microsoft word - libritodepreolimpiada-2005

88
Publicaciones AFAMaC Olimpiadas de Matemáticas de Puerto Rico 2004-2005 Luis F. Cáceres José A. Vélez Departamento de Matemáticas Universidad de Puerto Rico Recinto Universitario de Mayagüez

Upload: arturo-portnoy

Post on 28-Mar-2016

229 views

Category:

Documents


4 download

DESCRIPTION

Realizado Por Luis F. Cáceres José A. Vélez Departamento de Matemáticas Universidad de Puerto Rico, Recinto Universitario de Mayagüez Impreso y hecho en Puerto Rico Agradecemos al Departamento de Educación de Puerto Rico y al Recinto Universitario de Mayagüez quienes nos han apoyado intensamente en el desarrollo de proyectos educativos que benefician a maestros y estudiantes talentosos de Puerto Rico.

TRANSCRIPT

Page 1: Microsoft Word - libritodepreolimpiada-2005

Publicaciones AFAMaC

Olimpiadas de Matemáticas de Puerto Rico 2004-2005

Luis F. Cáceres

José A. Vélez

Departamento de Matemáticas

Universidad de Puerto Rico

Recinto Universitario de Mayagüez

Page 2: Microsoft Word - libritodepreolimpiada-2005

ii

Primera Edición, 2005 Derechos © AFAMaC Director: Dr. Luis F. Cáceres Ninguna parte de esta obra puede ser reproducida ni transmitida por ningún medio, electrónico, mecánico, fotocopiado, grabado u otro, excepto con el permiso previo por escrito de AFAMaC. Esta producción ha sido subvencionada por el proyecto AFAMaC mediante proyectos del Departamento de Educación de Puerto Rico. Contrato 2005-AF O AF-081-050147. Realizado Por Luis F. Cáceres José A. Vélez Departamento de Matemáticas Universidad de Puerto Rico, Recinto Universitario de Mayagüez Impreso y hecho en Puerto Rico

Page 3: Microsoft Word - libritodepreolimpiada-2005

iii

PROLOGO

Desde hace varios años venimos realizando el ciclo de Olimpiadas de Matemáticas en Puerto Rico para los estudiantes de las escuelas públicas y privadas de la Isla. Este ciclo consiste de varias competencias por las que pasan los estudiantes para finalmente seleccionar los equipos que representan a Puerto Rico en olimpiadas internacionales de matemáticas. En este folleto presentamos los exámenes y soluciones del ciclo de olimpiadas de matemáticas 2004-2005. Este ciclo consiste de la competencia preolímpica de Matemáticas: Primera Fase y Segunda Fase y de la Olimpíada de Matemáticas de Puerto Rico. Cada una de estas olimpiadas se realiza en dos niveles: NIVEL I para estudiantes de 4to a 6to grado y NIVEL II para estudiantes de 7mo a 12mo grado. Se seleccionan los estudiantes por grado con las mejores puntuaciones. El examen de primera fase es contestado por cada estudiante en su casa o escuela y es enviado por correo a la organización de las olimpiadas. Los estudiantes con las mayores puntuaciones de todos los grados participan en la segunda fase de la olimpiada que consiste de un examen controlado que se administra en el Recinto Universitario de Mayagüez de la Universidad de Puerto Rico. Los estudiantes con las mayores puntuaciones en la segunda fase pasan a competir en la Olimpiada de Matemáticas de Puerto Rico.

La mayoría de problemas que presentamos en este folleto son ejercicios de olimpiadas nacionales e internacionales de varios países, algunos de ellos adaptados para estudiantes de Puerto Rico. Esperamos que este trabajo sirva como material de apoyo a los maestros que entrenan estudiantes para olimpiadas matemáticas y que sirva también de motivación y apoyo a los estudiantes que desean enfrentarse a problemas retadores e interesantes que son típicos de olimpiadas matemáticas. Agradecemos al Departamento de Educación de Puerto Rico y al Recinto Universitario de Mayagüez quienes nos han apoyado intensamente en el desarrollo de proyectos educativos que benefician a maestros y estudiantes talentosos de Puerto Rico. Luis F. Cáceres Julio 2005

Page 4: Microsoft Word - libritodepreolimpiada-2005

iv

AFAMaC

Alianza Para el Fortalecimiento del Aprendizaje de las Ciencias y las Matemáticas

Estos proyectos están subvencionados por el Departamento de Educación

de Puerto Rico y son realizados en el Departamento de Matemáticas del

Recinto Universitario de Mayagüez de la Universidad de Puerto Rico.

Page 5: Microsoft Word - libritodepreolimpiada-2005

v

TABLA DE CONTENIDO

COMPETENCIA PRE-OLÍMPICA DE MATEMATICAS 2004-2005 PRIMERA FASE ................................................................................................................................ 7

EXAMEN NIVEL I (4TO, 5TO Y 6TO GRADO).............................................................. 7 EXAMEN NIVEL II (7MO-12MO GRADO)................................................................. 12

COMPETENCIA PRE-OLÍMPICA DE MATEMATICAS 2004-2005 SEGUNDA FASE .............................................................................................................................. 20

EXAMEN NIVEL I (4TO, 5TO Y 6TO GRADO)............................................................ 20 EXAMEN NIVEL II (7MO-12MO GRADO)................................................................. 25

OLIMPIADA MATEMATICA DE PUERTO RICO (2004-2005) ............................... 30

EXAMEN NIVEL I (4TO, 5TO Y 6TO GRADO)............................................................ 30 EXAMEN NIVEL II (7MO-12MO GRADO)................................................................. 33

SOLUCIONES DE LOS PROBLEMAS .................................................................... 36

COMPETENCIA PRE-OLÍMPICA DE MATEMATICAS 2004-2005 PRIMERA FASE .............................................................................................................................. 36

EXAMEN NIVEL I (4TO, 5TO Y 6TO GRADO)............................................................ 36 EXAMEN NIVEL II (7MO-12MO GRADO)................................................................. 43

COMPETENCIA PRE-OLÍMPICA DE MATEMATICAS 2004-2005 SEGUNDA FASE .............................................................................................................................. 60

EXAMEN NIVEL I (4TO, 5TO Y 6TO GRADO)............................................................ 60 EXAMEN NIVEL II (7MO-12MO GRADO)................................................................. 67

OLIMPIADA MATEMATICA DE PUERTO RICO (2004-2005) ............................... 77

EXAMEN NIVEL I (4TO, 5TO Y 6TO GRADO)............................................................ 77 EXAMEN NIVEL II (7MO-12MO GRADO) .............................................................. 81

BIBLIOGRAFÍA ........................................................................................................... 88

Page 6: Microsoft Word - libritodepreolimpiada-2005

vi

Page 7: Microsoft Word - libritodepreolimpiada-2005

7

COMPETENCIA PRE-OLÍMPICA DE MATEMATICAS 2004-2005 PRIMERA FASE

EXAMEN NIVEL I 4to, 5to y 6to grado

1. Sabiendo que cada cuadrado tiene un área de 12cm , determina el área

de la región sombreada.

a. 4.5 d. 8 b. 6 e. 10 c. 7.5

2. Paco come una manzana los lunes, y cada día siguiente come una

manzana más que el anterior, hasta llegar al domingo. ¿Cuántas manzanas come en una semana? a. 6 d. 24 b. 12 e. 28 c. 14

3. María tiene dos chinas, dos manzanas y un guineo. En la semana, de

lunes a viernes, quiere comer una fruta por día. ¿De cuántas maneras puede hacerlo? a. 6 d. 35 b. 15 e. 45 c. 30

4. Dos atletas se encuentran a una distancia de 1 kilómetro. Si salen

corriendo el uno hacia el otro, de tal forma que la rapidez del segundo es el triple que la rapidez del primero, ¿a qué distancia del origen del primero se cruzan?

a. 1

8 d.

3

4

Page 8: Microsoft Word - libritodepreolimpiada-2005

8

b. 1

4 e.

3

2

c. 1

2

5. En la siguiente multiplicación

7

B A

H A A

×

A , B y H representan dígitos diferentes. ¿Cuál es la suma de A , B y H ? a. 3 d. 15 b. 6 e. 20 c. 10

6. Halla el valor de la siguiente suma:1 2 3 4 5 6 ... 53 54 55− + − + − + + − + .

a. -1 d. 28 b. 1 e. 55 c. 24

7. Dibuja un triángulo ABC que tenga 30 , B=70A∠ = ∠o o. Sobre la

prolongación del lado AC marca el punto D de tal manera que

= CD CB . Completa el triángulo DCB . ¿Cuánto mide cada uno de sus ángulos?

a. 40 ,40 y 100o o o d. 40 , 40 y 120o o o

b. 30 , 70 y 80o o o e. Ninguna de las anteriores

c. 30 , 30 y 120o o o

8. En un campo, para cercar un corral triangular con cinco cables de

alambre, es decir dándole cinco vueltas de alambre, se usaron 525 metros de alambre. El triángulo, que es isósceles, tiene dos lados iguales que miden, cada uno, el doble de lo que mide el otro. Hallar la longitud de cada lado del corral. a. dos lados 120 y el otro 285 d. dos lados 210 y el otro 105 b. dos lados 250 y el otro 125 e. dos lados 42 y el otro 21 c. dos lados 200 y el otro 100

9. En el zoológico, la jaula del león es un cubo cuyas caras miden 3 metros

de largo y tiene varillas verticales a largo de todos estos, excepto en el

Page 9: Microsoft Word - libritodepreolimpiada-2005

9

techo y en el piso. Las caras de la jaula no tienen varillas horizontales. Si entre cada par de varillas hay 0.25 metros de distancia, ¿cuántos metros de varilla hay en la jaula entera? a. 36 d. 144 b. 84 e. 200 c. 124

10. ¿Cuál es el máximo número de rectángulos que se pueden identificar en la figura?

a. 16 d. 100 b. 32 e. 256 c. 64

11. Un quiosquero compra 360 chocolates a la semana para venderlos en su

tienda. Puede comprar su mercancía en un supermercado o a un suplidor que vende al por mayor, llamado mayorista. En el supermercado, cada bolsa de 8 chocolates cuesta $3. En el mayorista, cada caja de 60 chocolates cuesta $20. Si le compra los chocolates al mayorista, ¿cuánto dinero ahorra el quiosquero a la semana si compra los chocolates en el mayorista? a. $15 d. $30 b. $20 e. $35 c. $25

12. La siguiente figura muestra los primeros 17 elementos de una secuencia

de flechas. Hay algunas horizontales que van hacia la derecha o hacia la izquierda, y otras verticales que suben o que bajan. ¿Qué tipo de flecha es la número 2004?

← ← ← ←

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

→ → → → →

a. → d. ←

b. ↑ e. Ninguna de las anteriores

c. ↓

Page 10: Microsoft Word - libritodepreolimpiada-2005

10

13. Paco, Juan, María y Claudia van al cine. Sólo hay 3 asientos libres en el teatro. Sólo 3 de los niños se podrán sentar. ¿De cuántas formas puede ocurrir esto? a. 6 d. 24 b. 9 e. 32 c. 12

14. Ana compró una pizza y le dio dos terceras partes a su hermana Matilde. De lo que quedó le dio la mitad a su mamá. ¿Que fracción de la pizza se comió?

a. 1/12 d. 1/ 4

b. 1/ 6 e. 2 / 3

c. 1/ 2

15. Considere el cuadrado ABCD. Sean E, F, G y H los puntos medios de AB, BC, CD y DA respectivamente. Sean I, J, K y L los puntos medios de EF, FG, GH y HE respectivamente. Si el perímetro del cuadrado ABCD es 4, ¿cuál es el perímetro del cuadrado IJKL?

AB

CD

E

F

G

H

I

JK

L

a. 1/ 2 d. 3

b. 1 e. 4 c. 2

16. Un divisor propio de un número entero n cualquiera, es todo aquel

número entero, menor que n, que lo divide. Basándote en esta definición, ¿cuántos divisores propios positivos tiene el número con

factorización prima 3 22 3 5⋅ ⋅ ?

a. 6 d. 18 b. 16 e. 23 c. 17

Page 11: Microsoft Word - libritodepreolimpiada-2005

11

17. En la Isla de la Fantasía las tablillas de todas las bicicletas traen 2

vocales y 1 dígito, en ese orden. Por ejemplo:AE3 . Si las vocales no pueden repetirse y se han usado todas las tablillas excepto aquellas con dígitos pares, ¿cuántas bicicletas hay en la isla? a. 14 d. 100 b. 50 e. 200 c. 80

18. Se llaman números consecutivos los que vienen uno después del otro en el orden natural. Por ejemplo, 7, 8 y 9 son consecutivos, y también 863, 864 y 865 son consecutivos. El producto de tres números consecutivos que sumados dan 2004 es: a. 298,076,962 d. 298,076,965 b. 298,076,963 e. 298,076,966 c. 298,076,964

19. La edad de Juan mas la edad de su hermana es la mitad de la de su papá.

Si Juan es 3 años mayor que su hermana, y 27 años menor que su papá, ¿qué edad tiene Juan? a. 6 años d. 22 años b. 10 años e. 24 años c. 11 años

20. En el juego de “PAN Y QUESO” dos chicos dicen PAN, QUESO, en

forma alternada y van uno al encuentro del otro por una línea pintada, poniendo cada vez la punta del frente de un pie pegada a la parte de atrás del otro pie mientras van pisando la línea. Al decir PAN, el primer jugador adelanta un pie; al decir QUESO, lo hace el segundo. Gana el que pisa al otro. En el recreo formaron dos equipos de tres chicos para jugar. En el equipo de Aníbal, los tres calzan 40 cm.; en el equipo de Blas, uno calza 33 cm., otro calza 34 cm. y el tercero calza 35 cm. La línea pintada mide 775 cm. Cada equipo elige un chico para jugar. Si inicia el juego el equipo de Aníbal, ¿a quién elige Blas para ganar? Si inicia el juego el equipo de Blas, ¿a quién elige Blas para ganar? a. El que calza 33. El que calza 35. d. El que calza 40. El que calza 35. b. El que calza 34. El que calza 33. e. El que calza 34. El que calza 40. c. El que calza 33. El que calza 34.

