6.8 hidraullca de la perforaci6n rotatoria

13
6.8 HIDRAuLlCA DE LA PERFORACI6N ROTATORIA. Entre los fluidos usados para la perforacion rotatoria (aire 0 gas natural comprim ido , agua pura, etcetera) son los lodos, formados por agua y solidos coloidales, los mas comunes. Se aplicaran las tecnicas vistas en las paginas anteriores para calcular las perdidas de presion sufridas por uno de estos lodos (considerado como un fluido pl astico tipo Bingham) al ser utilizado en una perforacion . Se considerara el siguiente sistema: Hoyo: Profundidad perforada (D ) ................... ... ..... ..... ..... .... 10000 pies Diametro (dh) de la broca. . .. .. .. . ... ....... .................... .. 9. 875 pulgadas Tuberfa de perforacion: Diametro externo (do ). ....... ...... .. .. .... ...... .. ............ . .. ... .. 5 pulgadas Diametro interno (d/) . ....... ..... .. ........... .. ...... .... ..... ..... .. . .. .. 4.276 pulgadas Ibf/pie ................... .. .. .. ............ ....... .. ........ .......... .. ....... .. .... 19.50 Collares de perforacion: Diametro externo (deo ) ........ ........ . .. ....... .......................... 7.75 pulgadas Diametro interne (de l) .............................. ... .. .. .. ...... ...... 3 pulgadas Longitud (L e) ..... ..... .. ... .. .. ........ .. .. .... .... ................... ..... .. ... 400 pies Velocidad en el anular (tuberfa - hoyo) (v,J ... ................. 2.25 pies/segundo Lodo : Densidad (p g ) . ................ ... . .......... ...... .... ............ .... ....... ... 12 Ibm/galon Viscosidad plastica (flP) ....... ... ........ .... ...... .. .. ................... 43 centipoises Punto de cedencia (T) ........ . ........ .. ...... .... .. .. .. .. ..... ...... ..... 20 Ibf/100 pies 2 Perdidas de presion por fricci6n en sarta de perforaci6n (tuberfa y collares) Rata de circulaci6n y velocidades: - Rata de circulacion (q) : Segun la ecuacion (30) INTRODUCCION AL TRABAJO CON MODEL OS REOLOCI COS .. 115

Upload: others

Post on 08-Jul-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 6.8 HIDRAuLlCA DE LA PERFORACI6N ROTATORIA

68 HIDRAuLlCA DE LA PERFORACI6N ROTATORIA

Entre los fluidos usados para la perforac ion rotatoria (aire 0 gas natural comprim ido agua pura etcetera) son los lodos formados por agua y solidos coloidales los mas comunes Se aplicaran las tecn icas vistas en las pag inas anteriores para calcu lar las perdidas de presion sufridas por uno de estos lodos (considerado como un fluido plast ico tipo Bingham) al ser utilizado en una perforacion

Se considerara el siguiente sistema

Hoyo

Profundidad perforada (D) 10000 pies

Diametro (dh) de la broca 9875 pulgadas

Tuberfa de perforacion

Diametro externo (do) 5 pulgadas

Diametro interno (d) 4 276 pulgadas

Ibfpie 1950

Collares de perforacion

Diametro externo (deo ) 775 pulgadas

Diametro interne (de l) 3 pulgadas

Longitud (Le) 400 pies

Velocidad en el anular (tuberfa - hoyo) (vJ 225 piessegundo

Lodo

Densidad (pg

) 12 Ibmgalon

Viscosidad plastica (flP) 43 centipoises

Punto de cedencia (T) 20 Ibf100 pies2

Perdidas de presion por fricci6n en sarta de perforaci6n (tuberfa y collares)

Rata de circulaci6n y velocidades

- Rata de circulacion (q)

Segun la ecuacion (30)

INTRODUCCION AL TRABAJO CON M ODEL OS REOLOCI COS 115

o

q V = --------shy

nt 245(dh - do ~ )

q= 245(9875~ - 5 )225 galonesminuto

q= 399 42 galonesminuto

- Velocidades

v Velocidad dentro de la tuberia

Velocidad dentro de los co ll ares o

l Velocidad en anular tuberia - hovo I

0 Veloc idad en anular collares - hoyo

Segun la ecuaci6n (30)

o v = q = 39942 pies

245di ~ 245( 4276) se9 = 892 piesseg

o v = q _ 39942 pies ( 245(dci )2 - 245(3) seg = 181 3 piesseg

V nt = 225 piesseg o

v = q _ 39942 piesseg nr 245(dh 2 _ dco~ ) - 245(9 8752 -7752) = 436 piesseg

Velocidades criticas

- En el interior de la sana

Velocidad critica dentro de la tuberia CI

Ve locidad cr itica dentro de los collares d

Segun ecuaci6n (63)

1078)1 + 1078()1~ + 12 34diTP ( g V( P plesseg

Pgdi

1078x 43 + 1078(43 + 12 3 4x42762x20x12) Jl 2 = plesseg

12x4276

= 587 piesseg

116 LECTUlUS SOBRE LODOS DE PERFOlUCl6N

Si se aplica (63) con laquodciraquo en vez de laquodiraquo

I 078x43 + I 078( 43 2 + 1234x3 2 x20x12) 112 V = piesseg

cc 12 x3

= 634 piesseg

- En el anular

I e Velocidad critica en el anular tuberia-hoyo

I e Velocidad critica en el anular collares-hoyo

Segun la ecuaci6n (75)

I078J1 p + 1 0 78~~ + +9256(dh - do)2 7 p g ] (n = -------- ---------------=-- piesseg

Pg(dh - do)

_ 1 078x 43 + 10 78[43 2 + 9256(9 875 - 5) 20x l 2 2 piesseg

12(9875 - 5)

=51 piesseg

Ecuaci6n (75) con dco en vez de do 112

I078x43 + 1 078[43 2+ 9256(9875 - 775)2 20x12 ] pies =V cnc 12(9875 - 775) seg

= 643 piesseg

Tipo de f1ujo

Se comparan veocidades y veocidades cr iticas

- En e in terior de a sarta

V) VC1 =gt Flujo tu rbu lenlo denlro del interior de la tuberia y los col lares

v() vcc

En el anular

Vat ltVcat =gt Flujo laminar en el anular vac ( vcac

118

Perdidas de presion par friccion

En el interior de la sarta donde el flujo es turbulento se aplican Reynols (con ~ ) y Fannig (ecuacion 11)

- En el interior de la tuberia

928pg vdi _ 928x12x892x4276 = 987787 NR = II - 43

p

De carta de Stanton IF = 0008 para este caso

Si se aplica Fanning

t1pf = fFLX(P )v 1258dig

2 0008x(lOOOO-400)x12x892 Ipc = 664681pc

=gt t1pf = 258x4276

En el interior de los collares

928pg vcdci _ 928x12x1813x3 = 140857 NR = - 43

fJ p

De grafico de Stanton

h-= 00075

= de Fanning

fFxLcxPgV I O0075x400x12x1813 It1p = pc = pc

f 258dci 258x3

= 152881pc

En el anular dande el fluja es laminar se aplica la ecuacion 72

- En el anular hoyo - tuberia

t1 = Il p (10000 - L)va + tJ 1 0000 - Le)

pf 1OOO(dh - do 200(dh - do)

43(10000 - 400 )225 20(10000 - 400) ~ t1p = + -----~

f 1000(9875 - 5) 200(9875 - 5)

~ t1pf = 2361pc

LECTURAS SOBRE LODOS DE PERFORACION

- En el anular hoyo - collares

I1p = jpLc v ac + T y Lc

f 1000(dh - deo 200( dh - dco)

43x400x436 20x400 = + -------shy1000(9875 - 775 200(9875 - 775)

= 35431pc

Perdidas totales de presi6n debidas a fricci6n en la sarta en el hoyo

(66468 + 15288 + 236 + 3543)lpc = 1088 991pc

Perdidas de presion debidas a friccion en conexiones de superficie

EI tipo numero y longitud de estas conexiones varian de equipo a equipo Generalmente para calcular las perdidas de presion debidas a elias se tienen en cuenta la tuberia parada la manguera el eslabon giratorio (swivel) la Kelly el coda que une la tuberia parada a la manguera y elcuello de ganso Combinaciones tfpicas de estos elementos aparecen en la Tabla 6 Los valores de perdidas de presion dados como longitudes equivalentes en esta tabla presentan una exactitud aceptable para la mayoria de los cas os practicos

Para el sistema que analizamos se asume que la combinaci6n NO 4 representa bien las caracteristicas de nuestras conexiones en superficie 579 pies de tuber ia de 5 pulgadas de diametro externo y 195 Ibfpie representan las perdidas de presi6n en conexiones superficiales

TABLA 6 Perdidas de presion por fricci6n en conexiones de superficie

Combinaciones ipicas Componenes de

NO 3 NO 4 No 1 No 2 conexiones en

d (L) d (L) (L )d (L)superficie d

pulg pies pulg pies pulg pies pulg pies

35 40 4 45Tuberla de perforaci6n 3 40 4 45

25 55Manguera 2 45 3 55 3 55

Swivel 25 5 25 52 4 3 6

Kelly y cuello de ganso 25 40 325 40 325 40 4 40

Tuberia de perforaGi6n Longitud equivalente de las conexiones en pies de latuberia de perforaci6n

pesodo pulg Ibfpie

133 35 437 161

76145 166 479 340

195 5 816 579

bull Referencia 97 p 51

INTRODUCCION AL TRABAJO CON M ODELOS REOL6c I COS 119

120

Las perdidas de presion por unidad de longitud para la tuberia de perforacion fueron

664 68 Ipc

9600pies

Las perdidas en superficie son 66468 x5791pc =4009 Ipc 9600

Tambien se puede aplicar Fanning para encontrar estas perdidas

O008xS79x12x892 2 Ipc

2S8x4276

Perdidas en superficie = 4009 Ipc

Perdidas totales hasta ahora (colla res y tuberia en el hoyo conexiones en superficie) = (108899+4009)lpc =112908Ipc

Perdidas de presion en las boquillas de la broca

Para f1ujo ideal (sin friccion) de un fluido incompresible a traves de orificios pequenos (tales como las boquillas) la ecuacion para balance de presion (ecuaci6n 9) se reduce a

P (2 2) ( 78 ) PI + ~- v - V2 = P2 2gc

EI subindice J se refiere a las condiciones de estado estable aguas arriba de las boquillas de la broca yel 2 se refiere alas condiciones reinantes alas salidas Cuando el areade salidaA2 es mucho menor que la de entrada A l vi raquo v~ v~ se puede despreciar y de la ecuaci6n (78) se puede obtener v2

( 79 ) 2gc (p ~ P2) V2 == P

Para obtener la expresi6n (79) no se ha tenido en cuenta el termino (pF) en la ecuaci6n 9 Tal termino nos da las perdidas por fricci6n inevitables Para compensar esta omision se utiliza el coeficiente de descarga Cd

g ( 80 ) = Cd12 c (p - pz)Vz p

LECTURAS SOBRE WDOS DE PERFORACION

De (80)

( 81 )

P es la caida de presion a traves de la restriccion ( boquillas)

Como v = qA al reemplazar en (81 ) ( 82 )

en unidades practicas de ingenieria 02

pq ( 83 )

A es el area seccional de flujo en la salida La suma de las areas de las boquillas nos dan el area total de flujo C varia entre 08 y 098 un valor de 095 es el utilizado en casos practicos

AI pasar a traves de las boquillas aproximadamente un 10 de la energia por unidad de masa de fluido utilizada en atravesar dichos orificios (p p ) se disipa como calor

I el 90 restante se convierte en energia cinetica Cuando el lodo choca con el hoyo y arrastra los cortes bajo la broca esta energia cinetica tambien se disipa como calor

Siguiendo con el ejemplo propuesto y si se supone que se usa una broca de tres conos y boquillas de 0375 pulgadas de diametro

Area de cada boquilla = 01104 pulgadas2

Area tota l considerada = 3 x 01104 pulgadas2

=03312 pulgadas 2

De ecuacion (83) las perdidas de presion en boquillas P son

An = 12x(3 9942) 2 Ipc = 160722 I c ~J 12032xO9S2xO33 122 P

Las perdidas totales de presion (co ll ares y tuber ia en el hoyo conex iones en superfic ie y boqu il las) seran

(1129 08+1607 22)lpc = 2736 3 Ipc

o Caudal manejado por cada boquilla (q)

o AtAI X q con Ai area de cad a boquill a At area total

q = 01 104 x39942 galones =13333 galones 03312 minuto minuto

J(()DLCClON1 L TRA BAJO CO iIODELOS R[0I0CICOS 121

122

Velocidad de salida (v) en cad a boquilla (se consideraron de Igual area)

De la ecuacion (30)

133 33 d v = pIes segun 0 = 38731 pIessegundo

I 2448(0 375t

Potencia requerida de la bomba de lodo

Para suminislrar la presion tolal de 27363Ipc la polencia de la(s) bomba(s) en superficie debe ser minima de

tPtotntxq = 27363~x 39942galones bbl pulg2 minuto x 42gal

3 25615pie 122pulg x HP = 63852HP

x bbl x pmiddotle2 Ibf - pie33000 -shy

mlnuto

Para lener en cuenla las perdidas de energia por friccion mecanica denlro de la bomba y olros imprevistos se acostumbra ulilizar una eficiencia mecanica de 0 85

63852 HP = 75120HPPolencia total requerida es 085

LECTURASSaBRE LaDaS DE PERFORAC6N

REFERENCIAS

1 AMERICAN PETROLEUM INSTITUTE Glossary of drilling-fluid and associated terms API Production Department Dallas Texas 1985 23 pp

2 IMCO Applied mud technology Seventh edition Houston Texas 1981

3 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing drilling fluids API Production Department Dallas Texas 198547 pp

4 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing watershybased drilling fluids AP I Production Department Dallas Texas 199046 pp

5 BOURGOYNE A Jr y otros Applied Drilling Engineering SPE Textbook Series Vol 2 Richardson Texas 1991 510 pp

6 NL BAROID Productos y servicios BAROID Guia de equipo petrolero 1979 pp 214 -243

7 AMERICAN PETROLEUM INSTITUTE Standard procedure for laboratory testing drilling fluids API Production Department Dallas Texas 1990 42 pp

8 BETEJTIN A Curso de mineralogia Editorial MIR Moscu 1977 739 pp

9 ESCOBAR C YSAAVEDRA F Sensibilidad y estabilizaci6n de arcillas Revent6n Edici6n especial - Memorias de la segunda semana teurocnica de Ingenieria de Petr6leos UIS Bucaramanga Agosto 14 - 18 de 1989 p 39

10 KELLY J Jr Drilling fluids selection performance and quality control JPT Mayo 1983 pp 889 - 898

11 WORLD OIL World Oils 1997 guide to drilling completion and workover fluids World Oil junio 1997 pp 75-116

12 CHURAN M CANDLER JE and FREEMAN M On - site and off-site monitoring of Synthetic - based drilling fluids for oil contamination SPEEPA Exploration and Production Environmental Conference Dallas Texas 3-5 March 1997

13 FRIEDHEIM JE Second - generation synthetic drilling fluids JPT julio de 1997 pp 724-725

14 GROWCOCK F And FREDERICK T Operational limits of synthetic drilling fluids SPEDC September 1996 pp 132-136

15 MEDLEY G H ET AL Field application of lighweight hollow - glass - sphere drilling fluid JPT November 1997 pp 1209 - 1211

16 AYERS R SAUER T and ANDERSON P The generic mud concept for NPDES permitting of offshore drilling discharges JPT March de 1985 pp 475-480

123

12-1

17 BLEIER R Predicting mud toxicity JPT October 1991 pp 1192-1193

18 CLARK RK Impact of environmental regulations on drilling - fluid techonol ogy JPT sept iembre de 1994 pp 804-809

19 BRAKELJ ET AL Cuttings reinjection in Brent reduces drilled cuttings discharge to the sea JPT April 1997 p 412

20 THURBER N Waste minimization for land - based drilling operations JPT May 1992 pp 542-547

21 GODEC M and BIGLARBIGI K Economic effects of environmental regulations on finding and developing crude oil in the USJPTJanuary1991 pp 72-79

22 SMITH A L Securing the future In partnership with the environment JPT June 1996 pp 526-532

23 CHATTERJI J and BORCHARDT J Applications of water-soluble polymers in the oil field JPT November 1981 pp 2042-2056

24 GRAY G and DARLEY H Composition and properties of oil well drilling fluids Fourth edition Houston Texas Gulf Publishing Company 1981 630 pp

25 BROWNING W and CHESSER B Polymer-polyelectrolyte drilling fluid systems JPT October 1972 pp 1255-1263

26 SIFFERMAN T and GREENKORN R Drag reduction in three distinctly different fluid systems SPEJ December 1981 pp 663-669

27 FISK J and JAMISON D Physical properties of drilling fluids at high temperatures and pressures SPEDE December 1989 pp 341-345

28 CHESSER B and ENRIGHT D High-temperature stabilization of drilling fluids with a low-molecular-weight copolymer JPT June 1980 pp 950-956

29 THOMAS DC Thermal stability of starch-and carboxymethyl cellulose- based polyme rs used in drill ing fluids SPEJ April 1982 pp 171-180

30 STE IGER R Fundamentals and use of potassiumpolymerdrilling fluids to minimize drilling and completion problems associated with hydratable clays JPT August 1982 pp 1661-1670

31 NYLAND T ET AL Addit ive effectiveness and contaminant influence on fluidshyloss control in water-based muds SPEDE June 1988 pp 195-203

32 HARTMANA ET AL Analysis of mudcake structures formed under simulated borehole conditions SPEDE December 1988 pp 395-402

33 HALE A Method to quantific viscosity effects ondispersion test improves testing of drilling polymers IADCSPE 19954 IADCSPE Drilling Conference Houston Texas Feb 27- Mar 2 1990

34 PLANK J and GOSSEN F Visualization of fluid-loss polymers in drilling-mud filter cakes SPEDE September 1991 pp 203-208

35 KOTKOSKIE T ET AL Inhibition of gas hydrates in water-based drilling muds SPEDE june 1992 pp130-136

36 EZZAT A ROSSER H and AL-HUMAM A Control of microbiological activity in biopolymer- based drilling muds Paper SPE 399285 SPE Middle East Drilling Technology Conference Baharin November 23-25 1997

37 WHISONANT R And HALL F Combining continuous improvement in acid fracturing propellant stimulations and polymer technologies to increase production and developp additional reserves in a mature oil field Paper SPE 38789 Sintesis publicada en JPT February 1988 pp 86-88

38 WHITE J And MEANS J Polysacharides derivates provides high viscosity and low friction at low surface fluid temperature JPT September 1975 pp 1067-1073

39 TYSSEED And VETTERO Chemical characterization problems of water- soluble polymers SPEJ December1981 pp 721-730

40 CONWAY M ET AL Chemical for the rheological behavior of crosslinked fluid systemsJPT February 1983 pp 315-320

41 GULBIES J ET AL Encapsulated breaker for aqueous polymeric fluidsSPEPE February1992 pp 9-14

42 KECK R NEHNER W and STRUMOLOG A New method for predicting fr iction - pressures and rheologic of proppant- laden fracturing fluids SPEDE February 1992 pp 29-33

43 NIMERINCK K McCONNEL S SAMUELSONM Compatibility of resin-Co ated Proppants With Crosslinked Fracturing Fluids SPEPE February 1992 pp 29-33

44 HARRIS P And REINDENBACHV High-temperarure rheological study of foam fracturing fluids JPT May 1987 pp 613-619

45 THOMPSON J ET AL New continuos - mis process for gelling anhydrous methanol minimices hazards JPT July 1992 pp 832-839

46 NORMAN L CONWAYM And WILSON M Temperature- stable acid - gelling polymers laboratory evaluat ion and fields results JPT November 1984 pp 2011-2018

125

u arlV ~-

47 TERRACINA j ET AL Temporary ch emical block brings efficiency and economy to Eastern US workoveroperations SPEPE February 1992 pp 70-74

48 WHITEJ GODDARDJ and PHILIPS H Use of polymers to control water production in oil well s JPT February 1973 pp 143-150

49 TORREST R Deposit buildup during gravel packing with viscous polymer solutions and water JPT February 1983 pp 325-328

50 UNDERDOWN D DAS K and NGUYEN H Gravel packing in highly deviated wells with a crosslinked polymersystem JPT December1985pp2197-2202

51 OBRIEN D And CHENEVERT M Stabilizing sensitive shales with inhibited potassi um- based dri lli ng flu ids JPT September 1973 pp 1039-1100

52 CLARK R ET AL Poliacrylamidel potassium-chloride mud for drilling watershysensitive shales JPT June 1976 pp 719-727

53 McLAUGHLIN H ELPHINGSTONE E and HALL B Aqueous polymers for treating clays in oil and gas Paper SPE 6008 5pt Annual fall technical conferen ce and exhibition New Orleans US A October 3-6 1976

54 YOUNG B McLAUGHLIN H and BORCHARDT J Clay stabilization agentsshytheir effectiveness in high-temperature steam JPT December 1980 pp 21 21-2131

55 WILLIAMS L and UNDERDOWN D New polymer offers effective permanent clay stabilization treatment JPT July 1981 pp 1211-1217

56 HIMES R VINSON E and SIMON D Clay stabilization in low-permeability formations SPEPE August 1991 pp 252-258

57 SCHEUERMAN R Guidelines for using HEC polymers for viscosifying solids-free completion and workover brines JPT February 1983 pp 306-314

