solucionario parte 3 matemáticas avanzadas para ingeniería - 2da edición - glyn james

Upload: kimberly-clark

Post on 14-Apr-2018

1.103 views

Category:

Documents


97 download

TRANSCRIPT

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    1/32

    3

    The Z Transform

    Exercises 3.2.3

    1(a)

    F(z) =

    k=0(1/4)k

    zk=

    1

    1

    1/4z

    =4z

    4z

    1

    if | z |> 1/4

    1(b)

    F(z) =

    k=0

    3k

    zk=

    1

    1 3/z =z

    z 3 if | z |> 3

    1(c)

    F(z) =

    k=0(2)k

    zk=

    1

    1

    (

    2)/z

    =z

    z + 2if | z |> 2

    1(d)

    F(z) =

    k=0

    (2)kzk

    = 11 2/z =

    z

    z 2 if | z |> 2

    1(e)

    Z{k} = z(z 1)2 if | z |> 1

    from (3.6) whence

    Z{3k} = 3 z(z 1)2 if | z |> 1

    2

    uk = e2kT =

    e2T

    kwhence

    U(Z) =z

    z

    e2T

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    2/32

    160 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    Exercises 3.3.6

    3

    Z{sin kT} = 12

    z

    z eT 1

    2

    z

    z eT

    =z sin T

    z2 2z cos T + 1

    4

    Z{1

    2k

    } = 2z2z

    1

    so

    Z{yk} = 1z3 2z

    2z 1 =2

    z2(2z 1)Proceeding directly

    Z{yk} =k=3

    xk3zk

    =r=0

    xrzr+3

    =1

    z3Z {xk} = 2

    z2(2z 1)

    5(a)

    Z1

    5

    =

    r=0

    15z

    r=

    5z

    5z + 1| z |> 1

    5

    5(b)

    {cos k} = (1)kso

    Z {cos k

    }=

    z

    z + 1 |z

    |> 1

    6

    Z

    1

    2

    k=

    2z

    2z 1By (3.5)

    Z(ak) = zz a

    so

    Z(kak1) =z

    (z a)2c

    Pearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    3/32

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    4/32

    162 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    9 Final value theorem

    (1 z1)X(z) =r=0

    xr xr1zr

    = x0 +x1 x0

    z+

    x2 x1z2

    + . . . +xr xr1

    zr+ . . .

    As z 1 and if limr xr exists, then

    limz1

    (1 z1)X(z) = limr

    xr

    10 Multiplication property (3.19): Let Z {xk} =

    k=0xkzk

    = X(z) then

    Zakxk = k=0

    akxkzk

    = X(z/a)

    10 Multiplication property (3.20)

    z ddz

    X(z) = z ddz

    k=0

    xkzk

    =k=0

    kxkzk

    = Z {kxk}

    The general result follows by induction.

    Exercises 3.4.2

    11(a)z

    z 1 ; from tables uk = 1

    11(b)z

    z + 1=

    z

    z (1) ; from tables uk = (1)k

    11(c)z

    z

    1/2

    ; from tables uk = (1/2)k

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    5/32

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 163

    11(d)

    z3z + 1

    = 13

    zz + 1/3

    13

    (1/3)k

    11(e)z

    z ; from tables uk = ( )k

    11(f)z

    z +

    2

    =z

    z (

    2)

    (

    2)k

    11(g)1

    z 1 =1

    z

    z

    z 1

    0; k = 01; k > 0

    using first shift property.