Page 12: Microsoft Word - libritodepreolimpiada-2005

12

COMPETENCIA PRE-OLIMPICADE MATEMATICAS 2004-2005 PRIMERA FASE

EXAMEN NIVEL II 7mo-12mo grado

1. La siguiente figura muestra los primeros 17 elementos de una secuencia

de flechas. Hay algunas horizontales que van hacia la derecha o hacia la izquierda, y otras verticales que suben o que bajan. ¿Qué tipo de flecha es la número 2004?

← ← ← ←

↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓

→ → → → →

a. → d. ←

b. ↑ e. ninguna de las anteriores

c. ↓

2. En sus vacaciones Santiago visitó 7 ciudades distintas. Antes de salir

prometió mandarle una postal a su abuela y una a cada uno de sus tres amigos: Daniel, Federico y Tomás. Si decide enviar cada postal desde una ciudad distinta, ¿de cuántas maneras puede Santiago cumplir su promesa?

a. 47 d. 35

b. 840 e. 74

c. 21 3. Dos atletas se encuentran a una distancia de 12 kilómetros. Si salen

corriendo el uno hacia el otro, de tal forma que la rapidez del segundo es el triple que la rapidez del primero, ¿a qué distancia del punto medio del trayecto entero se cruzan? a. 6 d. 2 b. 3 e. 1 c. 4

4. En el club hay 60 varones más que mujeres. Cuando en la Asamblea se

trató el tema de comprar la nueva casa estaban todos los socios

Page 13: Microsoft Word - libritodepreolimpiada-2005

13

presentes. Votaron a favor 298 socios: 50% de las mujeres y el 30% de los varones. ¿Cuántos socios varones hay en el club? a. 200 d. 410 b. 350 e. ninguna de las anteriores c. 60

5. Halla el valor de la siguiente suma: 1 3 5 7 ... 97 99 101+ + + + + + +

a. 250 d. 500

b. 251 e. 1,000

c. 252

6. En un triángulo ABC el ángulo A mide 30o y el ángulo B mide 70o .

Sobre la prolongación del lado AC marca el punto D de tal manera que

= CD CB . ¿Cuánto mide cada ángulo del triángulo DCB ?

a. 45 ,o 45o , 90o d. 20 ,o 90o , 70o

b. 40 ,o 40o , 100o e. 55 ,o 75o , 60o

c. 30 ,o 60o , 90o

7. En el triángulo ABC 100 , 50 , 30 , A B C AH∠ = = ∠ =o o o es una

altura y BM es una mediana. Entonces, MHC∠ = a. 15o d. 40o

b. 22.5o e. 45o

c. 30o

8. El número 6

(9 1)+ es el producto de tres primos. Calcule el primo más

grande de éstos. a. 6,481 d. 719 b. 1031 e. ninguna de las anteriores c. 82

9. Considere la sucesión 1,2,2,3,3,3,4,4,4,4,..., donde el número entero

n aparece n veces. Calcule el término número 2004 de la sucesión. a. 58 d. 51 b. 63 e. ninguna de las anteriores

Page 14: Microsoft Word - libritodepreolimpiada-2005

14

c. 24

10. En un cubo de 2 cm. de arista se cuadricularon las seis caras como se ve en la figura.

A

C

Una hormiguita esta parada en el vértice A. Si se camina por las líneas de la cuadrícula, ¿por cuántos caminos de 6 cm. de longitud puede ir desde A hasta C? a. 54 d. 18 b. 60 e. ninguna de las anteriores c. 36

11. Tiras dos dados. ¿Cuál es la probabilidad de que la suma sea 7 ?

a. 1

12 d.

1

7

b. 1

6 e. ninguna de las anteriores

c. 2

36

12. En la Isla de la Fantasía las tablillas de las bicicletas traen 3 vocales y 2

dígitos diferentes, en ese orden. Por ejemplo: AUE37 ó EIA95. Si las vocales no pueden repetirse, y se han usado todas las tablillas excepto aquellas con dígitos pares.. ¿cuántas bicicletas hay en la isla? a. 850 d. 1,250 b. 975 e. ninguna de las anteriores c. 1,200

13. Sea 1 2,, ..., ka a a una sucesión aritmética finita, con

4 7 10 4 5 6 12 13 14=17 y a ... 77a a a a a a a a+ + + + + + + + = .

Si 13, entonces ka k= =

Page 15: Microsoft Word - libritodepreolimpiada-2005

15

a. 16 d. 18 b. 22 e. 24 c. 20

14. Sea f la función definida como 2( ) 2f x ax= − , donde a es un

número positivo. Si 2( ( )) 2f f = − , entonces a =

a. 2 2

2

− d.

2

2

b. 1

2 e.

2 2

2

+

c. 2 2−

15. ¿Cuántos pares ordenados ( , )m n de números enteros positivos son

soluciones de

4 21

m n+ = ?

a. 1 d. 4 b. 2 e. más de 4 c. 3

16. El triángulo rectángulo ABC (con hipotenusa AB) está inscrito en el triángulo equilátero PQR, como muestra la figura.

90 °

P Q

R

AB

C Si PC = 3 y BP = CQ = 2, calcule AQ. a. 5 d. 3.5 b. 1.2 e. ninguna de las anteriores

c. 8

5

Page 16: Microsoft Word - libritodepreolimpiada-2005

16

17. Supón que divides $12,000 en dos cuentas ahorros. En el Banco A la tasa de interés anual es de 11% mientras que en el Banco B es de 8.5%. Si el rendimiento total de tu dinero al finalizar el año fue de $1,257.50, ¿cuánto depositaste originalmente en cada banco?

a. $2,000 al 11%, $10,000 al 8.5% d. $4,500 al 11%,$7,500 al 8.5% b. $7,150 al 11%, $4,850 al 8.5% e. ninguna de las anteriores c . $9,500 al 11%, $2,500 al 8.5%

18. Alejandro tiene una bolsa con 9 bolitas numeradas del 1 al 9. Saca una

bolita, anota el número y la vuelve a poner en la bolsa. Saca otra, anota el número a la derecha del primero y vuelve a ponerla en la bolsa. Repite esta operación tres veces más. ¿Cuál es la probabilidad de que el número de 5 cifras que Alejandro tiene escrito:

i.) sea impar? ii.) tenga todas sus cifras iguales?

a. i.) 1

9. ii.)

15

59,049 d. i.)

15

18. ii.)

5

59,049

b. i.) 5

9. ii.)

1

6,561 e. ninguna de las anteriores

c. i.) 5

5!. ii.)

9

99,999

19. Nueve esferas congruentes son colocadas dentro de un cubo unitario de

tal forma que el centro de una de ellas coincide con el centro del cubo. Cada una de las restantes es tangente a la esfera central y a tres lados del cubo. ¿Cuál es el radio de cada esfera?

a. 3

12

− d. 1

4

b. 2 3 3

2

− e.

3(2 2)

4

c. 2

6

Page 17: Microsoft Word - libritodepreolimpiada-2005

17

20. Considere el rectángulo ABCD . Sean ,E F , G y H los puntos

medios de AB , BC , CD y DA respectivamente. Sean I , J , K y

L los puntos medios deEF , FG , GH y HE respectivamente. Si el perímetro del rectángulo ABCD es 4, ¿cuál es el perímetro del rectángulo IJKL ? a. 3/2 d. 4/3 b. 2 e. ninguna de las anteriores c. 5/2

21. El triángulo ABC está inscrito en un círculo y BP biseca al ∠ ABC.

Si 6AB = , 8BC = y 7AC = , calcule BP . a. 12 d. 8 b. 10 e. ninguna de las anteriores c. 9.5

22. El número 9 9 985 21 6− + es divisible por un número entero que está

entre 2,000 y 3,000 . Halle el número.

a. 2240 d. 2332 b. 2100 e. ninguna de las anteriores c. 2972

23. Un divisor propio de un número entero n cualquiera, es todo aquel número entero, menor que n , que lo divide. Basándote en esta definición, ¿cuántos divisores propios positivos tiene el número con

factorización prima 3 4 22 3 7⋅ ⋅ ?

a. 9 d. 60 b. 24 e. ninguna de las anteriores c. 59

24. El número 26! termina en un bloque de ceros. Sea N el entero que

resulta si los ceros fueran eliminados. Calcule el entero k más grande tal

que 12kes un divisor de N .

a. 8 d. 9 b. 12 e. ninguna de las anteriores c. 7

Page 18: Microsoft Word - libritodepreolimpiada-2005

18

25. Dados los siguientes números, 100, 101,…, 999, ¿cuántos habrá que tengan tres dígitos diferentes en orden ascendente o en orden descendente? a. 120 d. 216 b. 168 e. 240 c. 204

26. Encuentra todas las soluciones enteras de la siguiente ecuación: 4 3 2 2 = x x x x y y+ + + +

a. ( ) ( ) ( )0, 0 , 1, 1 1, 0y− − d. ( ) ( ) ( ) ( )( ) ( )1, 4 , 0, 0 , 2, 5 , 2, 6

5, 2 -1,0

,

,

− −

b. ( ) ( ) ( ) ( )0, 0 , 1, 1 , 1, 0 1,4y− − e. ninguna de las anteriores

c. ( ) ( ) ( ) ( )( ) ( )0, 0 , 0, 1 , 2, 5 , 2, 6 ,

1, 1 -1,0,

− −

− −

27. Tienes 121 canicas; algunas son rojas, otras blancas y las restantes

azules. También tienes 10 jarras. Si distribuyes todas las canicas en las jarras, deberá haber una jarra que contenga al menos n canicas del mismo color. Calcule cuál es el máximo valor posible que n puede ser. a. 3 d. 7 b. 5 e. ninguna de las anteriores c. 6

28. Un número natural de n dígitos es “armonioso” si sus n cifras son una

permutación de { }1,2,...,n y sus primeros k dígitos forman un número

divisible por k, para cualquier k = 1, 2,…, n. Por ejemplo, 321 es armonioso pues 3 es divisible por 1, 32 es divisible por 2 y 321 es divisible por 3. ¿Cuántos números armoniosos de 6 dígitos hay? a. 2 d. 8 b. 4 e. ninguna de las anteriores c. 6

29. En una mesa hay cinco cartas. Cada carta tiene de un lado un número natural y del otro lado una letra. Juan afirma: “Cualquier carta que tenga de un lado una vocal tiene un número par del otro lado”. Pedro

Page 19: Microsoft Word - libritodepreolimpiada-2005

19

demostró que Juan mentía con sólo voltear una carta. ¿De cuál de las cinco cartas se trata?

P Q 3 4 6

a. P d. 4 b. Q e. 6 c. 3

30. Si 55…556 y 44…445 tienen n dígitos cada uno, ¿cuántos dígitos tiene el siguiente número?

2 2(55...556) (44...445)−

a. 2n n− d. 2 1n −

b. 2n e. ninguna de las anteriores

c. 2n

Page 20: Microsoft Word - libritodepreolimpiada-2005

20

COMPETENCIA PRE-OLÍMPICA DE MATEMATICAS 2004-2005 SEGUNDA FASE

EXAMEN NIVEL I 4to, 5to y 6to grado

1. Para hacer un bizcocho para 2 personas se usan 3 tazas de harina. ¿Si

queremos hacer un bizcocho para 7 personas, cuántas tazas de harina necesitamos? a. 10 tazas d. 11 tazas y media b. 11 tazas e. ninguna de las

anteriores c. 10 tazas y media

2. Para almorzar podemos ir al Mesón, a Burger King o a Subway. Para la

cena podemos ir a Ponderosa o a Chilis. ¿De cuántas formas podemos planear nuestro almuerzo y cena? a. 6 formas d. 4 formas b. 5 formas e. ninguna de las

anteriores c. 3 formas

3. El área de cada cuadradito es 4. Hallar el perímetro de esta figura.

a. 12 d. 18

Page 21: Microsoft Word - libritodepreolimpiada-2005

21

b. 20 e. ninguna de las anteriores

c. 30

4. Considera la siguiente lista de caritas:

, , , , , , , . . .

¿Cómo es la carita número 2005?

a. d.

b. e. ninguna de las anteriores

c.

5. ¿Cuál es la medida del ángulo BCD ?

a. 45o d. 35o

b. 125o e. ninguna de las

anteriores

c. 55o

6. Han pasado 59 meses desde que compré mi carro. ¿Si lo compré en marzo, en qué mes estamos ahora?

a. Marzo d. Febrero

Page 22: Microsoft Word - libritodepreolimpiada-2005

22

b. Enero e. ninguna de las anteriores

c. Abril

7. El doble de la edad de Juan es la edad de Luis y Juan es 7 años menor que Roberto. ¿Si Roberto tiene 18 años, cuántos años tiene Luis?

a. 10 años d. 12 años b. 15 años e. ninguna de las

anteriores c. 11 años

8. En la siguiente figura, cada cuadrito es de 1cm por 1cm. Encuentra el

área de la región sombreada.

a. 218 cm d.

