solucionario parte 4 matemáticas avanzadas para ingeniería - 2da edición - glyn james

Upload: kimberly-clark

Post on 14-Apr-2018

337 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    1/76

    4

    Fourier series

    Exercises 4.2.9

    1(a)

    a0 =1

    0dt +

    0

    tdt

    =1

    (t)0 +

    t22

    0

    =

    1

    2 +

    2

    2

    =

    2

    an =1

    0 cos ntdt +

    0

    t cos ntdt

    =1

    nsin nt

    0

    +

    t

    nsin nt +

    1

    n2cos nt

    0

    = 1n2

    (cos n 1) = 2

    n2, n odd

    0, n even

    bn =1

    0 sin ntdt +

    0

    t sin ntdt

    =1

    n

    cos nt0

    + t

    ncos nt +

    1

    n2sin nt

    0

    =1

    n(1 2cos n) =

    3

    n, n odd

    1

    n

    , n even

    Thus the Fourier expansion of f(t) is

    f(t) = 4

    +n odd

    2n2

    cos nt +

    n odd

    3

    nsin nt

    n even

    1

    nsin nt

    i.e. f(t) = 4 2

    n=1

    cos(2n 1)t(2 1)2 + 3

    n=1

    sin(2n 1)t(2n 1)

    n=1

    sin2nt

    2n

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    2/76

    192 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    1(b)

    a0 =1

    0

    (t + )dt =1

    t2

    2+ t

    0

    =

    2

    an =1

    0

    (t + )cos ntdt =1

    (t + )

    sin nt

    n+

    cos nt

    n2

    0

    =1

    n2(1 cos n) =

    0, n even

    2

    n2, n odd

    bn = 1

    0

    (t + )sin ntdt = 1

    (t + ) cos ntn

    + sin ntn2

    0

    = 1n

    Thus the Fourier expansion of f(t) is

    f(t) =

    4+

    n odd

    2

    n2cos nt

    n=1

    1

    nsin nt

    i.e. f(t) =

    4+

    2

    n=1

    cos(2n 1)t(2n

    1)2

    n=1

    sin nt

    n

    1(c) From its graph we see that f(t) is an odd function so it has Fourier

    expansion

    f(t) =n=1

    bn sin nt

    with

    bn = 2

    0

    f(t)sin nt = 2

    0

    1 t

    sin ntdt

    =2

    1

    n

    1 t

    cos nt 1

    n2sin nt

    0

    =2

    n

    Thus the Fourier expansion of f(t) is

    f(t) =2

    n=1

    sin nt

    n

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    3/76

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 193

    1(d) From its graph f(t) is seen to be an even function so its Fourier

    expansion is

    f(t) =a02

    +n=1

    an cos nt

    with

    a0 =2

    0

    f(t)dt =2

    /20

    2cos tdt =2

    [2sin t]

    /20 =

    4

    an =2

    0

    f(t)cos ntdt =2

    /20

    2cos t cos ntdt

    =2

    /20

    [cos(n + 1)t + cos(n 1)t]dt

    =2

    sin(n + 1)t

    (n + 1)+

    sin(n 1)t(n 1)

    /20

    =2

    1

    (n + 1)sin(n + 1)

    2+

    1

    (n 1) sin(n 1)

    2

    =

    0, n odd

    4

    1

    (n2 1) , n = 4, 8, 12, . . .4

    1

    (n2 1), n = 2, 6, 10, . . .

    Thus the Fourier expansion of f(t) is

    f(t) =2

    +

    4

    n=1

    (1)n+1 cos2nt4n2 1

    1(e)

    a0 =

    1

    cos

    t

    2 dt =

    1

    2sin

    t

    2 =

    4

    an =1

    cost

    2cos ntdt =

    1

    2

    cos(n +

    1

    2)t + cos(n 1

    2)t

    dt

    =2

    2

    2

    (2n + 1)sin(n +

    1

    2) +

    2

    (2n 1) sin(n1

    2)

    =

    4

    (4n2 1) , n = 1, 3, 5, . . .

