microondas magnéticas en el espacio vectorial

636
MICROWAVE ANTENNA THEORY AND DESIGN Ediied by SAMUEL SILVER ASSOCIATE PROFESSOR OF ELECTRICAL ENGINEERING UNNEB.SITY OF CALIFORNIA, i3EP.KELEY OFFICE OF SCIENTIFIC RESEARCH AND DEVELOPMENT NATIONAL DEFENSE RESEARCH COMMITTEE FIRST EDITION NEW YORK, TORONTO LONDON McGRAW-HILL BOOK CO,MPANY, INC. 1949

Upload: thomshitho-nevaarez-kings

Post on 03-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 microondas magnticas en el espacio vectorial

    1/635

    MICROWAVE ANTENNA

    THEORY AND DESIGN

    Ediied by

    S AMU E L S I LVE R

    ASSOCIATE PROFESSOR OF ELECTRICAL ENGINEERING

    UNNEB.SITY OF CALIFORNIA, i3EP.KELEY

    OFFICE OF

    SCIENTIFIC RESEARCH AND DEVELOPMENT

    NATIONAL DEFENSE RESEARCH COMMITTEE

    FIRST EDITION

    N E W Y OR K , T OR ON T O L ON D ON

    McGRAW-HILL BOOK CO,MPANY, INC.

    1949

  • 7/28/2019 microondas magnticas en el espacio vectorial

    2/635

    .,

    ,.,

    MICROWAVE . xTEN\ -. THEC R Y .ISD DESIGN

    (hPYRIGH,T,

    1949,

    B>- THE

    hlC~RA W-HILL

    BOOK

    ~(II IP.I.NY,

    lKC.

    P31XTEI) lx THE U>-lTEI) STATES OF AMERICA

    .111 rights

    Testwed.

    his book, or

    parts

    th r of

    HI(IY

    not be

    reproduced

    i n any f orm r i l ho? l prr r l i s s i on of

    /he , L //i shers ,

    THE MAPLE PRESS COMPANY, YORK,

    PA,

    *ienCe

  • 7/28/2019 microondas magnticas en el espacio vectorial

    3/635

    ,,

    )

    y,,

    ,,

    . \

    lf[CRO JV.4 VE A NTE.VNA TfZEOR Y

    EDITORIAL STAFF

    S AMU EL S I LVE R

    H U B E RT M. J AME S

    AND DESIGN

    CO.VTRIB LTI.VG A PTHORS

    J . E . llATON

    R. hf. R IZD H E F FE R

    L. J . I ;YG E S

    J . R. RISSER

    T. J . K E ARY

    S . S ILVE R

    H . K RU TTE R

    O. A. TYS ON

    (2. G . hlAcF ARL.4NE

    L. C . \ AN ATTA

  • 7/28/2019 microondas magnticas en el espacio vectorial

    4/635

    Foreword

    T

    HE tremendous research and development effort that ~vent into the

    development of radar and related techniques during }Vorld IJ ar II

    resulted not only in hundreds of radar sets for military (and some for

    possible peacetime) use but also in a great body of information and ncm

    techniques in the electronics and high-frequency fields. 13ecause this

    basic material may be of great value to science and engineering, it seemed

    most important to publish it as soon as security permitted.

    The Radiation Laboratory of 311T, ~vhich operated under the super-

    vision of the National Defense Research (ommittec, undertook the great

    task of preparing these volumes. The ~vorl{described berein, ho\\-eyer,is

    the collective result of ~vork done at many laboratories, Army, Xavy,

    university, and industrial, both in this country and in JZngland, (

  • 7/28/2019 microondas magnticas en el espacio vectorial

    5/635

    Preface

    T

    H E

    need that arose during the ]var for utilizing the microwave region

    of the radio frequency spectrum for communications and radar stimu-

    lated the development of nelv types of antennas. lhe problems and

    design techniques, lying as they do in the domain of both applied electro-

    magnetic theory and optics, are quite distinct from those of long-wave

    antennas.

    It is the aim of the present volume to make available to the

    antenna engineer a systematic treatment of the basic principles and the

    fundamental microwave antenna types and techniques. The elements

    of electromagnetic theory and physical optics that are needed as a basis

    for design techniques are developed quite fully. Critical attention is

    paid to the assumptions and approximations that are commonly made

    in the theoretical developments to emphasize the domain of applicability

    of the results. The subject of geometrical optics has been treated only

    to the extent necessary to formulate its basic principles and to sho~v its

    relation as a short wavelength approximation to the more exact methods

    of field theory. The brevity of treatment should not be taken as an

    index of the relative importance of geometrical optics to that of electro-

    magnetic theory and physical optics.

    It is in fact true that the former

    is generally the starting point in the design of the optical elements

    (reflectors and lenses) of an antenna. However, the use of ray theory

    for microwave systems presents no new problems over those encountered

    in opticson which there are a number of excellent treatisesexcept

    that perhaps the law of the optical path appears more prominently in

    micro~vave applications.

    In the original planning of the book it was the intention of the editors

    to integrate all of the major wQrk done in this country and in Great

    Britoin and Canada. This proved, however, to be too ambitious an

    undertaking. Nfany subjects have regrettably been omitted completely,

    and others have had to be treated in a purely cursory manner.

    It \vas

    unfortunately necessary to omit two chapters on rapid scanning antennas

    prepared by Dr. C. V. Robinson.

    The time required to revise the

    material to conform ~vith the requirements of military security and yet

    to represent an adequate exposition of the subject would have unduly

    delayed the publication of the hook. Certain sections of Dr. Robinsons

    material have been incorporated into Chaps. 6 and 12.

    i x

  • 7/28/2019 microondas magnticas en el espacio vectorial

    6/635

    x

    P R E F A C E

    I take pleasure in expressing here my appreciation to Prof. Hubei-t

    M. James who, as Technical Editor, shared with me much of the

    editorial work and the attendant responsibilities.

    The scope of the book,

    the order of presentation of the material, and the sectional division within

    chapters were arrived at by us jointly in consultation with the authors.

    I am personally indebted to Professor .James for his editorial Ivork on

    my own chapters.

    The responsibility for the final form of the book, the errors of omission

    and commission, is mine. A word of explanation to the authors of the

    various chapters is in order.

    After the close of the Office of Iublications

    and the dispersal of the group, I have on occasions made use of my

    editorial prerogative to revise their presentations. I hope that the results

    meet ~vith their approval. The policy of assignment of credit also needs

    explanation. The interpretation of both Professor James and myself of

    the policy on credit assignment formulated by the Editorial Board for

    the Technical Series has been to the effect that no piece of work discussed

    in the text would be associated with an individual or individuals.

    Radi-

    ation Laboratory reports are referred to in the sense that they represent

    source material for the chapter rather than individual acknowledgements.

    References to unpublished material of the Radiation Laboratory note-

    books have been assiduously a~oided, although such material has been

    dramm upon extensively by all of us.

    In defense of this policy it may be

    stated that the ]vorlc at the Radiation Laboratory was truly a cooperative

    effort, and in only a few instances would it have been possible to assign

    individual credit unequivocally.

    The completion of the book was made possible through the efforis of

    a number of people; in behalf of the editorial staff and the authors I wish

    to acknowledge their assistance and contributions. Mrs. Barbara Vogel

    and Mrs. Ellen Fine of the Radiation Laboratory served as technical

    assistants; the production of figures and photographs \vas expedited by

    hlrs. Frances Bourget and Mrs. nary Sheats. It proved impossible to

    finish the ]t-orl

  • 7/28/2019 microondas magnticas en el espacio vectorial

    7/635

    Ch:lp. 11. The S:1( iomd Rcsc:wch (ouncil of Can:&~ :md the llrit isll

    (entnd Radio 13urw~u h~~vc ~rwiously granted us permission to ti~li(.

    m:ltcrial from ( unudi:m :md I;ritish reports in accord:mcc ~~ith mlrrrnt

    security U3glllotioms. l>hc I?wII Telephone I.abora,twy supplied the

    photographs of mct:d lens antennas.

    S .4 MU E L kh LVlil{.

    K : \ v\ T, ll l)s l. \ 1i 1lI T. WI M WI I Y,

    f lslllxlm)x, l). (.,

    :lpr d, 1947.

  • 7/28/2019 microondas magnticas en el espacio vectorial

    8/635

    .

    ontents

    FORE WORD BY L. A. DUBRmGE . . . . . . . . . . . . . . . . . . vii

    PRE1744CE. . . . . . . . . . . . . . . . . . . . . . . . . . . .

    ix

    CHAP.1. SURVEY OF MICROWAVE ANT~~NNADESIGN PROBLEMS

    1

    1.1. The Wa velcngt hRegion. . . . . . 1

    1.2. .Lnt enna P a t t erns . . . . . . . . . . . . . . . . . . . ..2

    1.3. Types of }I icrow a ve B ea ms. 6

    1.4. lI icrow a ve Tra nsmission I ,ines . 7

    1.5. Ra dia t ing llernent s . . . . . . . . . ..8

    16. .4 S urvey of kllcrow a vc }.nt en na Types 9

    1.7. I mpeda nce S pecifica t ions. 13

    1.8. P rogra m of t he P resent Volum e 14

    C H .4P . 2. C I RC U I T RJ 31J ATIOIW, Rf3C I P R0C iTY TH W3RF ~ >fS . 16

    21.

    22.

    23.

    2.4.

    2.5.

    2.6.

    2.7.

    2.8.

    2.9.

    I n t roduct ion . . . . . . . . . . . . . . . . . . . ...16

    The F our-t ermina l ~ et w ork. 17

    The Ra yleigh Reciprocit y Theorcnl 19

    Th6venins Theorem a nd t h e Nfzxim um-pow er Th eorem 20

    The Tw o-w ire Tra nsmission I ,ine 21

    The H om ogeneous Tra nsmission I ,ine 23

    The LosslessLin e..... ..26

    Tra nsforma t ion C h a rt s. 29

    The F our-t ermina l Net w ork l:quiva lent of a S ect io]l of Tra ns-

    missiOn Line.... . . . . . 36

    TRANS MI ~ E VG ANn R E C E I VI NG ANTE NNAS . . 37

    2.10.

    2.11.

    2.12.

    2.13.

    2.14.

    2.15.

    2.16.

    2.17.

    2.18.