210 cm

b. 29 cm e. ninguna de las

anteriores

c. 212 cm

9. María, Juan, Ana y Luis van al cine. Encuentran 4 asientos consecutivos.

¿De cuántas maneras se pueden sentar si María y Ana se sientan juntas? a. 6 formas d. 7 formas b. 12 formas e. ninguna de las

anteriores c. 5 formas

10. ¿Cuántos divisores mayores que 1 tiene 60?

Page 23: Microsoft Word - libritodepreolimpiada-2005

23

a. 6 d. 4 b. 11 e. ninguna de las

anteriores c. 13

11. Al final de la temporada, en la tienda hacen el 20% de descuento. María

compró un abrigo y pagó $48. ¿Cuál es el precio sin descuento del abrigo?

12. Carlos dibuja una figura con segmentos horizontales y verticales como

sigue:

Las líneas horizontales miden 2cms y las verticales 3cms. La suma de

las longitudes de todos los segmentos de la figura es 2005. ¿Cuántos segmentos horizontales tiene la figura?

13. ¿Cuántos triángulos hay en la figura?

Page 24: Microsoft Word - libritodepreolimpiada-2005

24

14. Juan pensó tres números que juntos suman 100. Uno es divisible por 3, otro por 13 y el otro por 23. ¿Cuáles son los números que pensó Juan?. Escribir todas las posibilidades.

15. En la figura, los triángulos ABO , BOC y COD son equiláteros y el

arco �AD es una semicircunferencia de centro O . El perímetro de la

figura es 30.7cm. ¿Cuál es la longitud del arco �AD y cuál es el área del semicírculo?

Page 25: Microsoft Word - libritodepreolimpiada-2005

25

COMPETENCIA PRE-OLÍMPICA DE MATEMATICAS 2004-2005 SEGUNDA FASE

EXAMEN NIVEL II 7mo-12mo grado

1. Han pasado 59 meses desde que compré mi carro. ¿Si lo compré en marzo, en qué mes estamos ahora?

a. Marzo d. Febrero b. Enero e. ninguna de las

anteriores c. Abril

2. Aldo, Carlos y Javier juegan con una máquina tragamonedas. Entre los tres gastan 40 monedas. Carlos gasta 12 más que Javier. Javier gasta la mitad de las que gasta Aldo. ¿Cuántas monedas gasta cada uno?

a. Javier gasta 19, Carlos gasta 7 y Aldo 14, b. Javier gasta 19, Carlos gasta 14 y Aldo 7, c. Javier gasta 7, Carlos gasta 19 y Aldo 14, d. Javier gasta 7, Carlos gasta 14 y Aldo 19, e. ninguna de las anteriores.

3. Sobre una ruta, cada 4 Km. hay una parada de guagua, cada 5 Km., un

teléfono y cada 30 Km. un expendio de combustible. ¿Cada cuántos kilómetros hay una parada, un teléfono y un expendio de combustible juntos?

a. Cada 60 Km. d. Cada 40 Km. b. Cada 30 Km. e. ninguna de las

anteriores c. Cada 20 Km.

4. ¿Cuántos números positivos menores que 1000 y tales que cada dígito es

múltiplo del dígito que está a su derecha, hay?

a. 50 d. 23

Page 26: Microsoft Word - libritodepreolimpiada-2005

26

b. 100 e. ninguna de las anteriores

c. 67

5. ¿Dada la siguiente figura y sabiendo que AD DC= , cuál es la medida

del ángulo DCA ?

a. 80o d. 40o

b. 85o e. ninguna de las

anteriores

c. 50o

6. Si el dígito 1 es colocado entre los dígitos de un número de dos cifras cuya dígito de las decenas es t y cuyo dígito de las unidades es u , entonces el nuevo número es igual a:

a. 10 1t u+ + d. 100 1t u+ +

b. 100 10t u+ + e. 10 10t u+ +

c. 1t u+ +

7. Alicia, Beatriz, Cecilia y Dora van a una confitería y cada una lleva a su

hermanito menor. Se sientan en una mesa redonda.

• Beatriz y Dora están una en frente de la otra.

• Ninguna quiere sentarse al lado de su propio hermano.

• En la mesa no hay dos mujeres juntas.

• El hermano de Beatriz tiene a Alicia a su derecha. ¿Quién está entre Cecilia y Dora?

Page 27: Microsoft Word - libritodepreolimpiada-2005

27

a. El hermano de Beatriz d. El hermano de Dora

b. El hermano de Alicia e. ninguna de las anteriores

c. El hermano de Cecilia

8. ¿En la figura siguiente, cuántos caminos hay de A a B sin pasar dos veces por el mismo punto?

a. 19 d. 21 b. 18 e. ninguna de las

anteriores c. 20

9. En el diagrama 8PQ = , 12TS = , 20,QS = y .QR x= Si PRT es un triángulo rectángulo, entonces:

a. x tiene dos posibles valores cuya diferencia es 4, b. x tiene dos posibles valores cuya suma es 28, c. x tiene solo un valor y 10x > ,

Page 28: Microsoft Word - libritodepreolimpiada-2005

28

d. x tiene solo un valor y 10x < ,

e. x no puede ser determinado con la información dada.

10. ¿Tomando los puntos de la siguiente cuadrícula como vértices de cuadrados, cuántos cuadrados distintos se pueden dibujar?

a. 9 d. 2 b. 21 e. ninguna de las

anteriores c. 4

11. El área del cuadrado sombreado es una tercera parte del área del

cuadrado grande. ¿Cuál es la razón x

y?

Page 29: Microsoft Word - libritodepreolimpiada-2005

29

12. Si 0x > y

21

9xx

+ =

, ¿cuál es el valor de 3

3

1x

x+ ?

13. ¿Cuál es el dígito de las unidades del número 14 15 1614 15 16+ + ?

14. Sean ABCD un rectángulo, E el punto medio de BC y F el punto

medio de CD . Sea G el punto de intersección de DE con BF . ¿Si

20FAE = o� , cuánto mide el EGB� ?

15. Un plato de sopa con forma de hemisferio con diámetro de 16 cms es

llenado hasta la mitad de su profundidad. ¿Cuál es el mayor ángulo que el plato puede ser inclinado sin derramar sopa?

16. María tiene una cuadrícula de 4 4× y quiere llegar del cuadradito inferior izquierdo al superior derecho. ¿Si solamente puede ir hacia arriba, hacia la derecha y en diagonal hacia arriba y a la derecha, de cuántas formas lo puede hacer?

Page 30: Microsoft Word - libritodepreolimpiada-2005

30

OLIMPIADA MATEMATICA DE PUERTO RICO 2004-2005

EXAMEN NIVEL I 4to, 5to y 6to grado

1. En el país de las maravillas el clima se comporta de la siguiente manera:

si un día llueve, el siguiente esta soleado, el siguiente nublado y en el siguiente cae nieve y se repite este ciclo. ¿Si hoy es lunes y esta lloviendo, cómo será el clima del lunes dentro de 4 semanas?

2. En el siguiente recuadro, colocar en cada casilla cada uno de los

siguientes números:

1,2,3,1, 2,3,1,2,3,

de modo que, la suma de los números de cada fila (horizontal), la suma de los números de cada columna (vertical) y la suma de cada diagonal sea la misma.

3. Considera la siguiente figura. Si el área del triángulo es 2, ¿cuál es el

área del cuadrado?

Page 31: Microsoft Word - libritodepreolimpiada-2005

31

4. El menú en el restaurante de María incluye una bebida, una ensalada y una carne. Las posibles bebidas son jugo, refresco o café; las ensaladas son de coditos o de papa y la carne puede ser pollo frito, chuleta o lechón. ¿Si solo pides una bebida, una ensalada y una carne, de cuántas maneras diferentes puedes almorzar en el restaurante de María?

5. Las edades de Ana y Beatriz suman 18 años. ¿Si Ana tiene al doble de la

edad de Beatriz, qué edad tiene cada una? 6. La suma de 5 enteros positivos consecutivos es 2005, ¿cuál es el menor

de ellos?

7. ¿Con los dígitos 1,2,3, 4,5,0 cuántos números de cuatro cifras que son

múltiplos de 5 y tienen todas las cifras distintas se pueden armar?

8. Consideremos la siguiente figura. El triángulo ACE es un triángulo equilátero. Los puntos , B D y F son puntos medios de los lados del

triángulo ACE ; , G H e I son puntos medios de los lados del

triángulo BDF ; , K J y L son puntos medios de los lados del

triángulo GFI . ¿Qué fracción del cuadrilátero ABDE representa la región sombreada?

K

LJ

H

IG

DB

C

EA F

Page 32: Microsoft Word - libritodepreolimpiada-2005

32

9. Un edificio tiene 105 ventanas, 1/3 de ellas tienen flores y 3/7 de ellas tienen cortinas, 40 ventanas no tienen ni cortinas ni flores. ¿Cuántas ventanas tienen cortinas y flores?

10. El rey y sus dos hijos están prisioneros en una torre muy alta. Los

obreros que han estado trabajando en la torre dejaron instalada una polea en ella. Por la polea corre una cuerda con un canasto atado en cada extremo. En el canasto que está en el suelo hay una piedra como las que se usaron para construir la torre. La piedra pesa 35 kg. El rey resuelve que la piedra puede usarse como contrapeso, siempre y cuando la diferencia entre el peso de ambos canastos no exceda los 7 kg. El rey pesa 91 Kg., la princesa pesa 49 Kg. y el príncipe, 42 kg. ¿Cómo pueden escapar todos de la torre? (¡Pueden arrojar la piedra de la torre al suelo!)

Page 33: Microsoft Word - libritodepreolimpiada-2005

33

OLIMPIADA MATEMATICA DE PUERTO RICO 2004-2005

EXAMEN NIVEL II 7mo-12mo grado

1. Desde el planeta Galatea se ven tres estrellas, una se ve cada 12 días,

otra se ve cada 30 días y la otra se ve cada 45 días. Si Juan ve las tres

estrellas hoy, ¿dentro de cuántos días volverá a ver las tres al tiempo?

2. En el kiosco venden caramelos de tres sabores: parcha, melón y china. Andrés compra 6 caramelos, su compra incluye por lo menos un

caramelo de cada sabor. ¿De cuántas maneras distintas pudo haber comprado los caramelos?

3. Un edificio tiene 105 ventanas, 1/3 de ellas tienen flores y 3/7 de ellas

tienen cortinas, 40 ventanas no tienen ni cortinas ni flores. ¿Cuántas ventanas tienen cortinas y flores?

4. El rey y sus dos hijos están prisioneros en una torre muy alta. Los

obreros que han estado trabajando en la torre dejaron instalada una polea en ella. Por la polea corre una cuerda con un canasto atado en cada extremo. En el canasto que esta en el suelo hay una piedra como las que se usaron para construir la torre. La piedra pesa 35 kg. El rey resuelve que la piedra puede usarse como contrapeso, siempre y cuando la diferencia entre el peso de ambos canastos no exceda los 7 kg. El rey

pesa 91 Kg., la princesa pesa 49 Kg. y el príncipe, 42 kg. ¿Cómo pueden escapar todos de la torre? (¡Pueden arrojar la piedra de la torre al suelo!)

Page 34: Microsoft Word - libritodepreolimpiada-2005

34

5. La edad de Miguel mas la edad de Ana es 17. La edad de Miguel mas la edad de Ramón es 21. La edad de Ramón mas la edad de Ana es 22.

¿Cuál es la suma de sus tres edades?

6. En la figura los triángulos ABC , FDC y GEC son isósceles.

3AB AC= × . El perímetro del triangulo ABC es 84 cm. D es el

punto medio de BC ; E es el punto medio de DC ; F es el punto

medio de AC y G es el punto medio de FC . ¿Cuál es el perímetro de la figura sombreada?

E

GF

D

A C

B

7. El área del trapecio ABCD es 18 unidades cuadradas, 4AB = unidades,

y 1

4DE DC= . ¿Si la altura del trapecio es un entero y el lado DC es

un entero par, cuál es el área del triángulo ABE ? E C

B

D

A

Page 35: Microsoft Word - libritodepreolimpiada-2005

35

8. ¿Cuál es el término 2005 en la sucesión

1,1, 2,1, 2,3,1, 2,3,4,1,2,3,4,5,...?

9. Encuentra todos los números de 7 dígitos que son múltiplos de 3 y de 7, y cada uno de cuyos dígitos es 3 o 7.

10. Encuentra todos los primos p tales que 12 1p

p

− − es un cuadrado

perfecto.

Page 36: Microsoft Word - libritodepreolimpiada-2005

36

SOLUCIONES DE LOS PROBLEMAS

COMPETENCIA PRE-OLÍMPICA DE MATEMATICAS 2004-2005

PRIMERA FASE

EXAMEN NIVEL I 4to, 5to y 6to grado

1. Según la Figura, hay 5 cuadraditos completos que suman un área total de 5; las regiones A,B,C y D son triángulos y cada uno tiene un área igual a la mitad de la de un cuadradito, para un total de 4 / 2 2= . En la región

E hay un triángulo cuya área es la mitad del área de dos cuadraditos que es 2 / 2 1= . El área de la región sombreada es igual a la suma de todas

estas áreas que es igual a 5 2 1 8+ + = .

