1 1 campillo

Upload: pablo-burgos

Post on 07-Jul-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 1 1 Campillo

    1/52

  • 8/18/2019 1 1 Campillo

    2/52

    !"#$%&'()%"

    +,-%$,#%$. /(%'0)(0

    1"&2$3,#2$ /(%'0)(0

    4,52 67.08(09,#72:,)(0

    !:,;8";

  • 8/18/2019 1 1 Campillo

    3/52

    /$$,.0F (%")"'%'0 $2(%$&8";0

  • 8/18/2019 1 1 Campillo

    4/52

       G  r  o  u  n   d  v  e   l  o  c

       i   t  y

    time

  • 8/18/2019 1 1 Campillo

    5/52

    J72 %$8;8" %C #72 "%802 8" #72 62$8%& -,"& KLMN0

    +,"&O0 2# ,=IP QNMNR/B!/S+T

  • 8/18/2019 1 1 Campillo

    6/52

    0

    -2

    2

        1    0  -

        4

       v    i   t   e   s   s   e

    -0,0

    -0,5

    00300205100105 250

    0,5

    1,0

    temps (s)

    onde P

    onde S

    CODANOISE

    NOISE CODA

    00300205100105 250temps (s)

       v    i   t   e

       s   s   e    x

    / #.68(,= $2(%$&0 %C , =%(,= 2,$#7W',X2 YNIMLMNZ[\

    3/"7307 )3!2 %8"!!-.-5 )"9-%: !"$307 "59"0!"7- 4;

    %8"!!-.-5 )"9-%:< !"#$% '( -* )3##3"/% "05 /* ;30$

  • 8/18/2019 1 1 Campillo

    7/52

    Propagation regimes and energy description

    single diffraction (short times)

    diffusion (long lapse times)

    radiative transfer Equation

    temps

    Time

       E   N   E   R   G

       Y

       D   E   N   S   I   T   Y

    time/mft

    !"#$% '( .* )-"9-.1 =* 5- .4%0( 1 2* %"!4 "05 -* #".4%-

  • 8/18/2019 1 1 Campillo

    8/52

    Searching for a marker of the regime of scattering...

    Equipartion principle for a completely randomized (diffuse) wave-field: in average, all the

    modes of propagation are excited to equal energy.

    Implication for elastic waves (Weaver, 1982, Ryzhik et al., 1996): P to S energy ratio stabilizes

    at a value independant of the details of scattering!

    RTE Monte CarloDiffusion equation

     Numerical simulationObservations

    T0]T6 %$ T7]T5 (," -2 6$2&8(#2&

  • 8/18/2019 1 1 Campillo

    9/52

    low frequency

    limit: half space

    high frequency

    limit: half space

    Theory for S-P energy ratio

    J72%$. ,"& &,#, C%$ 52$)(,= #% 7%$8[%"#,= 2"2$;. $,)%

    This leads to an inversion method to extract the layering from asingle measurement (Margerin et al., 2009; Sanchez-Sesma et

    al., 2011;!

    .).

    !"#$ '( ;* %"082->?%-%/"

    &,#,

  • 8/18/2019 1 1 Campillo

    10/52

    !"#"$%"&()*"

    " #

    Source in A ⇒ the signal recorded in B characterizes the

    propagation between A and B.

    Green function between A and B: G AB

    !"#"$%"&

    " #

    !"#"$%"&

    G AB can be reconstructed by the correlation of noise or« diffuse » (equipartitioned) fields recorded at A and B (C 

    AB)

     A way to provide new data with control on source location and origin time

    How, when and why?

    +%"; $,";2 (%$$2=,)%"0

    !"#$% '( =* 7".03-.1 /* 5- 244,1 9* !%"3

  • 8/18/2019 1 1 Campillo

    11/52

    B26$202"#,)%" #72%$2: C%$ (%$$2=,)%"@ 6,00852 8:,;8";

    /$-8#$,$. :2&8':@ ," 8"#2;$,= $26$202"#,)%" 3$8A2" 8" #72 C$2W'2"(. &%:,8"

    R%=':2 #2$:

  • 8/18/2019 1 1 Campillo

    12/52

    Surface term: 

    and we obtain a widely used integral relation: 

    !a2$%&2 2# ,=IP QNNb@ /",=%;. 38#7 J8:2 $252$0,= :8$$%$0

    !4,62",,$ QNNc

    d%$ 0'$C,(2 3,520@ &80#,"# 0%'$(20 %C "%802 ,# #72 0'$C,(2 %C #72 0672$2 YeQa 6$%-=2:\

    e

  • 8/18/2019 1 1 Campillo

    13/52

    (a)

    (c)

    (b)

    (d)

    Stationary phase and end fire lobes: actual data

    From Gouédard et al., 2008

  • 8/18/2019 1 1 Campillo

    14/52

    Contributions to direct wavesin the GF

    Contributions to scattered wavesIn the GF

    End fire lobes!source noise kernels

  • 8/18/2019 1 1 Campillo

    15/52

     An issue for surface wave tomography:

    In practice, the noise sources are not evenly distributed and the field is

    not made fully isotropic by scattering.