58 GOGARTY W Mobility control with polymer solutions SPEJJune1967 pp161-173

59 SHUPE R Chemical stability of polyacryl-amide polymers JPT August 1981 1513-1529

60 MACK J and WARREN J Performance and operation of a crosslinked polymer flood at sage spring creek Unit A Natrona County Wyoming JPT July 1984 pp1145-1156

61 NUMALLAH N A practical method for the evaluation of weak geals JPT February 1987 pp 195-202

62 NEEDHAM R and DOE P Polymer flooding review JPT December 1987 pp 1503-1507

126

63 DOLL T and HANSON M Performance and operation of the Hamm Minnelusa Sand Unit Campbell County Wyoming JPT December 1987 pp 1565-1570

64 WIDMYER R WILLIAMS D and WARE J Performance evaluation of the Salem Unit SufactanUpolymer Pilot JPT Sepember 1988 pp 1217-1226

65 VOSSOUGHI S and BULLER C Permeability modification by in-situ gelati on with a newly discovered biopolymer SPERENovember 1991 pp 485-489

66 HOLLEY Sand CAYLAS J Design operation and evaluation of a surfactant polymer field pilot test SPERE February 1992 pp 9-14

67 RIVENO R DONCHE A and NOLK CH Improved scleroglucan for polymer flooding under harsh reservoir conditions SPERE February1992 pp15-20

68 EGGERT R WILHITE G and GREEN D Experimenta i measurement of the persistence of permeability reduction in porous media treated with xanthan Cr (iii) gel systems SPERE February 1992 pp 29-35

69 XIANGAN Y ET AL Calculation of IPR curves for Oil wells in polymer-flood reservoirs JPT January 1998p 81

70 MAHENDRA P ET AL Field implementation of a polymer EOR technique JPT January 1998 pp 87-88

71 TWEIDT L ET AL Improving sweep efficiency in a naturally fractured reservoir with polymer gels JPT January 1988 pp 89-90

72 PRUDHOMME R and UHL J Rheology enhancement by molecular association complexes SPEJ August 1984 pp 431-434

73 LLAO W PolymerBentonite Soil admixtures as hydraulic barriers SPEDE June 1989 pp 153-161

74 IMCO Datos de productos Drilpol

75 IMCO Tecnologia aplicada de lodos Sptima Edicion Houston Texas US A 1981 Capitulo 13

76 BOURGOYNE A Jr y otros Applied drilling engineering SPE Textbook Series Vol 2 Richardson Texas 1991 p 65

77 AMTEX OUIMICA CMC Medellin 1985 52 pp

78 HUGHES T JONES T and HOUWEN O The chemical composition of CMC and its relationship to the rheology and fluid loss of drilling fluids Paper IADCSPE 20000 IADCSPE Drilling Conference Houston Texas February 27-March 2 1990

12 7

Page 2: 6.8 HIDRAuLlCA DE LA PERFORACI6N ROTATORIA

o

q V = --------shy

nt 245(dh - do ~ )

q= 245(9875~ - 5 )225 galonesminuto

q= 399 42 galonesminuto

- Velocidades

v Velocidad dentro de la tuberia

Velocidad dentro de los co ll ares o

l Velocidad en anular tuberia - hovo I

0 Veloc idad en anular collares - hoyo

Segun la ecuaci6n (30)

o v = q = 39942 pies

245di ~ 245( 4276) se9 = 892 piesseg

o v = q _ 39942 pies ( 245(dci )2 - 245(3) seg = 181 3 piesseg

V nt = 225 piesseg o

v = q _ 39942 piesseg nr 245(dh 2 _ dco~ ) - 245(9 8752 -7752) = 436 piesseg

Velocidades criticas

- En el interior de la sana

Velocidad critica dentro de la tuberia CI

Ve locidad cr itica dentro de los collares d

Segun ecuaci6n (63)

1078)1 + 1078()1~ + 12 34diTP ( g V( P plesseg

Pgdi

1078x 43 + 1078(43 + 12 3 4x42762x20x12) Jl 2 = plesseg

12x4276

= 587 piesseg

116 LECTUlUS SOBRE LODOS DE PERFOlUCl6N

Si se aplica (63) con laquodciraquo en vez de laquodiraquo

I 078x43 + I 078( 43 2 + 1234x3 2 x20x12) 112 V = piesseg

cc 12 x3

= 634 piesseg

- En el anular

I e Velocidad critica en el anular tuberia-hoyo

I e Velocidad critica en el anular collares-hoyo

Segun la ecuaci6n (75)

I078J1 p + 1 0 78~~ + +9256(dh - do)2 7 p g ] (n = -------- ---------------=-- piesseg

Pg(dh - do)

_ 1 078x 43 + 10 78[43 2 + 9256(9 875 - 5) 20x l 2 2 piesseg

12(9875 - 5)

=51 piesseg

Ecuaci6n (75) con dco en vez de do 112

I078x43 + 1 078[43 2+ 9256(9875 - 775)2 20x12 ] pies =V cnc 12(9875 - 775) seg

= 643 piesseg

Tipo de f1ujo

Se comparan veocidades y veocidades cr iticas

- En e in terior de a sarta

V) VC1 =gt Flujo tu rbu lenlo denlro del interior de la tuberia y los col lares

v() vcc

En el anular

Vat ltVcat =gt Flujo laminar en el anular vac ( vcac

118

Perdidas de presion par friccion

En el interior de la sarta donde el flujo es turbulento se aplican Reynols (con ~ ) y Fannig (ecuacion 11)

- En el interior de la tuberia

928pg vdi _ 928x12x892x4276 = 987787 NR = II - 43

p

De carta de Stanton IF = 0008 para este caso

Si se aplica Fanning

t1pf = fFLX(P )v 1258dig

2 0008x(lOOOO-400)x12x892 Ipc = 664681pc

=gt t1pf = 258x4276

En el interior de los collares

928pg vcdci _ 928x12x1813x3 = 140857 NR = - 43

fJ p

De grafico de Stanton

h-= 00075

= de Fanning

fFxLcxPgV I O0075x400x12x1813 It1p = pc = pc

f 258dci 258x3

= 152881pc

En el anular dande el fluja es laminar se aplica la ecuacion 72

- En el anular hoyo - tuberia

t1 = Il p (10000 - L)va + tJ 1 0000 - Le)

pf 1OOO(dh - do 200(dh - do)

43(10000 - 400 )225 20(10000 - 400) ~ t1p = + -----~

f 1000(9875 - 5) 200(9875 - 5)

~ t1pf = 2361pc

LECTURAS SOBRE LODOS DE PERFORACION

- En el anular hoyo - collares

I1p = jpLc v ac + T y Lc

f 1000(dh - deo 200( dh - dco)

43x400x436 20x400 = + -------shy1000(9875 - 775 200(9875 - 775)

= 35431pc

Perdidas totales de presi6n debidas a fricci6n en la sarta en el hoyo

(66468 + 15288 + 236 + 3543)lpc = 1088 991pc

Perdidas de presion debidas a friccion en conexiones de superficie

EI tipo numero y longitud de estas conexiones varian de equipo a equipo Generalmente para calcular las perdidas de presion debidas a elias se tienen en cuenta la tuberia parada la manguera el eslabon giratorio (swivel) la Kelly el coda que une la tuberia parada a la manguera y elcuello de ganso Combinaciones tfpicas de estos elementos aparecen en la Tabla 6 Los valores de perdidas de presion dados como longitudes equivalentes en esta tabla presentan una exactitud aceptable para la mayoria de los cas os practicos

Para el sistema que analizamos se asume que la combinaci6n NO 4 representa bien las caracteristicas de nuestras conexiones en superficie 579 pies de tuber ia de 5 pulgadas de diametro externo y 195 Ibfpie representan las perdidas de presi6n en conexiones superficiales

TABLA 6 Perdidas de presion por fricci6n en conexiones de superficie

Combinaciones ipicas Componenes de

NO 3 NO 4 No 1 No 2 conexiones en

d (L) d (L) (L )d (L)superficie d

pulg pies pulg pies pulg pies pulg pies

35 40 4 45Tuberla de perforaci6n 3 40 4 45

25 55Manguera 2 45 3 55 3 55

Swivel 25 5 25 52 4 3 6

Kelly y cuello de ganso 25 40 325 40 325 40 4 40

Tuberia de perforaGi6n Longitud equivalente de las conexiones en pies de latuberia de perforaci6n

pesodo pulg Ibfpie

133 35 437 161

76145 166 479 340

195 5 816 579

bull Referencia 97 p 51

INTRODUCCION AL TRABAJO CON M ODELOS REOL6c I COS 119

120

Las perdidas de presion por unidad de longitud para la tuberia de perforacion fueron

664 68 Ipc

9600pies

Las perdidas en superficie son 66468 x5791pc =4009 Ipc 9600

Tambien se puede aplicar Fanning para encontrar estas perdidas

O008xS79x12x892 2 Ipc

2S8x4276

Perdidas en superficie = 4009 Ipc

Perdidas totales hasta ahora (colla res y tuberia en el hoyo conexiones en superficie) = (108899+4009)lpc =112908Ipc

Perdidas de presion en las boquillas de la broca

Para f1ujo ideal (sin friccion) de un fluido incompresible a traves de orificios pequenos (tales como las boquillas) la ecuacion para balance de presion (ecuaci6n 9) se reduce a

P (2 2) ( 78 ) PI + ~- v - V2 = P2 2gc

EI subindice J se refiere a las condiciones de estado estable aguas arriba de las boquillas de la broca yel 2 se refiere alas condiciones reinantes alas salidas Cuando el areade salidaA2 es mucho menor que la de entrada A l vi raquo v~ v~ se puede despreciar y de la ecuaci6n (78) se puede obtener v2

( 79 ) 2gc (p ~ P2) V2 == P

Para obtener la expresi6n (79) no se ha tenido en cuenta el termino (pF) en la ecuaci6n 9 Tal termino nos da las perdidas por fricci6n inevitables Para compensar esta omision se utiliza el coeficiente de descarga Cd

g ( 80 ) = Cd12 c (p - pz)Vz p

LECTURAS SOBRE WDOS DE PERFORACION

De (80)

( 81 )

P es la caida de presion a traves de la restriccion ( boquillas)

Como v = qA al reemplazar en (81 ) ( 82 )

en unidades practicas de ingenieria 02

pq ( 83 )

A es el area seccional de flujo en la salida La suma de las areas de las boquillas nos dan el area total de flujo C varia entre 08 y 098 un valor de 095 es el utilizado en casos practicos

AI pasar a traves de las boquillas aproximadamente un 10 de la energia por unidad de masa de fluido utilizada en atravesar dichos orificios (p p ) se disipa como calor

I el 90 restante se convierte en energia cinetica Cuando el lodo choca con el hoyo y arrastra los cortes bajo la broca esta energia cinetica tambien se disipa como calor

Siguiendo con el ejemplo propuesto y si se supone que se usa una broca de tres conos y boquillas de 0375 pulgadas de diametro

Area de cada boquilla = 01104 pulgadas2

Area tota l considerada = 3 x 01104 pulgadas2

=03312 pulgadas 2

De ecuacion (83) las perdidas de presion en boquillas P son

An = 12x(3 9942) 2 Ipc = 160722 I c ~J 12032xO9S2xO33 122 P

Las perdidas totales de presion (co ll ares y tuber ia en el hoyo conex iones en superfic ie y boqu il las) seran

(1129 08+1607 22)lpc = 2736 3 Ipc

o Caudal manejado por cada boquilla (q)

o AtAI X q con Ai area de cad a boquill a At area total

q = 01 104 x39942 galones =13333 galones 03312 minuto minuto

J(()DLCClON1 L TRA BAJO CO iIODELOS R[0I0CICOS 121

122

Velocidad de salida (v) en cad a boquilla (se consideraron de Igual area)

De la ecuacion (30)

133 33 d v = pIes segun 0 = 38731 pIessegundo

I 2448(0 375t

Potencia requerida de la bomba de lodo

Para suminislrar la presion tolal de 27363Ipc la polencia de la(s) bomba(s) en superficie debe ser minima de

tPtotntxq = 27363~x 39942galones bbl pulg2 minuto x 42gal

3 25615pie 122pulg x HP = 63852HP

x bbl x pmiddotle2 Ibf - pie33000 -shy

mlnuto

Para lener en cuenla las perdidas de energia por friccion mecanica denlro de la bomba y olros imprevistos se acostumbra ulilizar una eficiencia mecanica de 0 85

63852 HP = 75120HPPolencia total requerida es 085

LECTURASSaBRE LaDaS DE PERFORAC6N

REFERENCIAS

1 AMERICAN PETROLEUM INSTITUTE Glossary of drilling-fluid and associated terms API Production Department Dallas Texas 1985 23 pp

2 IMCO Applied mud technology Seventh edition Houston Texas 1981

3 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing drilling fluids API Production Department Dallas Texas 198547 pp

4 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing watershybased drilling fluids AP I Production Department Dallas Texas 199046 pp

5 BOURGOYNE A Jr y otros Applied Drilling Engineering SPE Textbook Series Vol 2 Richardson Texas 1991 510 pp

6 NL BAROID Productos y servicios BAROID Guia de equipo petrolero 1979 pp 214 -243

7 AMERICAN PETROLEUM INSTITUTE Standard procedure for laboratory testing drilling fluids API Production Department Dallas Texas 1990 42 pp

8 BETEJTIN A Curso de mineralogia Editorial MIR Moscu 1977 739 pp

9 ESCOBAR C YSAAVEDRA F Sensibilidad y estabilizaci6n de arcillas Revent6n Edici6n especial - Memorias de la segunda semana teurocnica de Ingenieria de Petr6leos UIS Bucaramanga Agosto 14 - 18 de 1989 p 39

10 KELLY J Jr Drilling fluids selection performance and quality control JPT Mayo 1983 pp 889 - 898

11 WORLD OIL World Oils 1997 guide to drilling completion and workover fluids World Oil junio 1997 pp 75-116

12 CHURAN M CANDLER JE and FREEMAN M On - site and off-site monitoring of Synthetic - based drilling fluids for oil contamination SPEEPA Exploration and Production Environmental Conference Dallas Texas 3-5 March 1997

13 FRIEDHEIM JE Second - generation synthetic drilling fluids JPT julio de 1997 pp 724-725

14 GROWCOCK F And FREDERICK T Operational limits of synthetic drilling fluids SPEDC September 1996 pp 132-136

15 MEDLEY G H ET AL Field application of lighweight hollow - glass - sphere drilling fluid JPT November 1997 pp 1209 - 1211

16 AYERS R SAUER T and ANDERSON P The generic mud concept for NPDES permitting of offshore drilling discharges JPT March de 1985 pp 475-480

123

12-1

17 BLEIER R Predicting mud toxicity JPT October 1991 pp 1192-1193

18 CLARK RK Impact of environmental regulations on drilling - fluid techonol ogy JPT sept iembre de 1994 pp 804-809

19 BRAKELJ ET AL Cuttings reinjection in Brent reduces drilled cuttings discharge to the sea JPT April 1997 p 412

20 THURBER N Waste minimization for land - based drilling operations JPT May 1992 pp 542-547

21 GODEC M and BIGLARBIGI K Economic effects of environmental regulations on finding and developing crude oil in the USJPTJanuary1991 pp 72-79

22 SMITH A L Securing the future In partnership with the environment JPT June 1996 pp 526-532

23 CHATTERJI J and BORCHARDT J Applications of water-soluble polymers in the oil field JPT November 1981 pp 2042-2056

24 GRAY G and DARLEY H Composition and properties of oil well drilling fluids Fourth edition Houston Texas Gulf Publishing Company 1981 630 pp

25 BROWNING W and CHESSER B Polymer-polyelectrolyte drilling fluid systems JPT October 1972 pp 1255-1263

26 SIFFERMAN T and GREENKORN R Drag reduction in three distinctly different fluid systems SPEJ December 1981 pp 663-669

27 FISK J and JAMISON D Physical properties of drilling fluids at high temperatures and pressures SPEDE December 1989 pp 341-345

28 CHESSER B and ENRIGHT D High-temperature stabilization of drilling fluids with a low-molecular-weight copolymer JPT June 1980 pp 950-956

29 THOMAS DC Thermal stability of starch-and carboxymethyl cellulose- based polyme rs used in drill ing fluids SPEJ April 1982 pp 171-180

30 STE IGER R Fundamentals and use of potassiumpolymerdrilling fluids to minimize drilling and completion problems associated with hydratable clays JPT August 1982 pp 1661-1670

31 NYLAND T ET AL Addit ive effectiveness and contaminant influence on fluidshyloss control in water-based muds SPEDE June 1988 pp 195-203

32 HARTMANA ET AL Analysis of mudcake structures formed under simulated borehole conditions SPEDE December 1988 pp 395-402

33 HALE A Method to quantific viscosity effects ondispersion test improves testing of drilling polymers IADCSPE 19954 IADCSPE Drilling Conference Houston Texas Feb 27- Mar 2 1990

34 PLANK J and GOSSEN F Visualization of fluid-loss polymers in drilling-mud filter cakes SPEDE September 1991 pp 203-208

35 KOTKOSKIE T ET AL Inhibition of gas hydrates in water-based drilling muds SPEDE june 1992 pp130-136

36 EZZAT A ROSSER H and AL-HUMAM A Control of microbiological activity in biopolymer- based drilling muds Paper SPE 399285 SPE Middle East Drilling Technology Conference Baharin November 23-25 1997

37 WHISONANT R And HALL F Combining continuous improvement in acid fracturing propellant stimulations and polymer technologies to increase production and developp additional reserves in a mature oil field Paper SPE 38789 Sintesis publicada en JPT February 1988 pp 86-88

38 WHITE J And MEANS J Polysacharides derivates provides high viscosity and low friction at low surface fluid temperature JPT September 1975 pp 1067-1073

39 TYSSEED And VETTERO Chemical characterization problems of water- soluble polymers SPEJ December1981 pp 721-730

40 CONWAY M ET AL Chemical for the rheological behavior of crosslinked fluid systemsJPT February 1983 pp 315-320

41 GULBIES J ET AL Encapsulated breaker for aqueous polymeric fluidsSPEPE February1992 pp 9-14

42 KECK R NEHNER W and STRUMOLOG A New method for predicting fr iction - pressures and rheologic of proppant- laden fracturing fluids SPEDE February 1992 pp 29-33

43 NIMERINCK K McCONNEL S SAMUELSONM Compatibility of resin-Co ated Proppants With Crosslinked Fracturing Fluids SPEPE February 1992 pp 29-33

44 HARRIS P And REINDENBACHV High-temperarure rheological study of foam fracturing fluids JPT May 1987 pp 613-619

45 THOMPSON J ET AL New continuos - mis process for gelling anhydrous methanol minimices hazards JPT July 1992 pp 832-839

46 NORMAN L CONWAYM And WILSON M Temperature- stable acid - gelling polymers laboratory evaluat ion and fields results JPT November 1984 pp 2011-2018

125

u arlV ~-

47 TERRACINA j ET AL Temporary ch emical block brings efficiency and economy to Eastern US workoveroperations SPEPE February 1992 pp 70-74

48 WHITEJ GODDARDJ and PHILIPS H Use of polymers to control water production in oil well s JPT February 1973 pp 143-150

49 TORREST R Deposit buildup during gravel packing with viscous polymer solutions and water JPT February 1983 pp 325-328

50 UNDERDOWN D DAS K and NGUYEN H Gravel packing in highly deviated wells with a crosslinked polymersystem JPT December1985pp2197-2202

51 OBRIEN D And CHENEVERT M Stabilizing sensitive shales with inhibited potassi um- based dri lli ng flu ids JPT September 1973 pp 1039-1100

52 CLARK R ET AL Poliacrylamidel potassium-chloride mud for drilling watershysensitive shales JPT June 1976 pp 719-727

53 McLAUGHLIN H ELPHINGSTONE E and HALL B Aqueous polymers for treating clays in oil and gas Paper SPE 6008 5pt Annual fall technical conferen ce and exhibition New Orleans US A October 3-6 1976

54 YOUNG B McLAUGHLIN H and BORCHARDT J Clay stabilization agentsshytheir effectiveness in high-temperature steam JPT December 1980 pp 21 21-2131

55 WILLIAMS L and UNDERDOWN D New polymer offers effective permanent clay stabilization treatment JPT July 1981 pp 1211-1217

56 HIMES R VINSON E and SIMON D Clay stabilization in low-permeability formations SPEPE August 1991 pp 252-258

57 SCHEUERMAN R Guidelines for using HEC polymers for viscosifying solids-free completion and workover brines JPT February 1983 pp 306-314

58 GOGARTY W Mobility control with polymer solutions SPEJJune1967 pp161-173

59 SHUPE R Chemical stability of polyacryl-amide polymers JPT August 1981 1513-1529

60 MACK J and WARREN J Performance and operation of a crosslinked polymer flood at sage spring creek Unit A Natrona County Wyoming JPT July 1984 pp1145-1156

61 NUMALLAH N A practical method for the evaluation of weak geals JPT February 1987 pp 195-202

62 NEEDHAM R and DOE P Polymer flooding review JPT December 1987 pp 1503-1507

126

63 DOLL T and HANSON M Performance and operation of the Hamm Minnelusa Sand Unit Campbell County Wyoming JPT December 1987 pp 1565-1570

64 WIDMYER R WILLIAMS D and WARE J Performance evaluation of the Salem Unit SufactanUpolymer Pilot JPT Sepember 1988 pp 1217-1226

65 VOSSOUGHI S and BULLER C Permeability modification by in-situ gelati on with a newly discovered biopolymer SPERENovember 1991 pp 485-489

66 HOLLEY Sand CAYLAS J Design operation and evaluation of a surfactant polymer field pilot test SPERE February 1992 pp 9-14