A B

CD

E

2. En la Tabla podemos ver el número de manzanas que come Paco durante la semana:

Día de la semana Número de Manzanas

Lunes 1

Martes 2

Miércoles 3

Jueves 4

Viernes 5

Sábado 6

Domingo 7

Total 28

Page 37: Microsoft Word - libritodepreolimpiada-2005

37

3. Hay 6 formas comiendo el guineo el lunes (ver Tabla), habrá 6 formas similares si se come el guineo el martes y de igual manera para el

miércoles, jueves y viernes. Por lo tanto hay 6 5 30⋅ = formas.

4. Primera forma: Si dividimos el kilómetro en 4 partes, el primer atleta

recorre 1/ 4 mientras el segundo recorre 3 veces lo que recorre el

primero, es decir 3/ 4 . Luego se encontraran a 1/ 4 de Km. del primer atleta.

Segunda Forma: Sean A y B la distancia recorrida por el primero y segundo atleta respectivamente y D la distancia entre ambos. Luego tenemos que 1 ( )D Km A B= − + . Pero sabemos que 3B A= . En el

momento que se encuentran tenemos que 0D = , así tenemos que 1 ( 3 ) 0A A− + = y por lo tanto 1/ 4A Km= .

5. Se debe tener que 5A = o 0A = , ya que 5 y 0 son los únicos dígitos

que satisfacen que al multiplicarse por 7 se mantengan en la cifra de las

unidades del resultado. Pero si 0A = tenemos que

0

7

0 0

B

H

× y así no

sería posible hallar el valor de B. Luego tenemos que 5A = . Entonces 5

7

5 5

B

H

× , luego B debe satisfacer la propiedad que al multiplicarlo por 7

y sumarle al resultado 3, el valor total termine en 5. Así 6B = , ya que

6 7 3 45⋅ + = . Por lo tanto,

6 5

7

4 5 5

× y así tenemos que 4H = .

Finalmente obtenemos que 5 6 4 15A B H+ + = + + = .

Lunes Martes Miércoles Jueves Viernes

Guineo China China Manzana Manzana

Guineo China Manzana China Manzana

Guineo China Manzana Manzana China

Guineo Manzana Manzana China China

Guineo Manzana China Manzana China

Guineo Manzana China China Manzana

Page 38: Microsoft Word - libritodepreolimpiada-2005

38

6.

27

1 2 3 4 5 6 7 8 ... 54 55

1 ( 2 3) ( 4 5) ... ( 54 55)

1 1 1 1 ... 1 28veces−

− + − + − + − + − +

= + − + + − + + + − +

= + + + + + =1442443

7. Según las condiciones del problema, obtenemos el triángulo de la

Figura. Tenemos que 80oC∠ = , ya que la suma de los ángulos internos

de un triángulo es 180o . Entonces 100BCD∠ = o. Como CD CB= , el

triángulo DCB es isósceles. Así DBC CDB∠ = ∠ y

80oDBC CDB∠ +∠ = , luego 40oDBC∠ = y 40oCDB∠ = .

30o

A B

C

80o

70o

D

100o

40o

40o

8. Sea a la medida de los lados iguales del triángulo y b la medida del lado restante (ver Figura). Como se desea cercar el corral con cinco

alambres, tenemos que 5(2a+b) = 525m . Pero a = 2b , así

5(5b)=525m y por lo tanto b = 21m y a =42m .

aa

b

Page 39: Microsoft Word - libritodepreolimpiada-2005

39

9. Las cuatro varillas de las esquinas miden 12m . Cada cara tiene 11 varillas interiores ya que 3 0.25 12÷ = . Luego en total hay 44 varillas

interiores, donde cada una mide 3m y por lo tanto hay 132m de varilla. Así en total hay 132 12 144m m m+ = de varilla.

10. A cada rectángulo pequeño llamémoslo unidad. Así tenemos lo

siguiente: Rectángulos con una unidad 16

Rectángulos con dos unidades horizontales 12

Rectángulos con dos unidades verticales 12

Rectángulos con tres unidades horizontales 8

Rectángulos con tres unidades verticales 8

Rectángulos con cuatro unidades horizontales 4

Rectángulos con cuatro unidades verticales 4

Rectángulos con cuatro unidades en bloque 9

Rectángulos con seis unidades en bloque 12

Rectángulos con ocho unidades en bloque 6

Rectángulos con nueve unidades en bloque 4

Rectángulos con doce unidades en bloque 4

Rectángulos con dieciséis unidades en bloque 1

Total 100

11. Si el quiosquero compra 60 chocolates a $20 en el mayorista, entonces

360 chocolates le cuestan $120 dólares. Pero si compra 8 chocolates a $3 en el supermercado, entonces los 360 chocolates le cuestan $135 (ya

que 8 45 360× = y 45 3 135× = ). Luego el quiosquero ahorra $15

comprando los chocolates en el mayorista. 12. La flecha 4 es igual a la flecha 8, la flecha 8 es igual a la flecha 12, la

flecha 12 es igual a la flecha 16, etc. Como 2004 es múltiplo de 4

( 4 501 2004⋅ = ) , entonces la flecha en la posición 2004 sería igual a la

flecha de la posición 4, es decir: ↓ . 13. Primera forma: Denotemos a Paco, Juan, María y a Claudia por las

letras P, J, M y C respectivamente. Paco, Juan y María se pueden sentar de 6 maneras distintas: PJM, PMJ, MJP, MPJ, JPM, y JMP. De igual manera para Paco, Juan y Claudia; Juan, María y Claudia; y Paco, María

Page 40: Microsoft Word - libritodepreolimpiada-2005

40

y Claudia. Así tenemos 6 maneras distintas para 4 casos diferentes,

luego hay 6 4 24⋅ = formas de que ellos se sienten.

Segunda forma: En el primer asiento se pueden sentar de 4 maneras distintas, en el segundo de 3 maneras distintas y en el tercero de 2 maneras distintas. Así el número de posibilidades que ellos pueden

sentarse es 4 3 2 24⋅ ⋅ = .

14. Ana le dio 2

3 partes a Matilde, luego le quedó

1

3 parte. De esto, le dio

la mitad a su mama, es decir 1

6 parte. Luego Ana se comió

1

6 parte.

15. Cada lado del cuadrado ABCD mide 1, entonces ____ ___ 1

2EB BF= = .

AB

CD

E

F

G

H

I

JK

L

Usando el Teorema de Pitágoras tenemos que

2 2 2____ ____ ____

EF EB BF= + . Por

lo tanto

2 22____ 1 1

2 2EF

= +

, luego ____ 2

2EF = . Entonces

____ ___ 2

4EI EL= = . Usando Pitágoras nuevamente, se tiene que

2 2 2____ ____ ____

LI EI EL= + . Entonces

2 22____ 2 2

4 4LI

= +

1

2LI = y

tenemos que el perímetro del cuadrado IJKL es

1 1 1 1 42

2 2 2 2 2+ + + = = .

Page 41: Microsoft Word - libritodepreolimpiada-2005

41

16. Todos los posibles divisores propios de 3 22 3 5 están en la siguiente

tabla. El total de ellos es 23.

32 22 2 1 32 3⋅

22 3⋅ 2 3⋅ 3 32 3 5⋅ ⋅

22 3 5⋅ ⋅ 2 3 5⋅ ⋅ 3 5⋅

3 22 3⋅ 2 22 3⋅

22 3⋅ 23

- 2 22 3 5⋅ ⋅ 22 3 5⋅ ⋅

23 5⋅ 32 5⋅

22 5⋅ 2 5⋅ 5

17. Primera forma: Los dígitos que se pueden usar son 1, 3, 5, 7 o 9. Las

tablillas posibles con el dígito 1 se pueden ver en la Tabla.

AE1 EA1 IA1 OA1 UA1 AI1 EI1 IE1 OE1 UE1 AO1 EO1 IO1 OI1 UI1 AU1 EU1 IU1 OU1 UO1

Luego hay 20 tablillas con el dígito 1. De manera similar se obtienen el

mismo número de tablillas con dígitos 3, 5, 7 y 9. Así hay un total de

5 20 100⋅ = . Segunda forma: Para la primera letra hay 5 posibilidades, luego para la

segunda habrá 4 posibilidades y para el dígito habrá 5 posibilidades. Así el número de tablillas que es igual al número de bicicletas en la isla es:

5 4 5 100⋅ ⋅ = . 18. Sea n el primer número. Luego n+(n+1)+(n+2)=2004 , así n = 667 , y

por lo tanto los otros números son 668 y 669 . Así su producto es 667 668 669 298,076,964⋅ ⋅ = .

19. Sea J, H y P las edades de Juan, de la hermana y del papá

respectivamente. Tenemos que2

PJ H+ = , J=H+3 y J = P-27 . De la

segunda ecuación tenemos que H=J-3 ; y de la tercera ecuación tenemos

Page 42: Microsoft Word - libritodepreolimpiada-2005

42

que P = J+27 . Así, sustituyendo en la primera ecuación tenemos que

273

2

JJ J

++ − = . Luego 4J-6=J+27 , y por lo tanto

3311

3J = = .

20. El juego terminará cuando la suma de las distancias recorridas entre los

dos competidores sea mayor o igual a 775. En la Tabla se muestra la distancia recorrida después de 10 pasos realizados por cada competidor.

Tamaño del pie 40cm 33cm 34cm 35cm

Distancia 400cm 330cm 340cm 350cm

Para los competidores del equipo de Blas, quienes tienen medidas de pie iguales a 33cm, 34cm y 35cm, se tiene que la suma de su distancia recorrida más la de su competidor a los 10 pasos realizados por ambos equipos serían: 400+330=730, 400+340=740 y 400+350=750 respectivamente. Luego ninguno de los dos equipos ganaría en este momento. Como el equipo de Aníbal tiene el derecho a realizar primero el paso 11, tenemos que la suma de las distancias correspondientes en el turno del equipo de Aníbal serían: 440+330=770, 440+350=790 o 440+350=810. En los dos últimos casos, la distancia recorrida es mayor que 755. Luego ganaría el equipo de Aníbal. En el primer caso, el equipo de Blas tendría la oportunidad de realizar el paso 11, y así la suma de las distancias recorridas en el turno del equipo de Blas sería 440+363=803. Por lo tanto el equipo de Blas sería el vencedor. Así para que el equipo de Blas gane. sabiendo que comienza el equipo de Aníbal, Blas debe escoger al competidor con medida de pie igual a 33cm. Si comienza el equipo de Blas, su equipo tendría el derecho a realizar primero el paso 11. Luego las sumas de las distancias recorridas correspondientes a los competidores con medidas de pie 33cm, 34cm y 35cm en su turno serían: 400+363=763, 400+374 = 774 y 400+385 = 785 respectivamente. Así Blas ganaría, sabiendo que su equipo comienza el juego, si escoge al competidor con medida de pie igual a 35cm.

Page 43: Microsoft Word - libritodepreolimpiada-2005

43

COMPETENCIA PRE-OLÍMPICA DE MATEMATICAS 2004-2005 PRIMERA FASE

EXAMEN NIVEL II 7mo-12mo grado

1. La flecha 4 es igual a la flecha 8, la flecha 8 es igual a la flecha 12, la

flecha 12 es igual a la flecha 16 y etc. Como 2004 es múltiplo de 4

( 4 501 2004⋅ = ) , entonces la flecha en la posición 2004 sería igual a la

flecha de la posición 4, es decir: ↓ . 2. Santiago envía una postal a su abuela, una a Daniel, una a Federico y

una a Tomás. Como cada postal la envía desde una ciudad distinta, Santiago tiene 7 opciones para elegir la ciudad desde la cual envía la postal a su abuela. Elegida la ciudad para la abuela, tiene 6 opciones

para la ciudad para Daniel. Luego hay 7 6⋅ maneras de elegir las

ciudades desde las cuales Santiago envía postales a su abuela y a Daniel. Elegidas las ciudades para la abuela y Daniel, hay 5 opciones para

elegir la ciudad para Federico. Así tenemos que hay 7 6 5⋅ ⋅ maneras de

elegir las ciudades desde las que Santiago envía postales a su abuela, a Daniel y a Federico. Elegidas las ciudades para la abuela, Daniel y Federico, hay 4 opciones para elegir la ciudad para Tomás. De aquí

obtenemos que existen 7 6 5 4 840⋅ ⋅ ⋅ = maneras de que Santiago pueda

cumplir su promesa.

3. Sea x la distancia recorrida por el primer atleta y sea y la distancia recorrida por el segundo. Luego tenemos que 3y x= . En el momento

de encontrarse los atletas tenemos que 12x y+ = . Así tenemos que

3 12x x+ = y por lo tanto 3x = . Luego los atletas se encuentran a 3

kms del punto de partida del primero. Como el punto medio del trayecto esta a 6 kms, tenemos que los atletas se encuentran a 6 3 3kms kms kms− = del mismo.

4. Si V es el número de varones y M el número de mujeres del club,

entonces tenemos que 60V M= + . El 30% de los varones es

3 3 3 360 18

10 10 10 10V M M= + × = + y el 50% de las mujeres es

1

2M .

Page 44: Microsoft Word - libritodepreolimpiada-2005

44

Como la mitad de las mujeres y el 30% de los varones suman 298 tenemos que:

1 3298

2 10

1 318.

2 10

M V

M M

= +

= + +

1 3280,

2 10

5 3280,

10 10

8280,

10

2800350.