    11(h)z + 2

    z + 1 = 1 +

    1

    z

    z

    z + 1 1; k = 0(1)k1; k > 0=

    1; k = 0(1)k+1; k > 0

    12(a)

    Y(z)/z =1

    3

    1

    z 1 1

    3

    1

    z + 2

    so

    Y(z) =1

    3

    z

    z 1 1

    3

    z

    z + 2 1

    3

    1 (2)k

    12(b)

    Y(z) =1

    7

    z

    z 3 z

    z + 1/2

    1

    7

    (3)k (1/2)k

    12(c)

    Y(z) =1

    3

    z

    z

    1

    +1

    6

    z

    z + 1/2 1

    3+

    1

    6(1/2)k

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    6/32

    164 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    12(d)

    Y(z) = 23

    zz 1/2 23 zz + 1 23 (1/2)

    k 23

    (1)k

    =2

    3(1/2)k +

    2

    3(1)k+1

    12(e)

    Y(z) =1

    2

    z

    z z

    z ( )

    =

    1

    2 z

    z e /2 z

    z e /2 1

    2

    (e /2)k (e /2)k

    = sin k/2

    12(f)

    Y(z) =z

    z (3 + ) z (3 )=

    1

    2 z

    z

    (

    3 + ) z

    z

    (

    3

    )=

    1

    2

    z

    z 2e /6 z

    z 2e /6

    12

    2kek/6 2kek/6

    = 2k sin k/6

    12(g)

    Y(z) =5

    2

    z

    (z 1)2 +1

    4

    z

    z 1 1

    4

    z

    z 3

    52

    k +1

    4

    1 3k

    12(h)

    Y(z)/z =z

    (z 1)2(z2 z + 1) =1

    (z 1)2 1

    z2 z + 1so

    Y(z) =z

    (z 1)2 13

    z

    z

    1+3

    2

    zz

    13

    2

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    7/32

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 165

    = z(z 1)2

    13

    z

    z e /3 z

    z e /3

    k 23

    sin k/3 = k +2

    3cos(k/3 3/2)

    13(a)

    X(z) =

    k=0xkzk

    =1

    z+

    2

    z7

    whence x0 = 0 , x1 = 1 , x2 = x3 = . . . = x6 = 0, x7 = 2 and xk = 0, k > 7 .

    13(b) Proceed as in Example 13(a).

    13(c) Observe that

    3z + z2 + 5z5

    z5= 5 +

    1

    z3+

    3

    z4

    and proceed as in Example 13(a).

    13(d)

    Y(z) =1

    z2+

    1

    z3+

    z

    z + 1/3

    {0, 0, 1, 1}+ {(1/3)k}

    13(e)Y(z) = 1 +

    3

    z+

    1

    z2 1/2

    z + 1/2

    {1, 3, 1} 12

    0, k = 0(1/2)k, k 1

    =

    1, k = 05/2, k = 15/4, k = 2

    12

    (

    1/2)k1, k

    3

    =

    1, k = 05/2, k = 15/4, k = 2

    18

    (

    1/2)k3, k

    3

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    8/32

    166 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    13(f)

    Y(z) = 1z 1

    2(z 1)2 +

    1z 2

    0, k = 01 2(k 1) + 2k1, k 1

    =

    0, k = 03 2k + 2k1, k 1

    13(g)

    Y(z) =2

    z 1 1

    z 2

    0, k = 02 2k1, k 1

    Exercises 3.5.3

    14(a) If the signal going into the left D-block is wk and that going into the right

    D-block is vk , we have

    yk+1 = vk, vk+1 = wk = xk 12

    vk

    so

    yk+2 = vk+1 = xk 12

    vk

    = xk 1

    2 vk = xk 1

    2 yk+1

    i.e.

    yk+2 +1

    2yk+1 = xk

    14(b) Using the same notation

    yk+1 = vk, vk+1 = wk = xk 14

    vk 15

    yk

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    9/32

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 167

    Then

    yk+2 = xk 14

    yk+1 15

    yk

    or

    yk+2 +1

    4yk+1 +

    1

    5yk = xk

    15(a)

    z2Y(z) z2y0 zy1 2(zY(z) zy0) + Y(z) = 0

    with y0 = 0, y1 = 1

    Y(z) =z

    (z 1)2so yk = k, k 0.