    The Ant ema a s a Termina t ing I mpeda nce 37

    The Receiving Ant enna S yst em 40

    The Tra nsmit t er a nd Receiver a s a C oupled S yst em

    45

    Reciprocit y bet w een t he Tra nsmit t ing a nd I t ecei\ ,in g P at t erns of

    a n Ant enna . . . . . . . . . . . . . . . . . . . ...48

    The .kvera ge C ross S ect ion for a Ma t ched S yst em 50

    D ependen ce of t he C r oss S ect ion on Ant enna Misma t ch 51

    The F our-t ermina l Net w ork Represent a t ion. 53

    l)evelopment of t he Net w ork E qua t ions 56

    The Reciprocit y Rela t ion bet w een t he Tra n sfer I m peda nce

    C oet licient s, . . . . . . . . . . . . . . . . . . ...59

    X111

  • 7/28/2019 microondas magnticas en el espacio vectorial

    9/635

    xiv CO.YYfil.VT S

    C H AP . 3. R.\ II I .iTIOS FR031 C U IU WXT I ) IS TRI I)I T1OS S . (iI

    31. Tllc Field I lq ua t ions. 6]

    32. The (;onst it ,lt ive P a ra mct r rs;

    I .inc:w it y mid S I lperpo sit ion . 6,5

    33. I lou])da ry C ont lit ions. 66

    3 ~ . The Field ~ q ~ la t io]ls for H :mnonic TI I n c ])(, p[,lld(>I 1[W 68

    3.5. I a ynt ings Thmreln . . . . M)

    36. The ll-a \ ,c k;q ll:lt ions. 71

    3.7. S imple l~ a vc S olllt ions. 73

    38. G enera l S ollt t ion of t he Field I }q ,,~ tiol,s in Tcr],,s of t l)r fk),,r t cs,

    for a Ti]llc-pcr iodir lr i(ld . 8(I

    3.9, F ield ]),,e t o S ollr t t ,s in a n U ]Ih oI uI (lt Yi I i(,gion 84

    3.10. F ield in a licgion Rot m dcd h y S (lr fa ((,s of I ]lfilllt cl}- (OI )(l\ l(t I vr

    llc,clia . . . . . . . . . . . . . . . . . . . . . ..8fi

    311. Tl](, F a r-zone Fields 87

    312. I ola r iz a tion .

    )1

    3~ 13. The I ;lcct r ic l)ipolc )2

    314. Tllc I I t ignet ir lh ]mlc 95

    3.15. The F :lr-zon r Fir l(ls of I ,i]l(,-rurr(,n t l)ist r illllt if )ls )(i

    316. The H :df-~ 1 I V(, l)ilmlt ,

    )8

    317. S llpcrpm]t ion of l~ icl{ls ) 1

    31S Th e 1)0111>1(, -(111)01(y s t em

    101

    319. I {cgldur S pa ce .I r r :iys

    104

    C ][.I P . 4. ll-.l;l; F I {O>-TS :~ ~ 1) RAYS 107

    41. TI I C I I \ lygrn s-C rccn F orn~ lll:L for t h r I ll((,t r (l]]]:Lg]l(t i[, lit l(l 107

    42, G col]lct r ica l ()~ ]t ir s : l~ a vefront s a nd l{:lys 110

    43. C 1lr~ :it llr r of t he I lmys in a n I nllo]]I ogc,l](,[~ ls I lcdiunl 111

    4+ . E n ergy FlOIv in (lcomet r ica l Opt ics 112

    45. (;comct r ica l opt ics :is :L Zero-~ ra ~ clcngt h I ,in]it 114

    46. The H ~ lygen s-F rrsnr l P rinciple a nd G conlct r ira l Opt ics: The F a r-

    z on c .k ppr ox im a t i on

    116

    47. The P rin ciple of S t a t ionm-y I ha sc 11{)

    48. F t = rnla ts I r incip]e.

    122

    4.9, The I ,a ,v of t he opt ira l P a t h

    125

    (]~ \l,, 5, S (.LTTE RIS C, .kN-T) D IFF R.AC TIOX. 12 )

    51. (;cn cra l (onsidcrnt ion s

    129

    52. B ol]nda ry (o]ldit ions

    130

    53. I ieflect ion hy a n Infillit e P la ne S (lr t a rc; t he lr inril)lv of I t I I :igrs 132

    AP P R OXI MATE J I E TH O D S F OR R E F LE C TO I+ S OF ;lI L B I TM AR Y S ] J .\ P E

    54,

    55,

    56,

    57,

    58.

    59.

    510.

    511.

    512.

    The G eomet rica l-opt ics I Ict hor l

    C a lcula tion of t he S ca tt r r rd F ir l[l

    S uperposit ion of t he S o~ lrcc l~ icl(l :I II d t l)(, S c:\ t t ercd l~ icld.

    Th e C ur ren t-dist ril, ~ l tion 31ct hod

    C a lc(lla t ion of t he S ca tt r r rd F ield

    Applica t ion t o P oint -source md I J ir l{J -sollr re l;ecds.

    Rea ct ion of a Reflect or on a P oint -source F eed

    Th e .Aper t ur e-fi elci I fet h od

    The F ra unh ofer Region.

    ,..

    137

    138

    139

    143

    144

    146

    149

    155

    . .

    158

    ,. . 160

  • 7/28/2019 microondas magnticas en el espacio vectorial

    10/635

    .

    coYTAl

    s

    xv

    l) I F1.ll.\ (r0N. . . . . . ...,,162

    S .I S, (i,r ,cr t LI (~)])si,l,,r:,iit)])s mI tht, .ipproxim:lt c I lt ,t llods 162

    514. l{t t lll~ ,t lt J J l t o :1 S [a lilr l)illr :~ (t lf)n I I o I )lcI N 164

    515. l)~ ~ lli]lct s lr l]l{ipl~ i for t ll( l-TI,;X-XA IATTE RNS

    169

    61. lr il]l:~ ry a nd S [,co]lt lxry lt lt t rms 169

    62. Tll(, l)iffr :t r t ion Fielt l 169

    (i 3. I our i(r Int egra l li(,l)rc,s(,]lt a t i{jl~ of t he Fra unhofcr lie~ ion

    174

    64, (+ C J I (M1 I :ca tur t s of t ht , S ccolld:w y l~ tt vm

    175

    6,5. TI I C l{rct mlg~ ll:~ r .fpor t ure ]80

    6.t i. Tl o-(lilllt ,n sio]la l P r ol)lcm s

    182

    67. I l]:i.w -error kYfect s. . 186

    08. TI I C (irc(llm .ipcr t urc

    192

    &9. Th(, Field o]] t he Axis in t hr F rcsnr l ]t cgion

    ] 96

    (l[,\ ],, 7. l[I (:ROI V,.fV}; TRAA-S ~ f I S S IOA I ,I N-E S 200

    71

    llicro~ j :ivc nnd I ,ong-~ va ve Trimsmission I ,illm 200

    72. lrop:l~ a t io]l in ~ f:~ vcgllidcs of ln iform (;ross S w t ion 201

    73. or t hogo]la llt y Rcl:lt ions a nd P ow er Flow . 207

    74. Tra nsnlissiun I ,inr (onsidcra t ions in l~ :lvrguidrs 209

    75. Xct J t ork Kqlliva lent s of J unrt ions a nd ohst a clcs 214

    76. 7/.l/-modc Tra llsmission I ,ir lcs 216

    77. (ozxis,l I ,incs: ?~ . f-rnodc 217

    7.8. (oa xia l I .ines: T.I f - a nd T]i-n lodcs 219

    7. ),

    (:Is,.acIc

    Tmnsformcrs: TJ ~ .lf-mode 221

    71o. I a ra llel S t ~ lhs a nd S eries I Lea ct a ncm.

    223

    711. licct a ng~ lla r }Va vcguidcs: I A- a nd ?,lf-modes 226

    712. I mpcda nrc Tra nsformers for I iect a ngula r (;uidcs 229

    713. C ircula r ll-a veguide: T~ - a nd TJ f-modcw . 233

    7.14. I vindow s for LTS Cin C ircula r G uides 235

    715. I a ra llel-pla t e i~ a veguide. . 235

    716.11esignN Totes . . . . . . . . . . . . . .. 238

    C H AF . 8. lfI C ROWAVE D IP OLIl A3J TE ~ ~ AS ANI ) F13f?D S 239

    81. C ha ra ct er ist ics of Ant enna Feeds 239

    8.2, Coa xia l I ,ine Termina t ions: The S kir t D ipole 240

    83. Asymmet ric D ipole Termina tion.

    242

    84. S ymmet rica lly 13nergizcr i D ipoles: S lot -fed S yst ems 245

    85. S ha pe and S ize of t he D ipole . 248

    86. lVa veguidc-line-fcd D ipoles. . 250

    87. D irect ive D ipole Feeds, . . . 250

    88. D ipole-disk F ords . . . . . . . . . . . . . . . . . . ...251

    89, D ouble-dipole Feces, .,.... . . . . . . . . . . . . .253

    8.10. Lfult i-dipole S yst ems, . . . 256

    C H AP . 9. LI NI ?AR ARRAY AXTE iYNAS AND FF23DS 257

    9.1. (kmcra l C onsidera t ions. . 257

  • 7/28/2019 microondas magnticas en el espacio vectorial

    11/635

    XVI

    C ON T E J V T S

    P A~ E E N TH E ORY . . . . . . . . . . . . . . . . . . . . . . ...256

    92. G enera l Arra y Formula . . . 258

    93. The Associa t ed P olynomia l 261

    9.4. U 1liformArra ys . . . . . . ..264

    9.5, B roa dside 13e:~ nls . . . . ...267

    9.6. E r l(l-t ire I ~ ea n]s . . . . . . . . . ...274

    9.7. 13ca 1u S ynt hesis . . . . . . . . . . . . . .. 279

    RAD I ATI NG E I .E MMNTS . . . . . . . . . . . . . . . . . .. 284

    9.8. llipole Ra dia t ors . . . . . . . . . . . . . . 284

    9.9. S lot s in J va veguide }Ta lk. . 286

    9.10. Theory of S lot Ra dia t ors. . 287

    9.11. S lot s in Rect a ngula r J $a veguide; 1~ ,,-mode 291

    912. E xperiment a l D a t a on S lot l{a di~ t ors 295

    913. P robe-fedS lot s . . . . . . . . . . . . .

    299

    9.14. fVa veguide Ra dia t ors 301

    9.15. Axia lly S ymmet rica l Ra dia t ors . 303

    9.16. S t rea mlined Ra dia t ors . . . 310

    ARRAYS . . . . . . . . . . . . . . . . . . . . .. 312

    9.17. L oa ded-line Ana lysis. . 313

    9.18. E nd-fire .4rra y . . . . . . . . . . . . . . . . . . . . . . 316

    B ROAD S I D E ARE AYS . . . . . . . . . . . . . . . . . . . . . . .. 318

    9.19, S uppression of E xt ra neous Ma jor I ,ohcs . 318

    920. Resona nt Arra ys . . . . . . . . . . . . . . . .. 321

    921. B ea con Ant enna S yst ems. 327

    922. T$onresona nt Arra ys . . . . . 328

    923, B roa dba nd S yst ems w it h >Torma l B ea ms 331

    CH P

    10.

    WAVEGUIDE AND HORN FE~;~S. .

    334

    10.1. Ra dia t ion from Wa veguide of Arhit rmy C ross S crt ion 334

    10.2. Ra dia t ion from C ircula r ~ ~ a v(guide 336

    103. Ra dia t ion from Rect w w la r G uide. 341

    10.4. Wa veguide Ant enna Feeds

    347

    105. The D ouble-slot Feed .

    348

    10.6. E lect roma gnet ic H orns. . . . . . 349

    10.7. hrodes in lpla ne S ect ora l H orns 35o

    108. J fodes in I f-pla ne S ect ora l H orns

    355

    109. Vect or D iffra ct ion Theory Applied t o S rct ora l H orns. 357

    10.10. C ha ra ct er ist ics of Observed I t a dia t ion lt it t mns from H orns of

    Rect a ngula r C ross S ect ion 358

    10.11. Admit t a nce of Wa veguidc a nd H orns . 366

    10.12. Tra nsforma tion of t he L-pla I~ c H orI I .idulit t a n cc f mm t he Throa t

    t ot he U niform G uide . . . . . . . . . . . . . . . . ...369

    10.13, Admit t a nce Cha ra ct er ist ics of H -pla ne S ect ora l H orms

    374

    1014. C ompoundH orns. .,.. , . . . . . . . . . . . . ...376

    10.15 .The B ox H orn... . . . . . . . . ...377

    1016. B ea m S lla ping hy ~ lca ns of Obst a clrs in H OH I :md \ Va veK{lidv

    .4pert mcs . . . . . . . . . .

    380

  • 7/28/2019 microondas magnticas en el espacio vectorial

    12/635

    C H AP . 11. D I I :I ,I cC TILIC i~ X1) lI J :T:lI ,-lI .. fTI s in 31icro~ v~ vc ,~ nt cmms. 388

    I)ll:l,l:C,rRICIEXSF;S. . . . . . . . . . . . . . . . . . . . . . .