8

M M

M

M

M

+ =

+ =

=

= =

Entonces hay 350 mujeres en el club. De aquí se obtiene que hay

350 60 410+ = varones en el club.

5. Sea 1 3 5 ... 97 99 101S = + + + + + + . Luego tenemos que

51

2

(1 3 5 ... 97 99 101) (101 99 97 ... 5 3 1)

(1 101) (3 99) (5 97) ... (97 5) (99 3) (101 1)

102 102 102 ... 102 102 102

51 102

veces

S S S

= +

= + + + + + + + + + + + + +

= + + + + + + + + + + + +

= + + + + + +

= ⋅

144444424444443

Así tenemos que 2102

51 51 51 512

S = × = ⋅ = .

6. Según las condiciones del problema, obtenemos el triángulo de la

Figura. Tenemos que 80oC∠ = , ya que la suma de los ángulos internos

de un triángulo es 180o . Entonces 100BCD∠ = o. Como CD CB= , el

triángulo DCB es isósceles. Así DBC CDB∠ = ∠ y

80oDBC CDB∠ +∠ = , luego 40oDBC∠ = y 40oCDB∠ = .

Page 45: Microsoft Word - libritodepreolimpiada-2005

45

7. El triángulo AHC esta mostrado en detalle en la Figura. Como BM es

una mediana y AH es una altura del triángulo ABC, se tiene que M es

el punto medio de AC y que AH es perpendicular a HC . Luego tenemos que el triángulo AHC es un triángulo recto con 30HCM °∠ =

y 60HAM∠ = o. Así tenemos que

1

2HA AC AM= = . Luego el

triángulo AHM es un triángulo isósceles con un ángulo interior de 60o .

Por lo tanto el triángulo AHM debe ser equilátero. Así 60AHM∠ = o y

90 60 30MHC∠ = − =o o o.

8. Sabiendo que 3 21 ( 1)( 1)x x x x+ = + − + , tenemos que:

6 2 3

2 4 2

9 1 (9 ) 1

(9 1)(9 9 1)

82 6481

2 41 6481.

+ = +

= + − +

= ⋅

= ⋅ ⋅

Page 46: Microsoft Word - libritodepreolimpiada-2005

46

Como 2 y 41 son primos, por la información dada en el problema debemos tener que 6481 es primo y es claro que es el mayor de los tres.

9. El número total de términos de la sucesión después de que el entero n ha

sido escrito n veces es ( 1)

1 2 3 ...2

n nn

++ + + + = . Así debemos hallar

el mayor n de tal manera que ( 1)

20042

n n +< ó ( 1) 4008n n + < .

Probando con 62n = y 63 tenemos que 62 63 3906⋅ = y

63 64 4032⋅ = . Luego, el término 2004 debe ser 63. 10. Para empezar se tienen tres opciones que se muestran en la Figura.

Después, en cada caso, se tienen otras 3 opciones:

Ahora en cada caso, se tienen solo 2 opciones para avanzar hacia C con caminos de 6cm de longitud.

Page 47: Microsoft Word - libritodepreolimpiada-2005

47

A partir de esta posición, en cada caso tiene 2 opciones

Hasta ahora contamos 3 3 2 2 36⋅ ⋅ ⋅ = caminos de 4cm de longitud. De

estos caminos, la mitad tiene una sola opción para llegar hasta C (los que terminan en un vértice del cubo) y la otra mitad tiene 2 opciones para llegar a C (los que terminaran en el centro de una cara del cubo). El total de caminos para ir desde A hasta C es 18 1 18 2 54⋅ + ⋅ = .

11. Podemos escribir a 7 como la suma de números del 1 al 6 como sigue:

Page 48: Microsoft Word - libritodepreolimpiada-2005

48

7 1 6

2 5

3 4

4 3

5 2

6 1.

= +

= +

= +

= +

= +

= +

Pero el total de posibles resultados al lanzar los dos dados es 6 6 36⋅ = .

Como existen 6 posibilidades de obtener a siete con los dados, tenemos

que la probabilidad de obtener 7 en un tiro es 6 1

36 6= .

12. Existen 5 posibilidades para la primera letra, 4 posibilidades para la

segunda y 3 posibilidades para la tercera. Para el primer dígito hay 5 posibilidades, para el segundo hay 4 posibilidades (los dígitos no pueden repetirse). Así el número de posibles placas con dígitos impares es

5 4 3 5 4 1200⋅ ⋅ ⋅ ⋅ = . Por lo tanto hay 1200 bicicletas en la isla.

13. Primera forma: En una sucesión aritmética con un número impar de

términos, el término del medio es igual al promedio de los términos.

Como 4 7 10, ,a a a forman una sucesión aritmética de tres términos con

suma 17, entonces 7

17

3a = . Como 4 5 14, ,...,a a a forman una sucesión

aritmética de 11 términos cuya suma es 77, entonces el término del

medio satisface que 9

777

11a = = . Sea d la diferencia común para la

sucesión aritmética dada. Como 7

17

3a = y 9 7a = difieren por

42

3d = , tenemos que

2

3d = . Como 7 1 6 ,a a d= + se obtiene que

1 7

17 2 56 6 .

3 3 3a a d

= − = − =

Así tenemos que

113 ( 1) ,ka a k d= = + − ó 5 2( 1) 13.

3 3k

+ − =

Page 49: Microsoft Word - libritodepreolimpiada-2005

49

Luego obtenemos que 18k = .

Segunda forma: Calculamos 9 7a = y 2

3d = como antes. Como

9

213 7 6 7 9 9 ,

3ka a d

= = + = + = +

se sigue que 9 9 18.k = + =

Tercera forma: Sea 1a a= y sea d la diferencia común de la sucesión

aritmética. Como ( 1) ,ka a k d= + − se sigue que

4 7 10 ( 3 ) ( 6 ) ( 9 ) 17

3 18 17

a a a a d a d a d

a d

+ + = + + + + + =

+ = (♣)

y

4 5 6 14... ( 3 ) ( 4 ) ... ( 13 ) 77

11 88 77 .

a a a a a d a d a d

a d

+ + + + = + + + + + + =

+ = (♠)

Resolviendo (♣) y (♠ ) simultáneamente, obtenemos que 5

3a = y

2

3d = , así

5 2 213 ( 1) 1 .

3 3 3ka k k= = + − = +

Por lo tanto, 18.k =

14. Primera forma: Como 0a ≠ , el único valor de x para el cual

( ) 2f x = − es x = 0. Como ( )( )2 2,f f = − ( )2f debe ser 0.

Finalmente,

( ) ( )2 22 0 2 2 0 .

2f a a= ⇔ − = ⇔ =

Segunda forma: Como ( )2 2 2,f a= −

( )( ) 22 (2 2) 2f f a a= − −

Page 50: Microsoft Word - libritodepreolimpiada-2005

50

Pero ( )( )2 2f f = − . Por lo tanto, 2(2 2) 0a a − = . Como

0a > , tenemos 2 2a = y así 2.

2a =

15. Como m y n deben ser ambos positivos, se tiene que n > 2 y m > 4. Ya

que

4 21 ( 4)( 2) 8.m n

m n+ = ⇔ − − =

Necesitamos hallar todas las formas de escribir a 8 como un producto de

números enteros. Las cuatro formas son:

1 8⋅ , 2 4⋅ , 4 2⋅ y 8 1⋅ ,

y así obtenemos las cuatro soluciones:

( , ) (5,10), (6,6), (8,4)m n = y (12,3).

16. Poniendo AQ x= , tenemos que 5AR x= − y 3.BR = Usando la Ley

de Cosenos para obtener el valor del lado desconocido de cada triangulo pequeño, y entonces aplicando el Teorema de Pitágoras a los lados del triangulo recto, obtenemos que:

2 2 2 2 2 2(2 3 2 3) (2 2 ) 3 (5 ) 3(5 ),x x x x+ − ⋅ + + − = + − − −

de donde obtenemos 8.5

x =

Page 51: Microsoft Word - libritodepreolimpiada-2005

51

17. Sea x = cantidad de dinero depositada al 11%. Así tenemos que:

0.11 0.085(12,000 ) $1, 257.50

0.11 1,020.00 0.085 $1, 257.50

0.025 $237.50

$9,500

x x

x x

x

x

+ − =

+ − =

=

=

Así, la cantidad de dinero depositado al 8.5% es

$12,000-$9,500 = $2,500 .

18. La probabilidad de un suceso se calcula como el número de casos

favorables dividido por el número de casos posibles:

Casos favorables( ) .

Casos posiblesP S =

Los casos posibles son los números de 5 cifras que se pueden formar

usando los dígitos del 1 al 9. El total de estos números es 59 9 9 9 9 9 59,049⋅ ⋅ ⋅ ⋅ = = , ya que hay 9 posibilidades para cada cifra.

i.) Los casos favorables son los números de 5 cifras con la última cifra

impar. El total de posibilidades para este caso es 49 9 9 9 5 9 5 32805⋅ ⋅ ⋅ ⋅ = ⋅ = ,

ya que hay 9 posibilidades para elegir las 4 primeras cifras, pero sólo 5 posibilidades para elegir la última cifra (1, 3, 5, 7, o 9). Así la probabilidad de obtener un número impar de 5 cifras es:

4

5

32805 9 5 5(impar)

59049 9 9P

⋅= = = .

ii.) Los casos favorables para obtener un número con todas sus 5 cifras

iguales son 9 (11111, 22222, 33333, etc.). Así la probabilidad en este caso sería

Page 52: Microsoft Word - libritodepreolimpiada-2005

52

5 4

9 9 1 1(todas sus cifras iguales)

59049 9 9 6561P = = = =

19. Primera forma: Sea r el radio de cada esfera, y sea O el centro del

cubo. Consideremos el siguiente cubo:

A

B

C

D

Tomemos ahora la sección rectangular ABCD del cubo a través de O. Así tenemos la siguiente figura:

Como AC es una de las diagonales interiores de el cubo, los centros de

las esferas E, O y F caen sobre AC y 3AC = . Como el FGC� es

semejante al ADC� tenemos que

Page 53: Microsoft Word - libritodepreolimpiada-2005

53

,1 3

r FG FC FC

AD AC= = =

de donde se obtiene que 3.FC r= Como AE FC= y 4EF r= ,

tenemos

3 4 3 3r r r AE EF FC AC+ + = + + = = .

Así

3 4 2 3 4 3 6 33 .

4 24 2 3 4 2 3r

− −= = = − + −

Segunda forma: Si el radio de cada esfera es r, el centro de una esfera

esquinera F esta a 2 2 2r r r+ + unidades del vértice mas cercano.

Para calcular esta distancia (ver figura), note que 2 2t r r= + . Por lo

tanto ____

2 2 2FC r r r= + + . Usando el calculo de 3FC r= ,

continuamos el ejercicio como está en la primera forma.

r

r

tr

F

C

20. Consideremos la siguiente figura:

Page 54: Microsoft Word - libritodepreolimpiada-2005

54

Por el axioma de Lado-Angulo-Lado tenemos que el triángulo HAE es

congruente al triángulo KLI. Por lo tanto AH LK= y AE LI= . Luego tenemos que:

Perímetro del rectángulo

2 2

2 2

1(perímetro del rectángulo )2

14

2

2.

IJKL LI IJ JK LK

LI LK

AE AH

AB AD

ABCD

= + + +

= +

= +

= +

=

= ⋅

=

21. Tenemos que AC y BP se intersecan en el punto Q. Sea AQ p= ,

CQ q= , BQ t= y .PQ x=

Por el teorema de la bisectriz se tiene que 6

8

p

q= , luego

3

4

qp = . Como

7p q+ = , entonces 3

74

qq+ = , luego 4q = y 3 p = . Por un

Page 55: Microsoft Word - libritodepreolimpiada-2005

55

teorema de bisectrices se tiene que 2 6 8t p q= ⋅ − ⋅ . Por lo tanto

2 36t = , así 6t = . Usando potencia con las cuerdas AC y BP se tiene que ,tx pq= así 6 12x = . Luego tenemos que 2 x = y por lo

tanto 8.BP =

22. Consideremos .k k kN a b c= − + Como k ka b− es divisible por a b− ,

entonces N es divisible por el máximo común divisor (m.c.d) de a b−

y kc . Así N es divisible por

9 9 6. . (85 21,6 ) . . (64,6 ) 2mc d m c d− = = .

Similarmente, N es divisible por 9. . (21 6,85 ) 5mc d − = . Es más,

cuando k es impar, k ka c+ es divisible por a c+ ; así N es también

divisible por 9. . (85 6, 21 ) 7mc d + = . Como los divisores que hallamos

son relativamente primos, entonces N debe ser divisible por 62 5 7 2240.⋅ ⋅ =

23. Primera forma: En la siguiente tabla mostramos todos los posibles

divisores propios de 3 4 22 3 7⋅ ⋅ .

2 3

2 3

2 3

2 2 2 3 2 2

2 2 2 3 2 2

2 2 2 3 2 2

2 2 2 2 2 3 2 2 2 2

3 2 3 3 3 3

3 2 3 3 3 3

3 2 2 3 2 3 3 2 3 2

2 2 2 1

2 3 2 3 2 3 3

2 3 7 2 3 7 2 3 7 3 7

2 3 7 2 3 7 2 3 7 3 7

2 3 2 3 2 3 3

2 3 7 2 3 7 2 3 7 3 7

2 3 7 2 3 7 2 3 7 3 7

2 3 2 3 2 3 3

2 3 7 2 3 7 2 3 7 3 7

2 3 7 2 3 7 2 3 7 3 7

2

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ 4 2 4 3 4 4

4 2 4 3 4 4

4 2 2 4 2 4 2

2 3

2 2 2 3 2 2

3 2 3 2 3 3

2 3 7 2 3 7 2 3 7 3 7

2 3 7 2 3 7 3 7

2 7 2 7 2 7 7

2 7 2 7 2 7 7

⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ − ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

Al contarlos tenemos un total de 15 2 14 12 3 59⋅ + + + = .