    The absence of isotropy of the intensity of the field incident on the

    receivers results in a bias on the measurements of direct path travel

    times.

  • 8/18/2019 1 1 Campillo

    16/52

    /"80%#$%68( 8"#2"08#. %C #72 "%802@ #72 2>,:6=2 %C #72

  • 8/18/2019 1 1 Campillo

    17/52

     B(! ) =1+  B2 cos(2! )

    " t  =1

    2t # 02

     B(0)

    d 2 B(! )

    d ! 

    2

    ! =0

    Bias in the travel time

    Increasing anisotropy of the source intensity B

    ?%$$2=,)%" %C &8$2(# 3,520@

    /[8:'#7,=

    &80#$8-')%" %C

    0%'$(2 8"#2"08#.

    J$,52= ):2

    2$$%$ 3$# #72

    %-02$52& i$22"C'"()%"

    5,=8& 38#7 # Y#$,52= ):2\ j J Y62$8%&\

    5(67 %"&'"(+ 5(67"0)+ =&7>1**6 ?,--@A &02 5(67"0)+ =&7>1**6+ B6CD+

  • 8/18/2019 1 1 Campillo

    18/52

    5(67 5(67"0)+ =&7>1**6+ B6CD+

  • 8/18/2019 1 1 Campillo

    19/52

    5(67 5(67"0)+ =&7>1**6+ B6CD+

  • 8/18/2019 1 1 Campillo

    20/52

    5(67 G1$60"+ H"0IG160+ =&7>1**6 &02 B6CD+ ,-:.

    ba 072,$ 52=%(8#.

    La,:,;2& C,'=# [%"2

    Ld=%32$L=8X2 6,A2$"0

    La8h'02 0280:8(8#. ,00%(8,#2& 38#7 =%3L52=%(8#. Y&,:,;2&\ ,$2, -2#322" 3401 2* ("41 "05 %* 8"!2-#30-

    4!2-. ",,#38"!340% 4; 7; .-840%!.+8!340< !"#$ '( 7* '-.4>"

  • 8/18/2019 1 1 Campillo

    21/52

    ?%"08&2$ "%3 #72 6$%-=2: %C -%&. 3,520 ,# #72 ;=%-,= 0(,=2 38#7 "%8020%'$(20 ,# #72 0'$C,(2@

    / 6$%-=2: %C , &8h2$2"# ",#'$2P ,=#7%';7 8"&22& #72 '"252" &80#$8-')%"

    0'$C,(2 "%802 0%'$(20 80 0)== #72$2I

    J780 $26$202"#,)%" 80 "%# C%$:,==. 5,=8& %" #72 C$22 0'$C,(2@ #72 8"#2;$,= 5,"80720I

    id $2(%"0#$'()%" 3%'=& $2W'8$2 , :%$2 (%:6=2> 6$%(2&'$2 YB'8;$%X 2# ,=IP QNNl\

    Z2$2 ,=0%P #72 (%$$2=,)%" %C :'=)6=. 0(,A2$2& 3,520 07%'=& =2,& #% #72 i$22" C'"()%"I

  • 8/18/2019 1 1 Campillo

    22/52

    9.5

    10

    10.5

    11

    11.5

    12

    θ (°)

       t  m  e  m

      n   )

    58 60 62 64 66 68−12

    −11.5

    −11

    −10.5

    −10

    −9.5

  • 8/18/2019 1 1 Campillo

    23/52

    E%=8 2# ,=I

  • 8/18/2019 1 1 Campillo

    24/52

    5(67 J6*1+ KL67&9+ =&7>1**6 &02 J"2"(9"0 ,-:.

    ?%$2 67,020 E(E ,"& E&E

    aHH@ L &8h2$2"# 7.6%#72020 C%$ #72

    ",#'$2 %C #72 =,.2$

    L E&E &8^('=# #% %-02$52

    L =,(X %C 2,$#7W',X2 &,#,

  • 8/18/2019 1 1 Campillo

    25/52

    Time to P [s]

       S   l  o  w  n  e  s  s   t  o   P

      w  a  v  e   [  s   /   d  e  g   ]

    −10 0 10 20 30 40 50−3

    −2.5

    −2

    −1.5

    −1

    −0.5

    0

    0.5

    A)

    P

    PdP   PcP

    Time to P wave [s]

       S   l  o  w  n

      e  s  s   t  o   P

      w  a  v  e   [  s   /   d  e  g   ]

     

    −10 0 10 20 30 40 50−3

    −2.5

    −2

    −1.5

    −1

    −0.5

    0

    0.5

    PdP

    P

    PcP

    B)

    5(67 J6*1+ KL67&9+ =&7>1**6 &02 J"2"(9"0 ,-:.