    4(4n2 1) , n = 2, 4, 6, . . .

    bn = 0

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    4/76

    194 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    Thus the Fourier expansion of f(t) is

    f(t) =2

    +

    4

    n=1

    (1)n+1 cos nt(4n2 1)

    1(f) Since f(t) is an even function it has Fourier expansion

    f(t) =a02

    +n=1

    an cos nt

    with

    a0 =2

    0

    | t | dt = 2

    0

    tdt =

    an =2

    0

    t cos ntdt =2

    t

    nsin nt +

    1

    n2cos nt

    0

    =2

    n2(cos n 1) =

    0, n even

    4n2

    , n odd

    Thus the Fourier expansion of f(t) is

    f(t) = 2 4

    n odd

    1n2

    cos nt

    i.e. f(t) =

    2 4

    n=1

    cos(2n 1)t(2n 1)2

    1(g)

    a0 =1

    0

    (2t

    )dt =1

    t2 t

    0

    = 0

    an =1

    0

    (2t )cos ntdt = 1

    (2t )

    nsin nt +

    2

    n2cos nt

    0

    =2

    n2(cos n 1) =

    4

    n2, n odd

    0, n even

    bn =1

    0

    (2t )sin ntdt = 1

    (2t )

    ncos nt +

    2

    n2sin nt

    0

    =

    1

    n

    (cos n + 1) = 0, n odd

    2

    n , n even

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    5/76

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 195

    Thus the Fourier expansion of f(t) is

    f(t) =n odd

    4n2

    cos nt +n even

    2n

    sin nt

    i.e. f(t) = 4

    n=1

    cos(2n 1)t(2n 1)2

    n=1

    sin2nt

    n

    1(h)

    a0 =1

    0

    (t + et)dt +0

    (t + et)dt

    =1

    t22

    + et0

    + t2

    2+ et

    0

    =1

    2 + (e e) = + 2

    sinh

    an =

    1

    0(t + e

    t

    )cos ntdt +0 (t + e

    t

    )cos ntdt

    =1

    t

    nsin nt +

    1

    n2cos nt

    0

    +1

    (n2 + 1)

    net sin nt + et cos nt

    0

    +

    t

    nsin nt +

    1

    n2cos nt

    0

    +1

    (n2 + 1)

    net sin nt + et cos nt

    0

    =2

    n2(1 + cos n) + 2cos n

    (n2 + 1)

    e e2

    =

    2

    (cos 1)

    n2+

    cos n

    (n2 + 1)sinh , cos n = (1)

    n

    bn =1

    0

    (t + et)sin ntdt +0

    (t + et)sin ntdt

    =1

    tn

    cos nt 1n2

    sin nt0

    + t

    ncos nt +

    1

    n2sin nt

    0

    +n2

    2 + 1

    et cos nt

    n+

    et sin nt

    n2

    = n

    (n2 + 1) cos n(e

    e

    ) = 2n

    (n2 + 1) cos n sinh , cos n = (1)n

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    6/76

    196 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    Thus the Fourier expansion of f(t) is

    f(t) =

    2+

    1

    sinh

    +

    2

    n=1

    (1)n 1

    n2+

    (1)n sinh n2 + 1

    cos nt

    2

    n=1

    n(1)nn2 + 1

    sinh sin nt

    2 Since the periodic function f(t) is an even function its Fourier expansion is

    f(t) =a02

    +n=1

    an cos nt

    with

    a0 =2

    0

    ( t)2dt = 2

    1

    3( t)3

    0

    =2

    32

    an =2

    0

    ( t)2 cos ntdt = 2

    ( t)2

    nsin nt 2( t)

    n2cos nt 2

    n3sin nt

    0

    =4

    n2

    Thus the Fourier expansion of f(t) is

    f(t) =2

    3+ 4

    n=1

    1

    n2cos nt

    Taking t = gives

    0 =2

    3+ 4

    n=1

    1

    n2(1)n

    so that

    1

    122 =

    n=1(1)n+1

    n2

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    7/76

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 197

    3 Since q(t) is an even function its Fourier expansion is

    q(t) =a02

    +

    n=1

    an cos nt

    with

    a0 =2

    0

    Qt

    dt = Q

    an =2

    0

    Qt

    cos ntdt =

    2Q

    2

    t

    nsin nt +

    1

    n2cos nt

    0

    = 2Q2n2

    (cos n 1) = 0, n even 4Q2n2

    , n odd

    Thus the Fourier expansion of q(t) is

    q(t) = Q

    1

    2 4

    2

    n=1

    cos(2n 1)t(2n 1)2

    4

    a0 =

    1

    0 5sin tdt =

    1

    [5cos t]0 =

    10

    an =5

    0

    sin t cos ntdt =5

    2

    0

    [sin(n + 1)t sin(n 1)t]dt

    =5

    2

    cos(n + 1)t

    (n + 1)+

    cos(n 1)t(n 1)

    0

    , n = 1

    =5

    2

    cos nn + 1

    cos n(n 1)