Page 56: Microsoft Word - libritodepreolimpiada-2005

56

Segunda Forma: Los divisores de 3 4 22 3 7⋅ ⋅ están formados por

potencias de 2, potencias de 3 o potencias de 7. Es decir, son de la forma

2 3 7a b c⋅ ⋅ , donde 0,1, 2 o 3a = , 0,1,2,3 o 4b = y 0,1 o 2c = .

Entonces hay 4 5 3 60⋅ ⋅ = divisores. Por la definición dada, el número 3 4 22 3 7⋅ ⋅ no es un divisor propio, luego el número de divisores propios

es 59.

24. La mayor potencia de 5 que divide a 26! es 2

26 266

5 5

+ = ; la

mayor potencia de 2 que divide a 26! es

2 3 4

26 26 26 2623

2 2 2 2

+ + + = . Así 26! termina en 6 ceros, y

6

26!

10N = es divisible por

172 ; por lo tanto la mayor potencia de 4 que

divide a N es 84 . La mayor potencia de 3 que divide a 26! (y que por lo

tanto divide a N) es 2

26 2610

3 3

+ = . Así la mayor potencia de 12

que divide a N es 812 , luego 8k = .

Nota: El número a

b

es la parte entera del número real a

b.

25. Primera forma: Para cualquier escogencia de 3 dígitos diferentes

seleccionados de {1,2,...,9}existe exactamente una sola manera de

ordenarlos de tal manera que se forme un número con dígitos crecientes, y todo número con dígitos crecientes corresponde a uno de los seleccionados. Similarmente, los números con dígitos decrecientes corresponden a los subconjuntos con 3 elementos del conjunto de los 10 dígitos. Así nuestra respuesta es

9 10 9 8 7 10 9 8

3 3 1 2 3 1 2 3

9 8(7 10) 12 17 204.

2 3

⋅ ⋅ ⋅ ⋅+ = + ⋅ ⋅ ⋅ ⋅

⋅= + = ⋅ =

Page 57: Microsoft Word - libritodepreolimpiada-2005

57

Segunda forma: Hagamos una lista en orden decreciente de los números con tres dígitos con dígitos crecientes, agrupándolos según su primero y segundo digito:

2

2 3

2 7

789

689,679,678,

589,579,578,569,568,567,

189,179,178,...,129,128,...,123

14243

14243 1442443

M

14243 1442443

Así tenemos que existen

1 (1 2) (1 2 3) ... (1 2 3 4 5 6 7) 84+ + + + + + + + + + + + + =

de esos números. Ahora hacemos una lista de orden creciente de números de tres dígitos con dígitos decrecientes, agrupándolos por primer y segundo digito:

2

2 3

2 8

210

310,320,321,

410, 420, 421, 430, 431, 432,

910,920,921,...,980,981,...,987

14243

14243 1442443

M

14243 1442443

En este caso existen

1 (1 2) (1 2 3) ... (1 2 ... 8) 120+ + + + + + + + + + =

de esos números. Note que hay un total adicional de números igual a

(1 2 ... 8) 36+ + + = ya que números con dígitos decrecientes pueden

contener a 0 mientras que uno con dígitos decrecientes no. Así, la

respuesta es 84 120 204+ = .

26. Consideramos la ecuación de segundo grado en y:

2 4 3 2( ) 0y y x x x x+ − + + + = .

El discriminante D de esta ecuación es

Page 58: Microsoft Word - libritodepreolimpiada-2005

58

4 3 2

4 2 3 2 2

2 2 2

4 4 4 4 1

4 1 4 4 2 2

(2 1) ( 2 ).

D x x x x

x x x x x x x

x x x x

= + + + +

= + + + + + − +

= + + − −

Es claro que si x= 0 o x=2 , D es un cuadrado perfecto. Obtenemos así las soluciones (0,0), (0,-1), (2,5) y (2,-6). Si x = 1 , D no es cuadrado

perfecto. Si 0,1, 2x ≠ , entonces 2 2 0x x− > . Por lo tanto

2 2(2 ) ,D x x≤ + pues 2 2(2 )x x+ es el mayor cuadrado perfecto menor

que 2 2(2 1) .x x+ + Esto se debe a que 2 1 1x x+ + ≥ para todo entero

x. Tenemos que

2 2 2 2 2

2 2 2 2 2

2 2

2

(2 1) ( 2 ) (2 )

(2 1) (2 ) 2

4 2 1 2

3 4 1 0.

x x x x x x

x x x x x x

x x x x

x x

+ + − − ≤ +

+ + − + ≤ −

+ + ≤ −

+ + ≤

Los valores de x que satisfacen esta última desigualdad son los

comprendidos entre las dos raíces de 23 4 1 0x x+ + = , es decir,

11

3x− ≤ ≤ − .

El único entero x que satisface esta última desigualdad es x = -1, y obtenemos dos soluciones más de la ecuación original: (-1, -1) y (-1,0).

Las soluciones enteras de 4 3 2 2x x x x y y+ + + = + son (0,0), (0,-1),

(2,5), (2,-6), (-1,-1) y (-1,0). 27. Primera forma: Aquí vamos a usar dos veces el Principio del Palomar:

Alguna jarra debe contener (al menos) 13 canicas. Así, al menos 5 de esas canicas deben ser del mismo color.

Segunda forma: Debe haber (a lo menos) 41 canicas del mismo color.

Así alguna jarra debe contener al menos 5 de esas canicas.

28. Sea abcdef el número armonioso. Para que abcde sea múltiplo de 5, debe ser 5e = . también tenemos que b, d y f deben ser pares pues ab, abcd y abcdef son respectivamente múltiplos de 2, 4 y 6. Por otro lado, 1

Page 59: Microsoft Word - libritodepreolimpiada-2005

59

y 3 deben ser a y c, en algún orden, 1 3 4b b+ + = + debe ser múltiplo

de 3, pues abc es múltiplo de 3; 4 4 8 0 mod 3+ = ≡/ y

4 6 10 0 mod 3+ = ≡/ , por lo tanto 2b = . Para que abcd sea múltiplo de 4, cd debe ser un múltiplo de 4. Así d es 4 o 6 y c es 1 o 3. Como 14 y 34 no son múltiplos de 4, debemos tener que 6d = , luego 4f = .

Por lo tanto, los únicos números armoniosos de 6 cifras son 123654 y 321654. La Tabla muestra la verificación de nuestro resultado.

1 0 mod 1≡ 1 0mod1≡

12 0 mod 2≡ 32 0mod 2≡

123 0mod3≡ 321 0mod3≡

1236 0mod4≡ 3216 0mod 4≡

12365 0mod5≡ 32165 0mod5≡

123654 0mod6≡ 321654 0mod6≡

29. Para poder demostrar que Juan mintió, Pedro debe encontrar una carta que de un lado tenga una vocal y del otro un numero impar; por lo tanto, la única posibilidad es que Juan de vuelta la carta con el 3 y en el reverso tenga una vocal.

30. Tenemos que:

( )2 2

1

55...556 (44...445) (55...556 44...445)(55...556 44...445)

(100...001) (11...11)

(10 11)(11...11)

(11...1100...00) (11...11)

11...1111...11.

n n

n

n n n

n n

+

− = + −

=

= +

= +

=

1424314243

12314243 123

123123

Por lo tanto 2 2(55...556) (44...445)

nn

− 1424314243 tiene 2n dígitos (todos iguales a

1).

Page 60: Microsoft Word - libritodepreolimpiada-2005

60

COMPETENCIA PRE-OLÍMPICA DE MATEMATICAS 2004-2005 SEGUNDA FASE

EXAMEN NIVEL I 4to, 5to y 6to grado

1. Sea x el número de tazas de harina para hacer el bizcocho. Tenemos las siguiente proporción:

2 7

3 x= .

Así tenemos que 12

2110

2x = = . Por lo tanto se necesitan 10 tazas y

media. 2. Para el almuerzo tenemos 3 posibilidades y para la comida 2

posibilidades, luego para el almuerzo y para la comida tenemos

3 2 6× = posibilidades. De hecho, las posibilidades son:

Mesón-Ponderosa Burger King-Chilis

Mesón-Chilis Subway-Ponderosa

Burger King- Ponderosa Subway-Chilis

3. Si el área de cada cuadradito es 4, entonces cada uno de sus lados mide

2. El borde de la figura esta compuesta por 14 de esos lados, así su

perímetro es 2 14 28× = .

4. La siguiente tabla muestra las caritas que son iguales:

1, 5, 9, 13,… 2, 6, 10, 14,… 3, 7, 11, 15,… 4, 8, 12, 16,…

Las posiciones donde se encuentra la carita uno, son aquellas que al dividir por 4 se obtiene un residuo de uno. Las posiciones donde se

Page 61: Microsoft Word - libritodepreolimpiada-2005

61

encuentra la carita dos, son aquellas que al dividir por 4 se obtiene un residuo de dos. Así sucesivamente.

El residuo de la división de 2005 entre 4 es 1. Así la carita 2005 es la

primera carita, esta es .

5. Como la suma de los ángulos internos de un triangulo es 180o , entonces:

80 45 180 .ACB + + =o o o�

Luego

180 (80 45 )

180 125

55 .

ACB = − +

= −

=

o o o

o o

o

Además, .180ACB BCD+ = o� �

Por lo tanto

180

180 55

25 .

BCD ACB= −

= −

=

o

o o

o

� �

6. Al igual que en el problema 4, el residuo de la división de 59 entre 12 es

11. Luego tenemos que contar 11 meses a partir de abril, y por lo tanto el mes correspondiente es febrero.

7. Denominemos por medio de L la edad de Luís, por J la de Juan y por

R la de Roberto. Luego tenemos las siguientes ecuaciones.

2 ,

7,

18.

L J

J R

R

=

= −

=

Luego tenemos que 11J = y por lo tanto 22L = , así que Luís tiene 22

años.

8. Podemos dividir la región sombreada como se muestra en la siguiente figura.

Page 62: Microsoft Word - libritodepreolimpiada-2005

62

A

Hay 6 cuadraditos completos, 4 medios cuadraditos y el triangulo A. El

área de A es 1 2

1.2

⋅= Entonces el área total es

16 4 1 9.

2+ ⋅ + =

9. Denominemos por M, J, A y L, a María, Juan, Ana y Luís respectivamente. La siguiente tabla muestra todas las posibilidades para que ellos se sienten en el cine.

M A J L M A L J A M J L M A L J J M A L L M A J J A M L L A M J J L M A L J M A L J A M J L A M

Luego tenemos 12 formas distintas de que ellos se sienten.

10. Tenemos que 260 2 3 5= × × . En la siguiente tabla mostramos todas las

posibilidades. 2

2

2

2

2 2 3 5

2 3 2 3

2 3 5 2 3 5

2 5 2 5 3 5

× ×

× × × ×

× × ×

Luego tenemos un total de 11 divisores de 60 mayores que 1.

Page 63: Microsoft Word - libritodepreolimpiada-2005

63

11. Denominemos por P el precio del abrigo son descuento. Luego tenemos que

20% 48,

2048,

100

448,

5

48 5,

4

60.

P P

P P

P

P

P

− =

− =

=

×=

=

Luego tenemos que el precio del abrigo sin descuento es $60.

12. Notemos que la siguiente figura tiene una longitud total de 10cm y tiene 2 segmentos horizontales.

Al dividir 2005 por 10 tenemos un cociente de 200 y un residuo de 5. Así tenemos que la grafica total tiene 200 secuencias pegadas como en la Figura 2 y terminando con un segmento horizontal y uno vertical. Por lo tanto, el número total de segmentos horizontales es:

200 2 1 401× + =

13. Tenemos 5 posibles casos:

Page 64: Microsoft Word - libritodepreolimpiada-2005

64

10 triángulos

10 triángulos

10 triángulos

10 triángulos

4 triángulos

Page 65: Microsoft Word - libritodepreolimpiada-2005

65

Así en total tenemos 44 triángulos.

14. Los múltiplos de 13 menores que 100 son 13, 26, 39, 52, 65, 78 y 91; y los de 23 son 23, 46, 69 y 92. Realicemos todas las posibles sumas cuyo resultado sea menor que 100 de un múltiplo de 13 y un múltiplo de 23.

13 23 36,

13 46 59,

13 69 82,

26 23 49,

26 46 72,

26 69 95,

+ =

+ =

+ =

+ =

+ =

+ =

39 23 62,

39 46 85,

52 23 75,

52 46 98,

65 23 88,

78 23 91.

+ =

+ =

+ =

+ =

+ =

+ =

Ahora vamos a hacer la diferencia entre 100 y cada uno de los resultados de la tabla anterior y vamos a verificar si el resultado es un múltiplo de 3.

Resta Resultado ¿Es múltiplo de 3? 100-36 64 No

100-59 41 No

100-82 18 Si

100-49 51 Si

100-72 28 No

100-95 5 No

100-62 38 No

100-85 15 Si

100-75 25 No

100-98 2 No

100-88 12 Si

100-91 9 Si

Luego los números correspondientes son 18, 13 y 69; 51, 26 y 23; 15, 39 y 46; y finalmente 12, 65 y 23.