67 RIVENO R DONCHE A and NOLK CH Improved scleroglucan for polymer flooding under harsh reservoir conditions SPERE February1992 pp15-20

68 EGGERT R WILHITE G and GREEN D Experimenta i measurement of the persistence of permeability reduction in porous media treated with xanthan Cr (iii) gel systems SPERE February 1992 pp 29-35

69 XIANGAN Y ET AL Calculation of IPR curves for Oil wells in polymer-flood reservoirs JPT January 1998p 81

70 MAHENDRA P ET AL Field implementation of a polymer EOR technique JPT January 1998 pp 87-88

71 TWEIDT L ET AL Improving sweep efficiency in a naturally fractured reservoir with polymer gels JPT January 1988 pp 89-90

72 PRUDHOMME R and UHL J Rheology enhancement by molecular association complexes SPEJ August 1984 pp 431-434

73 LLAO W PolymerBentonite Soil admixtures as hydraulic barriers SPEDE June 1989 pp 153-161

74 IMCO Datos de productos Drilpol

75 IMCO Tecnologia aplicada de lodos Sptima Edicion Houston Texas US A 1981 Capitulo 13

76 BOURGOYNE A Jr y otros Applied drilling engineering SPE Textbook Series Vol 2 Richardson Texas 1991 p 65

77 AMTEX OUIMICA CMC Medellin 1985 52 pp

78 HUGHES T JONES T and HOUWEN O The chemical composition of CMC and its relationship to the rheology and fluid loss of drilling fluids Paper IADCSPE 20000 IADCSPE Drilling Conference Houston Texas February 27-March 2 1990

12 7

Page 3: 6.8 HIDRAuLlCA DE LA PERFORACI6N ROTATORIA

Si se aplica (63) con laquodciraquo en vez de laquodiraquo

I 078x43 + I 078( 43 2 + 1234x3 2 x20x12) 112 V = piesseg

cc 12 x3

= 634 piesseg

- En el anular

I e Velocidad critica en el anular tuberia-hoyo

I e Velocidad critica en el anular collares-hoyo

Segun la ecuaci6n (75)

I078J1 p + 1 0 78~~ + +9256(dh - do)2 7 p g ] (n = -------- ---------------=-- piesseg

Pg(dh - do)

_ 1 078x 43 + 10 78[43 2 + 9256(9 875 - 5) 20x l 2 2 piesseg

12(9875 - 5)

=51 piesseg

Ecuaci6n (75) con dco en vez de do 112

I078x43 + 1 078[43 2+ 9256(9875 - 775)2 20x12 ] pies =V cnc 12(9875 - 775) seg

= 643 piesseg

Tipo de f1ujo

Se comparan veocidades y veocidades cr iticas

- En e in terior de a sarta

V) VC1 =gt Flujo tu rbu lenlo denlro del interior de la tuberia y los col lares

v() vcc

En el anular

Vat ltVcat =gt Flujo laminar en el anular vac ( vcac

118

Perdidas de presion par friccion

En el interior de la sarta donde el flujo es turbulento se aplican Reynols (con ~ ) y Fannig (ecuacion 11)

- En el interior de la tuberia

928pg vdi _ 928x12x892x4276 = 987787 NR = II - 43

p

De carta de Stanton IF = 0008 para este caso

Si se aplica Fanning

t1pf = fFLX(P )v 1258dig

2 0008x(lOOOO-400)x12x892 Ipc = 664681pc

=gt t1pf = 258x4276

En el interior de los collares

928pg vcdci _ 928x12x1813x3 = 140857 NR = - 43

fJ p

De grafico de Stanton

h-= 00075

= de Fanning

fFxLcxPgV I O0075x400x12x1813 It1p = pc = pc

f 258dci 258x3

= 152881pc

En el anular dande el fluja es laminar se aplica la ecuacion 72

- En el anular hoyo - tuberia

t1 = Il p (10000 - L)va + tJ 1 0000 - Le)

pf 1OOO(dh - do 200(dh - do)

43(10000 - 400 )225 20(10000 - 400) ~ t1p = + -----~

f 1000(9875 - 5) 200(9875 - 5)

~ t1pf = 2361pc

LECTURAS SOBRE LODOS DE PERFORACION

- En el anular hoyo - collares

I1p = jpLc v ac + T y Lc

f 1000(dh - deo 200( dh - dco)

43x400x436 20x400 = + -------shy1000(9875 - 775 200(9875 - 775)

= 35431pc

Perdidas totales de presi6n debidas a fricci6n en la sarta en el hoyo

(66468 + 15288 + 236 + 3543)lpc = 1088 991pc

Perdidas de presion debidas a friccion en conexiones de superficie

EI tipo numero y longitud de estas conexiones varian de equipo a equipo Generalmente para calcular las perdidas de presion debidas a elias se tienen en cuenta la tuberia parada la manguera el eslabon giratorio (swivel) la Kelly el coda que une la tuberia parada a la manguera y elcuello de ganso Combinaciones tfpicas de estos elementos aparecen en la Tabla 6 Los valores de perdidas de presion dados como longitudes equivalentes en esta tabla presentan una exactitud aceptable para la mayoria de los cas os practicos

Para el sistema que analizamos se asume que la combinaci6n NO 4 representa bien las caracteristicas de nuestras conexiones en superficie 579 pies de tuber ia de 5 pulgadas de diametro externo y 195 Ibfpie representan las perdidas de presi6n en conexiones superficiales

TABLA 6 Perdidas de presion por fricci6n en conexiones de superficie

Combinaciones ipicas Componenes de

NO 3 NO 4 No 1 No 2 conexiones en

d (L) d (L) (L )d (L)superficie d

pulg pies pulg pies pulg pies pulg pies

35 40 4 45Tuberla de perforaci6n 3 40 4 45

25 55Manguera 2 45 3 55 3 55

Swivel 25 5 25 52 4 3 6

Kelly y cuello de ganso 25 40 325 40 325 40 4 40

Tuberia de perforaGi6n Longitud equivalente de las conexiones en pies de latuberia de perforaci6n

pesodo pulg Ibfpie

133 35 437 161

76145 166 479 340

195 5 816 579

bull Referencia 97 p 51

INTRODUCCION AL TRABAJO CON M ODELOS REOL6c I COS 119

120

Las perdidas de presion por unidad de longitud para la tuberia de perforacion fueron

664 68 Ipc

9600pies

Las perdidas en superficie son 66468 x5791pc =4009 Ipc 9600

Tambien se puede aplicar Fanning para encontrar estas perdidas

O008xS79x12x892 2 Ipc

2S8x4276

Perdidas en superficie = 4009 Ipc

Perdidas totales hasta ahora (colla res y tuberia en el hoyo conexiones en superficie) = (108899+4009)lpc =112908Ipc

Perdidas de presion en las boquillas de la broca

Para f1ujo ideal (sin friccion) de un fluido incompresible a traves de orificios pequenos (tales como las boquillas) la ecuacion para balance de presion (ecuaci6n 9) se reduce a

P (2 2) ( 78 ) PI + ~- v - V2 = P2 2gc

EI subindice J se refiere a las condiciones de estado estable aguas arriba de las boquillas de la broca yel 2 se refiere alas condiciones reinantes alas salidas Cuando el areade salidaA2 es mucho menor que la de entrada A l vi raquo v~ v~ se puede despreciar y de la ecuaci6n (78) se puede obtener v2

( 79 ) 2gc (p ~ P2) V2 == P

Para obtener la expresi6n (79) no se ha tenido en cuenta el termino (pF) en la ecuaci6n 9 Tal termino nos da las perdidas por fricci6n inevitables Para compensar esta omision se utiliza el coeficiente de descarga Cd

g ( 80 ) = Cd12 c (p - pz)Vz p

LECTURAS SOBRE WDOS DE PERFORACION

De (80)

( 81 )

P es la caida de presion a traves de la restriccion ( boquillas)

Como v = qA al reemplazar en (81 ) ( 82 )

en unidades practicas de ingenieria 02

pq ( 83 )

A es el area seccional de flujo en la salida La suma de las areas de las boquillas nos dan el area total de flujo C varia entre 08 y 098 un valor de 095 es el utilizado en casos practicos

AI pasar a traves de las boquillas aproximadamente un 10 de la energia por unidad de masa de fluido utilizada en atravesar dichos orificios (p p ) se disipa como calor

I el 90 restante se convierte en energia cinetica Cuando el lodo choca con el hoyo y arrastra los cortes bajo la broca esta energia cinetica tambien se disipa como calor

Siguiendo con el ejemplo propuesto y si se supone que se usa una broca de tres conos y boquillas de 0375 pulgadas de diametro

Area de cada boquilla = 01104 pulgadas2

Area tota l considerada = 3 x 01104 pulgadas2

=03312 pulgadas 2

De ecuacion (83) las perdidas de presion en boquillas P son

An = 12x(3 9942) 2 Ipc = 160722 I c ~J 12032xO9S2xO33 122 P

Las perdidas totales de presion (co ll ares y tuber ia en el hoyo conex iones en superfic ie y boqu il las) seran

(1129 08+1607 22)lpc = 2736 3 Ipc

o Caudal manejado por cada boquilla (q)

o AtAI X q con Ai area de cad a boquill a At area total

q = 01 104 x39942 galones =13333 galones 03312 minuto minuto

J(()DLCClON1 L TRA BAJO CO iIODELOS R[0I0CICOS 121

122

Velocidad de salida (v) en cad a boquilla (se consideraron de Igual area)

De la ecuacion (30)

133 33 d v = pIes segun 0 = 38731 pIessegundo

I 2448(0 375t

Potencia requerida de la bomba de lodo

Para suminislrar la presion tolal de 27363Ipc la polencia de la(s) bomba(s) en superficie debe ser minima de

tPtotntxq = 27363~x 39942galones bbl pulg2 minuto x 42gal

3 25615pie 122pulg x HP = 63852HP

x bbl x pmiddotle2 Ibf - pie33000 -shy

mlnuto

Para lener en cuenla las perdidas de energia por friccion mecanica denlro de la bomba y olros imprevistos se acostumbra ulilizar una eficiencia mecanica de 0 85

63852 HP = 75120HPPolencia total requerida es 085

LECTURASSaBRE LaDaS DE PERFORAC6N

REFERENCIAS

1 AMERICAN PETROLEUM INSTITUTE Glossary of drilling-fluid and associated terms API Production Department Dallas Texas 1985 23 pp

2 IMCO Applied mud technology Seventh edition Houston Texas 1981

3 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing drilling fluids API Production Department Dallas Texas 198547 pp

4 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing watershybased drilling fluids AP I Production Department Dallas Texas 199046 pp

5 BOURGOYNE A Jr y otros Applied Drilling Engineering SPE Textbook Series Vol 2 Richardson Texas 1991 510 pp

6 NL BAROID Productos y servicios BAROID Guia de equipo petrolero 1979 pp 214 -243

7 AMERICAN PETROLEUM INSTITUTE Standard procedure for laboratory testing drilling fluids API Production Department Dallas Texas 1990 42 pp

8 BETEJTIN A Curso de mineralogia Editorial MIR Moscu 1977 739 pp

9 ESCOBAR C YSAAVEDRA F Sensibilidad y estabilizaci6n de arcillas Revent6n Edici6n especial - Memorias de la segunda semana teurocnica de Ingenieria de Petr6leos UIS Bucaramanga Agosto 14 - 18 de 1989 p 39

10 KELLY J Jr Drilling fluids selection performance and quality control JPT Mayo 1983 pp 889 - 898

11 WORLD OIL World Oils 1997 guide to drilling completion and workover fluids World Oil junio 1997 pp 75-116

12 CHURAN M CANDLER JE and FREEMAN M On - site and off-site monitoring of Synthetic - based drilling fluids for oil contamination SPEEPA Exploration and Production Environmental Conference Dallas Texas 3-5 March 1997

13 FRIEDHEIM JE Second - generation synthetic drilling fluids JPT julio de 1997 pp 724-725

14 GROWCOCK F And FREDERICK T Operational limits of synthetic drilling fluids SPEDC September 1996 pp 132-136

15 MEDLEY G H ET AL Field application of lighweight hollow - glass - sphere drilling fluid JPT November 1997 pp 1209 - 1211

16 AYERS R SAUER T and ANDERSON P The generic mud concept for NPDES permitting of offshore drilling discharges JPT March de 1985 pp 475-480

123

12-1

17 BLEIER R Predicting mud toxicity JPT October 1991 pp 1192-1193

18 CLARK RK Impact of environmental regulations on drilling - fluid techonol ogy JPT sept iembre de 1994 pp 804-809

19 BRAKELJ ET AL Cuttings reinjection in Brent reduces drilled cuttings discharge to the sea JPT April 1997 p 412

20 THURBER N Waste minimization for land - based drilling operations JPT May 1992 pp 542-547

21 GODEC M and BIGLARBIGI K Economic effects of environmental regulations on finding and developing crude oil in the USJPTJanuary1991 pp 72-79

22 SMITH A L Securing the future In partnership with the environment JPT June 1996 pp 526-532

23 CHATTERJI J and BORCHARDT J Applications of water-soluble polymers in the oil field JPT November 1981 pp 2042-2056

24 GRAY G and DARLEY H Composition and properties of oil well drilling fluids Fourth edition Houston Texas Gulf Publishing Company 1981 630 pp

25 BROWNING W and CHESSER B Polymer-polyelectrolyte drilling fluid systems JPT October 1972 pp 1255-1263

26 SIFFERMAN T and GREENKORN R Drag reduction in three distinctly different fluid systems SPEJ December 1981 pp 663-669

27 FISK J and JAMISON D Physical properties of drilling fluids at high temperatures and pressures SPEDE December 1989 pp 341-345

28 CHESSER B and ENRIGHT D High-temperature stabilization of drilling fluids with a low-molecular-weight copolymer JPT June 1980 pp 950-956

29 THOMAS DC Thermal stability of starch-and carboxymethyl cellulose- based polyme rs used in drill ing fluids SPEJ April 1982 pp 171-180

30 STE IGER R Fundamentals and use of potassiumpolymerdrilling fluids to minimize drilling and completion problems associated with hydratable clays JPT August 1982 pp 1661-1670

31 NYLAND T ET AL Addit ive effectiveness and contaminant influence on fluidshyloss control in water-based muds SPEDE June 1988 pp 195-203

32 HARTMANA ET AL Analysis of mudcake structures formed under simulated borehole conditions SPEDE December 1988 pp 395-402

33 HALE A Method to quantific viscosity effects ondispersion test improves testing of drilling polymers IADCSPE 19954 IADCSPE Drilling Conference Houston Texas Feb 27- Mar 2 1990

34 PLANK J and GOSSEN F Visualization of fluid-loss polymers in drilling-mud filter cakes SPEDE September 1991 pp 203-208

35 KOTKOSKIE T ET AL Inhibition of gas hydrates in water-based drilling muds SPEDE june 1992 pp130-136

36 EZZAT A ROSSER H and AL-HUMAM A Control of microbiological activity in biopolymer- based drilling muds Paper SPE 399285 SPE Middle East Drilling Technology Conference Baharin November 23-25 1997

37 WHISONANT R And HALL F Combining continuous improvement in acid fracturing propellant stimulations and polymer technologies to increase production and developp additional reserves in a mature oil field Paper SPE 38789 Sintesis publicada en JPT February 1988 pp 86-88

38 WHITE J And MEANS J Polysacharides derivates provides high viscosity and low friction at low surface fluid temperature JPT September 1975 pp 1067-1073

39 TYSSEED And VETTERO Chemical characterization problems of water- soluble polymers SPEJ December1981 pp 721-730

40 CONWAY M ET AL Chemical for the rheological behavior of crosslinked fluid systemsJPT February 1983 pp 315-320

41 GULBIES J ET AL Encapsulated breaker for aqueous polymeric fluidsSPEPE February1992 pp 9-14

42 KECK R NEHNER W and STRUMOLOG A New method for predicting fr iction - pressures and rheologic of proppant- laden fracturing fluids SPEDE February 1992 pp 29-33

43 NIMERINCK K McCONNEL S SAMUELSONM Compatibility of resin-Co ated Proppants With Crosslinked Fracturing Fluids SPEPE February 1992 pp 29-33

44 HARRIS P And REINDENBACHV High-temperarure rheological study of foam fracturing fluids JPT May 1987 pp 613-619

45 THOMPSON J ET AL New continuos - mis process for gelling anhydrous methanol minimices hazards JPT July 1992 pp 832-839

46 NORMAN L CONWAYM And WILSON M Temperature- stable acid - gelling polymers laboratory evaluat ion and fields results JPT November 1984 pp 2011-2018

125

u arlV ~-

47 TERRACINA j ET AL Temporary ch emical block brings efficiency and economy to Eastern US workoveroperations SPEPE February 1992 pp 70-74

48 WHITEJ GODDARDJ and PHILIPS H Use of polymers to control water production in oil well s JPT February 1973 pp 143-150

49 TORREST R Deposit buildup during gravel packing with viscous polymer solutions and water JPT February 1983 pp 325-328

50 UNDERDOWN D DAS K and NGUYEN H Gravel packing in highly deviated wells with a crosslinked polymersystem JPT December1985pp2197-2202

51 OBRIEN D And CHENEVERT M Stabilizing sensitive shales with inhibited potassi um- based dri lli ng flu ids JPT September 1973 pp 1039-1100

52 CLARK R ET AL Poliacrylamidel potassium-chloride mud for drilling watershysensitive shales JPT June 1976 pp 719-727

53 McLAUGHLIN H ELPHINGSTONE E and HALL B Aqueous polymers for treating clays in oil and gas Paper SPE 6008 5pt Annual fall technical conferen ce and exhibition New Orleans US A October 3-6 1976

54 YOUNG B McLAUGHLIN H and BORCHARDT J Clay stabilization agentsshytheir effectiveness in high-temperature steam JPT December 1980 pp 21 21-2131

55 WILLIAMS L and UNDERDOWN D New polymer offers effective permanent clay stabilization treatment JPT July 1981 pp 1211-1217

56 HIMES R VINSON E and SIMON D Clay stabilization in low-permeability formations SPEPE August 1991 pp 252-258

57 SCHEUERMAN R Guidelines for using HEC polymers for viscosifying solids-free completion and workover brines JPT February 1983 pp 306-314

58 GOGARTY W Mobility control with polymer solutions SPEJJune1967 pp161-173

59 SHUPE R Chemical stability of polyacryl-amide polymers JPT August 1981 1513-1529

60 MACK J and WARREN J Performance and operation of a crosslinked polymer flood at sage spring creek Unit A Natrona County Wyoming JPT July 1984 pp1145-1156

61 NUMALLAH N A practical method for the evaluation of weak geals JPT February 1987 pp 195-202

62 NEEDHAM R and DOE P Polymer flooding review JPT December 1987 pp 1503-1507

126

63 DOLL T and HANSON M Performance and operation of the Hamm Minnelusa Sand Unit Campbell County Wyoming JPT December 1987 pp 1565-1570

64 WIDMYER R WILLIAMS D and WARE J Performance evaluation of the Salem Unit SufactanUpolymer Pilot JPT Sepember 1988 pp 1217-1226

65 VOSSOUGHI S and BULLER C Permeability modification by in-situ gelati on with a newly discovered biopolymer SPERENovember 1991 pp 485-489

66 HOLLEY Sand CAYLAS J Design operation and evaluation of a surfactant polymer field pilot test SPERE February 1992 pp 9-14

67 RIVENO R DONCHE A and NOLK CH Improved scleroglucan for polymer flooding under harsh reservoir conditions SPERE February1992 pp15-20

68 EGGERT R WILHITE G and GREEN D Experimenta i measurement of the persistence of permeability reduction in porous media treated with xanthan Cr (iii) gel systems SPERE February 1992 pp 29-35

69 XIANGAN Y ET AL Calculation of IPR curves for Oil wells in polymer-flood reservoirs JPT January 1998p 81

70 MAHENDRA P ET AL Field implementation of a polymer EOR technique JPT January 1998 pp 87-88

71 TWEIDT L ET AL Improving sweep efficiency in a naturally fractured reservoir with polymer gels JPT January 1988 pp 89-90

72 PRUDHOMME R and UHL J Rheology enhancement by molecular association complexes SPEJ August 1984 pp 431-434

73 LLAO W PolymerBentonite Soil admixtures as hydraulic barriers SPEDE June 1989 pp 153-161

74 IMCO Datos de productos Drilpol

75 IMCO Tecnologia aplicada de lodos Sptima Edicion Houston Texas US A 1981 Capitulo 13

76 BOURGOYNE A Jr y otros Applied drilling engineering SPE Textbook Series Vol 2 Richardson Texas 1991 p 65

77 AMTEX OUIMICA CMC Medellin 1985 52 pp

78 HUGHES T JONES T and HOUWEN O The chemical composition of CMC and its relationship to the rheology and fluid loss of drilling fluids Paper IADCSPE 20000 IADCSPE Drilling Conference Houston Texas February 27-March 2 1990

12 7

Page 4: 6.8 HIDRAuLlCA DE LA PERFORACI6N ROTATORIA

118

Perdidas de presion par friccion

En el interior de la sarta donde el flujo es turbulento se aplican Reynols (con ~ ) y Fannig (ecuacion 11)