    15(b) Transforming and substituting for y0 and y1

    Y(z)/z =2z 15

    (z 9)(z + 1)so

    Y(z) =3

    10

    z

    z 9 17

    10

    z

    z + 1

    thus

    yk =3

    109k 17

    10(1)k, k 0

    15(c) Transforming and substituting for y0

    and y1

    Y(z) =z

    (z 2 )(z + 2 )

    =1

    4

    z

    z 2e /2 z

    z 2e /2

    thus

    yk =1

    42k e

    k/2 ek/2 = 2k1 sin k/2, k 0

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    10/32

    168 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    15(d) Transforming, substituting for y0 and y1 , and rearranging

    Y(z)/z =6z 11

    (2z + 1)(z 3)so

    Y(z) = 2z

    z + 1/2+

    z

    z 3thus

    yk = 2(1/2)k + 3k, k 0

    16(a)6yk+2 + yk+1 yk = 3, y0 = y1 = 0

    Transforming with y0 = y1 = 0,

    (6z2 + z 1)Y(z) = 3zz 1

    so

    Y(z)/z =3

    (z 1)(3z 1)(2z + 1)

    andY(z) =

    1

    2

    z

    z 1 9

    10

    z

    z 1/3 +2

    5

    z

    z + 1/2

    Inverting

    yk =1

    2 9

    10(1/3)k +

    2

    5(1/2)k

    16(b) Transforming with y0 = 0, y1 = 1,

    (z2 5z + 6)Y(z) = z + 5 zz

    1

    whence

    Y(z) =5

    2

    z

    z 1 +7

    2

    z

    z 3 6z

    z 2so

    yk =5

    2+

    7

    2(3)k 6(2)k

    16(c) Transforming with y0 = y1 = 0 ,

    (z

    2

    5z + 6)Y(z) =z

    z 1/2c

    Pearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    11/32

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 169

    so

    Y(z) = 415

    zz 1/2 23 zz 2 + 25 zz 3

    whence

    yn =4

    15(1/2)k 2

    3(2)k +

    2

    5(3)k

    16(d) Transforming with y0 = 1, y1 = 0 ,

    (z2 3z + 3)Y(z) = z2 3z + zz 1

    so

    Y(z) =z

    z 1 z

    z2 3z + 3

    =z

    z 1 13j

    z

    z 3+3j

    2

    zz 3

    3j

    2

    =z

    z 1 13j

    z

    z 3ej/6 z

    z 3ej/6

    so

    yn = 1 23

    (3)k ejn/6 ejn/62j

    = 1 2(3)n1 sin n/6

    16(e) Transforming with y0 = 1, y1 = 2

    (2z2 3z 2)Y(z) = 2z2 + z + 6 z(z 1)2 +

    z

    z 1so

    Y(z) =z

    z 2+ z z + 5

    (z 1)2

    (2z + 1)(z 2)=

    12

    5

    z

    z 2 2

    5

    z

    z + 1/2 z

    z 1 2z

    (z 1)2so

    yn =12

    5(2)n 2

    5(1/2)n 1 2n

    16(f) Transforming with y0 = y1 = 0,

    (z

    2

    4)Y(z) = 3z

    (z 1)2 5z

    z 1c

    Pearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    12/32

    170 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    so

    Y(z) =z

    z 1 z

    (z 1)2 1

    2

    z

    z 2 1

    2

    z

    z + 2

    and

    yn = 1 n 12

    (2)n 12

    (2)n

    17 Write the transformed equations in the formz 3/20.21

    1

    z 1/2

    c(z)

    e(z)

    =

    zC0zE0

    Then c(z)

    e(z)

    =

    1

    z2 2z + 0/96

    z 1/20.21

    1z 3/2

    zC0zE0

    Solve for c(z) as

    c(z) = 1200z

    z 1.2 + 4800z

    z 0.8and

    Ck = 1200(1.2)k + 4800(0.8)k

    This shows the 20% growth in Ck in the long term as required.

    Then

    Ek = 1.5Ck Ck+1= 1800(1.2)k + 7200(0.8)k 1200(1.2)k+1 4800(0.8)k+1

    Differentiate wrt k and set to zero giving

    0.6 log(1.2) + 5.6x log(0.8) = 0 where x = (0.8/1.2)k

    Solving, x = 0.0875 and so

    k =log0.0875

    log(0.8/1.2)= 6.007

    The nearest integer is k = 6, corresponding to the seventh year in view of the

    labelling, and C6 = 4841 approx.