    112. lr ill{ilJ lrso f I>rsign, .

    113, S inlplc I ,cllses IVlt llo(it Zoning

    114. Zoned l)lclrct r ic I ,cnscs . .

    11,5. U sc of lIa t cr i:t ls ~ v]t h H i~ ll l{cfmct ivc In dcxrs

    11.6. I )lclcct r ic I ,osscs mnd Tolcra nccs on I rons I a ra mct crs.

    11.7. I t cflect ions from L)iclcct r ic S ur fa ccw

    389

    389

    390

    395

    398

    399

    401

    hfE TAL-I ,L~ TE LEXSE S . . . . . . . . . . . . . . . . . . . . . ...402

    11.8. P a ra llel-pla t e I ,ensm, . . . . 402

    11. ). Ot her 31et a -lcr ,s S t ruct ures. 406

    11.10. l[ct a -pla t e I .cns Tolrra ncrs 407

    11.11. B a nd,vi(lt h of l[et a l-plzt c I ,cnscs; Achroma t ic D oublet s 408

    11.12. I t eflect ions from S urfa ces of P a ra llel-pla t e I ,enses 410

    CH AP . 12. P E NCILB F Ahf AND S IhfP LE

    FANAl;D-BEAN1 ANTEKAAS 413

    PENCIL-BEAMANTENNAS. . . . . . . .,.........,...413

    12.1. Pencil-beam Requirements and Tcchniqlles 413

    12.2. Gcomctriral Parameters 415

    123. The Surface-current and Aperture-firld I)istrih(ltions. 417

    12.4.

    The ILa dia tion Field of t he Reflect or

    420

    12.5. The Ant enna G a in., . . . . . . . . . . . 423

    126. P rima ry P a t t ern D esigns for hI :mimizing (la in 433

    127. E xperiment a l I t csldt s on %condm-y la t t mns 433

    128. I mpeda nce C ha ra ct erist ics 439

    12.9. The Vert ex-pla t e lf:~ t ching Trchniq uc 443

    12.10. I t ot a t ion of I ohu-iza t ion Techniq ue 447

    12.11. S t ruct ura l D esign P roblems. 448

    S IMFLE FANNE D -B E AM ANTE NNAS . 45o

    12.12. Applica t ions of Fa nned B ea ms a nd Nfct hods of P mdllr t ion 45o

    1213. Symmet rica lly C ut P a ra hololds 451

    12.14. Feed Offset a nd Cont our C ut t ing of Reflect ors 453

    1215. The P a ra bolic C ylinder a nd Line S ource 457

    12.16. P a ra llel-pla t e S yst ems 459

    12.17. P dlbox D esign P roblems 460

    C H AP . 13. S H AP E D -B E AM ANTE NNAS. .

    131.

    132.

    133.

    134.

    135.

    136.

    137.

    138.

    13.9.

    Sha ped-bea m Applica t ions a nd Req uirement s

    E ffect of a D irect iona l Ta rget Response

    S urvey of B ea m-sha ping Techniq ues.

    D esign of E xt ended Feeds. . . .

    C ylindrica l Reflect or Ant enna s .

    Reflect or D esign on t he B a sis of Ra y Theory .

    Ra dia tion P a t t ern Ana lysis.

    D ouble C urva ture Reflect or Ant enna s

    Va ria ble B ea m S ha pe.

    465

    465

    468

    471

    487

    494

    497

    500

    502

    508

  • 7/28/2019 microondas magnticas en el espacio vectorial

    13/635

    ,..

    XV1ll

    COA71{.V 7s

    CH AP . 14. ANTk;XNA IXSTALLAT1ON IROB I ,E 31S 510

    G E ~ ~ I t .4L S IKVl~ Y OF I ~ S cr .4LLArIO~ I ~ OB LE MS . 510

    14.1. (:rolm(l .lllt (,llna s 510

    14.2.S llilJ .illt er lI]a s,,, . . . . . . . . ... ..511

    143,

    ~lir(,r:ift

  • 7/28/2019 microondas magnticas en el espacio vectorial

    14/635

    .

    C 11.IP TI ;R 1

    S U RVE Y OF MI C ROWAVE ANTE NNA D E S I G N P ROB LE MS

    ]]Y s. S I I ,V1;ll

    1.1. The Wa velengt h Region .I he designa t ion of t he bounda ries of

    t he micro m ve region of t Iw r lcct rom a gm ct ic spect rum is pllrcly a rbit ra ry ,

    Tile I ong-]va velcngt h limit I Ia s I xxm set v:~ r iously a t 25 (J r 40 cm, even

    a t 100 cm. F rom t he point , of vie\ v of a nt enna t heory a nd design t echn-

    iques, t he 25-cm va l~ le is t he most a ppropria t e choice, The short -

    w a ~ elengt h limit t o )ihich it is possible t o ext end t he present t erhniq(les

    ll:~ s not ~ e tl)ec>r ~ ra clle(i; it isin th cn ciglll)or }loo(lof lmm . Accor din gly

    \ vesha ll cunsi(lcr t he microlva ve region t o ext end in w a velengt h from 0.1

    t o 25 cm, in frcq llcncy from 3 X 105t o 1200 31c/see,

    This is t he t ra nsit ion region bet \ \-een t he or(lina ry ra dio region , in

    }vhich t he \ \ -a velengt llis ver y k~ r ge compa rw l w it h t he dimensions of a ll

    t he component s of t he syst em (cxccpt perhops for t heh~ r ge a nd cumber-

    some a nt enna s), a nd t he opt ica l region , in ]t -hich t he \ va vclengt hs a rc

    excessil-ely sma ll. I .ong-\ va vc concept s rm(l t echniq ues cont inue t o be

    useful in t he micro \ va ve region , a nd a t t he sa me t ime cer t a in devices

    used in t he opt ica l r egion sllr h a slen se sa n dn ~ ir ror sa r cem ploy eci.

    From

    t he point of vie}v of t he a nt enna designer t he most import a nt cha ra ct er-

    ist ic of t his fre(~ u cncy r egion is t ha t t he w a ~ ~ elengt hs a re of t he order of

    ma gnit ude of t he dimcmsilmsof convent iona l a nd ea sily ha ndled mecha n-

    ica l devices. This lea ds t o ra dica l modifica t ion of ea r lier a nt enna

    t echniq ues a nd t o t he a ppea ra nce of nefv a nd st r iking possibilit ies,

    especia lly in t he const ruct ion a nd use of complex a nt enna st ruct ures.

    I t follow s fr om element a ry diffra ct ion t heor y t ha t if D is t h e m a xim um

    dimension of a n a nt enna in a given pla ne a nd k t he iva vr lengt h of t he

    ra dia t ion, t hen t he minimum a ngle }vit hin w hich t he ra dia t ion ca n be

    concent ra ted in t ha t pla ne is

    (1)

    Wit h microw a ves on e ca n t hus pr oduce highly direct ive a nt enna s such

    a s ha ve no pa ra llel in long-w a ve pra ct ice; if a givendirect ivit y is desired,

    it ca n be obt a ined \ vit h a microw a ve a nt enna ]vhich is sma ller t ha n t he

    eq uiva len t lon g- va v e a n t en na .

    Th e ea se w it h w hich t hese sma ll a nt enna s

    ca n be inst a lled a nd ma nipula ted ina rest rict ed spa ce cont ribut es grea t ly

    t o t he pot ent ia l uses of microw a ves.

    In a ddit ion , t he convenient size of

    1

  • 7/28/2019 microondas magnticas en el espacio vectorial

    15/635

    2 S UR V E Y OF M I C R OI V . t J E AN TE XAV A D E S I G .V PR OB L E M S [SEC, 1.2

    microw a ve a nt enna element s a nd of t he complet e a nt enna st ruct ure ma kes

    it fea sible t o con st ruct a nd use a nt enna s of ela bora te st ruct ure for specia l

    purposes; in pa rt icula r, it is possible t o int roduce mecha nica l mot ions of

    pa rt s of t he a nt enna w it h r espect t o ot her pa rt s, w it h conseq uen t ra pid

    mot ion of t he a nt enna bea m.

    The microw a ve region is a t ra nsit ion region a lso a s rega rds t heoret ica l

    met hods. The t echniq ues req uired ra nge from lumped-const a nt circuit

    t heory , on t he low -freq uency side, t hrough t ra nsmission-line t heory , field

    t heory , a nd diffra ct ion t h eor y t o geomet r ica l opt ics, on t h e high-fre-

    q uen cy side. Th ere is freq uent need for using severa l of t h ese t h eor ies

    in pa ra llelcombining field t heory a nd t ra nsmission-line t heory , sup-

    plement ing geomet r ica l opt ics by diffra ct ion t h eory , a nd so on. Opt ica l

    problems in t he microw a ve a nt enna field a re rela t ively complex, a nd

    some a re of q uit e novel cha ra ct er : F or inst a nce, t he opt ics of a curved

    t w o-dimensiona l doma in finds pra ct ica l a pplica t ion in t he design of

    r a pid -s ca n n in g a n t en na s .

    1.2. Ant enna P a t t erns.-B efore under t a king a survey of t he mor e

    import a nt t ypes of micr ow a ve a nt enna ,

    it w ill be necessa ry t o st a t e

    precisely t he t erms in w hich t he performa nce of a n a nt enna w ill be

    described.

    Th e Ant enna a s a

    Radiating Device:

    The Gain Function.The

    field

    set up by a ny ra dia t ing syst em ca n be dir ided int o t w o component s:

    t h e induct ion field a nd t he ra dia t ion field. The induct ion field is impor-

    t a nt only in t he immedia t e vicinit y of t he ra dia t ing syst em; t he energy

    a ssocia t ed w it h it pulsa t es ba ck a nd for t h bet w een t he ra dia t or a nd

    nea r-by spa ce. At la rge dist a nces t he ra dia t ion field is domina nt ; it

    represen t s a cont inua l flow of en er gy direct ly out w a rd from t he ra dia tor ,

    w it h a densit y t ha t va ries inversely w it h t h e sq ~ ia rc of t h e dist a nce a nd,

    in genera l, depends on t he direct ion from t he source.

    In eva lua t ing t he performa nce of a n a nt enna a s a ra dia t ing syst em

    on e considers only t he field a t a la rge dist a nce, w her e t he induct ion field

    ca n be n eglect ed. The a nt enna is t hen t rea t ed a s a n effect ive point

    source, ra dia ting pow er t ha t , per unit solid a ngle, is a funct ion of direc-

    t ion only . The direct ive proper t ies of a n a nt enna a re most con~ enien t ly

    expressed in t erms of t he ga in funct ion G (6,O). I /et 6a nd @ be r espec-

    t ively t h e cola t it ude a nd a zimut h a ngles in a set of pola r coordina t es

    cen t ered a t t he a nt enna . Let F (O,@) be t he pow er ra dia t ed per unit

    solid a ngle in direct ion 0, @ a nd P~ t he t ot a l pow er ra dia ted.

    The ga in

    funct ion is defined a s t h e ra tio of t h e pow er ra dia ted in a given direct ion

    per unit solid a ngle t o t he a vera ge pow er ra dia ~ ed per unit solid a ngle:

    47r

    (2)

  • 7/28/2019 microondas magnticas en el espacio vectorial

    16/635

    S E C . 1.2]

    AN TE N N A PATTE R N S

    3

    Thus G (L9, ) expresses t he increa se in pow er ra dia t ed in a given direct ion

    by t he a nt enna over t ha t from a n isot ropic ra dia t or emit t ing t he sa me

    t ot a l pow er ; it is independent of t h e a ct ua l pow er level. The ga in

    funct ion is conven ient ly visua lized a s t he sur fa ce

    r = G(f3,@) (3)

    dist a nt from origin in ea ch direct ion by a n a mount equa l t o t h e ga in

    funct ion for t ha t direct ion . Typica l ga in-funct ion surfa ces for micro-

    w a ve a nt enna s a re illust ra ted in Fig. 1.1.