- En el interior de la tuberia

928pg vdi _ 928x12x892x4276 = 987787 NR = II - 43

p

De carta de Stanton IF = 0008 para este caso

Si se aplica Fanning

t1pf = fFLX(P )v 1258dig

2 0008x(lOOOO-400)x12x892 Ipc = 664681pc

=gt t1pf = 258x4276

En el interior de los collares

928pg vcdci _ 928x12x1813x3 = 140857 NR = - 43

fJ p

De grafico de Stanton

h-= 00075

= de Fanning

fFxLcxPgV I O0075x400x12x1813 It1p = pc = pc

f 258dci 258x3

= 152881pc

En el anular dande el fluja es laminar se aplica la ecuacion 72

- En el anular hoyo - tuberia

t1 = Il p (10000 - L)va + tJ 1 0000 - Le)

pf 1OOO(dh - do 200(dh - do)

43(10000 - 400 )225 20(10000 - 400) ~ t1p = + -----~

f 1000(9875 - 5) 200(9875 - 5)

~ t1pf = 2361pc

LECTURAS SOBRE LODOS DE PERFORACION

- En el anular hoyo - collares

I1p = jpLc v ac + T y Lc

f 1000(dh - deo 200( dh - dco)

43x400x436 20x400 = + -------shy1000(9875 - 775 200(9875 - 775)

= 35431pc

Perdidas totales de presi6n debidas a fricci6n en la sarta en el hoyo

(66468 + 15288 + 236 + 3543)lpc = 1088 991pc

Perdidas de presion debidas a friccion en conexiones de superficie

EI tipo numero y longitud de estas conexiones varian de equipo a equipo Generalmente para calcular las perdidas de presion debidas a elias se tienen en cuenta la tuberia parada la manguera el eslabon giratorio (swivel) la Kelly el coda que une la tuberia parada a la manguera y elcuello de ganso Combinaciones tfpicas de estos elementos aparecen en la Tabla 6 Los valores de perdidas de presion dados como longitudes equivalentes en esta tabla presentan una exactitud aceptable para la mayoria de los cas os practicos

Para el sistema que analizamos se asume que la combinaci6n NO 4 representa bien las caracteristicas de nuestras conexiones en superficie 579 pies de tuber ia de 5 pulgadas de diametro externo y 195 Ibfpie representan las perdidas de presi6n en conexiones superficiales

TABLA 6 Perdidas de presion por fricci6n en conexiones de superficie

Combinaciones ipicas Componenes de

NO 3 NO 4 No 1 No 2 conexiones en

d (L) d (L) (L )d (L)superficie d

pulg pies pulg pies pulg pies pulg pies

35 40 4 45Tuberla de perforaci6n 3 40 4 45

25 55Manguera 2 45 3 55 3 55

Swivel 25 5 25 52 4 3 6

Kelly y cuello de ganso 25 40 325 40 325 40 4 40

Tuberia de perforaGi6n Longitud equivalente de las conexiones en pies de latuberia de perforaci6n

pesodo pulg Ibfpie

133 35 437 161

76145 166 479 340

195 5 816 579

bull Referencia 97 p 51

INTRODUCCION AL TRABAJO CON M ODELOS REOL6c I COS 119

120

Las perdidas de presion por unidad de longitud para la tuberia de perforacion fueron

664 68 Ipc

9600pies

Las perdidas en superficie son 66468 x5791pc =4009 Ipc 9600

Tambien se puede aplicar Fanning para encontrar estas perdidas

O008xS79x12x892 2 Ipc

2S8x4276

Perdidas en superficie = 4009 Ipc

Perdidas totales hasta ahora (colla res y tuberia en el hoyo conexiones en superficie) = (108899+4009)lpc =112908Ipc

Perdidas de presion en las boquillas de la broca

Para f1ujo ideal (sin friccion) de un fluido incompresible a traves de orificios pequenos (tales como las boquillas) la ecuacion para balance de presion (ecuaci6n 9) se reduce a

P (2 2) ( 78 ) PI + ~- v - V2 = P2 2gc

EI subindice J se refiere a las condiciones de estado estable aguas arriba de las boquillas de la broca yel 2 se refiere alas condiciones reinantes alas salidas Cuando el areade salidaA2 es mucho menor que la de entrada A l vi raquo v~ v~ se puede despreciar y de la ecuaci6n (78) se puede obtener v2

( 79 ) 2gc (p ~ P2) V2 == P

Para obtener la expresi6n (79) no se ha tenido en cuenta el termino (pF) en la ecuaci6n 9 Tal termino nos da las perdidas por fricci6n inevitables Para compensar esta omision se utiliza el coeficiente de descarga Cd

g ( 80 ) = Cd12 c (p - pz)Vz p

LECTURAS SOBRE WDOS DE PERFORACION

De (80)

( 81 )

P es la caida de presion a traves de la restriccion ( boquillas)

Como v = qA al reemplazar en (81 ) ( 82 )

en unidades practicas de ingenieria 02

pq ( 83 )

A es el area seccional de flujo en la salida La suma de las areas de las boquillas nos dan el area total de flujo C varia entre 08 y 098 un valor de 095 es el utilizado en casos practicos

AI pasar a traves de las boquillas aproximadamente un 10 de la energia por unidad de masa de fluido utilizada en atravesar dichos orificios (p p ) se disipa como calor

I el 90 restante se convierte en energia cinetica Cuando el lodo choca con el hoyo y arrastra los cortes bajo la broca esta energia cinetica tambien se disipa como calor

Siguiendo con el ejemplo propuesto y si se supone que se usa una broca de tres conos y boquillas de 0375 pulgadas de diametro

Area de cada boquilla = 01104 pulgadas2

Area tota l considerada = 3 x 01104 pulgadas2

=03312 pulgadas 2

De ecuacion (83) las perdidas de presion en boquillas P son

An = 12x(3 9942) 2 Ipc = 160722 I c ~J 12032xO9S2xO33 122 P

Las perdidas totales de presion (co ll ares y tuber ia en el hoyo conex iones en superfic ie y boqu il las) seran

(1129 08+1607 22)lpc = 2736 3 Ipc

o Caudal manejado por cada boquilla (q)

o AtAI X q con Ai area de cad a boquill a At area total

q = 01 104 x39942 galones =13333 galones 03312 minuto minuto

J(()DLCClON1 L TRA BAJO CO iIODELOS R[0I0CICOS 121

122

Velocidad de salida (v) en cad a boquilla (se consideraron de Igual area)

De la ecuacion (30)

133 33 d v = pIes segun 0 = 38731 pIessegundo

I 2448(0 375t

Potencia requerida de la bomba de lodo

Para suminislrar la presion tolal de 27363Ipc la polencia de la(s) bomba(s) en superficie debe ser minima de

tPtotntxq = 27363~x 39942galones bbl pulg2 minuto x 42gal

3 25615pie 122pulg x HP = 63852HP

x bbl x pmiddotle2 Ibf - pie33000 -shy

mlnuto

Para lener en cuenla las perdidas de energia por friccion mecanica denlro de la bomba y olros imprevistos se acostumbra ulilizar una eficiencia mecanica de 0 85

63852 HP = 75120HPPolencia total requerida es 085

LECTURASSaBRE LaDaS DE PERFORAC6N

REFERENCIAS

1 AMERICAN PETROLEUM INSTITUTE Glossary of drilling-fluid and associated terms API Production Department Dallas Texas 1985 23 pp

2 IMCO Applied mud technology Seventh edition Houston Texas 1981

3 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing drilling fluids API Production Department Dallas Texas 198547 pp

4 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing watershybased drilling fluids AP I Production Department Dallas Texas 199046 pp

5 BOURGOYNE A Jr y otros Applied Drilling Engineering SPE Textbook Series Vol 2 Richardson Texas 1991 510 pp

6 NL BAROID Productos y servicios BAROID Guia de equipo petrolero 1979 pp 214 -243

7 AMERICAN PETROLEUM INSTITUTE Standard procedure for laboratory testing drilling fluids API Production Department Dallas Texas 1990 42 pp

8 BETEJTIN A Curso de mineralogia Editorial MIR Moscu 1977 739 pp

9 ESCOBAR C YSAAVEDRA F Sensibilidad y estabilizaci6n de arcillas Revent6n Edici6n especial - Memorias de la segunda semana teurocnica de Ingenieria de Petr6leos UIS Bucaramanga Agosto 14 - 18 de 1989 p 39

10 KELLY J Jr Drilling fluids selection performance and quality control JPT Mayo 1983 pp 889 - 898

11 WORLD OIL World Oils 1997 guide to drilling completion and workover fluids World Oil junio 1997 pp 75-116

12 CHURAN M CANDLER JE and FREEMAN M On - site and off-site monitoring of Synthetic - based drilling fluids for oil contamination SPEEPA Exploration and Production Environmental Conference Dallas Texas 3-5 March 1997

13 FRIEDHEIM JE Second - generation synthetic drilling fluids JPT julio de 1997 pp 724-725

14 GROWCOCK F And FREDERICK T Operational limits of synthetic drilling fluids SPEDC September 1996 pp 132-136

15 MEDLEY G H ET AL Field application of lighweight hollow - glass - sphere drilling fluid JPT November 1997 pp 1209 - 1211

16 AYERS R SAUER T and ANDERSON P The generic mud concept for NPDES permitting of offshore drilling discharges JPT March de 1985 pp 475-480

123

12-1

17 BLEIER R Predicting mud toxicity JPT October 1991 pp 1192-1193

18 CLARK RK Impact of environmental regulations on drilling - fluid techonol ogy JPT sept iembre de 1994 pp 804-809

19 BRAKELJ ET AL Cuttings reinjection in Brent reduces drilled cuttings discharge to the sea JPT April 1997 p 412

20 THURBER N Waste minimization for land - based drilling operations JPT May 1992 pp 542-547

21 GODEC M and BIGLARBIGI K Economic effects of environmental regulations on finding and developing crude oil in the USJPTJanuary1991 pp 72-79

22 SMITH A L Securing the future In partnership with the environment JPT June 1996 pp 526-532

23 CHATTERJI J and BORCHARDT J Applications of water-soluble polymers in the oil field JPT November 1981 pp 2042-2056

24 GRAY G and DARLEY H Composition and properties of oil well drilling fluids Fourth edition Houston Texas Gulf Publishing Company 1981 630 pp

25 BROWNING W and CHESSER B Polymer-polyelectrolyte drilling fluid systems JPT October 1972 pp 1255-1263

26 SIFFERMAN T and GREENKORN R Drag reduction in three distinctly different fluid systems SPEJ December 1981 pp 663-669

27 FISK J and JAMISON D Physical properties of drilling fluids at high temperatures and pressures SPEDE December 1989 pp 341-345

28 CHESSER B and ENRIGHT D High-temperature stabilization of drilling fluids with a low-molecular-weight copolymer JPT June 1980 pp 950-956

29 THOMAS DC Thermal stability of starch-and carboxymethyl cellulose- based polyme rs used in drill ing fluids SPEJ April 1982 pp 171-180

30 STE IGER R Fundamentals and use of potassiumpolymerdrilling fluids to minimize drilling and completion problems associated with hydratable clays JPT August 1982 pp 1661-1670

31 NYLAND T ET AL Addit ive effectiveness and contaminant influence on fluidshyloss control in water-based muds SPEDE June 1988 pp 195-203

32 HARTMANA ET AL Analysis of mudcake structures formed under simulated borehole conditions SPEDE December 1988 pp 395-402

33 HALE A Method to quantific viscosity effects ondispersion test improves testing of drilling polymers IADCSPE 19954 IADCSPE Drilling Conference Houston Texas Feb 27- Mar 2 1990

34 PLANK J and GOSSEN F Visualization of fluid-loss polymers in drilling-mud filter cakes SPEDE September 1991 pp 203-208

35 KOTKOSKIE T ET AL Inhibition of gas hydrates in water-based drilling muds SPEDE june 1992 pp130-136

36 EZZAT A ROSSER H and AL-HUMAM A Control of microbiological activity in biopolymer- based drilling muds Paper SPE 399285 SPE Middle East Drilling Technology Conference Baharin November 23-25 1997

37 WHISONANT R And HALL F Combining continuous improvement in acid fracturing propellant stimulations and polymer technologies to increase production and developp additional reserves in a mature oil field Paper SPE 38789 Sintesis publicada en JPT February 1988 pp 86-88

38 WHITE J And MEANS J Polysacharides derivates provides high viscosity and low friction at low surface fluid temperature JPT September 1975 pp 1067-1073

39 TYSSEED And VETTERO Chemical characterization problems of water- soluble polymers SPEJ December1981 pp 721-730

40 CONWAY M ET AL Chemical for the rheological behavior of crosslinked fluid systemsJPT February 1983 pp 315-320

41 GULBIES J ET AL Encapsulated breaker for aqueous polymeric fluidsSPEPE February1992 pp 9-14

42 KECK R NEHNER W and STRUMOLOG A New method for predicting fr iction - pressures and rheologic of proppant- laden fracturing fluids SPEDE February 1992 pp 29-33

43 NIMERINCK K McCONNEL S SAMUELSONM Compatibility of resin-Co ated Proppants With Crosslinked Fracturing Fluids SPEPE February 1992 pp 29-33

44 HARRIS P And REINDENBACHV High-temperarure rheological study of foam fracturing fluids JPT May 1987 pp 613-619

45 THOMPSON J ET AL New continuos - mis process for gelling anhydrous methanol minimices hazards JPT July 1992 pp 832-839

46 NORMAN L CONWAYM And WILSON M Temperature- stable acid - gelling polymers laboratory evaluat ion and fields results JPT November 1984 pp 2011-2018

125

u arlV ~-

47 TERRACINA j ET AL Temporary ch emical block brings efficiency and economy to Eastern US workoveroperations SPEPE February 1992 pp 70-74

48 WHITEJ GODDARDJ and PHILIPS H Use of polymers to control water production in oil well s JPT February 1973 pp 143-150

49 TORREST R Deposit buildup during gravel packing with viscous polymer solutions and water JPT February 1983 pp 325-328

50 UNDERDOWN D DAS K and NGUYEN H Gravel packing in highly deviated wells with a crosslinked polymersystem JPT December1985pp2197-2202

51 OBRIEN D And CHENEVERT M Stabilizing sensitive shales with inhibited potassi um- based dri lli ng flu ids JPT September 1973 pp 1039-1100

52 CLARK R ET AL Poliacrylamidel potassium-chloride mud for drilling watershysensitive shales JPT June 1976 pp 719-727

53 McLAUGHLIN H ELPHINGSTONE E and HALL B Aqueous polymers for treating clays in oil and gas Paper SPE 6008 5pt Annual fall technical conferen ce and exhibition New Orleans US A October 3-6 1976

54 YOUNG B McLAUGHLIN H and BORCHARDT J Clay stabilization agentsshytheir effectiveness in high-temperature steam JPT December 1980 pp 21 21-2131

55 WILLIAMS L and UNDERDOWN D New polymer offers effective permanent clay stabilization treatment JPT July 1981 pp 1211-1217

56 HIMES R VINSON E and SIMON D Clay stabilization in low-permeability formations SPEPE August 1991 pp 252-258

57 SCHEUERMAN R Guidelines for using HEC polymers for viscosifying solids-free completion and workover brines JPT February 1983 pp 306-314

58 GOGARTY W Mobility control with polymer solutions SPEJJune1967 pp161-173

59 SHUPE R Chemical stability of polyacryl-amide polymers JPT August 1981 1513-1529

60 MACK J and WARREN J Performance and operation of a crosslinked polymer flood at sage spring creek Unit A Natrona County Wyoming JPT July 1984 pp1145-1156

61 NUMALLAH N A practical method for the evaluation of weak geals JPT February 1987 pp 195-202

62 NEEDHAM R and DOE P Polymer flooding review JPT December 1987 pp 1503-1507

126

63 DOLL T and HANSON M Performance and operation of the Hamm Minnelusa Sand Unit Campbell County Wyoming JPT December 1987 pp 1565-1570

64 WIDMYER R WILLIAMS D and WARE J Performance evaluation of the Salem Unit SufactanUpolymer Pilot JPT Sepember 1988 pp 1217-1226

65 VOSSOUGHI S and BULLER C Permeability modification by in-situ gelati on with a newly discovered biopolymer SPERENovember 1991 pp 485-489

66 HOLLEY Sand CAYLAS J Design operation and evaluation of a surfactant polymer field pilot test SPERE February 1992 pp 9-14

67 RIVENO R DONCHE A and NOLK CH Improved scleroglucan for polymer flooding under harsh reservoir conditions SPERE February1992 pp15-20

68 EGGERT R WILHITE G and GREEN D Experimenta i measurement of the persistence of permeability reduction in porous media treated with xanthan Cr (iii) gel systems SPERE February 1992 pp 29-35

69 XIANGAN Y ET AL Calculation of IPR curves for Oil wells in polymer-flood reservoirs JPT January 1998p 81

70 MAHENDRA P ET AL Field implementation of a polymer EOR technique JPT January 1998 pp 87-88

71 TWEIDT L ET AL Improving sweep efficiency in a naturally fractured reservoir with polymer gels JPT January 1988 pp 89-90

72 PRUDHOMME R and UHL J Rheology enhancement by molecular association complexes SPEJ August 1984 pp 431-434

73 LLAO W PolymerBentonite Soil admixtures as hydraulic barriers SPEDE June 1989 pp 153-161

74 IMCO Datos de productos Drilpol

75 IMCO Tecnologia aplicada de lodos Sptima Edicion Houston Texas US A 1981 Capitulo 13

76 BOURGOYNE A Jr y otros Applied drilling engineering SPE Textbook Series Vol 2 Richardson Texas 1991 p 65

77 AMTEX OUIMICA CMC Medellin 1985 52 pp

78 HUGHES T JONES T and HOUWEN O The chemical composition of CMC and its relationship to the rheology and fluid loss of drilling fluids Paper IADCSPE 20000 IADCSPE Drilling Conference Houston Texas February 27-March 2 1990

12 7

Page 5: 6.8 HIDRAuLlCA DE LA PERFORACI6N ROTATORIA

- En el anular hoyo - collares

I1p = jpLc v ac + T y Lc

f 1000(dh - deo 200( dh - dco)

43x400x436 20x400 = + -------shy1000(9875 - 775 200(9875 - 775)

= 35431pc

Perdidas totales de presi6n debidas a fricci6n en la sarta en el hoyo

(66468 + 15288 + 236 + 3543)lpc = 1088 991pc

Perdidas de presion debidas a friccion en conexiones de superficie

EI tipo numero y longitud de estas conexiones varian de equipo a equipo Generalmente para calcular las perdidas de presion debidas a elias se tienen en cuenta la tuberia parada la manguera el eslabon giratorio (swivel) la Kelly el coda que une la tuberia parada a la manguera y elcuello de ganso Combinaciones tfpicas de estos elementos aparecen en la Tabla 6 Los valores de perdidas de presion dados como longitudes equivalentes en esta tabla presentan una exactitud aceptable para la mayoria de los cas os practicos

Para el sistema que analizamos se asume que la combinaci6n NO 4 representa bien las caracteristicas de nuestras conexiones en superficie 579 pies de tuber ia de 5 pulgadas de diametro externo y 195 Ibfpie representan las perdidas de presi6n en conexiones superficiales

TABLA 6 Perdidas de presion por fricci6n en conexiones de superficie

Combinaciones ipicas Componenes de

NO 3 NO 4 No 1 No 2 conexiones en

d (L) d (L) (L )d (L)superficie d

pulg pies pulg pies pulg pies pulg pies

35 40 4 45Tuberla de perforaci6n 3 40 4 45

25 55Manguera 2 45 3 55 3 55

Swivel 25 5 25 52 4 3 6

Kelly y cuello de ganso 25 40 325 40 325 40 4 40

Tuberia de perforaGi6n Longitud equivalente de las conexiones en pies de latuberia de perforaci6n

pesodo pulg Ibfpie

133 35 437 161

76145 166 479 340

195 5 816 579

bull Referencia 97 p 51

INTRODUCCION AL TRABAJO CON M ODELOS REOL6c I COS 119

120

Las perdidas de presion por unidad de longitud para la tuberia de perforacion fueron

664 68 Ipc

9600pies

Las perdidas en superficie son 66468 x5791pc =4009 Ipc 9600

Tambien se puede aplicar Fanning para encontrar estas perdidas

O008xS79x12x892 2 Ipc

2S8x4276

Perdidas en superficie = 4009 Ipc

Perdidas totales hasta ahora (colla res y tuberia en el hoyo conexiones en superficie) = (108899+4009)lpc =112908Ipc

Perdidas de presion en las boquillas de la broca

Para f1ujo ideal (sin friccion) de un fluido incompresible a traves de orificios pequenos (tales como las boquillas) la ecuacion para balance de presion (ecuaci6n 9) se reduce a

P (2 2) ( 78 ) PI + ~- v - V2 = P2 2gc

EI subindice J se refiere a las condiciones de estado estable aguas arriba de las boquillas de la broca yel 2 se refiere alas condiciones reinantes alas salidas Cuando el areade salidaA2 es mucho menor que la de entrada A l vi raquo v~ v~ se puede despreciar y de la ecuaci6n (78) se puede obtener v2

( 79 ) 2gc (p ~ P2) V2 == P

Para obtener la expresi6n (79) no se ha tenido en cuenta el termino (pF) en la ecuaci6n 9 Tal termino nos da las perdidas por fricci6n inevitables Para compensar esta omision se utiliza el coeficiente de descarga Cd

g ( 80 ) = Cd12 c (p - pz)Vz p

LECTURAS SOBRE WDOS DE PERFORACION

De (80)

( 81 )

P es la caida de presion a traves de la restriccion ( boquillas)

Como v = qA al reemplazar en (81 ) ( 82 )

en unidades practicas de ingenieria 02

pq ( 83 )

A es el area seccional de flujo en la salida La suma de las areas de las boquillas nos dan el area total de flujo C varia entre 08 y 098 un valor de 095 es el utilizado en casos practicos