    18 Transforming and rearranging

    Y(z)/z =

    z

    4

    (z 2)(z 3) +1

    (z 1)(z 2)(z 3)c

    Pearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    13/32

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 171

    so

    Y(z) = 12

    zz 1 + zz 2 12 zz 3

    thus

    yk =1

    2+ 2k 1

    23k

    19

    Ik = Ck + Pk + Gk

    = aIk1

    + b(Ck

    Ck1

    ) + Gk

    = aIk1 + ba(Ik1 Ik2) + Gkso

    Ik+2 a(1 + b)Ik+1 + abIk = Gk+2Thus substituting

    Ik+2 Ik+1 + 12

    Ik = G

    Using lower case for the z transform we obtain

    (z2 z + 12

    )i(z) = (2z2 + z)G + Gz

    z 1whence

    i(z)/z = G

    1

    z2 z + 12+

    2

    z 1

    = G

    2

    z 1 +1

    (z

    1+2 )(z

    12 )

    so

    i(z) = G

    2

    z

    z 1 +2

    2

    z

    z 12

    e /4 z

    z 12

    e /4

    Thus

    Ik = G

    2 +

    2

    2(

    12

    )k

    ek/4 ek/4

    = 2G

    1 +

    1

    2

    ksin k/4

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    14/32

    172 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    20 Elementary rearrangement leads to

    in+2 2 cosh in+1 + in = 0

    with cosh = 1 + R1/2R2 . Transforming and solving for I(z)/z gives

    I(z)/z =zi0 + (i1 2i0 cosh )

    (z e)(z e)

    =1

    2 sinh

    i0e

    + (i1 2i0 cosh )z e

    i0e + (i1 2i0 cosh )

    z e

    Thus

    ik =(i0e

    + (i1 2i0 cosh ))en (i0e + (i1 2i0 cosh ))en2 sinh

    =1

    sinh {i1 sinh n i0 sinh(n 1)}

    Exercises 3.6.5

    21 Transforming in the quiescent state and writing as Y(z) = H(z)U(z) then

    21(a)

    H(z) =1

    z2 3z + 2

    21(b)

    H(z) =z 1

    z2 3z + 2

    21(c)

    H(z) =1 + 1/z

    z3 z2 + 2z + 1

    22 For the first system, transforming from a quiescent state, we have

    (z2 + 0.5z + 0.25)Y(z) = U(z)

    The diagram for this is the standard one for a second order system and is shown

    in Figure 3.1 and where Y(z) = P(z), that is yk = pk .

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    15/32

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 173

    Figure 3.1: The block diagram for the basic system of Exercise 22.

    Transforming the second system in the quiescent state we obtain

    (z2 + 0.5z + 0.25)Y(z) = (1 0.6)U(z)

    Clearly

    (z2 + 0.5z + 0.25)(1 0.6z)P(z) = (1 0.6z)U(z)indicating that we should now set Y(z) = P(z)

    0.6zP(z) and this is shown in

    Figure 3.2.

    Figure 3.2: The block diagram for the second system of Exercise 22

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    16/32

    174 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    23(a)

    Y(z)/z = 1(4z + 1)(2z + 1)

    so

    Y(z) =1

    2

    z

    z + 1/4 1

    2

    z

    z + 1/2

    yk =1

    2(1/4)k 1

    2(1/2)k

    23(b)

    Y(z)/z =z

    z2

    3z + 3whence

    Y(z) =3 +

    3

    2

    3

    z

    z (3+3 )

    2

    3

    3

    2

    3

    z

    z (33 )

    2

    so

    yk =3 +

    3

    2

    3(

    3)kek/6 3

    3

    2

    3(

    3)kek/6

    = 2(

    3)k

    3

    2sin k/6 +

    1

    2cos k/6

    = 2(3)k sin(k + 1)/6

    23(c)