    1n + 1

    +1

    n 1

    =

    5

    (n2

    1)(cos n + 1) =

    0, n odd, n = 1

    10

    (n2 1), n even

    Note that in this case we need to evaluate a1 separately as

    a1 =1

    0

    5sin t cos tdt =5

    2

    0

    sin2tdt = 0

    bn =5

    0

    sin t sin ntdt = 52

    0

    [cos(n + 1)t cos(n 1)t]dt

    = 52

    sin(n + 1)t

    (n + 1) sin(n 1)t

    (n 1)0

    , n = 1

    = 0 , n = 1c

    Pearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    8/76

    198 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    Evaluating b1 separately

    b1 =5

    0

    sin t sin tdt =5

    2

    0

    (1 cos2t)dt

    =5

    2

    t 1

    2sin2t

    0

    =5

    2

    Thus the Fourier expansion of f(t) is

    f(t) =5

    +

    5

    2sin t 10

    n=1

    cos2nt

    4n2 1

    5

    a0 =1

    0

    2dt +

    0

    (t )2dt=

    1

    2t0 +

    13

    (t )30

    =

    4

    32

    an =1

    0

    2 cos ntdt +

    0

    (t )2 cos ntdt

    =1

    2n

    sin nt0

    + (t )2

    nsin nt +

    2(t )n2

    cos nt 2n3

    sin nt0

    =2

    n2

    bn =1

    0

    2 sin ntdt +

    0

    (t )2 sin ntdt

    =1

    2n

    cos nt0

    + (t )2

    ncos nt + 2

    (t )n2

    sin nt +2

    n3cos nt

    0

    =1

    2n

    +2

    n(1)n

    =

    n(1)n 2

    n3[1 (1)n]

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    9/76

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 199

    Thus the Fourier expansion of f(t) is

    f(t) =2

    32 +

    n=1

    2

    n2cos nt +

    (1)nn

    sin nt

    4

    n=1

    sin(2n 1)t(2n 1)3

    5(a) Taking t = 0 gives

    2 + 2

    2=

    2

    32 +

    n=1

    2

    n2

    and hence the required resultn=1

    1

    n2=

    1

    62

    5(b) Taking t = gives

    2 + 0

    2

    =2

    3

    2 +

    n=1

    2

    n2

    (

    1)n

    and hence the required result

    n=1

    (1)n+1n2

    =1

    122

    6(a)

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    10/76

    200 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    6(b)

    The Fourier expansion of the even function (a) is given by

    f(t) =a02

    +n=1

    an cos nt

    with

    a0 =2

    /20

    tdt +

    /2

    ( t)dt

    = 2

    12 t2/20

    +12 ( t)2

    /2= 2

    an =2

    /20

    t cos ntdt +

    /2

    ( t)cos ntdt

    =2

    tn

    sin nt +1

    n2cos nt

    /20

    + t

    nsin nt 1

    n2cos nt

    /2

    =2

    2

    n2cos

    n

    2 1

    n2(1 + (1)n)

    =

    0, n odd

    8n2

    , n = 2, 6, 10, . . .

    0, n = 4, 8, 12, . . .

    Thus the Fourier expansion of f(t) is

    f(t) =

    4 2

    n=1

    cos(4n 2)t(2n 1)2

    Taking t = 0 where f(t) = 0 gives the required result.

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    11/76

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 201

    7

    a0 =1

    0

    (2 t

    )dt +

    2

    t/dt

    =1

    2t t

    2

    2

    0

    + t2

    2

    2

    = 3

    an =1

    0

    (2 t

    )cos ntdt +

    2

    t

    cos ntdt

    =1

    2n

    sin nt tn

    sin nt 1n2

    cos nt0

    + t

    nsin nt +

    1

    n2cos nt

    2

    =2

    2n2 [1 (1)n

    ]

    =

    0, n even

    4

    2n2, n odd

    bn =1

    0

    (2 t

    )sin ntdt +

    2

    t

    sin ntdt

    =1

    2n

    cos nt +t

    ncos nt 1

    n2sin nt

    0

    + t

    ncos nt +

    1

    n2sin nt

    2

    = 0

    Thus the Fourier expansion of f(t) is

    f(t) =3

    2+

    4

    2

    n=1

    cos(2n 1)t(2n 1)2

    Replacing t by t 12 gives

    f(t

    1

    2

    ) =3

    2

    +4

    2

    n=1

    cos(2n 1)(t )(2n 1)2

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    12/76

    202 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    Since

    cos(2n 1)(t 12

    ) = cos(2n 1)t cos(2n 1) 2

    + sin(2n 1)t sin(2n 1) 2

    = (1)n+1 sin(2n 1)t

    f(t 12

    ) 32

    =4

    2

    n=1

    (1)n+1 sin(2n 1)t(2n 1)2

    The corresponding odd function is readily recognised from the graph of f(t).