AI pasar a traves de las boquillas aproximadamente un 10 de la energia por unidad de masa de fluido utilizada en atravesar dichos orificios (p p ) se disipa como calor

I el 90 restante se convierte en energia cinetica Cuando el lodo choca con el hoyo y arrastra los cortes bajo la broca esta energia cinetica tambien se disipa como calor

Siguiendo con el ejemplo propuesto y si se supone que se usa una broca de tres conos y boquillas de 0375 pulgadas de diametro

Area de cada boquilla = 01104 pulgadas2

Area tota l considerada = 3 x 01104 pulgadas2

=03312 pulgadas 2

De ecuacion (83) las perdidas de presion en boquillas P son

An = 12x(3 9942) 2 Ipc = 160722 I c ~J 12032xO9S2xO33 122 P

Las perdidas totales de presion (co ll ares y tuber ia en el hoyo conex iones en superfic ie y boqu il las) seran

(1129 08+1607 22)lpc = 2736 3 Ipc

o Caudal manejado por cada boquilla (q)

o AtAI X q con Ai area de cad a boquill a At area total

q = 01 104 x39942 galones =13333 galones 03312 minuto minuto

J(()DLCClON1 L TRA BAJO CO iIODELOS R[0I0CICOS 121

122

Velocidad de salida (v) en cad a boquilla (se consideraron de Igual area)

De la ecuacion (30)

133 33 d v = pIes segun 0 = 38731 pIessegundo

I 2448(0 375t

Potencia requerida de la bomba de lodo

Para suminislrar la presion tolal de 27363Ipc la polencia de la(s) bomba(s) en superficie debe ser minima de

tPtotntxq = 27363~x 39942galones bbl pulg2 minuto x 42gal

3 25615pie 122pulg x HP = 63852HP

x bbl x pmiddotle2 Ibf - pie33000 -shy

mlnuto

Para lener en cuenla las perdidas de energia por friccion mecanica denlro de la bomba y olros imprevistos se acostumbra ulilizar una eficiencia mecanica de 0 85

63852 HP = 75120HPPolencia total requerida es 085

LECTURASSaBRE LaDaS DE PERFORAC6N

REFERENCIAS

1 AMERICAN PETROLEUM INSTITUTE Glossary of drilling-fluid and associated terms API Production Department Dallas Texas 1985 23 pp

2 IMCO Applied mud technology Seventh edition Houston Texas 1981

3 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing drilling fluids API Production Department Dallas Texas 198547 pp

4 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing watershybased drilling fluids AP I Production Department Dallas Texas 199046 pp

5 BOURGOYNE A Jr y otros Applied Drilling Engineering SPE Textbook Series Vol 2 Richardson Texas 1991 510 pp

6 NL BAROID Productos y servicios BAROID Guia de equipo petrolero 1979 pp 214 -243

7 AMERICAN PETROLEUM INSTITUTE Standard procedure for laboratory testing drilling fluids API Production Department Dallas Texas 1990 42 pp

8 BETEJTIN A Curso de mineralogia Editorial MIR Moscu 1977 739 pp

9 ESCOBAR C YSAAVEDRA F Sensibilidad y estabilizaci6n de arcillas Revent6n Edici6n especial - Memorias de la segunda semana teurocnica de Ingenieria de Petr6leos UIS Bucaramanga Agosto 14 - 18 de 1989 p 39

10 KELLY J Jr Drilling fluids selection performance and quality control JPT Mayo 1983 pp 889 - 898

11 WORLD OIL World Oils 1997 guide to drilling completion and workover fluids World Oil junio 1997 pp 75-116

12 CHURAN M CANDLER JE and FREEMAN M On - site and off-site monitoring of Synthetic - based drilling fluids for oil contamination SPEEPA Exploration and Production Environmental Conference Dallas Texas 3-5 March 1997

13 FRIEDHEIM JE Second - generation synthetic drilling fluids JPT julio de 1997 pp 724-725

14 GROWCOCK F And FREDERICK T Operational limits of synthetic drilling fluids SPEDC September 1996 pp 132-136

15 MEDLEY G H ET AL Field application of lighweight hollow - glass - sphere drilling fluid JPT November 1997 pp 1209 - 1211

16 AYERS R SAUER T and ANDERSON P The generic mud concept for NPDES permitting of offshore drilling discharges JPT March de 1985 pp 475-480

123

12-1

17 BLEIER R Predicting mud toxicity JPT October 1991 pp 1192-1193

18 CLARK RK Impact of environmental regulations on drilling - fluid techonol ogy JPT sept iembre de 1994 pp 804-809

19 BRAKELJ ET AL Cuttings reinjection in Brent reduces drilled cuttings discharge to the sea JPT April 1997 p 412

20 THURBER N Waste minimization for land - based drilling operations JPT May 1992 pp 542-547

21 GODEC M and BIGLARBIGI K Economic effects of environmental regulations on finding and developing crude oil in the USJPTJanuary1991 pp 72-79

22 SMITH A L Securing the future In partnership with the environment JPT June 1996 pp 526-532

23 CHATTERJI J and BORCHARDT J Applications of water-soluble polymers in the oil field JPT November 1981 pp 2042-2056

24 GRAY G and DARLEY H Composition and properties of oil well drilling fluids Fourth edition Houston Texas Gulf Publishing Company 1981 630 pp

25 BROWNING W and CHESSER B Polymer-polyelectrolyte drilling fluid systems JPT October 1972 pp 1255-1263

26 SIFFERMAN T and GREENKORN R Drag reduction in three distinctly different fluid systems SPEJ December 1981 pp 663-669

27 FISK J and JAMISON D Physical properties of drilling fluids at high temperatures and pressures SPEDE December 1989 pp 341-345

28 CHESSER B and ENRIGHT D High-temperature stabilization of drilling fluids with a low-molecular-weight copolymer JPT June 1980 pp 950-956

29 THOMAS DC Thermal stability of starch-and carboxymethyl cellulose- based polyme rs used in drill ing fluids SPEJ April 1982 pp 171-180

30 STE IGER R Fundamentals and use of potassiumpolymerdrilling fluids to minimize drilling and completion problems associated with hydratable clays JPT August 1982 pp 1661-1670

31 NYLAND T ET AL Addit ive effectiveness and contaminant influence on fluidshyloss control in water-based muds SPEDE June 1988 pp 195-203

32 HARTMANA ET AL Analysis of mudcake structures formed under simulated borehole conditions SPEDE December 1988 pp 395-402

33 HALE A Method to quantific viscosity effects ondispersion test improves testing of drilling polymers IADCSPE 19954 IADCSPE Drilling Conference Houston Texas Feb 27- Mar 2 1990

34 PLANK J and GOSSEN F Visualization of fluid-loss polymers in drilling-mud filter cakes SPEDE September 1991 pp 203-208

35 KOTKOSKIE T ET AL Inhibition of gas hydrates in water-based drilling muds SPEDE june 1992 pp130-136

36 EZZAT A ROSSER H and AL-HUMAM A Control of microbiological activity in biopolymer- based drilling muds Paper SPE 399285 SPE Middle East Drilling Technology Conference Baharin November 23-25 1997

37 WHISONANT R And HALL F Combining continuous improvement in acid fracturing propellant stimulations and polymer technologies to increase production and developp additional reserves in a mature oil field Paper SPE 38789 Sintesis publicada en JPT February 1988 pp 86-88

38 WHITE J And MEANS J Polysacharides derivates provides high viscosity and low friction at low surface fluid temperature JPT September 1975 pp 1067-1073

39 TYSSEED And VETTERO Chemical characterization problems of water- soluble polymers SPEJ December1981 pp 721-730

40 CONWAY M ET AL Chemical for the rheological behavior of crosslinked fluid systemsJPT February 1983 pp 315-320

41 GULBIES J ET AL Encapsulated breaker for aqueous polymeric fluidsSPEPE February1992 pp 9-14

42 KECK R NEHNER W and STRUMOLOG A New method for predicting fr iction - pressures and rheologic of proppant- laden fracturing fluids SPEDE February 1992 pp 29-33

43 NIMERINCK K McCONNEL S SAMUELSONM Compatibility of resin-Co ated Proppants With Crosslinked Fracturing Fluids SPEPE February 1992 pp 29-33

44 HARRIS P And REINDENBACHV High-temperarure rheological study of foam fracturing fluids JPT May 1987 pp 613-619

45 THOMPSON J ET AL New continuos - mis process for gelling anhydrous methanol minimices hazards JPT July 1992 pp 832-839

46 NORMAN L CONWAYM And WILSON M Temperature- stable acid - gelling polymers laboratory evaluat ion and fields results JPT November 1984 pp 2011-2018

125

u arlV ~-

47 TERRACINA j ET AL Temporary ch emical block brings efficiency and economy to Eastern US workoveroperations SPEPE February 1992 pp 70-74

48 WHITEJ GODDARDJ and PHILIPS H Use of polymers to control water production in oil well s JPT February 1973 pp 143-150

49 TORREST R Deposit buildup during gravel packing with viscous polymer solutions and water JPT February 1983 pp 325-328

50 UNDERDOWN D DAS K and NGUYEN H Gravel packing in highly deviated wells with a crosslinked polymersystem JPT December1985pp2197-2202

51 OBRIEN D And CHENEVERT M Stabilizing sensitive shales with inhibited potassi um- based dri lli ng flu ids JPT September 1973 pp 1039-1100

52 CLARK R ET AL Poliacrylamidel potassium-chloride mud for drilling watershysensitive shales JPT June 1976 pp 719-727

53 McLAUGHLIN H ELPHINGSTONE E and HALL B Aqueous polymers for treating clays in oil and gas Paper SPE 6008 5pt Annual fall technical conferen ce and exhibition New Orleans US A October 3-6 1976

54 YOUNG B McLAUGHLIN H and BORCHARDT J Clay stabilization agentsshytheir effectiveness in high-temperature steam JPT December 1980 pp 21 21-2131

55 WILLIAMS L and UNDERDOWN D New polymer offers effective permanent clay stabilization treatment JPT July 1981 pp 1211-1217

56 HIMES R VINSON E and SIMON D Clay stabilization in low-permeability formations SPEPE August 1991 pp 252-258

57 SCHEUERMAN R Guidelines for using HEC polymers for viscosifying solids-free completion and workover brines JPT February 1983 pp 306-314

58 GOGARTY W Mobility control with polymer solutions SPEJJune1967 pp161-173

59 SHUPE R Chemical stability of polyacryl-amide polymers JPT August 1981 1513-1529

60 MACK J and WARREN J Performance and operation of a crosslinked polymer flood at sage spring creek Unit A Natrona County Wyoming JPT July 1984 pp1145-1156

61 NUMALLAH N A practical method for the evaluation of weak geals JPT February 1987 pp 195-202

62 NEEDHAM R and DOE P Polymer flooding review JPT December 1987 pp 1503-1507

126

63 DOLL T and HANSON M Performance and operation of the Hamm Minnelusa Sand Unit Campbell County Wyoming JPT December 1987 pp 1565-1570

64 WIDMYER R WILLIAMS D and WARE J Performance evaluation of the Salem Unit SufactanUpolymer Pilot JPT Sepember 1988 pp 1217-1226

65 VOSSOUGHI S and BULLER C Permeability modification by in-situ gelati on with a newly discovered biopolymer SPERENovember 1991 pp 485-489

66 HOLLEY Sand CAYLAS J Design operation and evaluation of a surfactant polymer field pilot test SPERE February 1992 pp 9-14

67 RIVENO R DONCHE A and NOLK CH Improved scleroglucan for polymer flooding under harsh reservoir conditions SPERE February1992 pp15-20

68 EGGERT R WILHITE G and GREEN D Experimenta i measurement of the persistence of permeability reduction in porous media treated with xanthan Cr (iii) gel systems SPERE February 1992 pp 29-35

69 XIANGAN Y ET AL Calculation of IPR curves for Oil wells in polymer-flood reservoirs JPT January 1998p 81

70 MAHENDRA P ET AL Field implementation of a polymer EOR technique JPT January 1998 pp 87-88

71 TWEIDT L ET AL Improving sweep efficiency in a naturally fractured reservoir with polymer gels JPT January 1988 pp 89-90

72 PRUDHOMME R and UHL J Rheology enhancement by molecular association complexes SPEJ August 1984 pp 431-434

73 LLAO W PolymerBentonite Soil admixtures as hydraulic barriers SPEDE June 1989 pp 153-161

74 IMCO Datos de productos Drilpol

75 IMCO Tecnologia aplicada de lodos Sptima Edicion Houston Texas US A 1981 Capitulo 13

76 BOURGOYNE A Jr y otros Applied drilling engineering SPE Textbook Series Vol 2 Richardson Texas 1991 p 65

77 AMTEX OUIMICA CMC Medellin 1985 52 pp

78 HUGHES T JONES T and HOUWEN O The chemical composition of CMC and its relationship to the rheology and fluid loss of drilling fluids Paper IADCSPE 20000 IADCSPE Drilling Conference Houston Texas February 27-March 2 1990

12 7

Page 6: 6.8 HIDRAuLlCA DE LA PERFORACI6N ROTATORIA

120

Las perdidas de presion por unidad de longitud para la tuberia de perforacion fueron

664 68 Ipc

9600pies

Las perdidas en superficie son 66468 x5791pc =4009 Ipc 9600

Tambien se puede aplicar Fanning para encontrar estas perdidas

O008xS79x12x892 2 Ipc

2S8x4276

Perdidas en superficie = 4009 Ipc

Perdidas totales hasta ahora (colla res y tuberia en el hoyo conexiones en superficie) = (108899+4009)lpc =112908Ipc

Perdidas de presion en las boquillas de la broca

Para f1ujo ideal (sin friccion) de un fluido incompresible a traves de orificios pequenos (tales como las boquillas) la ecuacion para balance de presion (ecuaci6n 9) se reduce a

P (2 2) ( 78 ) PI + ~- v - V2 = P2 2gc

EI subindice J se refiere a las condiciones de estado estable aguas arriba de las boquillas de la broca yel 2 se refiere alas condiciones reinantes alas salidas Cuando el areade salidaA2 es mucho menor que la de entrada A l vi raquo v~ v~ se puede despreciar y de la ecuaci6n (78) se puede obtener v2

( 79 ) 2gc (p ~ P2) V2 == P

Para obtener la expresi6n (79) no se ha tenido en cuenta el termino (pF) en la ecuaci6n 9 Tal termino nos da las perdidas por fricci6n inevitables Para compensar esta omision se utiliza el coeficiente de descarga Cd

g ( 80 ) = Cd12 c (p - pz)Vz p

LECTURAS SOBRE WDOS DE PERFORACION

De (80)

( 81 )

P es la caida de presion a traves de la restriccion ( boquillas)

Como v = qA al reemplazar en (81 ) ( 82 )

en unidades practicas de ingenieria 02

pq ( 83 )

A es el area seccional de flujo en la salida La suma de las areas de las boquillas nos dan el area total de flujo C varia entre 08 y 098 un valor de 095 es el utilizado en casos practicos

AI pasar a traves de las boquillas aproximadamente un 10 de la energia por unidad de masa de fluido utilizada en atravesar dichos orificios (p p ) se disipa como calor

I el 90 restante se convierte en energia cinetica Cuando el lodo choca con el hoyo y arrastra los cortes bajo la broca esta energia cinetica tambien se disipa como calor

Siguiendo con el ejemplo propuesto y si se supone que se usa una broca de tres conos y boquillas de 0375 pulgadas de diametro

Area de cada boquilla = 01104 pulgadas2

Area tota l considerada = 3 x 01104 pulgadas2

=03312 pulgadas 2

De ecuacion (83) las perdidas de presion en boquillas P son

An = 12x(3 9942) 2 Ipc = 160722 I c ~J 12032xO9S2xO33 122 P

Las perdidas totales de presion (co ll ares y tuber ia en el hoyo conex iones en superfic ie y boqu il las) seran

(1129 08+1607 22)lpc = 2736 3 Ipc

o Caudal manejado por cada boquilla (q)

o AtAI X q con Ai area de cad a boquill a At area total

q = 01 104 x39942 galones =13333 galones 03312 minuto minuto

J(()DLCClON1 L TRA BAJO CO iIODELOS R[0I0CICOS 121

122

Velocidad de salida (v) en cad a boquilla (se consideraron de Igual area)

De la ecuacion (30)

133 33 d v = pIes segun 0 = 38731 pIessegundo

I 2448(0 375t

Potencia requerida de la bomba de lodo

Para suminislrar la presion tolal de 27363Ipc la polencia de la(s) bomba(s) en superficie debe ser minima de

tPtotntxq = 27363~x 39942galones bbl pulg2 minuto x 42gal

3 25615pie 122pulg x HP = 63852HP

x bbl x pmiddotle2 Ibf - pie33000 -shy

mlnuto

Para lener en cuenla las perdidas de energia por friccion mecanica denlro de la bomba y olros imprevistos se acostumbra ulilizar una eficiencia mecanica de 0 85

63852 HP = 75120HPPolencia total requerida es 085

LECTURASSaBRE LaDaS DE PERFORAC6N

REFERENCIAS

1 AMERICAN PETROLEUM INSTITUTE Glossary of drilling-fluid and associated terms API Production Department Dallas Texas 1985 23 pp

2 IMCO Applied mud technology Seventh edition Houston Texas 1981

3 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing drilling fluids API Production Department Dallas Texas 198547 pp

4 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing watershybased drilling fluids AP I Production Department Dallas Texas 199046 pp

5 BOURGOYNE A Jr y otros Applied Drilling Engineering SPE Textbook Series Vol 2 Richardson Texas 1991 510 pp

6 NL BAROID Productos y servicios BAROID Guia de equipo petrolero 1979 pp 214 -243

7 AMERICAN PETROLEUM INSTITUTE Standard procedure for laboratory testing drilling fluids API Production Department Dallas Texas 1990 42 pp

8 BETEJTIN A Curso de mineralogia Editorial MIR Moscu 1977 739 pp

9 ESCOBAR C YSAAVEDRA F Sensibilidad y estabilizaci6n de arcillas Revent6n Edici6n especial - Memorias de la segunda semana teurocnica de Ingenieria de Petr6leos UIS Bucaramanga Agosto 14 - 18 de 1989 p 39

10 KELLY J Jr Drilling fluids selection performance and quality control JPT Mayo 1983 pp 889 - 898

11 WORLD OIL World Oils 1997 guide to drilling completion and workover fluids World Oil junio 1997 pp 75-116

12 CHURAN M CANDLER JE and FREEMAN M On - site and off-site monitoring of Synthetic - based drilling fluids for oil contamination SPEEPA Exploration and Production Environmental Conference Dallas Texas 3-5 March 1997

13 FRIEDHEIM JE Second - generation synthetic drilling fluids JPT julio de 1997 pp 724-725

14 GROWCOCK F And FREDERICK T Operational limits of synthetic drilling fluids SPEDC September 1996 pp 132-136

15 MEDLEY G H ET AL Field application of lighweight hollow - glass - sphere drilling fluid JPT November 1997 pp 1209 - 1211

16 AYERS R SAUER T and ANDERSON P The generic mud concept for NPDES permitting of offshore drilling discharges JPT March de 1985 pp 475-480

123

12-1

17 BLEIER R Predicting mud toxicity JPT October 1991 pp 1192-1193

18 CLARK RK Impact of environmental regulations on drilling - fluid techonol ogy JPT sept iembre de 1994 pp 804-809

19 BRAKELJ ET AL Cuttings reinjection in Brent reduces drilled cuttings discharge to the sea JPT April 1997 p 412

20 THURBER N Waste minimization for land - based drilling operations JPT May 1992 pp 542-547

21 GODEC M and BIGLARBIGI K Economic effects of environmental regulations on finding and developing crude oil in the USJPTJanuary1991 pp 72-79

22 SMITH A L Securing the future In partnership with the environment JPT June 1996 pp 526-532

23 CHATTERJI J and BORCHARDT J Applications of water-soluble polymers in the oil field JPT November 1981 pp 2042-2056

24 GRAY G and DARLEY H Composition and properties of oil well drilling fluids Fourth edition Houston Texas Gulf Publishing Company 1981 630 pp

25 BROWNING W and CHESSER B Polymer-polyelectrolyte drilling fluid systems JPT October 1972 pp 1255-1263

26 SIFFERMAN T and GREENKORN R Drag reduction in three distinctly different fluid systems SPEJ December 1981 pp 663-669

27 FISK J and JAMISON D Physical properties of drilling fluids at high temperatures and pressures SPEDE December 1989 pp 341-345

28 CHESSER B and ENRIGHT D High-temperature stabilization of drilling fluids with a low-molecular-weight copolymer JPT June 1980 pp 950-956

29 THOMAS DC Thermal stability of starch-and carboxymethyl cellulose- based polyme rs used in drill ing fluids SPEJ April 1982 pp 171-180

30 STE IGER R Fundamentals and use of potassiumpolymerdrilling fluids to minimize drilling and completion problems associated with hydratable clays JPT August 1982 pp 1661-1670

31 NYLAND T ET AL Addit ive effectiveness and contaminant influence on fluidshyloss control in water-based muds SPEDE June 1988 pp 195-203

32 HARTMANA ET AL Analysis of mudcake structures formed under simulated borehole conditions SPEDE December 1988 pp 395-402

33 HALE A Method to quantific viscosity effects ondispersion test improves testing of drilling polymers IADCSPE 19954 IADCSPE Drilling Conference Houston Texas Feb 27- Mar 2 1990

34 PLANK J and GOSSEN F Visualization of fluid-loss polymers in drilling-mud filter cakes SPEDE September 1991 pp 203-208