    Y(z)/z =z

    (z 0.4)(z + 0.2)so

    Y(z) =2

    3

    z

    z 0.4 +1

    3

    z

    z + 0.2

    then

    yk =

    2

    3 (0.4)k

    +

    1

    3 (0.2)k

    23(d)

    Y(z)/z =5z 12

    (z 2)(z 4)so

    Y(z) =z

    z 2 + 4z

    z 4and

    yk = (2)k + (4)k+1

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    17/32

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 175

    24(a)

    Y(z) =1

    z2 3z + 2

    =1

    z 2 1

    z 1

    yk =

    0, k = 0

    2k1 1, k > 0

    24(b)

    Y(z) =1

    z 2so

    yk =

    0, k = 0

    2k1, k > 0

    25 Examining the poles of the systems, we find

    25(a) Poles at z = 1/3 and z = 2/3, both inside | z |= 1 so the system isstable.

    25(b) Poles at z = 1/3 and z = 2/3, both inside | z |= 1 so the system isstable.

    25(c) Poles at z = 1/2 1/2 , | z |= 1/2, so both inside | z |= 1 and the

    system is stable.

    25(d) Poles at z = 3/4 17/4, one of which is outside | z |= 1 and so thesystem is unstable.

    25(e) Poles at z = 1/4 and z = 1 thus one pole is on | z |= 1 and the other isinside and the system is marginally stable.

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    18/32

    176 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    26 To use the convolution result, calculate the impulse response as y,k (1/2)k .Then the step response is

    yk =k

    j=0

    1 (1/2)kj = (1/2)kk

    j=0

    1 (2)j = (1/2)k 1 (2)k+1

    1 2

    = (1/2)k(2k+1 1) = 2 (1/2)k

    Directly,

    Y(z)/z =z

    (z

    1/2)(z

    1)

    =2

    z

    1 1

    z

    1/2

    so

    yk = 2 (1/2)k

    27 Substituting

    yn+1 yn + Kyn1 = K/2n

    or

    yn+2 yn+1 + Kyn = K/2n+1

    Taking z transforms from the quiescent state, the characteristic equation is

    z2 z + K = 0

    with roots

    z1 =1

    2+

    1

    2

    1 4Kand z2 = 1

    2 1

    2

    1 4K

    For stability, both roots must be inside | z |= 1 so if K < 1/4 then

    z1 < 1

    1

    2

    +1

    2

    1

    4K < 1

    K > 0

    and

    z2 > 1 12 1

    2

    1 4K > 1 k > 2

    If K > 1/4 then

    | 12

    +1

    2

    4K 1 |2< 1 K < 1

    The system is then stable for 0 < K < 1.

    When k = 2/9 we have

    yn+2 yn+1 +2

    9 yn =

    1

    9

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    19/32

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 177

    Transforming with a quiescent initial state

    (z2 z + 29

    )Y(z) =1

    9

    z

    z 1/2so

    Y(z) = z1

    9

    1

    (z 1/2)(z 1/3)(z 2/3)

    = 2z

    z 1/3 + 2z

    z 2/3 4z

    z 1/2which inverts to

    yn = 2(1/3)n + 2(2/3)n 4(1/2)n

    28

    z2 + 2z + 2 = (z (1 + ))(z (1 + ))

    establishing the pole locations. Then

    Y(z) =1

    2

    z

    z

    (

    1 + )

    12

    z

    z

    (

    1

    )

    So since (1 ) = 2e3 /4 etc.,

    yk = (

    2)k sin3k/4

    Exercises 3.9.6

    29H(s) =

    1

    s2 + 3s + 2

    Replace s with2

    z 1z + 1

    to give

    H(z) =2(z + 1)2

    4(z 1)2 + 6(z2 1) + 22(z + 1)2

    =

    2(z + 1)2

    (4 + 6 + 22)z2 + (42 8)z + (4 6 + 22)c

    Pearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    20/32

    178 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    This corresponds to the difference equation