    The ma ximum va lue of t he ga in funct ion is ca lled t he ga in; it

    w ill be denot ed by G M. The ga in of a n a nt enna is t he grea t est fa ct or

    by w hich t he pow er t ra nsmit t ed in a given direct ion ca n be increa sed

    by using t ha t a nt enna inst ea d of a n isot ropic ra dia tor .

    The t ra nsmit t ing pa t t ern of a n a nt enna is t he sur fa ce

    (4)

    it is t hus t he ga in-funct ion surfa ce norma lized t o unit ma ximum ra dius.

    A cross sect ion of t h is sur fa ce in a ny pla ne t ha t includes t he origin is

    ca lled t he pola r dia gra m of t h e a nt enna in t his pla ne. The pola r

    dia gra m is somet imes renorma lized t o unit ma ximum ra dius.

    W-hen t h e pa t t ern of a n a nt enna ha s a single principa l lobe, t h is is

    usua lly r eferr ed t o a s t he a nt enna bea m. This bea m ma y ha ve a

    w ide va riet y of forms, a s is show n in F ig. 1.1.

    The Antenna as a Receiving Dwice: The Receiving Cross Section .The

    performa nce of a n a nt enna a s a receiving device ca n be descr ibed in

    t erms of a receiving cross sect ion or receir ing pa t t ern .

    A receiving a nt enna w ill pick up ener gy from a n incident pla ne w a ve

    a nd w ill feed it in t o a t ra nsmission line w hich t ermina tes in a n a bsorbing

    loa d, t he det ect or . The a mount of en ergy a bsorbed in t h e loa d w ill

    depend on t h e or ient a tion of t he a nt enna , t he pola riza tion of t he w a ve,

    a nd t h e impeda nce ma t ch in t he receiving syst em.

    In specify ing t h e

    performa nce of t he a nt enna , w e sha ll suppose t ha t t he pola r iza t ion of

    t he w a ve a nd t he impeda nce cha ra ct erist ics of t h e det ect or a re such t ha t

    ma ximum pow er is a bsorbed. Th e a bsorbed pow er ca n t hen be expressed

    as t he pow er incident on a n effect i~ -c a bsorbing a rea , ca lled t he receiving

    cr os s sect ion ,

    or a bsorpt ion cross sect ion A, of t he a nt enna .

    I f S is

    t he pow er flux densit y in t he incident w a ve, t he a bsorbed pow er is

    P, = ASA,

    (5)

    The receiving cross sect ion w ill depen d on t he direct ion in w hich t h e

    pla ne w a ve is incident on t he a nt enna .

    We sha ll w rit e it a s A, = A,(d,I$),

    w here o a nd @ a re t he spher ica l a ngles, a lrea dy defined, of t he direct ion

  • 7/28/2019 microondas magnticas en el espacio vectorial

    17/635

    4 S L R J E 1 OF J I I C lK )I V.4 J E .4.V7E .\ .VA D I

  • 7/28/2019 microondas magnticas en el espacio vectorial

    18/635

    S E C . 12] AN T E N N A PATTE R N S

    5

    Thus, if it is possible t o ign ore t h e effect of t he ea rt h on t he propa ga t ion

    of t he w a ve a nd if G , is const a nt , it w ill be possible t o oper a te t he receiving

    syst em sa t isfa ct or ily ever yw her e w it hin t he sur fa ce

    (13)

    w h er e t he t ra nsmit t er is t a ken t o be a t t h e or igin .

    This sur fa ce w ill be

    ca lled t he free-spa ce cover a ge pa t t ern for on e-w a y t ra nsmission.

    Coverage Pattern, Two Ways. -

    -I n most ra da r a pplica t ions t he sa me

    a nt enna is used for t ra nsmission a nd r ecept ion .

    One is h ere int erest ed

    in det ect ing a t a rget , w hich ma y be cha ra ct er ized by it s ( sca t t er ing

    cross sect ion u. This is t h e a ct ua l cross sect ion of a sph ere t ha t in t he

    sa me posit ion a s t he t a rget w ould sca tt er ba ck t o t he r eceiver t h e sa me

    a mount of en ergy a s is r et urn ed by t h e t a rget . F or t his fict it ious iso-

    t r opic sca t t erer , t he effect ive a ngle subt ended a t t he t ra nsmit t er is

    U/R2

    a nd t h e t ot a l pow er in t er cept ed is

    (14)

    S ca t t ered isot ropica lly , t his pow er w ould a ppea r ba ck a t t h e t ra nsmit ter

    a s a pow er flux, per unit a rea ,

    (15)

    Act ua lly , t h e sca tt er in g of most t a rget s is not uniform. The sca tt er ing

    cr oss sect ion of t he t a rget w ill in a ny ca se-be defined by E q . (15), but it

    w ill usua lly be a funct ion of t h e or ient a tion of t h e t a rget .

    The pow er a bsorbed b:- t h e r eceiver from t h e sca tt ered w a ve w ill be

    P,= A+S=R

    (16)

    since h er e G , = G ,. I f t h e effect of t he ea r t h cm t ra nsmission of t h e

    w a ves ca n be neglect ed, it w ill be possible t o det ect t h e t a rget only w hen

    it lies w it hin t he surfa ce

    (17)

    a bout t h e t ra nsmit t er a s a n origin .

    This sur fa ce w ill be ca lled t he free-

    spa ce covera ge pa t t ern for t w e-w a y t ra nsmissi,m.

    The ext en t of t he covera ge pa t t erns is det ermined by cha ra ct er ist ics

    of t h e syst em a nd t ar get out put pow er , receiver sensit ivit y , t a rget size

    t ha t a re n ot under t he con t r ol of t he a nt enna design er . The form of

    t h e cover a ge pa t t erns is det ermin ed by but is not t he sa me a s t h e for m

    of t h e a nt enna t ra nsmit t ing a ,nd receiving pa t t erns; in t h e covera ge

    pa t t erns, r is propor t iona l t o [G ,(o, r J )]J fia t her t ha n t o G ,(o, + ). Th e

  • 7/28/2019 microondas magnticas en el espacio vectorial

    19/635

    6 S UR VE Y OF M I C R OWA F E AI V7E iVA44 D E S I G .V PR OB L E WS

    [SEC. 13

    desired form of t he covera ge pa tt ern is la rgely det ermined by t he use t o

    be ma de of t he syst em. F rom it , one ca n derive t he req uired form of t he

    t ra nsmit t ing or receiving pa tt ern of t he a nt enna ; it is usua lly in t erms of

    t his t ype of pa t t ern t ha t a nt enna performa nce is mea sured a nd specified.

    I t is t o be empha sized t ha t t he discussion of covera ge pa tt erns gi~ en

    (b)

    (c)

    (d)

    FI G .I. I.Typica lga in-functionur fa cesor microwa vea nt enna s. (a ) Toroida l(omni-

    directiona l)pa t t ern;(b) pencil-beampa t t ern;(c) fla t-t opfla redbeam ; (d) a sym metr ica lly

    flaredbeam.

    here a ssumes free-spa ce condit ions. In ma ny import a nt a pplica tions,

    covera ge is a ffect ed by int er ference a nd diffra ct ion phenomena due t o

    t he ea rt h , by met eorologica l condit ions, a nd by ot her fa ct ors. A det a iled

    a ccount of t hese fa ct ors, w hich ma y be of considera ble impor t a nce in

    det ermining t he a nt enna t ra nsmit ting pa t tern req uired t ora given a ppli-

    ca tion, w ill be found in Vol. 13 of t he Ra dia tion I ,a bora tory S er ies.

    103. Types of Microw a ve B ea ms.The most import a n t t ypes of

    microw a ve bea ms a re illust ra ted in Fig. 1.1.

    The lea st direct ive bea m is t he t oroida l bea m, 1 w hich is uniform in

    1S uch a bea m is a lso r efer red t o a s om nidir ect ion a l.

    (I RE S t a nda r ds a n d

    Definitions,1946.)

  • 7/28/2019 microondas magnticas en el espacio vectorial

    20/635

    S E C .

    1.4]

    MI C R O WAV E TR AN S MI S S I ON L I N E S

    7

    a zimut h but direct ive in eleva t ion .

    S uch a bea m is desira ble a s a ma rker

    for a n a irfield beca use it ca n be det ect ed from a ll direct ions.

    The most dir ect ive t ype of a nt enna gives a pencil bea m,

    in which

    t he ma jor por t ion of t he en er gy is con fined t o a sma ll con e of nea r ly

    cir cula r cr oss sect ion . Wit h t he high direct ivit y of t his bea m goes a

    ver y high ga in, oft en a s grea t a s 1000. In ra da r a pplica t ions such a

    bea m ma y be used like a sea rchlight bea m in det ermining t h e a ngula r

    posit ion of a t a rget .

    Alt hough t he pencil bea m is useful for precise det ermina t ion of ra da r

    t a rget posit ions, it is difficult t o use in loca t ing ra ndom t a rget s. F or

    t h e la t t er purpose it is bet t er t o use a fa nned bea m, w hich ext en ds

    t hrough a gr ea t er a ngle in on e pla ne t ha n it does in a pla ne perpendicula r

    t o t ha t pla ne. Th e grea ter pa rt of t h e en er gy is t hen dir ect ed int o a con e

    of roughly ellipt ica l cross sect ion , w it h t h e long a xis, for exa mple, ver-

    t ica l. B y sw eeping t his bea m in a zimut h, on e ca n sca n t he sky more

    ra pidly t ha n w it h a pencil bea m, decrea sin g t h e t ime during w hich a

    t a rget ma y go undet ect ed. S uch a fa nned bea m st ill permit s precise

    loca t ion of t a rget s in a zimut h , a t t h e expense of loss of informa t ion

    con cer nin g t a r get eleva t ion .

    Ot her a pplica t ions of microw a ve bea ms req uire t he use of bea ms w it h

    ca refully sha ped pola r dia gra ms.

    These include one-sided fla res, such

    a s is illust ra t ed in F ig. 1I d, in w hich t h e pola r dia gra m in t he fla re

    pla ne is roughly a n obt use t ria ngle, w herea s in t ra nsverse pla nes t he bea m

    rema ins na rrow . In ra da r use, such a bea m a t t he sa me t ime permit s

    precise loca t ion of t a rget s in a zimut h a nd a ssures most effect ive dist r ibu-

    t ion of ra dia t ion w it hin t he ver t ica l pla ne of t h e bea m. Toroida l bea ms

    w it h a one-sided fla re in eleva t ion ha ve a lso been developed.

    No t heoret ica l fa ct ors limit a ny of t h e a bove bea m t ypes t o t he micro-

    w a ve region , but ma ny pra ct ica l limit a tions a re imposed on long-w ave

    a nt enna s by t he necessa ry rela t ionship bet w een t he dimensions of t he

    a nt enna element s a nd t he w a velengt hs.

    104. Microw a ve Tra nsmission Lines.-The form of microw a ve

    a nt enna s depen ds upon t he na ture of t h e a va ila ble ra dia ting element s,

    a nd t his in t urn depends upon t he na ture of t h e t ra nsmission lines t ha t

    feed energy t o t hese element s. We t h erefor e prefa ce a survey of t he

    ma in t ypes of microw a ve a nt enna s w it h a br ief descr ipt ion of microw a ve

    t ra nsmission lines; a det a iled discussion of t hese lines w ill be found in

    C ha p. 7.