35 KOTKOSKIE T ET AL Inhibition of gas hydrates in water-based drilling muds SPEDE june 1992 pp130-136

36 EZZAT A ROSSER H and AL-HUMAM A Control of microbiological activity in biopolymer- based drilling muds Paper SPE 399285 SPE Middle East Drilling Technology Conference Baharin November 23-25 1997

37 WHISONANT R And HALL F Combining continuous improvement in acid fracturing propellant stimulations and polymer technologies to increase production and developp additional reserves in a mature oil field Paper SPE 38789 Sintesis publicada en JPT February 1988 pp 86-88

38 WHITE J And MEANS J Polysacharides derivates provides high viscosity and low friction at low surface fluid temperature JPT September 1975 pp 1067-1073

39 TYSSEED And VETTERO Chemical characterization problems of water- soluble polymers SPEJ December1981 pp 721-730

40 CONWAY M ET AL Chemical for the rheological behavior of crosslinked fluid systemsJPT February 1983 pp 315-320

41 GULBIES J ET AL Encapsulated breaker for aqueous polymeric fluidsSPEPE February1992 pp 9-14

42 KECK R NEHNER W and STRUMOLOG A New method for predicting fr iction - pressures and rheologic of proppant- laden fracturing fluids SPEDE February 1992 pp 29-33

43 NIMERINCK K McCONNEL S SAMUELSONM Compatibility of resin-Co ated Proppants With Crosslinked Fracturing Fluids SPEPE February 1992 pp 29-33

44 HARRIS P And REINDENBACHV High-temperarure rheological study of foam fracturing fluids JPT May 1987 pp 613-619

45 THOMPSON J ET AL New continuos - mis process for gelling anhydrous methanol minimices hazards JPT July 1992 pp 832-839

46 NORMAN L CONWAYM And WILSON M Temperature- stable acid - gelling polymers laboratory evaluat ion and fields results JPT November 1984 pp 2011-2018

125

u arlV ~-

47 TERRACINA j ET AL Temporary ch emical block brings efficiency and economy to Eastern US workoveroperations SPEPE February 1992 pp 70-74

48 WHITEJ GODDARDJ and PHILIPS H Use of polymers to control water production in oil well s JPT February 1973 pp 143-150

49 TORREST R Deposit buildup during gravel packing with viscous polymer solutions and water JPT February 1983 pp 325-328

50 UNDERDOWN D DAS K and NGUYEN H Gravel packing in highly deviated wells with a crosslinked polymersystem JPT December1985pp2197-2202

51 OBRIEN D And CHENEVERT M Stabilizing sensitive shales with inhibited potassi um- based dri lli ng flu ids JPT September 1973 pp 1039-1100

52 CLARK R ET AL Poliacrylamidel potassium-chloride mud for drilling watershysensitive shales JPT June 1976 pp 719-727

53 McLAUGHLIN H ELPHINGSTONE E and HALL B Aqueous polymers for treating clays in oil and gas Paper SPE 6008 5pt Annual fall technical conferen ce and exhibition New Orleans US A October 3-6 1976

54 YOUNG B McLAUGHLIN H and BORCHARDT J Clay stabilization agentsshytheir effectiveness in high-temperature steam JPT December 1980 pp 21 21-2131

55 WILLIAMS L and UNDERDOWN D New polymer offers effective permanent clay stabilization treatment JPT July 1981 pp 1211-1217

56 HIMES R VINSON E and SIMON D Clay stabilization in low-permeability formations SPEPE August 1991 pp 252-258

57 SCHEUERMAN R Guidelines for using HEC polymers for viscosifying solids-free completion and workover brines JPT February 1983 pp 306-314

58 GOGARTY W Mobility control with polymer solutions SPEJJune1967 pp161-173

59 SHUPE R Chemical stability of polyacryl-amide polymers JPT August 1981 1513-1529

60 MACK J and WARREN J Performance and operation of a crosslinked polymer flood at sage spring creek Unit A Natrona County Wyoming JPT July 1984 pp1145-1156

61 NUMALLAH N A practical method for the evaluation of weak geals JPT February 1987 pp 195-202

62 NEEDHAM R and DOE P Polymer flooding review JPT December 1987 pp 1503-1507

126

63 DOLL T and HANSON M Performance and operation of the Hamm Minnelusa Sand Unit Campbell County Wyoming JPT December 1987 pp 1565-1570

64 WIDMYER R WILLIAMS D and WARE J Performance evaluation of the Salem Unit SufactanUpolymer Pilot JPT Sepember 1988 pp 1217-1226

65 VOSSOUGHI S and BULLER C Permeability modification by in-situ gelati on with a newly discovered biopolymer SPERENovember 1991 pp 485-489

66 HOLLEY Sand CAYLAS J Design operation and evaluation of a surfactant polymer field pilot test SPERE February 1992 pp 9-14

67 RIVENO R DONCHE A and NOLK CH Improved scleroglucan for polymer flooding under harsh reservoir conditions SPERE February1992 pp15-20

68 EGGERT R WILHITE G and GREEN D Experimenta i measurement of the persistence of permeability reduction in porous media treated with xanthan Cr (iii) gel systems SPERE February 1992 pp 29-35

69 XIANGAN Y ET AL Calculation of IPR curves for Oil wells in polymer-flood reservoirs JPT January 1998p 81

70 MAHENDRA P ET AL Field implementation of a polymer EOR technique JPT January 1998 pp 87-88

71 TWEIDT L ET AL Improving sweep efficiency in a naturally fractured reservoir with polymer gels JPT January 1988 pp 89-90

72 PRUDHOMME R and UHL J Rheology enhancement by molecular association complexes SPEJ August 1984 pp 431-434

73 LLAO W PolymerBentonite Soil admixtures as hydraulic barriers SPEDE June 1989 pp 153-161

74 IMCO Datos de productos Drilpol

75 IMCO Tecnologia aplicada de lodos Sptima Edicion Houston Texas US A 1981 Capitulo 13

76 BOURGOYNE A Jr y otros Applied drilling engineering SPE Textbook Series Vol 2 Richardson Texas 1991 p 65

77 AMTEX OUIMICA CMC Medellin 1985 52 pp

78 HUGHES T JONES T and HOUWEN O The chemical composition of CMC and its relationship to the rheology and fluid loss of drilling fluids Paper IADCSPE 20000 IADCSPE Drilling Conference Houston Texas February 27-March 2 1990

12 7

Page 7: 6.8 HIDRAuLlCA DE LA PERFORACI6N ROTATORIA

De (80)

( 81 )

P es la caida de presion a traves de la restriccion ( boquillas)

Como v = qA al reemplazar en (81 ) ( 82 )

en unidades practicas de ingenieria 02

pq ( 83 )

A es el area seccional de flujo en la salida La suma de las areas de las boquillas nos dan el area total de flujo C varia entre 08 y 098 un valor de 095 es el utilizado en casos practicos

AI pasar a traves de las boquillas aproximadamente un 10 de la energia por unidad de masa de fluido utilizada en atravesar dichos orificios (p p ) se disipa como calor

I el 90 restante se convierte en energia cinetica Cuando el lodo choca con el hoyo y arrastra los cortes bajo la broca esta energia cinetica tambien se disipa como calor

Siguiendo con el ejemplo propuesto y si se supone que se usa una broca de tres conos y boquillas de 0375 pulgadas de diametro

Area de cada boquilla = 01104 pulgadas2

Area tota l considerada = 3 x 01104 pulgadas2

=03312 pulgadas 2

De ecuacion (83) las perdidas de presion en boquillas P son

An = 12x(3 9942) 2 Ipc = 160722 I c ~J 12032xO9S2xO33 122 P

Las perdidas totales de presion (co ll ares y tuber ia en el hoyo conex iones en superfic ie y boqu il las) seran

(1129 08+1607 22)lpc = 2736 3 Ipc

o Caudal manejado por cada boquilla (q)

o AtAI X q con Ai area de cad a boquill a At area total

q = 01 104 x39942 galones =13333 galones 03312 minuto minuto

J(()DLCClON1 L TRA BAJO CO iIODELOS R[0I0CICOS 121

122

Velocidad de salida (v) en cad a boquilla (se consideraron de Igual area)

De la ecuacion (30)

133 33 d v = pIes segun 0 = 38731 pIessegundo

I 2448(0 375t

Potencia requerida de la bomba de lodo

Para suminislrar la presion tolal de 27363Ipc la polencia de la(s) bomba(s) en superficie debe ser minima de

tPtotntxq = 27363~x 39942galones bbl pulg2 minuto x 42gal

3 25615pie 122pulg x HP = 63852HP

x bbl x pmiddotle2 Ibf - pie33000 -shy

mlnuto

Para lener en cuenla las perdidas de energia por friccion mecanica denlro de la bomba y olros imprevistos se acostumbra ulilizar una eficiencia mecanica de 0 85

63852 HP = 75120HPPolencia total requerida es 085

LECTURASSaBRE LaDaS DE PERFORAC6N

REFERENCIAS

1 AMERICAN PETROLEUM INSTITUTE Glossary of drilling-fluid and associated terms API Production Department Dallas Texas 1985 23 pp

2 IMCO Applied mud technology Seventh edition Houston Texas 1981

3 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing drilling fluids API Production Department Dallas Texas 198547 pp

4 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing watershybased drilling fluids AP I Production Department Dallas Texas 199046 pp

5 BOURGOYNE A Jr y otros Applied Drilling Engineering SPE Textbook Series Vol 2 Richardson Texas 1991 510 pp

6 NL BAROID Productos y servicios BAROID Guia de equipo petrolero 1979 pp 214 -243

7 AMERICAN PETROLEUM INSTITUTE Standard procedure for laboratory testing drilling fluids API Production Department Dallas Texas 1990 42 pp

8 BETEJTIN A Curso de mineralogia Editorial MIR Moscu 1977 739 pp

9 ESCOBAR C YSAAVEDRA F Sensibilidad y estabilizaci6n de arcillas Revent6n Edici6n especial - Memorias de la segunda semana teurocnica de Ingenieria de Petr6leos UIS Bucaramanga Agosto 14 - 18 de 1989 p 39

10 KELLY J Jr Drilling fluids selection performance and quality control JPT Mayo 1983 pp 889 - 898

11 WORLD OIL World Oils 1997 guide to drilling completion and workover fluids World Oil junio 1997 pp 75-116

12 CHURAN M CANDLER JE and FREEMAN M On - site and off-site monitoring of Synthetic - based drilling fluids for oil contamination SPEEPA Exploration and Production Environmental Conference Dallas Texas 3-5 March 1997

13 FRIEDHEIM JE Second - generation synthetic drilling fluids JPT julio de 1997 pp 724-725

14 GROWCOCK F And FREDERICK T Operational limits of synthetic drilling fluids SPEDC September 1996 pp 132-136

15 MEDLEY G H ET AL Field application of lighweight hollow - glass - sphere drilling fluid JPT November 1997 pp 1209 - 1211

16 AYERS R SAUER T and ANDERSON P The generic mud concept for NPDES permitting of offshore drilling discharges JPT March de 1985 pp 475-480

123

12-1

17 BLEIER R Predicting mud toxicity JPT October 1991 pp 1192-1193

18 CLARK RK Impact of environmental regulations on drilling - fluid techonol ogy JPT sept iembre de 1994 pp 804-809

19 BRAKELJ ET AL Cuttings reinjection in Brent reduces drilled cuttings discharge to the sea JPT April 1997 p 412

20 THURBER N Waste minimization for land - based drilling operations JPT May 1992 pp 542-547

21 GODEC M and BIGLARBIGI K Economic effects of environmental regulations on finding and developing crude oil in the USJPTJanuary1991 pp 72-79

22 SMITH A L Securing the future In partnership with the environment JPT June 1996 pp 526-532

23 CHATTERJI J and BORCHARDT J Applications of water-soluble polymers in the oil field JPT November 1981 pp 2042-2056

24 GRAY G and DARLEY H Composition and properties of oil well drilling fluids Fourth edition Houston Texas Gulf Publishing Company 1981 630 pp

25 BROWNING W and CHESSER B Polymer-polyelectrolyte drilling fluid systems JPT October 1972 pp 1255-1263

26 SIFFERMAN T and GREENKORN R Drag reduction in three distinctly different fluid systems SPEJ December 1981 pp 663-669

27 FISK J and JAMISON D Physical properties of drilling fluids at high temperatures and pressures SPEDE December 1989 pp 341-345

28 CHESSER B and ENRIGHT D High-temperature stabilization of drilling fluids with a low-molecular-weight copolymer JPT June 1980 pp 950-956

29 THOMAS DC Thermal stability of starch-and carboxymethyl cellulose- based polyme rs used in drill ing fluids SPEJ April 1982 pp 171-180

30 STE IGER R Fundamentals and use of potassiumpolymerdrilling fluids to minimize drilling and completion problems associated with hydratable clays JPT August 1982 pp 1661-1670

31 NYLAND T ET AL Addit ive effectiveness and contaminant influence on fluidshyloss control in water-based muds SPEDE June 1988 pp 195-203

32 HARTMANA ET AL Analysis of mudcake structures formed under simulated borehole conditions SPEDE December 1988 pp 395-402

33 HALE A Method to quantific viscosity effects ondispersion test improves testing of drilling polymers IADCSPE 19954 IADCSPE Drilling Conference Houston Texas Feb 27- Mar 2 1990

34 PLANK J and GOSSEN F Visualization of fluid-loss polymers in drilling-mud filter cakes SPEDE September 1991 pp 203-208

35 KOTKOSKIE T ET AL Inhibition of gas hydrates in water-based drilling muds SPEDE june 1992 pp130-136

36 EZZAT A ROSSER H and AL-HUMAM A Control of microbiological activity in biopolymer- based drilling muds Paper SPE 399285 SPE Middle East Drilling Technology Conference Baharin November 23-25 1997

37 WHISONANT R And HALL F Combining continuous improvement in acid fracturing propellant stimulations and polymer technologies to increase production and developp additional reserves in a mature oil field Paper SPE 38789 Sintesis publicada en JPT February 1988 pp 86-88

38 WHITE J And MEANS J Polysacharides derivates provides high viscosity and low friction at low surface fluid temperature JPT September 1975 pp 1067-1073

39 TYSSEED And VETTERO Chemical characterization problems of water- soluble polymers SPEJ December1981 pp 721-730

40 CONWAY M ET AL Chemical for the rheological behavior of crosslinked fluid systemsJPT February 1983 pp 315-320

41 GULBIES J ET AL Encapsulated breaker for aqueous polymeric fluidsSPEPE February1992 pp 9-14

42 KECK R NEHNER W and STRUMOLOG A New method for predicting fr iction - pressures and rheologic of proppant- laden fracturing fluids SPEDE February 1992 pp 29-33

43 NIMERINCK K McCONNEL S SAMUELSONM Compatibility of resin-Co ated Proppants With Crosslinked Fracturing Fluids SPEPE February 1992 pp 29-33

44 HARRIS P And REINDENBACHV High-temperarure rheological study of foam fracturing fluids JPT May 1987 pp 613-619

45 THOMPSON J ET AL New continuos - mis process for gelling anhydrous methanol minimices hazards JPT July 1992 pp 832-839

46 NORMAN L CONWAYM And WILSON M Temperature- stable acid - gelling polymers laboratory evaluat ion and fields results JPT November 1984 pp 2011-2018

125

u arlV ~-

47 TERRACINA j ET AL Temporary ch emical block brings efficiency and economy to Eastern US workoveroperations SPEPE February 1992 pp 70-74

48 WHITEJ GODDARDJ and PHILIPS H Use of polymers to control water production in oil well s JPT February 1973 pp 143-150

49 TORREST R Deposit buildup during gravel packing with viscous polymer solutions and water JPT February 1983 pp 325-328

50 UNDERDOWN D DAS K and NGUYEN H Gravel packing in highly deviated wells with a crosslinked polymersystem JPT December1985pp2197-2202

51 OBRIEN D And CHENEVERT M Stabilizing sensitive shales with inhibited potassi um- based dri lli ng flu ids JPT September 1973 pp 1039-1100

52 CLARK R ET AL Poliacrylamidel potassium-chloride mud for drilling watershysensitive shales JPT June 1976 pp 719-727

53 McLAUGHLIN H ELPHINGSTONE E and HALL B Aqueous polymers for treating clays in oil and gas Paper SPE 6008 5pt Annual fall technical conferen ce and exhibition New Orleans US A October 3-6 1976

54 YOUNG B McLAUGHLIN H and BORCHARDT J Clay stabilization agentsshytheir effectiveness in high-temperature steam JPT December 1980 pp 21 21-2131

55 WILLIAMS L and UNDERDOWN D New polymer offers effective permanent clay stabilization treatment JPT July 1981 pp 1211-1217

56 HIMES R VINSON E and SIMON D Clay stabilization in low-permeability formations SPEPE August 1991 pp 252-258

57 SCHEUERMAN R Guidelines for using HEC polymers for viscosifying solids-free completion and workover brines JPT February 1983 pp 306-314

58 GOGARTY W Mobility control with polymer solutions SPEJJune1967 pp161-173

59 SHUPE R Chemical stability of polyacryl-amide polymers JPT August 1981 1513-1529

60 MACK J and WARREN J Performance and operation of a crosslinked polymer flood at sage spring creek Unit A Natrona County Wyoming JPT July 1984 pp1145-1156

61 NUMALLAH N A practical method for the evaluation of weak geals JPT February 1987 pp 195-202

62 NEEDHAM R and DOE P Polymer flooding review JPT December 1987 pp 1503-1507

126

63 DOLL T and HANSON M Performance and operation of the Hamm Minnelusa Sand Unit Campbell County Wyoming JPT December 1987 pp 1565-1570

64 WIDMYER R WILLIAMS D and WARE J Performance evaluation of the Salem Unit SufactanUpolymer Pilot JPT Sepember 1988 pp 1217-1226

65 VOSSOUGHI S and BULLER C Permeability modification by in-situ gelati on with a newly discovered biopolymer SPERENovember 1991 pp 485-489

66 HOLLEY Sand CAYLAS J Design operation and evaluation of a surfactant polymer field pilot test SPERE February 1992 pp 9-14

67 RIVENO R DONCHE A and NOLK CH Improved scleroglucan for polymer flooding under harsh reservoir conditions SPERE February1992 pp15-20

68 EGGERT R WILHITE G and GREEN D Experimenta i measurement of the persistence of permeability reduction in porous media treated with xanthan Cr (iii) gel systems SPERE February 1992 pp 29-35

69 XIANGAN Y ET AL Calculation of IPR curves for Oil wells in polymer-flood reservoirs JPT January 1998p 81

70 MAHENDRA P ET AL Field implementation of a polymer EOR technique JPT January 1998 pp 87-88

71 TWEIDT L ET AL Improving sweep efficiency in a naturally fractured reservoir with polymer gels JPT January 1988 pp 89-90

72 PRUDHOMME R and UHL J Rheology enhancement by molecular association complexes SPEJ August 1984 pp 431-434

73 LLAO W PolymerBentonite Soil admixtures as hydraulic barriers SPEDE June 1989 pp 153-161

74 IMCO Datos de productos Drilpol

75 IMCO Tecnologia aplicada de lodos Sptima Edicion Houston Texas US A 1981 Capitulo 13

76 BOURGOYNE A Jr y otros Applied drilling engineering SPE Textbook Series Vol 2 Richardson Texas 1991 p 65

77 AMTEX OUIMICA CMC Medellin 1985 52 pp

78 HUGHES T JONES T and HOUWEN O The chemical composition of CMC and its relationship to the rheology and fluid loss of drilling fluids Paper IADCSPE 20000 IADCSPE Drilling Conference Houston Texas February 27-March 2 1990

12 7

Page 8: 6.8 HIDRAuLlCA DE LA PERFORACI6N ROTATORIA

122

Velocidad de salida (v) en cad a boquilla (se consideraron de Igual area)

De la ecuacion (30)

133 33 d v = pIes segun 0 = 38731 pIessegundo

I 2448(0 375t

Potencia requerida de la bomba de lodo

Para suminislrar la presion tolal de 27363Ipc la polencia de la(s) bomba(s) en superficie debe ser minima de

tPtotntxq = 27363~x 39942galones bbl pulg2 minuto x 42gal

3 25615pie 122pulg x HP = 63852HP

x bbl x pmiddotle2 Ibf - pie33000 -shy

mlnuto

Para lener en cuenla las perdidas de energia por friccion mecanica denlro de la bomba y olros imprevistos se acostumbra ulilizar una eficiencia mecanica de 0 85

63852 HP = 75120HPPolencia total requerida es 085

LECTURASSaBRE LaDaS DE PERFORAC6N

REFERENCIAS

1 AMERICAN PETROLEUM INSTITUTE Glossary of drilling-fluid and associated terms API Production Department Dallas Texas 1985 23 pp

2 IMCO Applied mud technology Seventh edition Houston Texas 1981

3 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing drilling fluids API Production Department Dallas Texas 198547 pp

4 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing watershybased drilling fluids AP I Production Department Dallas Texas 199046 pp

5 BOURGOYNE A Jr y otros Applied Drilling Engineering SPE Textbook Series Vol 2 Richardson Texas 1991 510 pp

6 NL BAROID Productos y servicios BAROID Guia de equipo petrolero 1979 pp 214 -243

7 AMERICAN PETROLEUM INSTITUTE Standard procedure for laboratory testing drilling fluids API Production Department Dallas Texas 1990 42 pp