    Exercises 4.2.11

    8 Since f(t) is an odd function the Fourier expansion is

    f(t) =n=1

    bn sinnt

    with

    bn =2

    0

    t sinnt

    dt =2

    t

    n

    cosnt

    + n2

    sinnt

    0

    = 2n

    cos n

    Thus the Fourier expansion of f(t) is

    f(t) =2

    n=1

    (1)n+1n

    sinnt

    9 Since f(t) is an odd function (readily seen from a sketch of its graph) its

    Fourier expansion is

    f(t) =

    n=1

    bn sinnt

    with

    bn =2

    0

    K

    ( t)sin nt

    tdt

    =2

    K

    ncos

    nt

    +

    Kt

    ncos

    nt

    K

    (n)2sin

    nt

    0

    =

    2K

    n

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    13/76

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 203

    Thus the Fourier expansion of f(t) is

    f(t) =2K

    n=1

    1

    nsin

    nt

    10

    a0 =1

    5

    50

    3dt = 3

    an =1

    5 5

    0

    3cosnt

    5dt =

    1

    515

    nsin

    nt

    5 5

    0

    = 0

    bn =1

    5

    50

    3sinnt

    5dt =

    1

    5

    15

    ncos

    nt

    5

    50

    =3

    n[1 (1)n] =

    6

    n, n odd

    0, n even

    Thus the Fourier expansion of f(t) is

    f(t) =3

    2+

    6

    n=11

    (2n

    1)

    sin(2n 1)

    5t

    11

    a0 =2

    2

    /0

    A sin tdt =

    A

    cos t

    /0

    =2A

    an =A

    /0

    sin t cos ntdt =A

    2

    /0

    [sin(n + 1)t sin(n 1)t]dt

    =A

    2

    cos(n + 1)t

    (n + 1)+

    cos(n 1)t(n 1)

    /

    0

    , n= 1

    =A

    2

    2(1)n+1

    n2 1 2

    n2 1

    =A

    (n2 1) [(1)n+1 1]

    =

    0, n odd , n = 1 2A

    (n2 1) , n even

    Evaluating a1 separately

    a1 =

    A

    /0 sin t cos tdt =

    A

    2/0 sin2tdt = 0

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    14/76

    204 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    bn = A

    /

    0

    sin t sin ntdt = A2

    /

    0

    [cos(n + 1)t cos(n 1)t]dt

    = A2

    sin(n + 1)t

    (n + 1) sin(n 1)t

    (n 1)/0

    , n = 1

    = 0, n = 1

    b1 =A

    /0

    sin2 tdt =A

    2

    /0

    (1 cos2t)dt = A2

    Thus the Fourier expansion of f(t) is

    f(t) =A

    1 +

    2sin t 2

    n=1

    cos2nt

    4n2 1

    12 Since f(t) is an even function its Fourier expansion is

    f(t) =a02

    +

    n=1

    an cosnt

    T

    with

    a0 =2

    T

    T0

    t2dt =2

    T

    1

    3t3T0

    =2

    3T2

    an =2

    TT

    0

    t2 cosnt

    Tdt =

    2

    TT t2

    nsin

    nt

    T+

    2tT2

    (n)2cos

    nt

    T 2T3

    (n)3sin

    nt

    TT

    0

    =4T2

    (n)2(1)n

    Thus the Fourier series expansion of f(t) is

    f(t) =T2

    3+

    4T2

    2

    n=1

    (1)nn2

    cosnt

    T

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    15/76

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 205

    13

    a0 = 2T

    T0

    ET

    tdt = 2ET2

    12

    t2T0

    = E

    an =2

    T

    T0

    E

    Tt cos

    2nt

    Tdt

    =2E

    T2

    tT

    2nsin

    2nt

    T+ T

    2n

    2cos

    2nt

    T

    T0

    = 0

    bn =2E

    T2

    T0

    t sin2nt

    Tdt

    = 2ET2 tT2n cos 2ntT + T2n

    2

    sin 2ntTT0

    = EnThus the Fourier expansion of e(t) is

    e(t) =E

    2 E

    n=1

    1

    nsin

    2nt

    T

    Exercises 4.3.3

    14 Half range Fourier sine series expansion is given by

    f(t) =n=1

    bn sin nt

    with

    bn =2

    0

    1sin ntdt =2

    1

    ncos nt

    0

    =

    2

    n

    [(

    1)n

    1]

    =

    0, n even

    4

    n, n odd

    Thus the half range Fourier sine series expansion of f(t) is

    f(t) =4

    n=1

    sin(2n 1)t(2n 1)

    Plotting the graphs should cause no problems.