    (Aq2 + Bq + C)yk = 2(q2 + 2q+ 1)uk

    where

    A = 4 + 6 + 22 B = 42 8 C = 4 6 + 22

    Now put q = 1 + to get

    (A22 + (2A + B)+ A + B + C)yk

    = 2(22 + 4+ 4)uk

    With t = 0.01 in the q form the system poles are at z = 0.9048 and z = 0.8182,

    inside | z |= 1. When t = 0.01 these move to z = 0.9900 and z = 0.9802,closer to the stability boundary. Using the form with t = 0.1, the poles are at

    = 1.8182 and = 0.9522, inside the circle centre (10, 0) in the -planewith radius 10. When t = 0.01 these move to = 1.9802 and = 0.9950,within the circle centre (100, 0) with radius 100 , and the closest pole to the

    boundary has moved slightly further from it.

    30 The transfer function is

    H(s) =1

    s3 + 2s2 + 2s + 1

    To discretise using the bi-linear form use s 2T

    z 1z + 1

    to give

    H(z) = T3

    (z + 1)3

    Az3 + Bz2 + Cz + D

    and thus the discrete-time form

    (Aq3 + Bq2 + Cq+ D)yk = T3(q3 + 3q2 + 3q+ 1)uk

    where

    A = T3 + 4T2 + 8T + 8, B = 3T3 + 4T2 8T 3,

    C = 3T3 4T2 8T + 3, D = T3 4T2 + 8T 1c

    Pearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    21/32

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 179

    To obtain the form use s

    2

    2 +

    giving the transfer function as

    (2 + )3

    A3 + B2 + C+ D

    This corresponds to the discrete-time system

    (A3 + B2 + C+ D)yk = (33 + 222 + 4+ 8)uk

    where

    A = 3 + 42 + 8 + 8, B = 62 + 16 + 16,

    C = 12 + 16, D = 8

    31 Making the given substitution and writing the result in vector-matrix form

    we obtain

    x(t) =

    0

    21

    3

    x(t) +

    0

    1

    u(t)

    and

    y(t) = [1, 0]x(t)

    This is in the general form

    x(t) = Ax(t) + bu(t)

    y = cTx(t) + d u(t)

    The Euler discretisation scheme gives at once

    x((k + 1)) = x(k ) + [Ax(k ) + bu(k )]

    Using the notation of Exercise 29 write the simplified form equation as

    2 +

    12 + 8

    A+

    8

    A

    yk =

    1

    A

    22 + 4+ 4

    uk

    Now, as usual, consider the related system

    2

    +

    12 + 8

    A +

    8

    A

    pk = uk

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    22/32

    180 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    and introduce the state variables x1(k) = pk , x2(k) = pk together with the

    redundant variable x3(k) = 2pk . This leads to the representation

    x(k) =

    0 1 8

    A12 + 8

    A

    x(k) + 0

    1

    u(k)

    yk =

    4

    A 8

    2

    A2

    ,

    4

    A (12 + 8)

    2

    A2

    x(k) +

    2

    Au(k)

    or

    x(k + 1) = x(k) + [A()x(k) + bu(k)]

    yk = cT()x(k) + d()uk

    Since A(0) = 4 it follows that using A(0), c(0) and d(0) generates the Euler

    Scheme when x(k) = x(k) etc.

    32(a) In the z form substitution leads directly to

    H(z) =12(z2 z)

    (12 + 5)z2 + (8 12)z

    When = 0.1 this gives

    H(z) =12(z2 z)

    12.5z2 +11.2z 0.1

    (b) The form is given by replacing z by 1 + . Substitution and

    rearrangement gives

    H() =12(1 + )

    2(12 + 5) + (8 12) + 12

    when = 0.1 this gives

    H() =12(1 + 0.1)