    U nshielded pa ra llel-w ire t ra nsm ission lines a r e not suit a ble for micro-

    w a ve use; if t h ey a re not t o ra dia t e excessive y , t he spa cing of t he w ires

    must be so sma ll t ha t t he pow er-ca rry ing ca pa cit y of t h e line is severely

    limited.

    U se of t h e self-shielding coa xia l line is possible in t h e microw a ~ t ~

  • 7/28/2019 microondas magnticas en el espacio vectorial

    21/635

    8

    S (

  • 7/28/2019 microondas magnticas en el espacio vectorial

    22/635

    coa xia l lines lend t hemselves t o sllch t ermina t ions.

    Ma ny long-w a ve

    a nt enna idea s ha ve lw en ra rr-ied uver int o t he micro\ ra ve region, pa r-

    t ic~ ~ hw lyt hose con nect ed w it h t heha lf-]ra ve dipde; t he t ra msit iorr , ho\ v-

    ever , is r iot r ner eiy a ma t t rr of w ovelcmgt h sca ling.

    In a microl}a ve

    a nt enna t l~ e cross-ser t iona l dimensions of t he t ra nsmission line a re com-

    pa rt ih lc t o t he dimensions of t he ha lf-~ va vc dipole, a nd conseq uent ly , t he

    coupling lmt w een t he ra dia tor a nd t ile line becomes a mor e significa nt

    pr ol)lem t lia n in a cor resp(jn clin ~ I on g-iva ve sy st em . Th e cr oss-sect ion a l

    dimensions of t h e dipole element a r e dso compa ra ble t o it s lengt h. A

    t ypi~ a l microw a ve dipole is show n in Fig. 12c; t h e a na lysis a nd undt = r -

    st ancling of S 1lC }Imicro}va ve dipoles is a t best st ill in a q ua lit a t ive st a ge.

    The ose of hollow ~ va veyuide lines lea ds t o t he employment of en t irely

    (L ff c,r en t r a d ia t i n g s ys t em s.

    The simplest ra dia t ing t ermina t ion for such

    a line is j~ lst t he open end of t he g~ lir le, t hrough w hich t h e en er gy pa sses

    int o spa ce. The dimensions of t h e mout h a per t ure a re t hen compa ra ble

    t o t he w a velengt h ; a s a result of diffra ct ion , t he en er gy does not cont inue

    in a lw a m corr esponding t o t h e cross sect ion of t he pipe but sprea ds out

    considera bly a bout , t h e direct ion of propa ga tion defin ed by t he guide.

    The degr ee of sprea ding depends on t he ra tio of a per t ure dimensions t o

    w a ~ ekmgt h . On fla ring or const r ict ing t he t ermina l r egion of t he guide

    in order t o con t rol t h e direct ivit y of t he ra dia t ed en ergy , on e a rr ives a t

    elect roma gnet ic horn s ba sed on t h e sa me funda ment a l pr inciples a s

    a coust ic horns (F ig. 1.20 ).

    An ot her t ype of element t ha t a ppea rs in microw a ve a nt enna s is t he

    ra dia t ing slot (Fig. 1.2r). Th ere is a dist r ibut ion of cur ren t over t he

    inside w a ll of a w a veguide a ssocia ted w it h t h e w a ve t ha t is propa ga ted

    in t he int er ior . I f a slot is milled in t h e w a ll of t h e guide so a s t o cut

    a cross t he lines of current flow , t he in t er ior of t h e guide is coupled t o

    spa ce a nd energy is ra dia ted t hrough t he slot . (I f t he slot is milled a long

    t he line of curr ent flow , t h e spa ce coupling a nd ra dia t ion a re negligible. )

    I slot w ill ra dia t e most effect ively if it is resona nt a t t h e freq uency in

    q uest ion. The long dimension of a resona nt slot is nea r ly a ha lf \ \ -a ve-

    iengt h , a nd t h e t ra nsverse dimension a sma ll fra ct ion of t h is; t h e per im-

    et er rJ t h e slot is t hus closely a w a velengt h.

    1.6. A S ur vey of Microw a ve Ant enna Types.We a r e n ow in a posi-

    t ion t o ment ion br iefly t he pr incipa l t ypes of a nt enna s t o be considered

    in t his book.

    Antennas jo~ Toroidal Beams.A

    t oroida l bea m ma y be produced

    by a n isola ted ha lf-w a ve a nt enna .

    This is a useful a nt enna over a la rge

    freq uency ra nge, t he iimit being set by t he mecha nica l problems of sup-

    por t ing t h e a nt enna a nd a chieving t he req uired isola t ion. Th e bea m

    t hus pr oduced, how ever , is t oo broa d in eleva tion for ma ny purposes.

    A simple syst em t ha t ma int a ins a zimut ha l symmet ry but permit s

    con t r ol of direct ivit y in eleva t ion is t he biconica l horn , illust ra t ed in

  • 7/28/2019 microondas magnticas en el espacio vectorial

    23/635

    10 AS UR VE Y OF M I CR OW.41E

    .4,17fl,V.VAI)E L7[G .N-

    R O13L J Y.tf,9 [S m.

    16

    Fig, 13. The prima ry driving element bet w een t he a pexes of t he coues

    is a st ub fed from a coa xia l line. The sprea d of t he energy is det ermined

    by t he fla re a ngle a nd t he ra t io of mout h dimension t o w a velengt h.

    Alt hough t his a nt enna is useful ov~ r a

    la rge freq ~ lency ra nge, ma ximum di-

    rect ivit y for given a nt enna ~ veight a nd

    size is obt a irmble in t he microw a ve

    region , w here t he la rgest ra t io of

    a per t ure t o w a velengt h ca n be

    realized.

    Increa sed direct ivit y in a t oroida l

    bea m ca n a lso be obt a ined w it h a n

    a rra y of ra dia t ing element s such a s

    dipoles, dot s, or bimnica l horns built

    up a long t he symmet ry a xis of t he

    bea m. The direct ivit y of t he a rra y is

    det ermined by it s lengt h mea sured in

    ~ va velengt bs; high direct ivit ies

    a rc

    convenient ly obt a ined by t his met hod only in t he microlva ve region . .1

    t ypica l microw a ve a rra y of t his t ype is shoum in Fig. 1.4.

    Pt,ncil-brum A nfrnnas.-Bearr~s

    that

    ha re direr t ivit y bot h in eleva -

    t ion a nd a zimut h ma y be pr(xlllccd by a pa ir of dipole element s or by a

    dipole w it h a reflect ing pla te.

    The ma jor port ion of t he energy is con-

    t a ined in a cone ~ rit h a pex a ngle somew ha t less t ha n 180.

    F IG . 14 -.4. m ir mw a ~ c lm a ron a r ra y .

    S imila r bea ms a rc prodllced by horn a nt enna s t ha t permit cont rol

    of t he direct ivit y t hrollgh choice of t he fla re t ingle a nd t he n~ {)llt l] dimen-

    sions. H orns a re useful a t lo\ ver freq uencies a s J VC 1l s in t he rnicrolra ve

    region; indeed, t he ea r ly w or k on horn s Iva s don e for \ ~ t i\ -elen gt hsra nging

    from 50 t o 100 cm.

    More direct ive hea lns-t r lic pencil bemns-ca n be prt d~ lced b,v

    building up spa ce a rya ys of t he a lmw syst ems. T\ \ -,)-t iimensior la la rra ys

    (ma t tress a rra ys) a n{i mldt ,i,mit h orn syst ems a r c I IS C(Ia t l,,,-er freq uen-

    cies. Their dircct ivit y is severely limit ed, ho\ \ -ever , hy t l~ e ]nrt ll:mica l

    problems occa sioned by t he rcc(llired ra t io of (I imrnsions t o }f :L , t , -

    Iengt hs. S uch a rra ys ha ve not been employe(l in t lie micro~ ~ -a ve regif )n.

  • 7/28/2019 microondas magnticas en el espacio vectorial

    24/635

    $.Ec. 1.6]

    A S UR VE Y OF MI C R OWAVE AN TE N N A T Y PE S

    11

    At t hese w a velengt hs it becomes fea sible, a nd indeed very convenient ,

    t o repla ce t he t w o-dimensiona l a rra y t echniq ue by t he use of reflect ors

    a n d len ses .

    (a )

    (b)

    FIG . 1.5.P enci l-beam ant ennas .

    (a ) P a r a b oloid a I m ir ror ; (b) m et a l-pla t e len s. (Met cd -

    plate lens photo~aph courtes~ of the B ell Telephone Labordori e8.)

    H ighly direct ive pencil bea ms a re produced by pla cing a pa rt ia lly

    direct ive syst em such a s t he double-dipole unit , dipole-reflect or unit , or

  • 7/28/2019 microondas magnticas en el espacio vectorial

    25/635

    horn a t t he focus of a pa ra boloida l reflect or or x ccnt rosymrnet r ic lens,.

    The use t )f t hese devices is ba sed

    (J I I

    t h e r {)n cr I>t s of r a y opt ics, a (cor (lin x

    t o lvhich t hr reflect or or Ims t a kes t he dilcrgr t ]l ra ~ s fr

  • 7/28/2019 microondas magnticas en el espacio vectorial

    26/635

    S E C ,

    1.7]

    I M PE D AN CE 8PE CI F I CA T I ON S

    13

    On e of our ma jor problems w ill be t o est a blish t he rela t ionships a mong t he

    prima ry pa t t ern of t he a nt enna feed, t he proper t ies of t he opt ica l ele-

    ment s, a nd t he seconda ry pa t t ern ,

    (a )

    (b)

    F m. 1.6.An ten na s for pm a ucm g ifa r ed bea ms.

    (a ) S im ple fla r ed -bea m a n t en na ; (b)

    on e-s id ed f la r e d -h a m syste m.

    1.7. I mpeda nce S pecifica t ions.-The a chievement of a sa t isfa ct ory

    a nt enna pa tt ern is by no mea ns t he only problem t o be considered by t he

    a n t en na design er .

    I t is import a nt t ha t t he a nt enna pick up ma ximum

    pow er from a n incident w a ve a nd t ha t it ra dia t e t he pow er delivered t o

    it by a t ra nsmission line w it hout reflect ing a n a pprecia ble por t ion of it

    ba ck int o t he t ra nsmit t er . In ot h er w ords, it is import a nt t ha t t he

    a n ten na h a ve sa t isfa ct or y im peda n ce ch a ra ct er ist ics.

  • 7/28/2019 microondas magnticas en el espacio vectorial

    27/635

    The impeda nce problem in micro~ va ve a nt enna design t a kes on a

    some~ vha t specia l cha ra ct er beca use of t he cha ra ct er ist ics of ot her ele-

    ment s of t he syst em, pa rt icula rly t he t ra nsmit ting t ubes.

    Conventional

    t riode-t ube oscilla tors a re not genera lly useful in t he microw a ve region .

    This is due t o inherent limit a tions in t he t ube it self a nd t o t he fa ct t ha t ,

    element s in t he t a nk circuit no longer beha ve like lumped impeda nces.

    The self-resona nt freq ~ lency of t he ordina ry t ube is considera bly below

    t he microw a ve ra nge, a nd it is t herefore impossible t o design a pra ct ica l

    circuit , t ha t w ill oscilla te a t t he req uired high fre

  • 7/28/2019 microondas magnticas en el espacio vectorial

    28/635

    t rea tment of w a vefront s a nd ra ys.