15. Denominemos por x la longitud del segmento AO . Los triángulos ABO , BOC y COD son congruentes y por hipótesis son equiláteros. Así tenemos que

Page 66: Microsoft Word - libritodepreolimpiada-2005

66

.x AO AB BC CD= = = =

Luego el perímetro de la figura esta dado por

3 30.7,x xπ× + × =

Por lo tanto tenemos que 30.7

3x cm

π=

+. Luego �

30.7

3AD π

π= ⋅

+ y el

área del semicírculo es

2

230.7cm

2 3

ππ

+

.

Page 67: Microsoft Word - libritodepreolimpiada-2005

67

COMPETENCIA PRE-OLÍMPICA DE MATEMATICAS 2004-2005 SEGUNDA FASE

EXAMEN NIVEL II 7mo-12mo grado

1. El residuo de la división de 59 entre 12 es 11. Luego tenemos que contar

11 meses a partir de abril, y por lo tanto el mes correspondiente es febrero.

2. Sea x el número de monedas que gasta Javier, y el número de

monedas que gasta Carlos y z el número de monedas que gasta Aldo. Entonces tenemos las siguientes ecuaciones:

40

12

2

x y z

y x

z x

+ + =

= +

=

Sustituyendo en la primera ecuación tenemos lo siguiente:

( 12) 2 40

4 12 40

4 28

7.

x x x

x

x

x

+ + + =

+ =

=

=

Así tenemos que Javier gasta 7 monedas, Carlos gasta 19 monedas y Aldo 14 monedas.

3. Supongamos que en el Km. 0 están juntos una parada de guagua, un teléfono y un expendio de combustible. Entonces habrá:

1) Una parada de guagua en el Km. 4; otra en el Km. 8 y una en

cada múltiplo de 4. 2) Un teléfono en el Km. 5; otro en el Km. 10 y uno en cada

múltiplo de 5.

Page 68: Microsoft Word - libritodepreolimpiada-2005

68

Estarán juntos una para de guagua y un teléfono cada vez que el número de kilómetros sea múltiplo de 4 y 5. Para saber cual es la primera vez que están juntos, calculamos el mínimo común múltiplo de 4 y 5:

. . (4,5) 20.mc m =

Estarán juntos una parada de guagua y un teléfono cada vez que el número de kilómetros sea múltiplo de 20 (en los kilómetros 0, 20, 40, 60,…). Habrá un expendio de combustible en el Km. 30; otro en el Km. 60 y uno en cada múltiplo de 30. Estarán juntos una parada de guagua, un teléfono y un expendio de combustible cada vez que el número de kilómetros sea múltiplo de 20

(22 5× ) y de 30 (2 3 5× × ). Para saber cual es la primera vez que están

los tres juntos calculamos

2. . (20,30) 2 3 5 60mc m = × × = .

Estarán juntos una parada de guagua, un teléfono y un expendio de combustible cada vez que el número de kilómetros sea múltiplo de 60, es decir en los kilómetros 0, 60, 120, 180, etc.

4. Armamos primero los números de dos cifras.

Los que terminan en 1: 11, 21, 31, 41, 51, 61, 71, 81, 91.

Total: 9

Los que terminan en 2: 22, 42, 62, 82.

Total: 4

Los que terminan en 3: 33, 63, 93.

Total: 3 Los que terminan en 4: 44, 84.

Total: 2 Otros: 55, 66, 77, 88, 99.

Total: 5 Ahora armamos los números de tres cifras:

Los que terminan en 1: 111, 211, 311, 411, 511, 611, 711, 811, 911, 221, 421, 621, 821,331, 631, 931, 441, 841, 551, 661, 771,881, 991.

Total: 23 Los que terminan en 2: 222, 422, 622, 822, 442, 842, 662, 882.

Total: 8

Page 69: Microsoft Word - libritodepreolimpiada-2005

69

Los que terminan en 3: 333, 633, 933, 663, 993.

Total: 5 Los que terminan en 4: 444, 844, 884.

Total: 3

Otros: 555, 666, 777, 888, 999.

Total: 5

Ahora sumamos los totales de todos los posibles casos y obtenemos

9 4 3 2 5 23 8 5 3 5 67,+ + + + + + + + + =

Es decir, hay en total de 67 números.

5. Según la información dada:

180 (60 40 ) 180 100 80ADB = − + = − =o o o o o o� .

Luego 100ADC = o� . Como AD AC= , tenemos que

DAC ACD=� � . Así:

2 180

100 2 180

2 80

40 .

ADC ACD

ACD

ACD

ACD

+ =

+ =

=

=

o

o o

o

o

� �

6. El número �tu tiene el valor 10t u+ . Luego el número �1t u tiene el valor 100 10t u+ + .

7. Denominamos por A, B, C, D a Alicia, Beatriz, Cecilia y a Dora y

denominamos por a, b, c, d a sus respectivos hermanitos. Por estar Beatriz y Dora una enfrente de la otra y porque en la mesa no hay dos mujeres juntas, pueden estar ubicados de estas maneras:

Page 70: Microsoft Word - libritodepreolimpiada-2005

70

1)

2)

Donde en cada posición está sentado un hermanito. Como el hermanito de Beatriz no puede estar al lado de Beatriz, en el caso (1), b estaría entre A y D o entre D y C; y en el caso (2), b estaría entre C y D o entre D y A. Sabemos que el hermanito de Beatriz tiene a Alicia a su derecha, luego están ubicados como en el caso (2) con b entre D y A.

Page 71: Microsoft Word - libritodepreolimpiada-2005

71

Entre C y D no pueden estar ni c ni d porque ninguna está al lado de su propio hermano. Como b ya esta ubicado, a está entre C y D. Por lo tanto, la manera en que se sentaron ese día en la confitería es la siguiente:

8. Consideremos los siguientes casos: Los caminos que no pasan por el centro son 2. Los caminos que pasan a la primera por el centro (es decir, que de A se van directo al centro) son 5 (uno por cada una de las otras líneas que salen del centro).

Los caminos que pasan a la segunda por el centro (o sea, después de recorrer dos segmentos) son 8 (hay 2 posibilidades para llegar al centro y luego hay 4 posibilidades para salir de él) y a la tercera son 6 caminos (2 para llegar al centro y 3 para salir de él).

Luego en total hay 21.

9. Dibujemos PU perpendicular a TS , así obtenemos el siguiente diagrama:

Page 72: Microsoft Word - libritodepreolimpiada-2005

72

En el triángulo PUT ,

2 2 2

400 16

416.

PT PU UT= +

= +

=

En el triángulo PRT tenemos que

2 2 2

2 2 2 2

2

(8 ) [12 (20 ) ]

2 40 608.

PT PR RT

x x

x x

= +

= + + + −

= − +

Así,

2

2

2 40 608 416

20 96 0

( 12)( 8) 0.

x x

x x

x x

− + =

− + =

− − =

Luego los posibles valores para x son 12x = o 8x = .

10. Se pueden dibujar cuadrados de 5 tamaños distintos; los mostramos de

menor a mayor:

Page 73: Microsoft Word - libritodepreolimpiada-2005

73

Posibilidad 1

Posibilidad 2

Posibilidad 3

Posibilidad 4

Posibilidad 5

Se pueden dibujar 9 4 2 4 2 21+ + + + = cuadrados distintos.

Page 74: Microsoft Word - libritodepreolimpiada-2005

74

11. Tenemos que 2 21

( ) ,3

y x y= + de donde 3,x y

y

+= así que

3 1.x

y= −

12. Como 0x > , tenemos que 1

3xx

+ = , luego:

3

3

3

3 3

3 3

1 3 127 3

1 1 13 9.

x x xx x x

x x xx x x

= + = + + +

= + + + = + +

Entonces 3

3

127 9 18x

x+ = − = .

13. Observemos que para encontrar la cifra de las unidades de un número que se obtiene después de hacer sumas y multiplicaciones, basta hacer las operaciones con las cifras de las unidades de los sumandos y los factores, e incluso, en cada paso de la operación, irse quedando sólo con la cifra de las unidades. Hagamos esto y para simplificar la escritura,

escribamos a b≡ si a y b son dos enteros que tienen la misma cifra de unidades (por ejemplo 38 18≡ y 20 100≡ ). Entonces

2 2 3 4

2 3 4

2 2 3 4

14 4 6, 14 6 4 4, 14 4 4 6, etc.;

15 5, 15 5 5 5, 15 5, etc. y

16 6 6, 16 6 6 6, 16 6, etc.

≡ ≡ ≡ × ≡ ≡ × ≡

≡ ≡ × ≡ ≡

≡ ≡ ≡ × ≡ ≡

Así 14 15 1614 15 16 6 5 6 7+ + ≡ + + ≡ .

14. Grafiquemos la situación geométrica dada.

Page 75: Microsoft Word - libritodepreolimpiada-2005

75

y

zz

y

y

x

x

20°°°°

G

F

E

A D

CB

H

Sea .EGB x=� Construyamos primero el segmento ,FH donde H es

el punto medio de AB . Tenemos que los triángulos ABE y CDE son congruentes, similarmente los triángulos ADF y .BCF Por lo tanto, si

BAE z=� y ,FAD y=� tenemos que:

20 90 ,

( 90 ) 180 . (ver triángulo ).

y z

x y z GFD

+ + =

+ + + =

o o

o o

De la primera ecuación tenemos que 70y z+ = oy sustituyendo en la

segunda obtenemos

90 70 180 ,

180 160 ,

20 .

x

x

x

+ + =

= −

=

o o o

o o

o

15. Las siguientes figuras muestran la tasa, primero en posición normal y

luego inclinada.

4

4

B1A1 C1

O

A B

C

4

8 8

4

O

Page 76: Microsoft Word - libritodepreolimpiada-2005

76

De la primera figura, obtenemos 8OB = y 4.OC = Así

64 16 4 3.CB = − = Si el ángulo de inclinación de la tasa en la

segunda figura es 1OAC� , entonces 1 4OC = y 1 1 4 3AC = .

Entonces 1 16 48 8.OA = + = Así 1 1 30OAC = o� .

16. Asignemos a la cuadrícula una red de caminos que conectan los

cuadraditos adyacentes como señala el problema. A los puntos de la línea inferior y a los de la lateral izquierda se puede llegar de una única manera. A los demás se puede llegar a través de 3 puntos “anteriores” y el número de maneras de llegar es igual a la suma del número de maneras de llegar a los puntos “anteriores”.

Ahora podemos ir señalando en cada punto el número de maneras de llegar a él, como muestra la siguiente figura..

53

5 13

1

1

7

25

11

A

1

63 B2571

Por lo tanto hay 63 formas de llegar desde A hasta B bajo las condiciones dadas.

Page 77: Microsoft Word - libritodepreolimpiada-2005

77

OLIMPIADA MATEMATICA DE PUERTO RICO 2004-2005

EXAMEN NIVEL I 4to, 5to y 6to grado

1. Denotemos por Ll, S, N, y Ni cuando el dia este lluvioso, soleado,

nublado y cuando cae nieve respectivamente. Luego

L M W J V S D

Ll S N Ni Ll S N

Ni Ll S N Ni Ll S

N Ni Ll S N Ni Ll

S N Ni Ll S N Ni

Así tenemos que el lunes dentro de 4 semanas será un día soleado.

2. Una solución es la siguiente (puede haber otras soluciones):

3 1 2

1 2 3

2 3 1

3. Sea x la medida de un lado del cuadrado. Como la base del triángulo tiene la misma medida que la altura tenemos que el área del triangulo

es 22

x x⋅= y el área del cuadrado es

2x . Luego el área del cuadrado

es 4.

Page 78: Microsoft Word - libritodepreolimpiada-2005

78

4. Tenemos 3 posibilidades para la bebida, 2 para la ensalada y 3 para la

carne. así tenemos 3 2 3 18⋅ ⋅ = maneras diferentes de escoger el

almuerzo.

5. Sean A y B las edades de Ana y Beatriz respectivamente. Luego tenemos lo siguiente

18,

2 .

A B

A B

+ =

=

Sustituyendo en la primera ecuación tenemos

2 18,

3 18,

18,

3

6.

B B

B

B

B

+ =

=

=

=

Luego la edad de Beatriz es 6 años y la de Ana es 12 años.

6. Sea n el menor entero, luego tenemos lo siguiente:

( 1) ( 2) ( 3) ( 4) 2005,

5 10 2005,

5 1995,

1995,

5

399.

n n n n n

n

n

n

n

+ + + + + + + + =

+ =

=

=

=

Así el menor número es 399. 7. Si son múltiplos de 5, terminan en 5 o en 0. Luego los posibles casos

para los que terminan en 5 y comiencen en 1 son: 1025, 1035, 1045, 1205, 1235, 1245, 1305, 1325, 1345, 1405, 1425,

1435.

Page 79: Microsoft Word - libritodepreolimpiada-2005

79

Tenemos un total de 12. También pueden empezar en 2, 3 o 4. Así

tenemos un total de 12 4 48⋅ = números terminados en 5. Los

posibles casos para los que comienzan en 1 y terminan en 0 son: 1230, 1240, 1250, 1320, 1340, 1350, 1420, 1430, 1450, 1520, 1530,

1540. Tenemos otra vez un total de 12. Estos también pueden empezar en 2,

3, 4 o 5. Así tenemos un total de 12 5 60⋅ = números terminados en 0.