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    16/76

    206 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    15 Half range Fourier cosine series expansion is given by

    f(t) =a02

    +

    n=1

    an cos nt

    with

    a0 =2

    1

    10

    (2t 1)dt = 0

    an = 210

    (2t 1)cos ntdt

    = 2

    (2t 1)

    nsin nt +

    2

    (n)2cos nt

    10

    =4

    (n)2[(1)n 1]

    =

    0, n even

    8(n)2

    , n odd

    Thus the half range Fourier cosine series expansion of f(t) is

    f(t) = 82

    n=1

    1

    (2n 1)2 cos(2n 1)t

    Again plotting the graph should cause no problems.

    16(a)

    a0 = 2

    10

    (1 t2)dt = 2t 13

    t310

    =4

    3

    an = 2

    10

    (1 t2)cos2ntdt

    = 2

    (1 t2)

    2nsin2nt 2t

    (2n)2cos2nt +

    2

    (2n)3sin2nt

    10

    = 1

    (n)2

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    17/76

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 207

    bn = 210 (1 t

    2

    )sin2ntdt

    = 2

    (1 t

    2)

    2ncos2nt 2t

    (2n)2sin2nt 2

    (2n)3cos2nt

    10

    =1

    n

    Thus the full-range Fourier series expansion for f(t) is

    f(t) = f1(t) =2

    3 1

    2

    n=1

    1

    n2cos2nt +

    1

    n=1

    1

    nsin2nt

    16(b) Half range sine series expansion is

    f2(t) =n=1

    bn sin nt

    with

    bn = 210 (1 t

    2

    )sin ntdt

    = 2

    (1 t

    2)

    ncos nt 2t

    (n)2sin nt 2

    (n)3cos nt

    10

    = 2

    2

    (n)3(1)n + 1

    n+

    2

    (n)3

    =

    2

    n, n even

    2

    1

    n+

    4

    (n)3 , n odd

    Thus half range sine series expansion is

    f2(t) =1

    n=1

    1

    nsin2nt +

    2

    n=1

    1

    (2n 1) +4

    2(2n 1)3

    sin(2n 1)t

    16(c) Half range cosine series expansion is

    f3(t) =a0

    2

    +

    n=1

    an cos nt

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    18/76

    208 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    with

    a0 = 2

    1

    0

    (1 t2)dt = 43

    an = 2

    10

    (1 t2)cos ntdt

    = 2

    (1 t2)

    nsin nt 2t

    (n)2cos nt +

    2

    (n)3sin nt

    10

    =4(1)n

    (n)2

    Thus half range cosine series expansion is

    f3(t) =2

    3+

    4

    2

    n=1

    (1)n+1n2

    cos nt

    Graphs of the functions f1(t), f2(t), f3(t) for 4 < t < 4 are as follows

    17 Fourier cosine series expansion is

    f1(t) =a0

    2

    +

    n=1

    an cos nt

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    19/76

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 209

    witha0 =

    2

    0

    (t t2)dt = 13

    2

    an =2

    0

    (t t2)cos ntdt

    =2

    (t t2)

    nsin nt +

    ( 2t)n2

    cos nt +2

    n3sin nt

    0

    = 2n2

    [1 + (1)n]

    = 0, n odd 4

    n2, n even

    Thus the Fourier cosine series expansion is

    f1(t) =1

    62

    n=1

    1

    n2cos2nt

    Fourier sine series expansion is

    f2(t) =

    n=1

    bn sin nt

    with

    bn =2

    0

    (t t2)sin ntdt

    =2

    (t t

    2)

    ncos nt +

    ( 2t)n2

    sin nt 2n3

    cos nt

    0

    = 4n3 [1 (1)n]

    =

    0, n even

    8

    n3, n odd

    Thus the Fourier sine series expansion is

    f2(t) =8

    n=1

    1

    (2n 1)3 sin(2n 1)t

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 4 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    20/76

    210 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    Graphs of the functions f1(t) and f2(t) for 2 < t < 2 are:

    18

    f(x) =2a

    x , 0 < x