    C ha pt er 5 dea ls w it h t he in t era ct ion

    bet w een elect roma gnet ic ~ va ves a nd obst a cles; t he genera l t h eory of

    reflect ors is h ere developed a s a bounda ry-condit ion problem, a nd a

    discussion is given of t he rela t ion bet ~ veen t his t heory a nd convent iona l

    diffra ct ion t heory , w hich a lso finds a pplica tion t o microw a ve a nt enna

    problems. Fina lly, C ha p. 6 a pplies t his t heory in t rea t ing one of t he

    funda ment a l problems of a nt enna designt he rela t ion bet ween t he field

    dist r ibut ion over t he a per t ure of a n a nt enna (such a s a lens or reflect or)

    a nd it s seconda ry pa t t ern.

    C ha pt er 7, on microw a ve t ra nsmission lines, serves a s in t roduct ion

    t o t he cha pt ers on a nt enna feeds: dipole feeds, linea r a rra ys, a nd horns.

    Of t hese t ypes a ll but t he first ha ve found a pplica tions a lso a s complet e

    a nt enna s; t hese a pplica t ions w ill be indica ted in t hese cha pt ers.

    A cha pt er on lenses precedes t he t rea tment of more complex a nt enna

    syst ems w hich is orga nized a ccording t o t he t ype of bea m t o be produced:

    pencil bea ms, simple fa nned bea ms, a nd more complexly sha ped bea ms.

    When a n a nt enna is inst a lled on ground or a ship or a irpla negenera lly ,

    enclosed in a housingit s performa nce is modified from t ha t in fr ee

    spa ce by it s enclosure a nd neighboring object s. The subject of a nt enna -

    iust a lla tion problems is discussed briefly t o a cqua int t he engineer w it h

    t he phenomena t ha t ma y be expect ed t o occur a nd some of t he current ly

    know n solut ions of t he problems.

    The concluding cha pt ers provide a st a t ement of t he ba sic t echniq ues

    of a nt enna mea surement s a nd a descr ipt ion of cert a in t ypes of mea sur-

    ing eq uipment t ha t ha ve given sa t isfa ct ory service in t he Ra dia t ion

    Laboratory .

  • 7/28/2019 microondas magnticas en el espacio vectorial

    29/635

    2.1.

    C H AP TE R 2

    C I RC U IT RE LATI ONS , RE CI P ROC I TY TH EORE MS

    B Y s. S I I .VE R

    I nt rod uct ion . h ch c cir cu it t h eor y con sid er a t ion s a n d t ech niq ues

    cha ra ct er ist ic of low -f req ~ lency ra dio vw rk do not ca rry over in a simple

    ma nner t o t he microlra ve region .

    Thus, for exa mple, in t rea ting a cir-

    cuit element a s a lumped impeda nce,

    it is a ssumed t ha t t he curr ent

    (a nd volt a ge) a t a ny given inst a nt ha s t he sa me va lue a t ever y point in

    t he clement . This a ssumpt ion is va lid if t he dimensions of t he circuit

    element a re sma ll compa red w it h t he w a velengt h , w it h t he result t ha t

    t he ph ase differen ces bet w een sepa ra t ed point s in t he element a re negligi-

    ble. I f, ho~ vever , t he w a velengt h becomes compa ra ble t o t he dimensions

    of t he element , t hese pha se differences become significa nt ; a t a given

    inst a nt t he cur rent a t one point in t he element ma y be pa ssing t hrough

    it s ma ximum va lue, ]vhile a t a not her point it is zero.

    In such ca ses t he

    circuit element must be rega rded a s a syst em of dist r ibut ed impeda nces.

    The ext ension of convent iona l circuit t heory t o microl$-a ve syst ems

    is fur t her complica ted by t he use of circuit element s such a s w a veguides,

    in w hich volt a ges a nd current s a re not uniq uely defined. The a na lysis

    of t hese element s must be a pproa ched from t he point of view t ha t t hey

    ser ve t o g~ lide elect roma gnet ic \ va ves; a t t ent ion is cent ered on elect r ic

    a nd ma gnet ic fields ra ther t ha n on volt a ge a nd current . The fina l result

    of t he field t heor y a na lysis is t ha t under s~ lit a ble condit ions~ ~ h ich a re

    genera lly encount ered in pra ct icea lva veguide ca n be set in t o eq uiva -

    lence w it h a t w o-w ir e t ra nsmission line in ~ vhich t he funda ment a l qua n-

    t it ies a re volt a ge a nd current .

    The la t t er a re direct ly rela t ed t o t he

    w a veguides elect r ic a nd ma gnet ic fields, respect i~ -ely . 1 B y mea ns of

    t his equiva lence t he concept s of impeda nce, impeda nce ma tching, a nd

    loa ded lines a re ca rkied over t o ~ v avegllides.

    A w aveguide ca n it self be t rea ted a s a syst em of dist r ibut ed imped-

    a nces. i)ist r ibut ,ed impeda nces a re t rea ted in t he sa me ~ va y a s lumped

    impeda nces, by use of K irchhoffs current a nd volt a ge la lm for net works.

    A syst em of dist r ibut ed impeda nce ca n, in fa ct , be repla ced by a net lv(jrk

    of lumped-impeda nce element s. The la t t er differ from t he convent iona l

    ra dio-circuit element s in t ha t t heir impeda nce is a t ra nscendent al func-

    I Th e su bject is t rm t ed in ( h a p. 7.

    A fl[ll t r r a t m m t of t h e ext [~ lw i [,]]f r iw I I I t

    t h w r y t o w : lv (g ui(lc+ \ r i

    11LL foun{i i,] }-:)1 8 of this .wui{s,

    16

  • 7/28/2019 microondas magnticas en el espacio vectorial

    30/635

    t ion of freq lleucy ra ther t ha n a n a lgeljra ie funrt i{)n. B y mea ns of t llesc

    equ iv a lent l ll rr lpr {i-eler r lell t net \ \or k s,

    t he net \ \(J r fi t heorems t ha t a re

    a pplica b le t u lolr -fr efl~ len r y l~ llll])ecl-elelll[t lt n et lvor fis a r e ca r lied ov er

    t o syst ems \ \ it h dist ril)ut ed impeda n ce

    1he frost pt ir t of t his cha pt er

    \ vill r ev iew s ever a l n ct }i-or k t h eor em s

    LLnd t}le

    t ]vo-}rir .e t r:L r]sr]lissi(jI1-liIle

    t heory t ha t a re I lsed in micr t jj :~ vc circuit t heory.

    1he s (l ljject s \ \ i llbe

    t rea ted br iefly , t he rea der I )eing refer red t t ) st a nd:lrd t ext s for mor e

    com plet e discussion s :~ n (l pr oofs of t ile result s q llot ed h em .

    The rela t ion Ix%veeu a t ra nsmit t ing a nd u mceir ing a nt enna a lso

    ca n be expresse(l in t erms of a n eflllivt ilcnt net ll or k.

    In t his \ ra y on e

    ca n a rr ive a t a reciprocit y t heorem J I hich rel:~ t es t he t ra nsmission cha r-

    a ct erist ics of a n a nt enna t o it s receiling cll:t r~ lct t list i(s. of pa rt icula r

    import a nce t o a nt enna ([esigr l is t ile fa ct , proved I )y I Iscef t he r eciprocit y

    t heorem, t ha t t he t ra nsmit t ing pa t t ern of a n a nt enna is t he sa me a s it s

    receiving pa tt ern. The reciprocit y t heor em \ vill be discussed in t he

    I a t t er pa rt of t his cha pt er .

    2.2. The Four-t ermina l Net work. I .et usconsider a n a rl)it ra ry net -

    nw rk, fr ee from genera tors, ma de 11P of linea r bila t era l element s. A

    linea r bila t era l element is one for

    ~ 1

    \ ~ hich t he rela tion bet ~ veen ~ olt a ge ~ .

    i2

    Oc

    a nd current is linea r:

    V =

    IZ,

    (1) ~ j

    1

    a2

    OD

    w her e t he va lue of t he impeda nce Z

    FI O.21.-IJ our-t cr]rlird net w ork.

    is independent of t he direct ion of t he

    volt age drop a cross t he element .3

    F or con ven ien ce t he n et ~ ~ ork \ vill be

    pict ured a s enclosed in a box a nd present ing t o t he out side only a pa ir

    of input a nd a pa ir of out put t ermina ls.

    Th is is illu st r a t ed s ch em a t ica l ly

    in Fig. 2.1. A boxed net ]~ ork of t his t ype is r efer red t o a s a four-t ermina l

    or t w o-t er min a l-pa ir n et w or k.

    The net w ork a s a unit involves four qua nt it ies: t he current i,, t he

    volt a ge drop VI from :4 t o n, t he mlrrent L, a nd t he volt a ge dr op Vz

    from C t o D . In conse(luence of t he linea r proper t y [F ;q . (l)] of ea ch

    component element of t he net \ vork, t he rela t ions bet ween t he, volt ages

    Vl, Vz a nd t he current s il, i, a re linea r:

    VI = Z1lil Z12i2j

    V2 = Z21i1 Z22i2.

    }

    (2)

    1 W. L . E v er it t , C om m un icd fon E n g in per ir q ,

    l lfcCr :Lw-Hill ,New York, 1937;

    E. A. G uil lcmin,CowLmunica I ionVe~mrks,Vols. 1, 11, l~ ilr y , Xm- Yor k , 1931;T. E .

    S hea ,

    T ransmi ssi on V dw;or ks md I T -W. F i ller ,

    Y : in Nostra nd,New lork, 1 129,

    z S ee C hap . 1 for t he def in it ion .sof t hesep at t er ns

    3I t is a s su medt h a t w e a r e d ea l in g w it h a sin glefr eq u en cy ,t h a t bot h t h e volt a g e

    a n d cu r ren t d epen d on t im e t h r ou gh t h e s a m e fa ct or e~ u ~ .

  • 7/28/2019 microondas magnticas en el espacio vectorial

    31/635

    18

    C I R C U I T R E L A 7 ON J S R E C I PR OC I T Y 7H hOE E M S

    [SE (. 22

    The impeda nce coefficient Z,, is t he input impeda nce a t All w hen CD

    is open-circuit ed (zZ = O); simila rly ZZZ is t he input impeda nce a t

    CD

    w hen Al? is open-circuit ed. The qua nt it ies Z,, a nd Z21 a rc know n a s

    t he t ra nsfer impeda nce coefficient s of t he n et w ork. As a result of t he

    bila tera l proper t y of t he component element s of t he net w w rk, t he t ra nsfer

    im peda n ce coefficien ts sa t isfy t he r ecipr ocit y r ela t ion l

    Z,2 = Z21,

    (3)

    As a n a l~ erna t ive t o t he rela t ions expressed by 13q . (2), t he current s

    ma y be expressed a s linea r funct ions of t he volt age:

    iI = Y1l V1 F12V2,

    iz = Y21V1 Y2212. } (4)

    The a dmit t a nce coefficient Y,, is t he input a dmit t a nce a t All w hen t he

    terminals

    CD

    a re short -circuit ed; Yz2 is t he a dmit t a nce a t C D \ vhen

    A B

    is short -circuit ed; a nd Ylj, YZ1 a r e t he t ra nsfer a dmit ta nce coefficient s.

    The la t ter coefficient s sa t isfy a reciprocit y rela t ion

    Y,2 = Y2,

    (5)

    in t he ca se of bila tera l element s. Th e im peda nce a nd a dm it ta nce coeffi-

    cient s of t he net w mi-k a re rela t ed:

    Y ,, = y;

    y,2 = :;1; yz, = ylz = ~,

    (6)

    where

    A = Z,IZ22 Z,ZZZ,.

