x

    10

    (k + s)vsspx+k

    (1)(x + k + s)ds

    UDD=

    k=0

    vk+1kpxq

    (1)x+k

    1

    0

    (k + s)vs1ds

    =

    k=0

    vk+1kpxq

    (1)x+k

    1

    0

    (k + s)(1 + i)1sds

    =

    k=0

    vk+1kpxq

    (1)x+k

    i

    k +

    1

    1

    i.

    Edward Furman Actuarial mathematics MATH 3280 42/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    43/45

    Remark

    Note that if b(x + k + s)(j) is more cumbersome than (k + s)than using, e.g., the midpoint rule

    1

    0

    b(x + k + s)(j)(1 + i)1sds b(x + k + 1/2)(j)(1 + i)11/2.

    Edward Furman Actuarial mathematics MATH 3280 43/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    44/45

    Figure: Insurances payed at the end of the year of death.

    Edward Furman Actuarial mathematics MATH 3280 44/45

    http://goforward/http://find/http://goback/
  • 8/6/2019 anualidades contingetes

    45/45

    Figure: Immediately payed insurances.

    Edward Furman Actuarial mathematics MATH 3280 45/45

    http://goforward/http://find/http://goback/