    /&5,"#,;2 %C "%802 50 2,$#7W',X2 $2(%$&0@

    L0'$C,(2 #% 0'$C,(2

    L8:6'=0852 3,52=2#L&%'-=2 -2,: C%$:8";

  • 8/18/2019 1 1 Campillo

    26/52

    GLOBAL TELESEISMIC CORRELATIONS (periods 25-100s vertical components)

    Boué, Poli et al., GJI 2013

  • 8/18/2019 1 1 Campillo

    27/52

    V':2$%'0 67,020 (," -2 8&2")q2&

    R2$)(,==. 8"(8&2"# <

    3,520 %" #72 52$)(,=

    (%:6%"2"#DD

  • 8/18/2019 1 1 Campillo

    28/52

    +%"; 62$8%&0 YQKLMNN0\

    E$%(2008";@ 026,$,)"; Tn ,"& (%&, C$%: ,:-82"# "%802

    +%3 &,8=. (%72$2"(2 Z8;7 &,8=. (%72$2"(2

    YTn0\

    /r!

  • 8/18/2019 1 1 Campillo

    29/52

    d$%: S%'t 2# ,=IP QNMc

    +%"; 62$8%&0 YQKLMNN0\

  • 8/18/2019 1 1 Campillo

    30/52

    9%"8#%$8"; #2:6%$,= (7,";20 8" #72 0%=8& T,$#738#7 0280:8( 52=%(8)20

    T$'6)%" ,# E8#%" &2 =, d%'$",802

    J7$'0# %C #72 42"(7'," TnZ.&$,'=8( =%,&0

    i2%#72$:,= F C$,(X8";II

    J8&20

    !"#$% '( -* ;4.7+-%1 $* %"'."1 ,* 7+-7+-01 ;* '.-07+3-.

  • 8/18/2019 1 1 Campillo

    31/52

    V%802 -,02& 0280:8( 52=%(8#. #2:6%$,= (7,";20

    S2(,'02 0280:8( "%802 80 (%")"'%'0 8" ):2P 8# 80 6%008-=2 #% $2(%"0#$'(# CJSJ@NAU VKCDO@I

    GJKGHKL GMOCLJG ,"& 62$C%$: LMANAOMOG HMAKDMCKAU MP GJKGHKL VJIMLKNJGI

    uR

  • 8/18/2019 1 1 Campillo

    32/52

    ?%$$2=,)%" C'"()%"0 ,0 ,66$%>8:,#2 i$22" C'"()%"0

    a8$2(# 3,520 ,$2 02"08)52 #% "%802 0%'$(2 &80#$8-')%" Y2$$%$0 0:,== 2"%';7 C%$

    #%:%;$,67. YvMo\ -'# #%% =,$;2 C%$ :%"8#%$8"; Y;%,= e MNLc\

  • 8/18/2019 1 1 Campillo

    33/52

    a2#2()"; , 0:,== (7,";2 %C 0280:8( 0622&@ (%&, 3,520

    ?%:6,$8"; , #$,(2 38#7 , $2C2$2"(2 '"&2$ #72 ,00':6)%" %C ," 7%:%;2"2%'0 (7,";2

    J72 ‘&%'-=2#’ :2#7%&@ :%58"; 38"&%3 ($%00 062(#$,= ,",=.080 Y67,02 :2,0'$2:2"#0\

    Alternative technique: stretching

  • 8/18/2019 1 1 Campillo

    34/52

    Precision of the measure of delay/velocity variations in the coda

    = 7 7 C = & Y= = \

  • 8/18/2019 1 1 Campillo

    35/52

    92,0'$8"; 0=8;7# (7,";20 %C 0280:8( 52=%(8#. '08"; (%&, 3,520 Y=%"; #$,52= ):2\

    V':2$8(,= 08:'=,)%"0 8" , 0(,A2$8"; :2&8':

    =6*67M1+ =L&>C)+ 81**"(9 ") &*#+ ,-:. 10 >("99

    Qa 062(#$,= 2=2:2"#0P ,"80%#$%68( 8"#2"08#. %C 0%'$(20

    ?%:6,$80%" %C

    (%$$2=,)%"0 38#7i$22" C'"()%"

  • 8/18/2019 1 1 Campillo

    36/52

    Th2(# %C 0(,A2$8"; Y08";=2 0%'$(2\

    =6*67M1+ =L&>C)+ 81**"(9 ") &*#+ ,-:. 10 >("99

    S2,: C%$:8";

  • 8/18/2019 1 1 Campillo

    37/52

    92,0'$2 %C #72 -8,0 8"&'(2& -. , 0#$%"; ,"80%#$%6.