8 BETEJTIN A Curso de mineralogia Editorial MIR Moscu 1977 739 pp

9 ESCOBAR C YSAAVEDRA F Sensibilidad y estabilizaci6n de arcillas Revent6n Edici6n especial - Memorias de la segunda semana teurocnica de Ingenieria de Petr6leos UIS Bucaramanga Agosto 14 - 18 de 1989 p 39

10 KELLY J Jr Drilling fluids selection performance and quality control JPT Mayo 1983 pp 889 - 898

11 WORLD OIL World Oils 1997 guide to drilling completion and workover fluids World Oil junio 1997 pp 75-116

12 CHURAN M CANDLER JE and FREEMAN M On - site and off-site monitoring of Synthetic - based drilling fluids for oil contamination SPEEPA Exploration and Production Environmental Conference Dallas Texas 3-5 March 1997

13 FRIEDHEIM JE Second - generation synthetic drilling fluids JPT julio de 1997 pp 724-725

14 GROWCOCK F And FREDERICK T Operational limits of synthetic drilling fluids SPEDC September 1996 pp 132-136

15 MEDLEY G H ET AL Field application of lighweight hollow - glass - sphere drilling fluid JPT November 1997 pp 1209 - 1211

16 AYERS R SAUER T and ANDERSON P The generic mud concept for NPDES permitting of offshore drilling discharges JPT March de 1985 pp 475-480

123

12-1

17 BLEIER R Predicting mud toxicity JPT October 1991 pp 1192-1193

18 CLARK RK Impact of environmental regulations on drilling - fluid techonol ogy JPT sept iembre de 1994 pp 804-809

19 BRAKELJ ET AL Cuttings reinjection in Brent reduces drilled cuttings discharge to the sea JPT April 1997 p 412

20 THURBER N Waste minimization for land - based drilling operations JPT May 1992 pp 542-547

21 GODEC M and BIGLARBIGI K Economic effects of environmental regulations on finding and developing crude oil in the USJPTJanuary1991 pp 72-79

22 SMITH A L Securing the future In partnership with the environment JPT June 1996 pp 526-532

23 CHATTERJI J and BORCHARDT J Applications of water-soluble polymers in the oil field JPT November 1981 pp 2042-2056

24 GRAY G and DARLEY H Composition and properties of oil well drilling fluids Fourth edition Houston Texas Gulf Publishing Company 1981 630 pp

25 BROWNING W and CHESSER B Polymer-polyelectrolyte drilling fluid systems JPT October 1972 pp 1255-1263

26 SIFFERMAN T and GREENKORN R Drag reduction in three distinctly different fluid systems SPEJ December 1981 pp 663-669

27 FISK J and JAMISON D Physical properties of drilling fluids at high temperatures and pressures SPEDE December 1989 pp 341-345

28 CHESSER B and ENRIGHT D High-temperature stabilization of drilling fluids with a low-molecular-weight copolymer JPT June 1980 pp 950-956

29 THOMAS DC Thermal stability of starch-and carboxymethyl cellulose- based polyme rs used in drill ing fluids SPEJ April 1982 pp 171-180

30 STE IGER R Fundamentals and use of potassiumpolymerdrilling fluids to minimize drilling and completion problems associated with hydratable clays JPT August 1982 pp 1661-1670

31 NYLAND T ET AL Addit ive effectiveness and contaminant influence on fluidshyloss control in water-based muds SPEDE June 1988 pp 195-203

32 HARTMANA ET AL Analysis of mudcake structures formed under simulated borehole conditions SPEDE December 1988 pp 395-402

33 HALE A Method to quantific viscosity effects ondispersion test improves testing of drilling polymers IADCSPE 19954 IADCSPE Drilling Conference Houston Texas Feb 27- Mar 2 1990

34 PLANK J and GOSSEN F Visualization of fluid-loss polymers in drilling-mud filter cakes SPEDE September 1991 pp 203-208

35 KOTKOSKIE T ET AL Inhibition of gas hydrates in water-based drilling muds SPEDE june 1992 pp130-136

36 EZZAT A ROSSER H and AL-HUMAM A Control of microbiological activity in biopolymer- based drilling muds Paper SPE 399285 SPE Middle East Drilling Technology Conference Baharin November 23-25 1997

37 WHISONANT R And HALL F Combining continuous improvement in acid fracturing propellant stimulations and polymer technologies to increase production and developp additional reserves in a mature oil field Paper SPE 38789 Sintesis publicada en JPT February 1988 pp 86-88

38 WHITE J And MEANS J Polysacharides derivates provides high viscosity and low friction at low surface fluid temperature JPT September 1975 pp 1067-1073

39 TYSSEED And VETTERO Chemical characterization problems of water- soluble polymers SPEJ December1981 pp 721-730

40 CONWAY M ET AL Chemical for the rheological behavior of crosslinked fluid systemsJPT February 1983 pp 315-320

41 GULBIES J ET AL Encapsulated breaker for aqueous polymeric fluidsSPEPE February1992 pp 9-14

42 KECK R NEHNER W and STRUMOLOG A New method for predicting fr iction - pressures and rheologic of proppant- laden fracturing fluids SPEDE February 1992 pp 29-33

43 NIMERINCK K McCONNEL S SAMUELSONM Compatibility of resin-Co ated Proppants With Crosslinked Fracturing Fluids SPEPE February 1992 pp 29-33

44 HARRIS P And REINDENBACHV High-temperarure rheological study of foam fracturing fluids JPT May 1987 pp 613-619

45 THOMPSON J ET AL New continuos - mis process for gelling anhydrous methanol minimices hazards JPT July 1992 pp 832-839

46 NORMAN L CONWAYM And WILSON M Temperature- stable acid - gelling polymers laboratory evaluat ion and fields results JPT November 1984 pp 2011-2018

125

u arlV ~-

47 TERRACINA j ET AL Temporary ch emical block brings efficiency and economy to Eastern US workoveroperations SPEPE February 1992 pp 70-74

48 WHITEJ GODDARDJ and PHILIPS H Use of polymers to control water production in oil well s JPT February 1973 pp 143-150

49 TORREST R Deposit buildup during gravel packing with viscous polymer solutions and water JPT February 1983 pp 325-328

50 UNDERDOWN D DAS K and NGUYEN H Gravel packing in highly deviated wells with a crosslinked polymersystem JPT December1985pp2197-2202

51 OBRIEN D And CHENEVERT M Stabilizing sensitive shales with inhibited potassi um- based dri lli ng flu ids JPT September 1973 pp 1039-1100

52 CLARK R ET AL Poliacrylamidel potassium-chloride mud for drilling watershysensitive shales JPT June 1976 pp 719-727

53 McLAUGHLIN H ELPHINGSTONE E and HALL B Aqueous polymers for treating clays in oil and gas Paper SPE 6008 5pt Annual fall technical conferen ce and exhibition New Orleans US A October 3-6 1976

54 YOUNG B McLAUGHLIN H and BORCHARDT J Clay stabilization agentsshytheir effectiveness in high-temperature steam JPT December 1980 pp 21 21-2131

55 WILLIAMS L and UNDERDOWN D New polymer offers effective permanent clay stabilization treatment JPT July 1981 pp 1211-1217

56 HIMES R VINSON E and SIMON D Clay stabilization in low-permeability formations SPEPE August 1991 pp 252-258

57 SCHEUERMAN R Guidelines for using HEC polymers for viscosifying solids-free completion and workover brines JPT February 1983 pp 306-314

58 GOGARTY W Mobility control with polymer solutions SPEJJune1967 pp161-173

59 SHUPE R Chemical stability of polyacryl-amide polymers JPT August 1981 1513-1529

60 MACK J and WARREN J Performance and operation of a crosslinked polymer flood at sage spring creek Unit A Natrona County Wyoming JPT July 1984 pp1145-1156

61 NUMALLAH N A practical method for the evaluation of weak geals JPT February 1987 pp 195-202

62 NEEDHAM R and DOE P Polymer flooding review JPT December 1987 pp 1503-1507

126

63 DOLL T and HANSON M Performance and operation of the Hamm Minnelusa Sand Unit Campbell County Wyoming JPT December 1987 pp 1565-1570

64 WIDMYER R WILLIAMS D and WARE J Performance evaluation of the Salem Unit SufactanUpolymer Pilot JPT Sepember 1988 pp 1217-1226

65 VOSSOUGHI S and BULLER C Permeability modification by in-situ gelati on with a newly discovered biopolymer SPERENovember 1991 pp 485-489

66 HOLLEY Sand CAYLAS J Design operation and evaluation of a surfactant polymer field pilot test SPERE February 1992 pp 9-14

67 RIVENO R DONCHE A and NOLK CH Improved scleroglucan for polymer flooding under harsh reservoir conditions SPERE February1992 pp15-20

68 EGGERT R WILHITE G and GREEN D Experimenta i measurement of the persistence of permeability reduction in porous media treated with xanthan Cr (iii) gel systems SPERE February 1992 pp 29-35

69 XIANGAN Y ET AL Calculation of IPR curves for Oil wells in polymer-flood reservoirs JPT January 1998p 81

70 MAHENDRA P ET AL Field implementation of a polymer EOR technique JPT January 1998 pp 87-88

71 TWEIDT L ET AL Improving sweep efficiency in a naturally fractured reservoir with polymer gels JPT January 1988 pp 89-90

72 PRUDHOMME R and UHL J Rheology enhancement by molecular association complexes SPEJ August 1984 pp 431-434

73 LLAO W PolymerBentonite Soil admixtures as hydraulic barriers SPEDE June 1989 pp 153-161

74 IMCO Datos de productos Drilpol

75 IMCO Tecnologia aplicada de lodos Sptima Edicion Houston Texas US A 1981 Capitulo 13

76 BOURGOYNE A Jr y otros Applied drilling engineering SPE Textbook Series Vol 2 Richardson Texas 1991 p 65

77 AMTEX OUIMICA CMC Medellin 1985 52 pp

78 HUGHES T JONES T and HOUWEN O The chemical composition of CMC and its relationship to the rheology and fluid loss of drilling fluids Paper IADCSPE 20000 IADCSPE Drilling Conference Houston Texas February 27-March 2 1990

12 7

Page 9: 6.8 HIDRAuLlCA DE LA PERFORACI6N ROTATORIA

REFERENCIAS

1 AMERICAN PETROLEUM INSTITUTE Glossary of drilling-fluid and associated terms API Production Department Dallas Texas 1985 23 pp

2 IMCO Applied mud technology Seventh edition Houston Texas 1981

3 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing drilling fluids API Production Department Dallas Texas 198547 pp

4 AMERICAN PETROLEUM INSTITUTE Standard procedure for field testing watershybased drilling fluids AP I Production Department Dallas Texas 199046 pp

5 BOURGOYNE A Jr y otros Applied Drilling Engineering SPE Textbook Series Vol 2 Richardson Texas 1991 510 pp

6 NL BAROID Productos y servicios BAROID Guia de equipo petrolero 1979 pp 214 -243

7 AMERICAN PETROLEUM INSTITUTE Standard procedure for laboratory testing drilling fluids API Production Department Dallas Texas 1990 42 pp

8 BETEJTIN A Curso de mineralogia Editorial MIR Moscu 1977 739 pp

9 ESCOBAR C YSAAVEDRA F Sensibilidad y estabilizaci6n de arcillas Revent6n Edici6n especial - Memorias de la segunda semana teurocnica de Ingenieria de Petr6leos UIS Bucaramanga Agosto 14 - 18 de 1989 p 39

10 KELLY J Jr Drilling fluids selection performance and quality control JPT Mayo 1983 pp 889 - 898

11 WORLD OIL World Oils 1997 guide to drilling completion and workover fluids World Oil junio 1997 pp 75-116

12 CHURAN M CANDLER JE and FREEMAN M On - site and off-site monitoring of Synthetic - based drilling fluids for oil contamination SPEEPA Exploration and Production Environmental Conference Dallas Texas 3-5 March 1997

13 FRIEDHEIM JE Second - generation synthetic drilling fluids JPT julio de 1997 pp 724-725

14 GROWCOCK F And FREDERICK T Operational limits of synthetic drilling fluids SPEDC September 1996 pp 132-136

15 MEDLEY G H ET AL Field application of lighweight hollow - glass - sphere drilling fluid JPT November 1997 pp 1209 - 1211

16 AYERS R SAUER T and ANDERSON P The generic mud concept for NPDES permitting of offshore drilling discharges JPT March de 1985 pp 475-480

123

12-1

17 BLEIER R Predicting mud toxicity JPT October 1991 pp 1192-1193

18 CLARK RK Impact of environmental regulations on drilling - fluid techonol ogy JPT sept iembre de 1994 pp 804-809

19 BRAKELJ ET AL Cuttings reinjection in Brent reduces drilled cuttings discharge to the sea JPT April 1997 p 412

20 THURBER N Waste minimization for land - based drilling operations JPT May 1992 pp 542-547

21 GODEC M and BIGLARBIGI K Economic effects of environmental regulations on finding and developing crude oil in the USJPTJanuary1991 pp 72-79

22 SMITH A L Securing the future In partnership with the environment JPT June 1996 pp 526-532

23 CHATTERJI J and BORCHARDT J Applications of water-soluble polymers in the oil field JPT November 1981 pp 2042-2056

24 GRAY G and DARLEY H Composition and properties of oil well drilling fluids Fourth edition Houston Texas Gulf Publishing Company 1981 630 pp

25 BROWNING W and CHESSER B Polymer-polyelectrolyte drilling fluid systems JPT October 1972 pp 1255-1263

26 SIFFERMAN T and GREENKORN R Drag reduction in three distinctly different fluid systems SPEJ December 1981 pp 663-669

27 FISK J and JAMISON D Physical properties of drilling fluids at high temperatures and pressures SPEDE December 1989 pp 341-345

28 CHESSER B and ENRIGHT D High-temperature stabilization of drilling fluids with a low-molecular-weight copolymer JPT June 1980 pp 950-956

29 THOMAS DC Thermal stability of starch-and carboxymethyl cellulose- based polyme rs used in drill ing fluids SPEJ April 1982 pp 171-180

30 STE IGER R Fundamentals and use of potassiumpolymerdrilling fluids to minimize drilling and completion problems associated with hydratable clays JPT August 1982 pp 1661-1670

31 NYLAND T ET AL Addit ive effectiveness and contaminant influence on fluidshyloss control in water-based muds SPEDE June 1988 pp 195-203

32 HARTMANA ET AL Analysis of mudcake structures formed under simulated borehole conditions SPEDE December 1988 pp 395-402

33 HALE A Method to quantific viscosity effects ondispersion test improves testing of drilling polymers IADCSPE 19954 IADCSPE Drilling Conference Houston Texas Feb 27- Mar 2 1990

34 PLANK J and GOSSEN F Visualization of fluid-loss polymers in drilling-mud filter cakes SPEDE September 1991 pp 203-208

35 KOTKOSKIE T ET AL Inhibition of gas hydrates in water-based drilling muds SPEDE june 1992 pp130-136

36 EZZAT A ROSSER H and AL-HUMAM A Control of microbiological activity in biopolymer- based drilling muds Paper SPE 399285 SPE Middle East Drilling Technology Conference Baharin November 23-25 1997

37 WHISONANT R And HALL F Combining continuous improvement in acid fracturing propellant stimulations and polymer technologies to increase production and developp additional reserves in a mature oil field Paper SPE 38789 Sintesis publicada en JPT February 1988 pp 86-88

38 WHITE J And MEANS J Polysacharides derivates provides high viscosity and low friction at low surface fluid temperature JPT September 1975 pp 1067-1073

39 TYSSEED And VETTERO Chemical characterization problems of water- soluble polymers SPEJ December1981 pp 721-730

40 CONWAY M ET AL Chemical for the rheological behavior of crosslinked fluid systemsJPT February 1983 pp 315-320

41 GULBIES J ET AL Encapsulated breaker for aqueous polymeric fluidsSPEPE February1992 pp 9-14

42 KECK R NEHNER W and STRUMOLOG A New method for predicting fr iction - pressures and rheologic of proppant- laden fracturing fluids SPEDE February 1992 pp 29-33

43 NIMERINCK K McCONNEL S SAMUELSONM Compatibility of resin-Co ated Proppants With Crosslinked Fracturing Fluids SPEPE February 1992 pp 29-33

44 HARRIS P And REINDENBACHV High-temperarure rheological study of foam fracturing fluids JPT May 1987 pp 613-619

45 THOMPSON J ET AL New continuos - mis process for gelling anhydrous methanol minimices hazards JPT July 1992 pp 832-839

46 NORMAN L CONWAYM And WILSON M Temperature- stable acid - gelling polymers laboratory evaluat ion and fields results JPT November 1984 pp 2011-2018

125

u arlV ~-

47 TERRACINA j ET AL Temporary ch emical block brings efficiency and economy to Eastern US workoveroperations SPEPE February 1992 pp 70-74

48 WHITEJ GODDARDJ and PHILIPS H Use of polymers to control water production in oil well s JPT February 1973 pp 143-150

49 TORREST R Deposit buildup during gravel packing with viscous polymer solutions and water JPT February 1983 pp 325-328

50 UNDERDOWN D DAS K and NGUYEN H Gravel packing in highly deviated wells with a crosslinked polymersystem JPT December1985pp2197-2202

51 OBRIEN D And CHENEVERT M Stabilizing sensitive shales with inhibited potassi um- based dri lli ng flu ids JPT September 1973 pp 1039-1100

52 CLARK R ET AL Poliacrylamidel potassium-chloride mud for drilling watershysensitive shales JPT June 1976 pp 719-727

53 McLAUGHLIN H ELPHINGSTONE E and HALL B Aqueous polymers for treating clays in oil and gas Paper SPE 6008 5pt Annual fall technical conferen ce and exhibition New Orleans US A October 3-6 1976

54 YOUNG B McLAUGHLIN H and BORCHARDT J Clay stabilization agentsshytheir effectiveness in high-temperature steam JPT December 1980 pp 21 21-2131

55 WILLIAMS L and UNDERDOWN D New polymer offers effective permanent clay stabilization treatment JPT July 1981 pp 1211-1217

56 HIMES R VINSON E and SIMON D Clay stabilization in low-permeability formations SPEPE August 1991 pp 252-258

57 SCHEUERMAN R Guidelines for using HEC polymers for viscosifying solids-free completion and workover brines JPT February 1983 pp 306-314

58 GOGARTY W Mobility control with polymer solutions SPEJJune1967 pp161-173

59 SHUPE R Chemical stability of polyacryl-amide polymers JPT August 1981 1513-1529

60 MACK J and WARREN J Performance and operation of a crosslinked polymer flood at sage spring creek Unit A Natrona County Wyoming JPT July 1984 pp1145-1156

61 NUMALLAH N A practical method for the evaluation of weak geals JPT February 1987 pp 195-202

62 NEEDHAM R and DOE P Polymer flooding review JPT December 1987 pp 1503-1507

126

63 DOLL T and HANSON M Performance and operation of the Hamm Minnelusa Sand Unit Campbell County Wyoming JPT December 1987 pp 1565-1570

64 WIDMYER R WILLIAMS D and WARE J Performance evaluation of the Salem Unit SufactanUpolymer Pilot JPT Sepember 1988 pp 1217-1226

65 VOSSOUGHI S and BULLER C Permeability modification by in-situ gelati on with a newly discovered biopolymer SPERENovember 1991 pp 485-489

66 HOLLEY Sand CAYLAS J Design operation and evaluation of a surfactant polymer field pilot test SPERE February 1992 pp 9-14

67 RIVENO R DONCHE A and NOLK CH Improved scleroglucan for polymer flooding under harsh reservoir conditions SPERE February1992 pp15-20

68 EGGERT R WILHITE G and GREEN D Experimenta i measurement of the persistence of permeability reduction in porous media treated with xanthan Cr (iii) gel systems SPERE February 1992 pp 29-35

69 XIANGAN Y ET AL Calculation of IPR curves for Oil wells in polymer-flood reservoirs JPT January 1998p 81

70 MAHENDRA P ET AL Field implementation of a polymer EOR technique JPT January 1998 pp 87-88

71 TWEIDT L ET AL Improving sweep efficiency in a naturally fractured reservoir with polymer gels JPT January 1988 pp 89-90

72 PRUDHOMME R and UHL J Rheology enhancement by molecular association complexes SPEJ August 1984 pp 431-434

73 LLAO W PolymerBentonite Soil admixtures as hydraulic barriers SPEDE June 1989 pp 153-161

74 IMCO Datos de productos Drilpol

75 IMCO Tecnologia aplicada de lodos Sptima Edicion Houston Texas US A 1981 Capitulo 13

76 BOURGOYNE A Jr y otros Applied drilling engineering SPE Textbook Series Vol 2 Richardson Texas 1991 p 65

77 AMTEX OUIMICA CMC Medellin 1985 52 pp

78 HUGHES T JONES T and HOUWEN O The chemical composition of CMC and its relationship to the rheology and fluid loss of drilling fluids Paper IADCSPE 20000 IADCSPE Drilling Conference Houston Texas February 27-March 2 1990

12 7

Page 10: 6.8 HIDRAuLlCA DE LA PERFORACI6N ROTATORIA

12-1

17 BLEIER R Predicting mud toxicity JPT October 1991 pp 1192-1193

18 CLARK RK Impact of environmental regulations on drilling - fluid techonol ogy JPT sept iembre de 1994 pp 804-809

19 BRAKELJ ET AL Cuttings reinjection in Brent reduces drilled cuttings discharge to the sea JPT April 1997 p 412

20 THURBER N Waste minimization for land - based drilling operations JPT May 1992 pp 542-547

21 GODEC M and BIGLARBIGI K Economic effects of environmental regulations on finding and developing crude oil in the USJPTJanuary1991 pp 72-79