Así tenemos un total de 48 60 108+ = números.

8. El triángulo ACE esta dividido en 4 triángulos iguales. El cuadrilátero ABDE está dividido en 3 triángulos iguales a los anteriores. El triángulo BDF esta dividido en 4 triángulos iguales al triángulo GHI . Ahora dividimos al triángulo ABF y FDE en 4 triángulos iguales (iguales a GHI ). El cuadrilátero queda dividido en 12 triángulos iguales (iguales a GHI ). Luego dividimos cada uno de estos 12 triángulos en 4 triángulos iguales al triángulo JKL . El cuadrilátero queda dividido en 12 4 48⋅ = triángulos iguales a JKL . Los triángulos sombreados son JKL y GHI . Este quedo dividido en 4 triángulos iguales a JKL . La parte sombreada ocupa 5 triángulos

iguales a JKL . Así la zona sombreada representa 5

48del cuadrilátero

ABDE .

9. Sea x el número de ventanas que solo tienen flores, y el número de ventanas que solo tienen cortinas y z el número de ventanas que tienen flores y cortinas. Luego tenemos las siguientes ecuaciones:

40 105 ( ),

35 ,

45 .

x y z

x z

y z

= − + +

= −

= −

Sustituyendo en la primera ecuación tenemos que

Page 80: Microsoft Word - libritodepreolimpiada-2005

80

40 105 (35 45 ),

40 105 (80 ),

40 105 80,

80 65,

15.

z z z

z

z

z

z

= − − + − +

= − −

− = −

= −

=

Así el número de ventanas que tienen flores y cortinas es 15. 10. Primero baja el príncipe utilizando la piedra de contrapeso. Luego baja

la princesa utilizando de contrapeso al príncipe. Estando la princesa abajo, tiran la piedra, y baja el rey usando a la princesa y la piedra de contrapeso. Luego baja el príncipe para que baje la princesa usándolo a el de contrapeso y para terminar, baja el príncipe usando la piedra de contrapeso

Page 81: Microsoft Word - libritodepreolimpiada-2005

81

OLIMPIADA DE MATEMATICAS DE PUERTO RICO 2004-2005

EXAMEN NIVEL II 7mo-12mo grado

1. El mínimo común múltiplo de 45, 30 y 12 es

2 2. . (45,30,12) 2 3 5 180mc m = ⋅ ⋅ =

Luego Juan verá las estrellas al tiempo dentro de 180 días. 2. En la tabla mostramos todas las posibilidades de cómo Andrés podría

haber comprado los caramelos:

Parcha Melón China

1 1 4

1 2 3

1 3 2

1 4 1

2 1 3

2 2 2

2 3 1

3 1 2

3 2 1

4 1 1

Luego tenemos 10 posibilidades.

3. Sea x el número de ventanas que solo tienen flores, y el número de ventanas que solo tienen cortinas y z el número de ventanas que tienen flores y cortinas. Luego tenemos las siguientes ecuaciones:

40 105 ( ),

35 ,

45 .

x y z

x z

y z

= − + +

= −

= −

Sustituyendo en la primera ecuación tenemos que

Page 82: Microsoft Word - libritodepreolimpiada-2005

82

40 105 (35 45 ),

40 105 (80 ),

40 105 80,

80 65,

15.

z z z

z

z

z

z

= − − + − +

= − −

− = −

= −

=

Así el número de ventanas que tienen flores y cortinas es 15.

4. Primero baja el príncipe utilizando la piedra de contrapeso. Luego baja

la princesa utilizando de contrapeso al príncipe. Estando la princesa abajo, tiran la piedra, y baja el rey usando a la princesa y la piedra de contrapeso. Luego baja el príncipe para que baje la princesa usándolo a él de contrapeso y para terminar, baja el príncipe usando la piedra de contrapeso.

5. Denominemos por A, M y R las edades de Ana, Miguel y Ramón

respectivamente. Luego tenemos el siguiente sistema de ecuaciones:

17,

21,

22.

A M

M R

R A

+ =

+ =

+ =

De la última ecuación obtenemos que 22R A= − , al sustituir en la

segunda obtenemos (22 ) 21M A+ − = , por lo tanto 1M A= − .

Al sustituir en la primera ecuación obtenemos

( 1) 17,

2 18,

9.

A A

A

A

+ − =

=

=

Luego tenemos que 8M = y 13R = . De modo que

9 8 13 30.A M R+ + = + + =

6. Sea x AC= . Luego tenemos que

Page 83: Microsoft Word - libritodepreolimpiada-2005

83

3 3 84 cm,

7 84 cm,

12 cm.

x x x

x

x

+ + =

=

=

Luego 1 1

12cm 6cm.2 2

FC AC= = ⋅ = Por lo tanto 3FG = cm. Por

otro lado 1 1

3 12cm 18cm.2 2

DC BC= = ⋅ ⋅ =

Así obtenemos que 18DF DC= = cm, 1

92

EG EC DC= = = cm y

1

92

DE DC= = cm. Así el perímetro de la figura sombreada es

18cm 3cm 9cm 9cm

39cm.

DF FG EG DE+ + + = + + +

=

7. Sea h la altura del triángulo ABE . Luego tenemos que

(4 )18 ,

2

36 (4 ) ,

36.

4

DC h

DC h

hDC

+=

= +

=+

De aquí se tiene que 4 | 36DC+ . Como DC es un número par,

tenemos que existe un entero positivo l tal que 2DC l= . Así 2 |18l+ .

Por lo tanto 2 1, 2, 3, 6, 9, 18.l+ = Luego 1, 0, 1, 4, 7, 16l = − .

Obviamente descartamos el caso 1 y 0.l l= − =

Así 2, 8, 14, 32.DC = Luego los posibles valores para h son

6, 2, 3 y 1. Así los posibles valores para el área A del triángulo ABE son:

Page 84: Microsoft Word - libritodepreolimpiada-2005

84

14

2

2

12, 4, 6 y 2.

A h

h

= ⋅ ⋅

= ⋅

=

8. Podemos agrupar la sucesión como sigue:

Términos Términos escritos

1 1

1,2 3

1,2,3 6

1,2,3,4 10

1,2,3,4,5 15

M M 1,2,3,4,5, ,nK ( 1)

2

n n +

M M

Luego debemos hallar el menor entero positivo n tal que ( 1)

20052

n n +≤ , ya que el valor n corresponde al último término de

la fila donde está el término 2005. Esto es equivalente a

4010 ( 1)n n≤ + . El menor entero que satisface esto es 63n = . Ya que

63(63 1) 4032+ = y 62(62 1) 3906+ = . Como 63(63 1)

20162

+= ,

tenemos que 63 corresponde al término 2016. Luego

# del Término

2016 2015 2014 L 2007 2006 2005

Término 63 62 61 L 54 53 52

Así el término 2005 de la sucesión es 52.

Page 85: Microsoft Word - libritodepreolimpiada-2005

85

9. Sea a el número de siete cifras compuesto por 3’s y 7’s. Sean n y m la cantidad de 3’s y 7’s respectivamente en a . Como este número tiene que ser divisible por 3, tenemos que

3 7 0 mod 3n m+ ≡ .

Si 1, 2, 4,5,7m = , tenemos que 6,5,3, 2,0n = y así

3 7 25,29,37, 41, 49n m+ = . Pero ninguno de estos valores es

múltiplo de 3; luego descartamos esos casos. Si 0m = tenemos

3333333a = ; pero este número no es múltiplo de 7. Así

descartamos este caso. Si 6m = tenemos que 1n = . Usando

la expansión decimal de a , obtenemos que existen enteros no negativos 1 2 7, ,...,m m m tales que

71 23(10 ) 7(10 ... 10 ) 0 mod 7.mm m+ + + ≡

Luego debemos tener que 17 | 3(10 )m , lo cual es imposible. Así

solo nos queda el caso 3m = . De aquí tenemos que 4n = y que

existen enteros no negativos 1 2 7, ,...,m m m tales que

5 6 71 43(10 ... 10 ) 7(10 10 10 ) 0 mod 7m m mm m+ + + + + ≡

Podemos asumir que 1 40 ... 6m m≤ < < ≤ . Luego 4 0,1, 2m ≠ y

1 410 ... 10 0 mod 7m m+ + ≡ . Si 4 3m = tenemos que 1m , 2m y

3m son respectivamente 0, 1 y 2. Sustituyendo obtenemos

0 1 2 310 10 10 10 1111+ + + = , el cual no es un múltiplo de 7.

Para analizar los demás casos de 4m , vamos a utilizar la siguiente

información.

010 1 mod 7≡ 110 3 mod 7≡ 210 2 mod 7≡ 310 6 mod 7≡ 410 4 mod 7≡ 510 5 mod 7≡

610 1 mod 7≡

Es fácil notar que los únicos múltiplos de 7 que se pueden obtener como suma de cuatro residuos correspondientes a diferentes

potencias de 10 de las anteriores son 7 y 14. Si 4 4m = , tenemos

Page 86: Microsoft Word - libritodepreolimpiada-2005

86

que el residuo correspondiente es 4; 7 no se puede obtener como suma de 4 residuos, sin embargo el 14 se puede obtener como

4 (1 3 6) 14.+ + + =

Los valores correspondientes a los residuos 1, 3 y 6 de 1m , 2m y

3m son respectivamente 0, 1 y 3. Así a en este caso es

7733733.

Si 4 5m = , tenemos que su residuo correspondiente es 5, y como

en el caso anterior se obtiene que 5 (1 2 6) 14,

5 (2 3 4) 14.

+ + + =

+ + + =

De manera análoga al caso anterior tenemos que los valores

correspondientes de 1m , 2m y 3m son 0, 2, 3; y 2, 1, 4. Luego a

es alguno de los números 7373373 y 7337337. Por último,

analicemos el caso 4 6m = . El residuo correspondiente es 1.

Por lo tanto

1 (1 2 3) 7,+ + + = 1 (2 5 6) 14,

1 (3 4 6) 14.

+ + + =

+ + + =

Luego tenemos que los valores de 1m , 2m y 3m son 0, 2, 1; 2, 5,

1; y 1, 4, 3. Entonces a debe ser alguno de los números 3777333, 3377337 y 3733737. Así, todos los posibles números son 7733733, 7373373, 7337337, 3777333, 3377337 y 3733737.

10. Supongamos que

122 1p

ap

− −= . Para 2p = queda

2 1

2a = que es

imposible. Luego, p debe ser impar, digamos 2 1p k= + . Tenemos

2 22 1 (2 1)(2 1).k k kpa = − = − +

Page 87: Microsoft Word - libritodepreolimpiada-2005

87

Estos dos factores son primos relativos por ser impares consecutivos.

Como su producto debe ser p veces un cuadrado, uno debe ser

cuadrado y el otro p veces un cuadrado. Si 2 1k − es un cuadrado,

llegamos a que 2 1 1k − = , y así tenemos que 1k = y por lo tanto

3.p = Si 2 1k + es un cuadrado, digamos 22 1k b+ = , tenemos que

22 1 ( 1)( 1)k b b b= − = + − . Como este producto es potencia de 2,

tanto 1b − como 1b + deben ser potencias de 2. Pero las únicas

potencias de 2 que difieren en dos son 2 y 4. Luego 3b = , de donde

3k = y así tenemos que 7p = . Por lo tanto, las soluciones

son 3,7p = .

Page 88: Microsoft Word - libritodepreolimpiada-2005

88

BIBLIOGRAFÍA

1. Camarera, Omar A., “Problemas para la 17ª Olimpiada Mexicana de Matemáticas”, Sociedad Matemática Mexicana, 2003.

2. Fauring Patricia y Gutiérrez Flora, “Olimpiada Matemática Argentina – Problemas 1”, Red Olímpica, 1993.

3. Fauring Patricia y Gutiérrez Flora, “Olimpiada Matemática Argentina – Problemas 4”, Red Olímpica, 1994.

4. Fauring, Patricia, Gutiérrez Flora y Pedraza, Juan Carlos, “Problemas de entrenamiento 2”, Red Olímpica, 2003.

5. Fisher, Lyle y Kennedy, Hill, “Brother Alfred Brousseau, Problem – Solving and Mathematics competition”, Dale Seymour Publications, 1984.

6. Schneider, Leo J., “The contest problem book, American High School Mathematics Examinations (ASHME) 1989-1994”, The Mathematical Association of America, 2000.

7. Seveso, Julia y Ferrarini Graciela, “Olimpiada matemática de Ñandú- Problemas 6”. Colección Pacha Bamba, 1998

8. Seveso, Julia y Ferrarini Graciela, “Olimpiada matemática de Ñandú- Problemas 7”. Colección Pacha Bamba, 1999

9. Seveso, Julia y Ferrarini Graciela, “Olimpiada matemática de Ñandú- Problemas 8”. Colección Pacha Bamba, 2000

10. Seveso, Julia y Ferrarini Graciela, “Olimpiada matemática de Ñandú- Problemas 8”. Colección Pacha Bamba, 2000.

11. Seveso, Julia y Ferrarini Graciela, “Olimpiada matemática de Ñandú- Problemas 10”. Colección Pacha Bamba, 2002.

12. Snape Charles y Scott Heather, “Desafíos Matemáticos”. Limusa, 2004.

13. Zimmerman, Lawrence y Kessler, Gilbert, “ARML-NYSML CONTESTS 1989-1994”, MathPro Press, 1995.