    %C #72 3,52 q2=&

    Y&2=,. 38#7 $2062(# #% #72 i$22" C'"()%"\

    =6*67M1+ =L&>C)+ 81**"(9 ") &*#+ ,-:.

    S='2@ &2=,.

    B2&@ $2=,)52 &2=,.

    d='(#',)%"0 %C ]# %C #72 %$&2$ %C MNLc 

  • 8/18/2019 1 1 Campillo

    38/52

    B26$202"#,)%" %C (%&, 3,520 ,0 #72 0': %C (%"#$8-')%"0 %C "':2$%'0 6,#70

    d%$ , 08";=2 6,#7@

    We have to compute the contributions of paths with first scatterers at all distances l  f  and

    all azimuths! 

     

    l  f  

    t  f =l  f /V

  • 8/18/2019 1 1 Campillo

    39/52

    We have to consider that the distribution of distance between scattering events is exponential:

    where l  is the mean free path< l f    > = l   t  f    = l f   / V 

    ratio of max average "t  over

    "t  of the average l  f   (=l the mean free path) 

    valid for l  f >  # 

    We remove the singularity for l  f   to 0 in a conservative way ( "t  ! t ) and define:

    Finally we consider all directions:

    We make use of

  • 8/18/2019 1 1 Campillo

    40/52

    /66=8(,)%"0

    V':2$8(,= 08:'=,)%"0

    g,6," Y0,:2 (7,";2 %C ,"80%#$%6.\

    B = ) = 8# 7 Y 8 o\ & 8 #7 - & N M N w Z

  • 8/18/2019 1 1 Campillo

    41/52

    B2=,)52 52=%(8#. (7,";2 Y 8" o\ :2,0'$2& 8" #72 -,"& NIMLNIw Z[

    ?,=2"&,$ ):2 :2,0'$2& 8" &,.0 38#7 $2062(# #% 9,$(7 MM Y9w J%7%X' Tn\

    5(67 H("0$C1"(+ =&7>1**6+ K&N"2&+ O6N1+ /L&>1(6+ H(1&02+ P76)6 

    &02 Q1R&N"+ /S1"0S" ,-:.

    +05-.%!"05307 !2- 82"07-%< !"#$% '( ,* =420%40 "05 "* %82+'0-#

  • 8/18/2019 1 1 Campillo

    42/52

    ?%'=& 32 07%3 #7,# #72 =,#2 6,$# %C #72 (%$$2=,)%" C'"()%" (%"#,8"0

    #72 0(,A2$2& 3,520D

    L2"2$;. &2(,. Y2I;I

  • 8/18/2019 1 1 Campillo

    43/52

    S R

    Coherent backscattering/weak localization

    and the multiple scattering regime

    Energy density is represented by the sum of contributions of scattering paths

    RTE for , DE for ,! but the actual signal results from

    deterministic waves

  • 8/18/2019 1 1 Campillo

    44/52

    .

    S R

    If this path exists..

  • 8/18/2019 1 1 Campillo

    45/52

    .

    S R

    If this path exists, the reciprocal path exists too.

  • 8/18/2019 1 1 Campillo

    46/52

    .

    S R

    Phase difference: location of the scatterers! 

  • 8/18/2019 1 1 Campillo

    47/52

    .

    S, R

    Phase difference: location of the scatterers! 

    Except if R and S are at the same place

  • 8/18/2019 1 1 Campillo

    48/52

    .

    S, R

    Coherent summation!Spot of intensity enhancement at the source: factor 2

    Consequence of first principles, namely reciprocity.

  • 8/18/2019 1 1 Campillo

    49/52

    Consider now correlations as virtual Green functions (Julien Chaput etal. 2015 –see Poster).

  • 8/18/2019 1 1 Campillo

    50/52

    Chaput et al., JGR 2015

    Erebus volcano: icequakes

  • 8/18/2019 1 1 Campillo

    51/52

    44 ‘large’ events All 3318 events

    Coda Correlations

    kk (%$$2=,)%"0@ $2(86%$(8#. 7%=&0

  • 8/18/2019 1 1 Campillo

    52/52

    Energy vs distance at a given time

    Weak localization can be observed in correlations!(!mean free path!)