    1.252 11.2+ 12

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    23/32

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 181

    Review exercises 3.10

    1

    Z {f(kT)} = Z {kT} = TZ {k} = T z(z 1)2

    2

    Zak sin k = Z

    ak(e k e k)2

    =1

    2Z(ae )k (ae )k

    =1

    2

    z

    z ae z

    z ae

    =az sin

    z2 2az cos + a2

    3 Recall that

    Zak = z(z a)2

    Differentiate twice wrt a then put a = 1 to get the pairs

    k z(z 1)2 k(k 1)

    2z

    (z 1)3

    then

    Zk2 =

    2z

    (z 1)3

    +z

    (z 1)2

    =z(z + 1)

    (z 1)3

    4

    H(z) =3z

    z 1 +2z

    (z 1)2

    so inverting, the impulse response is

    {3 + 2k}

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    24/32

    182 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    5

    YSTEP(z) =

    z

    (z + 1)(z + 2)(z 1)= 1

    2

    z

    z + 1+

    1

    3

    z

    z + 2+

    1

    6

    z

    z 1Thus

    ySTEP,k = 12

    (1)k + 13

    (2)k + 16

    6

    F(s) =1

    s + 1=

    1

    s 1

    s + 1

    which inverts to

    f(t) = (1 et)(t)where (t) is the Heaviside step function, and so

    F(z) = Z {f(kT)} = zz 1

    z

    z eTThen

    esTF(s) f((t T))

    which when sampled becomes f((k 1)T) and

    Z {f((k 1)T)} =k=0

    f((k 1)T)zk

    =1

    zF(z)

    That is

    esTF(s) 1z

    F(z)

    So the overall transfer function is

    z

    1

    z z

    z 1 z

    z eT

    =1

    eT

    z eT

    7

    H(s) =s + 1

    (s + 2)(s + 3)=

    2

    s + 3 1

    s + 2

    y(t) = 2e3t e2t {2e3kT e2kT}

    so

    H(z) = 2z

    z

    e3T z

    z

    e2T

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    25/32

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 183

    8(a) Simple poles at z = a and z = b . The residue at z = a is

    limza

    (z a)zn1X(z) = limza

    (z a) zn

    (z a)(z b) =an

    a b

    The residue at z = b is similarlybn

    b a and the inverse transform is the sumof these, that is

    an bna b

    8(b)(i) There is a only double pole at z = 3 and the residue is

    limz3

    d

    dz(z 3)2 z

    n

    (z 3)2 =

    n3n1

    (ii) There are now simple poles at z =1

    2

    3

    2 . The individual residues are

    thus given by

    limz(1/2

    3/2 )

    12

    32

    n

    3Adding these and simplifying in the usual way gives the inverse transform

    as 2

    3sin n/3

    9

    H(z) =z

    z + 1 z

    z

    2

    so

    YSTEP(z) =

    z

    z + 1 z

    z 2

    z

    z 1= 3z

    (z 1)(z + 1)(z 2)=

    3

    2

    z

    z 1 +1

    2

    z

    z + 1 2 z

    z 2so

    ySTEP,k =3

    2+

    1

    2(1)k 2k+1

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    26/32

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    27/32

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 185

    leading to the difference equation

    yn+2 0.9744yn+1 + 0.2231yn = 0.5xn+2 0.4226xn+1

    As usual (see Exercise 22), draw the block diagram for

    pn+2 0.9744pn+1 + 0.2231pn = xn

    then taking yn = 0.5pn+2 0.4226pn+1

    yn+2 0.9744yn+1 + 0.2231yn = 0.5pn+4 0.4226pn+3

    0.9774(0.5pn+3 0.4226pn+2) + 0.2231(0.5pn+2 0.4226pn+1)

    = 0.5xn+2 0.4226xn+1

    13yn+1 = yn + avn

    vn+1 = vn + bun

    = vn + b(k1(xn yn) k2vn)= bk1(xn yn) + (1 bk2)vn

    so

    yn+2 = yn+1 + a[bk1(xn yn) + (1 bk2)vn]

    (a) Substituting the values for k1 and k2 we get

    yn+2 = yn+1 + 14

    (xn yn)

    or

    yn+2 yn+1 + 14

    yn =1

    4xn

    Transforming with relaxed initial conditions gives

    Y(z) =1

    (2z 1)2 X(z)