    (7)

    B y vir t ue of t he reciprocit yy rela t ions, [E qs. (3) a nd (5)], t he net w ork

    ha s only t hree independent pa ra met ers, C onseq uent ly it ca n be repla ced

    by a net w ork of t hree lumped-im-

    TYA:DZ

    peda nce element s a rra nged in t he

    form of eit her a T- or ~ -sect ion a s

    show n in Fig. 22. The imped-

    a n ce elem en ts of t he T-sect ion a r e

    B

    T-sect,on

    D B

    r -

    sect,..

    D

    designa t ed by Z,, Z2, Z~ . In t he

    I]o. 2.2.h-a nd m-sect ionequiva lent sof :L

    ca se nf t he H -sect ion it is m or e con -

    four-terminalnetwork.

    venient t o (Ise a dmit t a nces; t he

    element s a re designa t ed by YA =

    l/ZA,

    YE = l/Z3, Yc = l/ZC. The

    r ela t ion s bet w een t he elem en ts of t h e r educed n et w or ks a n d t h e coefficien ts

    of E qs. (2) a nd (4) a re

    a . T-sect ion :

    ZI = = Zll Z,2,

    Z2 = Zn z,,,

    1

    (8)

    Z3 = Z12,

    1~ . ,1. G uillerllill, op.

    cd.,

    Vols. I , I I, Wiley , N ew Yor k, 1331, pa r t icula r ly

    Vol. 1, ~ h a D . I V.

  • 7/28/2019 microondas magnticas en el espacio vectorial

    32/635

    S E C .2.3]

    T H E R A Y L E I C H I { E C I I K WI T I T H J ?OR E i bl

    19

    b.

    II-section:

    Y,4 = YI1 Y12,

    Yc = Y22 Ylz,

    /

    (9)

    Y, = Y12.

    The rela t ions bet w een t he T- a nd I I-sect ion element s for one a nd t he

    sa me four-t ermina l n et w ork a re gi~ en by

    (10)

    w here t he qua nt it y A is t ha t defined in E q . (7).

    The net w or k ca n a lso be cha ra ct er ized by a ny t hr ee of t he follow ing

    mea sura ble q ua nt it ies: t he input impeda nce a t A B \ vhen C D is short -

    circuit ed, t he input impeda nce a t A B \ vhen C D is open-circuit ed, t he

    input impeda nces a t C ~ w hen AB

    is open-cir cu it e d or s hor t -cir cu it e d,

    The rela t ions bet w een t hese qua n-

    t it ies a nd t he impeda nce coeffi-

    cient s or t he I - a nd I I-sect ion

    elem en ts ca n ea sily be der ived fr om

    E q s. (2) a nd (8) or (9); t hey a r e

    given explicit ly by E ver it t . 1

    2.3. The Ra yleigh Reciprocit y

    Th eor em .Th e r ecipr ocit y r ela t i on

    bet w een t he t ra nsfer impeda nce co-

    efficient s given in E q. (3) is funda -

    ment a l t o t he va rious recipr ocit y

    t heorems pert a ining t o net ]vorks.

    Ml of t hese t heorems a re va ria nt s

    of t he genera l t heorem der ived by

    Ra yleigh. The pa rt icula r form of

    (a )

    a32

    b)

    l:l

  • 7/28/2019 microondas magnticas en el espacio vectorial

    33/635

    20 CIR~l 17 R E L A T1OV,S , R I ?(lPR ()([71 T I I l

  • 7/28/2019 microondas magnticas en el espacio vectorial

    34/635

    S E C .25]

    T H E T WO-WI R E TR AN S MI S S 1O.V L I N E

    21

    C onsider t hen t he ca se in w hich t he loa d Z. is fed by t h e gen era t or t hrough

    a four-t ermina l net }vor k, t h e genera t or emf being l~ a nd t s int erna l

    impeda nce Z. (Fig. 2.4). The four-t ermina l n et w or k ma y be r epla ced

    by it s T-sect ion eq uiva lent a s show n. B y Th6venins t heorem t he S YS -

    t em is eq uiva lent t o a gener a t or of emf

    VCZIJ(ZI, + Z.)

    a nd int erna l

    impeda nce 212 Z~ J (Zli + ZG )

    feeding t he loa d impeda nce Z. di-

    V(z

    v(z+ r12)

    rect ly . I t follow s t hen t ha t ma xi-

    ~

    m um -pow er t ra n sfer w ill be a ch ieved

    w it h a loa d t ha t is t he complex con -

    ; ; ,(z)~

    + Z

    juga te of t h e in t erna l impeda nce of

    ,_7(z + (/2)

    t h e effect ive g en er a t or :

    1

    (2:2)

    z. = 2;2 ~ +

    z:

    (12)

    2.5. Th e Tw o-w i re Tr a nsm ission

    Line.-0ne of t he most import a nt

    d ist ribu ted -im ped a nce sy st em s fr om

    t he point of view of a nt enna t h eor y

    is t he t w o-w ire t ra nsmission line. 1

    -7or t he pr esent t he line ~ vill be con- - ~ ,

    sidered in it s convent iona l form, a s a

    I

    I

    I : lG.25.-rw w irere line,

    pa ir of linea r conduct ors in a pla ne,

    w hich support t h e propa ga t ion of a w a ve of w a velengt h sma ll com pa red

    w it h t he lengt h of t he lines The problem of in t erest is t he dist r ibut ion

    of volt a ge a nd curren t a long t he line for a w a ~ ~ eof single freq uency , in

    w hich t he volt a ge a nd curr ent va ry w it h eiui.

    The line is show n schema t ica lly in Fig. 2.5 as a pa ir of pa ra llel \ vires.

    In genera l, h ow ever , t he spa cing bet lveen t be }vires ma y va ry a long t h e

    line; t he only rest r ict ion imposed is t ha t t he line ha ve a n a xis of sym-

    met ry . P osit ion a long t he line is specified by t he coordin a t e z a long

    t he symmet ry a xis. I t is fur t her a ssumed t ha t t he ]ille is isola t ed from

    pert urbing object s, so t ha t a t a ny posit ion a long t he line t he curr en t s

    a t ever y inst a nt ma y be eq lml a nd opposit e in t he t ]vo component , lines.

    The pr oper t ies of t he line a re specified by it s dist r ibut ed pa ra met ers:

    (1) t he ser ies impeda nce per unit lengt h,

    3(2) = I i(z) + jd(z),

    (13a)

    w here R(z) is t he ser ies resist a nce a nd L(z) t he ser ies induct a nce per

    unit lengt h, t a king bot h com ponent lines t oget her , a nd (2) t he shunt

    W. L. E vcr it t , op. cit . F or a ver y com plet e t rea t men t th e m a dcr is rcfm rx,d

    t o I t . WT.K in g, H . I t . Nfim no,.\ . H . \ Vin ,q ,Transmission

    Li7Les , .I rttenrzas , ad

    11w e

    C(,ifk.s,

    MrGra v-Hil l, \Tcw York, 1945, (ha p. 1.

  • 7/28/2019 microondas magnticas en el espacio vectorial

    35/635

    22 C I R C U 17 I f l/ 1T I O.Y S , 1{1{611l{U C1 I Y lH E Oli 8.%l,?

    [s);,, 2.5

    a dmit ta nce per unit lengt h,

    71(z) = G (z) + juC (.z),

    (13b)

    w h ere G (z) is t he t ra nsverse conduct a nce a nd C (z) t he ca pa cit a nce per

    unit lengt h bet ween t he component members of t he line.

    Th ese pa r a m-

    et ers ma y be funct ions of posit ion beca use of va ria t ions in t he cond~ lct ors,

    in t he spa cing bet lveen t he la t t er , or in t he st ruct lu-e of t he surrounding

    d ielect r ic m ed iu m.

    Ta king eit her conduct or for reference, let i(z) be t he current a t t he

    point 2 a nd V(z) t he volt a ge drop from t he referen ce conduct or t o t he

    ot h er member a t t he sa me point .

    To obt a in t he spa ce dependence of

    i(z) a nd V(z), consider a sect ion of line of lcngt h dz a bout t he point z.

    Applying Ohms la w, \ ve ha ve

    V(2 + dz) J (z) = i(2)m3(z) dz

    a nd

    i(Z + dZ) i(Z) = ~ (Z)y?(Z)

    dz

    for , respect ively , t he ser ies a nd shunt rela t ions a cross t he element of

    line. The t erms on t he left -ha nd side, by use of Ta ylors t heorem,

    b ecom e (d V/d z) dz a nd (di/dz) ck respect ively . Thus t he different ia l

    eq ua t ions of t he line a re found t o be

    dV =

    z

    (~(z)i(z),

    di

    dz =

    m(z) v(z).

    (14G)

    (14b)

    S e con d -or d er d iffer en t ia l

    obt a ined by elimina ting

    t h es e eq u a t ion s:

    a :y _ [

    eq ua t ions for volt a ge a nd current a lone a re

    volt a ge or current from one or t he ot her of

    (15a)

    (15b)

    From a genera lized p~ ~ int of view , E qs. (14) ra n be rega rded a s t he

    defin it ion of a t w o-w ire t ra nsmission line. Tha t is, given a physica l

    syst em support ing a w a ve w it h t ime dependence ew ~ ,t he propa ga tion

    of w hich is expressible in t erms of a single coordina t e z a nd t w o qua n-

    tities

    (i, V)

    rela ted by equa tions of t he form of E qs. (14), it is possible t o

    set up a t ~ vo-w ire line represent a t ion for t he syst em.

    The volt a ge a nd

    current of t he eq uiva lent line a re direct y proport iona l t o t he w a ~ e qua n-

    t it ies ent er ing t he different ia l equa tions, a nd t he ser ies impeda nce a nd

    shunt a dmit t a nce per unit lengt h of t he eq uiva lent line a re proport iona l

    t o t he coefficient s of t he w a ve qua nt it ies in t he different ia l equa tions.

  • 7/28/2019 microondas magnticas en el espacio vectorial

    36/635

    S m. 26] 1H E H O M OG I lN E (31i ,V 71{.4 .V ,V , ll,~,~I O.V I ,l:vl 1,

    /

    ~ = ~ o if

    R

    1

  • 7/28/2019 microondas magnticas en el espacio vectorial

    45/635

    32

    C I R C U I T R E L A TI Oi V S , R J 7CI PR OCI T Y T H E OR E M S [SEC. 2.8

    This follow s from t he fa ct t ha t r is rea l w hen ~ is rea l a nd from t he rela -

    t ions of E q . (47) bet w een t h e va lue of ~ w h en it is a rea l num ber a nd t h e

    st a ndin g-w a ve ra t io.

    To illust ra t e t hese rela t ionships let us suppose t ha t t he st a nding-w a ve

    ra t io r ha s been mea sured on a given line, t oget h er w it h t he posit ion of

    a volt a ge minimum; t he reflect ion coefficien t a nd impeda nce a re desired

    a t a point a dist a nce 1 from t he minimum posit ion a w a y from t h e gen -

    erator .

    I t ~ rill be reca lled [E q . (46 b)] t ha t a t a ma ximum posit ion t he

    pha se of r is equa l t o m; r is t hen direct ed a long t he nega t ive rea l axis

    The im peda nce a t t his point is rea l, being R/Z~ = l/r . The vect or ~

    t hus ext encls from t h e origin t o t h e circle correspondin g t o

    R/ZO =

    l/T-.

    C oun t erclockw ise rot a tion of t his vect or t hrough a n a ngle 2@ ca rr ies us

    t o t he desired poin t on t h e cha r t ; t h e com ponent s of f a t t ha t point a re

    rea d off from t he pa ir of in t ersect ing circles. I t w ill be not ed on F ig.

    27 t ha t t he per iph ery of t he cha rt ca r r ies a pha se a ngle sca le w it h t h e

    pha se designa ted by t he ra tio of line lengt h t o w a velen gt h .