22 SMITH A L Securing the future In partnership with the environment JPT June 1996 pp 526-532

23 CHATTERJI J and BORCHARDT J Applications of water-soluble polymers in the oil field JPT November 1981 pp 2042-2056

24 GRAY G and DARLEY H Composition and properties of oil well drilling fluids Fourth edition Houston Texas Gulf Publishing Company 1981 630 pp

25 BROWNING W and CHESSER B Polymer-polyelectrolyte drilling fluid systems JPT October 1972 pp 1255-1263

26 SIFFERMAN T and GREENKORN R Drag reduction in three distinctly different fluid systems SPEJ December 1981 pp 663-669

27 FISK J and JAMISON D Physical properties of drilling fluids at high temperatures and pressures SPEDE December 1989 pp 341-345

28 CHESSER B and ENRIGHT D High-temperature stabilization of drilling fluids with a low-molecular-weight copolymer JPT June 1980 pp 950-956

29 THOMAS DC Thermal stability of starch-and carboxymethyl cellulose- based polyme rs used in drill ing fluids SPEJ April 1982 pp 171-180

30 STE IGER R Fundamentals and use of potassiumpolymerdrilling fluids to minimize drilling and completion problems associated with hydratable clays JPT August 1982 pp 1661-1670

31 NYLAND T ET AL Addit ive effectiveness and contaminant influence on fluidshyloss control in water-based muds SPEDE June 1988 pp 195-203

32 HARTMANA ET AL Analysis of mudcake structures formed under simulated borehole conditions SPEDE December 1988 pp 395-402

33 HALE A Method to quantific viscosity effects ondispersion test improves testing of drilling polymers IADCSPE 19954 IADCSPE Drilling Conference Houston Texas Feb 27- Mar 2 1990

34 PLANK J and GOSSEN F Visualization of fluid-loss polymers in drilling-mud filter cakes SPEDE September 1991 pp 203-208

35 KOTKOSKIE T ET AL Inhibition of gas hydrates in water-based drilling muds SPEDE june 1992 pp130-136

36 EZZAT A ROSSER H and AL-HUMAM A Control of microbiological activity in biopolymer- based drilling muds Paper SPE 399285 SPE Middle East Drilling Technology Conference Baharin November 23-25 1997

37 WHISONANT R And HALL F Combining continuous improvement in acid fracturing propellant stimulations and polymer technologies to increase production and developp additional reserves in a mature oil field Paper SPE 38789 Sintesis publicada en JPT February 1988 pp 86-88

38 WHITE J And MEANS J Polysacharides derivates provides high viscosity and low friction at low surface fluid temperature JPT September 1975 pp 1067-1073

39 TYSSEED And VETTERO Chemical characterization problems of water- soluble polymers SPEJ December1981 pp 721-730

40 CONWAY M ET AL Chemical for the rheological behavior of crosslinked fluid systemsJPT February 1983 pp 315-320

41 GULBIES J ET AL Encapsulated breaker for aqueous polymeric fluidsSPEPE February1992 pp 9-14

42 KECK R NEHNER W and STRUMOLOG A New method for predicting fr iction - pressures and rheologic of proppant- laden fracturing fluids SPEDE February 1992 pp 29-33

43 NIMERINCK K McCONNEL S SAMUELSONM Compatibility of resin-Co ated Proppants With Crosslinked Fracturing Fluids SPEPE February 1992 pp 29-33

44 HARRIS P And REINDENBACHV High-temperarure rheological study of foam fracturing fluids JPT May 1987 pp 613-619

45 THOMPSON J ET AL New continuos - mis process for gelling anhydrous methanol minimices hazards JPT July 1992 pp 832-839

46 NORMAN L CONWAYM And WILSON M Temperature- stable acid - gelling polymers laboratory evaluat ion and fields results JPT November 1984 pp 2011-2018

125

u arlV ~-

47 TERRACINA j ET AL Temporary ch emical block brings efficiency and economy to Eastern US workoveroperations SPEPE February 1992 pp 70-74

48 WHITEJ GODDARDJ and PHILIPS H Use of polymers to control water production in oil well s JPT February 1973 pp 143-150

49 TORREST R Deposit buildup during gravel packing with viscous polymer solutions and water JPT February 1983 pp 325-328

50 UNDERDOWN D DAS K and NGUYEN H Gravel packing in highly deviated wells with a crosslinked polymersystem JPT December1985pp2197-2202

51 OBRIEN D And CHENEVERT M Stabilizing sensitive shales with inhibited potassi um- based dri lli ng flu ids JPT September 1973 pp 1039-1100

52 CLARK R ET AL Poliacrylamidel potassium-chloride mud for drilling watershysensitive shales JPT June 1976 pp 719-727

53 McLAUGHLIN H ELPHINGSTONE E and HALL B Aqueous polymers for treating clays in oil and gas Paper SPE 6008 5pt Annual fall technical conferen ce and exhibition New Orleans US A October 3-6 1976

54 YOUNG B McLAUGHLIN H and BORCHARDT J Clay stabilization agentsshytheir effectiveness in high-temperature steam JPT December 1980 pp 21 21-2131

55 WILLIAMS L and UNDERDOWN D New polymer offers effective permanent clay stabilization treatment JPT July 1981 pp 1211-1217

56 HIMES R VINSON E and SIMON D Clay stabilization in low-permeability formations SPEPE August 1991 pp 252-258

57 SCHEUERMAN R Guidelines for using HEC polymers for viscosifying solids-free completion and workover brines JPT February 1983 pp 306-314

58 GOGARTY W Mobility control with polymer solutions SPEJJune1967 pp161-173

59 SHUPE R Chemical stability of polyacryl-amide polymers JPT August 1981 1513-1529

60 MACK J and WARREN J Performance and operation of a crosslinked polymer flood at sage spring creek Unit A Natrona County Wyoming JPT July 1984 pp1145-1156

61 NUMALLAH N A practical method for the evaluation of weak geals JPT February 1987 pp 195-202

62 NEEDHAM R and DOE P Polymer flooding review JPT December 1987 pp 1503-1507

126

63 DOLL T and HANSON M Performance and operation of the Hamm Minnelusa Sand Unit Campbell County Wyoming JPT December 1987 pp 1565-1570

64 WIDMYER R WILLIAMS D and WARE J Performance evaluation of the Salem Unit SufactanUpolymer Pilot JPT Sepember 1988 pp 1217-1226

65 VOSSOUGHI S and BULLER C Permeability modification by in-situ gelati on with a newly discovered biopolymer SPERENovember 1991 pp 485-489

66 HOLLEY Sand CAYLAS J Design operation and evaluation of a surfactant polymer field pilot test SPERE February 1992 pp 9-14

67 RIVENO R DONCHE A and NOLK CH Improved scleroglucan for polymer flooding under harsh reservoir conditions SPERE February1992 pp15-20

68 EGGERT R WILHITE G and GREEN D Experimenta i measurement of the persistence of permeability reduction in porous media treated with xanthan Cr (iii) gel systems SPERE February 1992 pp 29-35

69 XIANGAN Y ET AL Calculation of IPR curves for Oil wells in polymer-flood reservoirs JPT January 1998p 81

70 MAHENDRA P ET AL Field implementation of a polymer EOR technique JPT January 1998 pp 87-88

71 TWEIDT L ET AL Improving sweep efficiency in a naturally fractured reservoir with polymer gels JPT January 1988 pp 89-90

72 PRUDHOMME R and UHL J Rheology enhancement by molecular association complexes SPEJ August 1984 pp 431-434

73 LLAO W PolymerBentonite Soil admixtures as hydraulic barriers SPEDE June 1989 pp 153-161

74 IMCO Datos de productos Drilpol

75 IMCO Tecnologia aplicada de lodos Sptima Edicion Houston Texas US A 1981 Capitulo 13

76 BOURGOYNE A Jr y otros Applied drilling engineering SPE Textbook Series Vol 2 Richardson Texas 1991 p 65

77 AMTEX OUIMICA CMC Medellin 1985 52 pp

78 HUGHES T JONES T and HOUWEN O The chemical composition of CMC and its relationship to the rheology and fluid loss of drilling fluids Paper IADCSPE 20000 IADCSPE Drilling Conference Houston Texas February 27-March 2 1990

12 7

Page 11: 6.8 HIDRAuLlCA DE LA PERFORACI6N ROTATORIA

33 HALE A Method to quantific viscosity effects ondispersion test improves testing of drilling polymers IADCSPE 19954 IADCSPE Drilling Conference Houston Texas Feb 27- Mar 2 1990

34 PLANK J and GOSSEN F Visualization of fluid-loss polymers in drilling-mud filter cakes SPEDE September 1991 pp 203-208

35 KOTKOSKIE T ET AL Inhibition of gas hydrates in water-based drilling muds SPEDE june 1992 pp130-136

36 EZZAT A ROSSER H and AL-HUMAM A Control of microbiological activity in biopolymer- based drilling muds Paper SPE 399285 SPE Middle East Drilling Technology Conference Baharin November 23-25 1997

37 WHISONANT R And HALL F Combining continuous improvement in acid fracturing propellant stimulations and polymer technologies to increase production and developp additional reserves in a mature oil field Paper SPE 38789 Sintesis publicada en JPT February 1988 pp 86-88

38 WHITE J And MEANS J Polysacharides derivates provides high viscosity and low friction at low surface fluid temperature JPT September 1975 pp 1067-1073

39 TYSSEED And VETTERO Chemical characterization problems of water- soluble polymers SPEJ December1981 pp 721-730

40 CONWAY M ET AL Chemical for the rheological behavior of crosslinked fluid systemsJPT February 1983 pp 315-320

41 GULBIES J ET AL Encapsulated breaker for aqueous polymeric fluidsSPEPE February1992 pp 9-14

42 KECK R NEHNER W and STRUMOLOG A New method for predicting fr iction - pressures and rheologic of proppant- laden fracturing fluids SPEDE February 1992 pp 29-33

43 NIMERINCK K McCONNEL S SAMUELSONM Compatibility of resin-Co ated Proppants With Crosslinked Fracturing Fluids SPEPE February 1992 pp 29-33

44 HARRIS P And REINDENBACHV High-temperarure rheological study of foam fracturing fluids JPT May 1987 pp 613-619

45 THOMPSON J ET AL New continuos - mis process for gelling anhydrous methanol minimices hazards JPT July 1992 pp 832-839

46 NORMAN L CONWAYM And WILSON M Temperature- stable acid - gelling polymers laboratory evaluat ion and fields results JPT November 1984 pp 2011-2018

125

u arlV ~-

47 TERRACINA j ET AL Temporary ch emical block brings efficiency and economy to Eastern US workoveroperations SPEPE February 1992 pp 70-74

48 WHITEJ GODDARDJ and PHILIPS H Use of polymers to control water production in oil well s JPT February 1973 pp 143-150

49 TORREST R Deposit buildup during gravel packing with viscous polymer solutions and water JPT February 1983 pp 325-328

50 UNDERDOWN D DAS K and NGUYEN H Gravel packing in highly deviated wells with a crosslinked polymersystem JPT December1985pp2197-2202

51 OBRIEN D And CHENEVERT M Stabilizing sensitive shales with inhibited potassi um- based dri lli ng flu ids JPT September 1973 pp 1039-1100

52 CLARK R ET AL Poliacrylamidel potassium-chloride mud for drilling watershysensitive shales JPT June 1976 pp 719-727

53 McLAUGHLIN H ELPHINGSTONE E and HALL B Aqueous polymers for treating clays in oil and gas Paper SPE 6008 5pt Annual fall technical conferen ce and exhibition New Orleans US A October 3-6 1976

54 YOUNG B McLAUGHLIN H and BORCHARDT J Clay stabilization agentsshytheir effectiveness in high-temperature steam JPT December 1980 pp 21 21-2131

55 WILLIAMS L and UNDERDOWN D New polymer offers effective permanent clay stabilization treatment JPT July 1981 pp 1211-1217

56 HIMES R VINSON E and SIMON D Clay stabilization in low-permeability formations SPEPE August 1991 pp 252-258

57 SCHEUERMAN R Guidelines for using HEC polymers for viscosifying solids-free completion and workover brines JPT February 1983 pp 306-314

58 GOGARTY W Mobility control with polymer solutions SPEJJune1967 pp161-173

59 SHUPE R Chemical stability of polyacryl-amide polymers JPT August 1981 1513-1529

60 MACK J and WARREN J Performance and operation of a crosslinked polymer flood at sage spring creek Unit A Natrona County Wyoming JPT July 1984 pp1145-1156

61 NUMALLAH N A practical method for the evaluation of weak geals JPT February 1987 pp 195-202

62 NEEDHAM R and DOE P Polymer flooding review JPT December 1987 pp 1503-1507

126

63 DOLL T and HANSON M Performance and operation of the Hamm Minnelusa Sand Unit Campbell County Wyoming JPT December 1987 pp 1565-1570

64 WIDMYER R WILLIAMS D and WARE J Performance evaluation of the Salem Unit SufactanUpolymer Pilot JPT Sepember 1988 pp 1217-1226

65 VOSSOUGHI S and BULLER C Permeability modification by in-situ gelati on with a newly discovered biopolymer SPERENovember 1991 pp 485-489

66 HOLLEY Sand CAYLAS J Design operation and evaluation of a surfactant polymer field pilot test SPERE February 1992 pp 9-14

67 RIVENO R DONCHE A and NOLK CH Improved scleroglucan for polymer flooding under harsh reservoir conditions SPERE February1992 pp15-20

68 EGGERT R WILHITE G and GREEN D Experimenta i measurement of the persistence of permeability reduction in porous media treated with xanthan Cr (iii) gel systems SPERE February 1992 pp 29-35

69 XIANGAN Y ET AL Calculation of IPR curves for Oil wells in polymer-flood reservoirs JPT January 1998p 81

70 MAHENDRA P ET AL Field implementation of a polymer EOR technique JPT January 1998 pp 87-88

71 TWEIDT L ET AL Improving sweep efficiency in a naturally fractured reservoir with polymer gels JPT January 1988 pp 89-90

72 PRUDHOMME R and UHL J Rheology enhancement by molecular association complexes SPEJ August 1984 pp 431-434

73 LLAO W PolymerBentonite Soil admixtures as hydraulic barriers SPEDE June 1989 pp 153-161

74 IMCO Datos de productos Drilpol

75 IMCO Tecnologia aplicada de lodos Sptima Edicion Houston Texas US A 1981 Capitulo 13

76 BOURGOYNE A Jr y otros Applied drilling engineering SPE Textbook Series Vol 2 Richardson Texas 1991 p 65

77 AMTEX OUIMICA CMC Medellin 1985 52 pp

78 HUGHES T JONES T and HOUWEN O The chemical composition of CMC and its relationship to the rheology and fluid loss of drilling fluids Paper IADCSPE 20000 IADCSPE Drilling Conference Houston Texas February 27-March 2 1990

12 7

Page 12: 6.8 HIDRAuLlCA DE LA PERFORACI6N ROTATORIA

u arlV ~-

47 TERRACINA j ET AL Temporary ch emical block brings efficiency and economy to Eastern US workoveroperations SPEPE February 1992 pp 70-74

48 WHITEJ GODDARDJ and PHILIPS H Use of polymers to control water production in oil well s JPT February 1973 pp 143-150

49 TORREST R Deposit buildup during gravel packing with viscous polymer solutions and water JPT February 1983 pp 325-328

50 UNDERDOWN D DAS K and NGUYEN H Gravel packing in highly deviated wells with a crosslinked polymersystem JPT December1985pp2197-2202

51 OBRIEN D And CHENEVERT M Stabilizing sensitive shales with inhibited potassi um- based dri lli ng flu ids JPT September 1973 pp 1039-1100

52 CLARK R ET AL Poliacrylamidel potassium-chloride mud for drilling watershysensitive shales JPT June 1976 pp 719-727

53 McLAUGHLIN H ELPHINGSTONE E and HALL B Aqueous polymers for treating clays in oil and gas Paper SPE 6008 5pt Annual fall technical conferen ce and exhibition New Orleans US A October 3-6 1976

54 YOUNG B McLAUGHLIN H and BORCHARDT J Clay stabilization agentsshytheir effectiveness in high-temperature steam JPT December 1980 pp 21 21-2131

55 WILLIAMS L and UNDERDOWN D New polymer offers effective permanent clay stabilization treatment JPT July 1981 pp 1211-1217

56 HIMES R VINSON E and SIMON D Clay stabilization in low-permeability formations SPEPE August 1991 pp 252-258

57 SCHEUERMAN R Guidelines for using HEC polymers for viscosifying solids-free completion and workover brines JPT February 1983 pp 306-314

58 GOGARTY W Mobility control with polymer solutions SPEJJune1967 pp161-173

59 SHUPE R Chemical stability of polyacryl-amide polymers JPT August 1981 1513-1529

60 MACK J and WARREN J Performance and operation of a crosslinked polymer flood at sage spring creek Unit A Natrona County Wyoming JPT July 1984 pp1145-1156

61 NUMALLAH N A practical method for the evaluation of weak geals JPT February 1987 pp 195-202

62 NEEDHAM R and DOE P Polymer flooding review JPT December 1987 pp 1503-1507

126

63 DOLL T and HANSON M Performance and operation of the Hamm Minnelusa Sand Unit Campbell County Wyoming JPT December 1987 pp 1565-1570

64 WIDMYER R WILLIAMS D and WARE J Performance evaluation of the Salem Unit SufactanUpolymer Pilot JPT Sepember 1988 pp 1217-1226

65 VOSSOUGHI S and BULLER C Permeability modification by in-situ gelati on with a newly discovered biopolymer SPERENovember 1991 pp 485-489

66 HOLLEY Sand CAYLAS J Design operation and evaluation of a surfactant polymer field pilot test SPERE February 1992 pp 9-14

67 RIVENO R DONCHE A and NOLK CH Improved scleroglucan for polymer flooding under harsh reservoir conditions SPERE February1992 pp15-20

68 EGGERT R WILHITE G and GREEN D Experimenta i measurement of the persistence of permeability reduction in porous media treated with xanthan Cr (iii) gel systems SPERE February 1992 pp 29-35

69 XIANGAN Y ET AL Calculation of IPR curves for Oil wells in polymer-flood reservoirs JPT January 1998p 81

70 MAHENDRA P ET AL Field implementation of a polymer EOR technique JPT January 1998 pp 87-88

71 TWEIDT L ET AL Improving sweep efficiency in a naturally fractured reservoir with polymer gels JPT January 1988 pp 89-90

72 PRUDHOMME R and UHL J Rheology enhancement by molecular association complexes SPEJ August 1984 pp 431-434

73 LLAO W PolymerBentonite Soil admixtures as hydraulic barriers SPEDE June 1989 pp 153-161

74 IMCO Datos de productos Drilpol

75 IMCO Tecnologia aplicada de lodos Sptima Edicion Houston Texas US A 1981 Capitulo 13

76 BOURGOYNE A Jr y otros Applied drilling engineering SPE Textbook Series Vol 2 Richardson Texas 1991 p 65

77 AMTEX OUIMICA CMC Medellin 1985 52 pp

78 HUGHES T JONES T and HOUWEN O The chemical composition of CMC and its relationship to the rheology and fluid loss of drilling fluids Paper IADCSPE 20000 IADCSPE Drilling Conference Houston Texas February 27-March 2 1990

12 7

Page 13: 6.8 HIDRAuLlCA DE LA PERFORACI6N ROTATORIA

63 DOLL T and HANSON M Performance and operation of the Hamm Minnelusa Sand Unit Campbell County Wyoming JPT December 1987 pp 1565-1570

64 WIDMYER R WILLIAMS D and WARE J Performance evaluation of the Salem Unit SufactanUpolymer Pilot JPT Sepember 1988 pp 1217-1226

65 VOSSOUGHI S and BULLER C Permeability modification by in-situ gelati on with a newly discovered biopolymer SPERENovember 1991 pp 485-489

66 HOLLEY Sand CAYLAS J Design operation and evaluation of a surfactant polymer field pilot test SPERE February 1992 pp 9-14

67 RIVENO R DONCHE A and NOLK CH Improved scleroglucan for polymer flooding under harsh reservoir conditions SPERE February1992 pp15-20

68 EGGERT R WILHITE G and GREEN D Experimenta i measurement of the persistence of permeability reduction in porous media treated with xanthan Cr (iii) gel systems SPERE February 1992 pp 29-35

69 XIANGAN Y ET AL Calculation of IPR curves for Oil wells in polymer-flood reservoirs JPT January 1998p 81

70 MAHENDRA P ET AL Field implementation of a polymer EOR technique JPT January 1998 pp 87-88

71 TWEIDT L ET AL Improving sweep efficiency in a naturally fractured reservoir with polymer gels JPT January 1988 pp 89-90

72 PRUDHOMME R and UHL J Rheology enhancement by molecular association complexes SPEJ August 1984 pp 431-434

73 LLAO W PolymerBentonite Soil admixtures as hydraulic barriers SPEDE June 1989 pp 153-161

74 IMCO Datos de productos Drilpol

75 IMCO Tecnologia aplicada de lodos Sptima Edicion Houston Texas US A 1981 Capitulo 13

76 BOURGOYNE A Jr y otros Applied drilling engineering SPE Textbook Series Vol 2 Richardson Texas 1991 p 65

77 AMTEX OUIMICA CMC Medellin 1985 52 pp

78 HUGHES T JONES T and HOUWEN O The chemical composition of CMC and its relationship to the rheology and fluid loss of drilling fluids Paper IADCSPE 20000 IADCSPE Drilling Conference Houston Texas February 27-March 2 1990

12 7