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    28/32

    186 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    (b) When X(z) =A

    z 1,

    Y(z) =A

    4

    4

    z

    z 1 4z

    z 1/2 2z

    (z 1/2)2

    then

    yn =A

    4

    4 4(1/2)n 2n(1/2)n1

    14 Substitution leads directly to

    yk 2yk1 + yk2T2

    + 3yk yk1

    T+ 2yk = 1

    Take the z transform under the assumption of a relaxed system to get

    [(1 + 3T z + 2T2)z2 (2 + 3T)z + 1]Y(z) = T2 z3

    z 1The characteristic equation is thus

    (1 + 3T z + 2T2)z2 (2 + 3T)z + 1 = 0

    with roots (the poles)

    z =1

    1 + T, z =

    1

    1 + 2T

    The general solution of the difference equation is a linear combination of these

    together with a particular solution. That is

    yk = 11 + T

    k

    + 11 + 2T

    k

    +

    This can be checked by substitution which also shows that = 1/2 . The

    condition y(0) = 0 gives y0 = 0 and since y(t) yk yk1

    T, y(0) = 0

    implies yk1 = 0. Using these we have

    + +1

    2= 0

    (1 + T) + (1 + 2T) +1

    2= 0

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    29/32

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 187

    with solution =

    1, = 1/2 so

    yk =

    1

    1 + T

    k+

    1

    2

    1

    1 + 2T

    k+

    1

    2

    The differential equation is simply solved by inverting the Laplace transform

    to give

    y(t) =1

    2(e2t 2et + 1), t 0

    Figure 3.3: Response of continuous and discrete systems in Exercise 14 over

    10 seconds when T = 0.1

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    30/32

    188 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    Figure 3.4: Response of continuous and discrete systems in Exercise 14 over

    10 seconds when T = 0.05

    15 Substitution for s and simplifying gives

    [(4 + 6T + 2T2)z2 + (4T2 8)z + (4 6T + 2T2)]Y(z)= T2(z + 1)2X(x)

    The characteristic equation is

    (4 + 6T + 2T2)z2 + (4T2 8)z + (4 6T + 2T2) = 0

    with roots

    z =8 4T2 4T

    2(4 + 6T + 2T2)

    That is

    z =

    1

    T

    1 + T and z =

    2

    T

    2 + T

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    31/32

    Glyn James: Advanced Modern Engineering Mathematics, Third edition 189

    The general solution of the difference equation is then

    yk =

    1 T1 + T

    k+

    2 T2 + T

    k+

    This can be checked by substitution which also shows that = 1/2 . The

    condition y(0) = 0 gives y0 = 0 and since y(t) yk yk1

    T, y(0) = 0

    implies yk1 = 0. Using these we have

    + +1

    2= 0

    1 + T

    1 T + 2 + T

    2 T +1

    2= 0

    with solution

    =1 T

    2 = 2 T

    2

    Thus

    yk =1 T

    2

    1 T1 + T

    k+2 T

    2

    2 T2 + T

    k+

    1

    2

    Figure 3.5: Response of continuous and discrete systems in Exercise 15 over

    10 seconds when T = 0.1

    cPearson Education Limited 2004

  • 7/30/2019 Solucionario parte 3 Matemticas Avanzadas para Ingeniera - 2da Edicin - Glyn James

    32/32

    190 Glyn James: Advanced Modern Engineering Mathematics, Third edition

    Figure 3.6: Response of continuous and discrete systems in Exercise 14 over 10

    seconds when T = 0.05

    16

    f(t) = t2, {f(k)} = k22 , k 0Now

    Z{k2} = z ddz

    z

    (z 1)2 =z(z + 1)

    (z 1)3So

    Z{k22} = z(z + 1)2

    (z 1)3To get D -transform, put z = 1 + to give

    F

    () =(1 + )(2 + )2

    33

    Then the D -transform is

    F() = F

    () =(1 + )(2 + )

    3