    Th e S mit h cha rt ca n a lso be used t o st udy t he a dm it t a nce t ra nsform a -

    t ion . F irst it should be n ot ed t ha t t h ere a re t w o conven t ions for t h e

    defin it ion of a dmit t a nce. The con vent ion a dopt ed in t his book defines

    t h e norm a lized a dmit t a nce q = (G / Yo) + j(B / I 0) t o be t h e reciproca l

    of t he norma lized impeda nce { = (R/ZO) +

    j(X/Zo);

    posit ive suscepta nce

    B t hus correspon ds t o nega t ive (ca pa cit ive) rea ct a nce. Th e ot h er

    conven t ion defines t he a dm it t a nce t o be t he conjuga te of t h~ reciproca l

    impeda nce, in or der t ha t posit ive suscept a nce (like posit ive rea ct a nce)

    should be in duct ive.

    The use of t h e la t t er con vent ion cha nges t h e use

    of t he ch a rt in w a ys w hich t h e rea der ca n ea sily develop.

    E q lla t ion (36) gives t he rela t ion bet lreen t he a dm it t a nce a nd t h e

    v olt a g e r eflect ion coeiiicien t :

    lr

    = l+ r

    I ,et us define a ne]r coefficien t

    T= r (51)

    a nd a ssocia te I r it h it a com plex pla ne ~ vit h a xes ~ R e a nd 11~ .

    (Actually

    t h e sa me com plex pla ne serves for bot h I_a nd T, t he t w o vect ors m a king

    a n a ngle of 180 ~ ~ -it hea ch ot h er . ) The vect or T is, in fa ct , t he curren t

    rejection coefficient,

    expressing t h e ra t io of t he a mplit ude of t he reflect ed

    curren t ~ va ~ -et o t h e a mplit ude of t h e inr iclent current w ave.

    Th e la w

    of t ra nsforma t ion of 1 a lon~ t h e line is )w ciw ly t h e sa me a s t ha t given

    for r by E q . (49). On subst it ut ing 11~ . (51) in t o t he i-ela t ion bet w een q

    a nd r , w e obt a in

    1+ r

    = lT

    (52)

  • 7/28/2019 microondas magnticas en el espacio vectorial

    46/635

    G /Y, = const a nt a re a fa mily of circles t ha t coincide w it h t he const a nt

    R/ZO fa mily in t he ~ -~ t r t iusfornmt ion a nd t ha t t llc clu~ mB /}-O = con-

    st a nt coincide ~ r it h t he .YjZO circles.

    I i-it h rw pcct ([) t l]e l:~ t t er it

    should be not ed (in using t he cll:w t for a dmit t a nce) t ha t t he curves lying

    in t he upper ha lf pla ne r epresent ca pa cit ive slw cept a m,e.

    he dis-

    t inct ion t ha t need be ma de l)et ~ w xm t he use of t ile cha rt for impml:mce

    a nd a dmit t a nce ca n he m:de clea r by considering t ile pr(]l)lem of fin[ling

    t he a dmit t a nce a t a point dist :mt 1 from a volt a ~ c nlinin~ ~ l]n in t ile (lirm-

    t ion a lva y from t he gener :lt or , t he st a ndin~ -i~ :hvc mt io :L*a in I w ing r .

    At a v ()lt a g e n lin in lllr ~ l llliesa l c~ r lg t }len cg :~ t ilel e:ll:~ \ i~ ;lle1l(e ~ ext en ds

    a long t he posit i~ -e r ed a xis t o t he cirr le

    G

    l,

    = r .

    The st a rt ing point t hus lies on t he posit ire rra l a xis, inst ra d of on t lw

    nega tive a xis, lIoving a long t he line :L\ Ya yfrom t llc gcnr);lt ol :L~ :lin

    r ot a t es T in t he posit ive sen se (collr lt c,r (,lt i(k}t isr ) t llrollgl~ a n :L ]lglr 21j~ .

    The a dmit t a nce a t t he ne~ r point is (lct ernliuml from t ile ll:~ ir t )i in t (,r-

    sect ing coordina t e curves, jllst a s in t ile c:w c of t lw inllmi:lncr . I t

    should be clea r t ha t t he a dmit -

    A

    t ance a nd impeda nce point s on t he ~ ~ , (%)

    S mit h cha r t for one a nd t he sa me

    pnint on t he line a re dia met r i-

    ca lly opposit e t o one a not her ,

    Th e S mit h ch a r t is p:llt ic[lla r ly

    suit ed t o t he st lldy of :m imlw d-

    a nce misma t ch t ha t a rises fr t )rn

    t he superposit ion of rcflrct ions.

    &

    Forexample, thereln:~ yl)(, fi~(, li rs

    Ir l

    .,

    of dlscont mu it ies on a t r :~ nsnlis-

    sim lin e; t he over a ll r efler(i(}n cc)-

    efficient a t a given point ) is, t o a

    good a pproxima t if)n, t l~ e ler t (jr

    sum of t he reflw ,t ion c(mffi(irn t s

    11

  • 7/28/2019 microondas magnticas en el espacio vectorial

    47/635

    34 C I R C C I T R E L A T I O.V S , R E CI PR OCI T Y T H E OR E M S

    [S E C 2 t 3

    ha lf pla ne cont a ining t h e posit ive rea l a xis comes under considera t ion .

    The impeda nce (a dmit t a nce) is represent ed in t his pla ne by a vect or

    from t he origin. Wit h r efer ence t o t he a dmit t a nce w e not e a ga in t ha t it

    is t a ken her e t o be t he reciproca l of t he impeda nce.

    One a nd t he sa me

    pla ne serves for bot h impeda nce a nd a dmit t a nce; F ig. 2.8 show s t he

    rela t ion bet w een t he impeda nce a nd a dmit t a nce point s in t he pla ne

    for a given point on a t ra nsmission line.

    Th e im peda n ce t r a nsfor ma t ion

    (2.30)

    does not t a ke so simple a form in t he ~ -pla ne a s did t h e reflect ion coeffi-

    cient t ra nsforma tion in t he T-pla ne. D ispla cement a long t he line pro-

    duces a cha nge in bot h t he ma gnit ude a nd pha se of t he impeda nce.

    The geomet r ica l t ra nsforma t ion is simplified by in t roducing t w o

    fa milies of circles: t he curves ]r l = const a nt a nd t h e curves r-pha se =

    constant .

    These curves a re obt a ined from t he 17-~ t ra nsforma t ion

    r = (~ 1)/({ + 1) of E q . (30). Writ ing r = {r]e@, w e find t ha t

    a nd

    ,r,2=(:-)2+EY

    (E+)2+(9

    ()

    an(a:h

    hese ca n be rew r it t en a s

    respect ively . I t w ill be seen t ha t t he curves I I = const a nt a nd@ = con -

    st a nt a re circles. The circle for a given II 1 ha s it s cen t er on t he rea l

    a xis a t a dist a nce (1 + I r l 2)/(1 Ir] 2, from t he origin ; it s ra dius is

    21rl/(1 Ir lz). C urves of const a nt I r I a re a lso curves of const a nt

    st a nding-w a ve ra t io. B y E q . (43 b), w e find t ha t t h e cen t er of t he circle

    is a t (T2 + 1)/2r a nd t ha t it s ra dius is (rz 1)/2r. The circle in t ersect s

    t he rea l a xis a t t he point s l/r a nd r , corresponding t o t he va lues t ha t w e

    obt a ined previously [E q . (47)] for t h e impeda nce a t t hese point s on t he

    line w her e it is rea l. These t w o point s on t he cha rt t hus correspond t o

    point s on t he line a t w hich t h e volt a ge minima a nd volt a ge ma xima ,

  • 7/28/2019 microondas magnticas en el espacio vectorial

    48/635

    %c. 2.8]

    71{.1 .Y,SI ,OR .\ fA 11O.1- (H A 1

  • 7/28/2019 microondas magnticas en el espacio vectorial

    49/635

    36

    C I R C C I T R E I ].4 T I O.J -,S , R I

  • 7/28/2019 microondas magnticas en el espacio vectorial

    50/635

    a ge a nd current a t t he out put end z = 1.

    F rom t h elin e eq ua t icm slI ;q s.

    (18) a nci (19)] l~ e ha ve t hen

    2=():

    v, = A+ . 42,

    Zl =

    ,1-

    .41 AZ);

    Ao

    2=1:

    T2 = .4,(7~ + A2c7~ ,

    1

    i2 = r-- (41@ ~ 2(j7/),

    k

    U sing t he t w o current eq ua t ions t o solve for (I , a nd Aj in t erms of i,

    a nd

    iz

    a nd subst it ut ing in t o t he volt a ge eq lmt ions, ~ ve obt a in

    VI =

    Z,lil

    Z,2i2,

    V2 = Z21i~ Z22i2,

    1

    (55)

    wi th

    Z,, = Z,, = Z,cot h(~ l), (56a )

    Z12 = 22, = Z, csch (71).

    (56b)

    We t hus find direct ly t ha t t he net w ork is linea r a nd t ha t t he t ra nsfer

    impeda nce coefficien ts sa t isfy t he recipr ocit y r ela t ions.

    S ince t he line

    is homogeneous, t he net work is symmet rica l ~ vit h respect t o it s t I ro ends;

    hence Z,, = Z,z. F or a nonlossy line ~ = j~ ; on subst it ut ion in t o t he

    a bove, t he net w ork pa ra met ers a re found t o be

    Z,, = ZZ2 = jZO cot fil,

    (57a)

    Z12 = Z,, = jZO csc fit .

    (57b)

    TRANSMITTING AND REC EIVING ANTENNAS

    2.10. The Ant enna a s a Termina ting I mpeda nce.The impeda nce

    rela t ions bet w een a t ra nsmit t ing or receiving a nt enna a nd it s t ra nsmis-

    sion line a re of pa rt icula r in t erest .

    In t he follo~ y ing sect ions severa l

    genera l idea s t ha t a re a ssocia ted w it h t he a na lysis of t hese rela t ions w ill

    be discussed. I ,et us consider first t he ca se of a line feeding a t ra nsmit -

    t ing a nt enna . I t w ill be a ssllmed for t he presenk t ha t t he a nt enna is

    isola tedin pa rt icula r, t ha t it is removed from a ll ot her a nt enna sso

    t ha t int era ct ions w it h ot her syst ems need not be considered. The

    a nt enna fllnct ions like a dissipa t ive loa d on t he line in t ha t it ext ra ct s

    pow er from it ; pa r t of t his energy is ra dia t ed int o spa ce, a nd pa rt is

    dissipa ted int o hea t in t he a nt enna st r {lct ~ n-e. In genera l, t he a nt enna

    does not a bsorb a ll of t he pofver incident on it from t he line b~ lt gives r ise

    t o a reflect ed I ra ve in t he line; in effect t lw line is t m-mina t ml bv a n

    im ped :m ce d iffr r en t fr om it s cli:~ l:~ (t cl.is t it i m ped a n re.

    I loivever , t he

    definit ion of t he t rrmina l imped:mre reprrw nt ing t he a nt enna is not fr ee

    fr om a m bigllit y a n d r eq llir es som e C on si(lr mt ion .

    I t is t o be not rd first t h :lt t he definit ion of a t erminfil impw la nrr

  • 7/28/2019 microondas magnticas en el espacio vectorial

    51/635

    ,

    38

    CI RCC71T R E I ,A TI O.VS , R I ? C PR OC T1 T H E OR E MS

    [S E C . 2.10

    implies t he ident ifica t ion of a driving point , or set of input t ermina ls, for

    t he a nt enna . In some ca ses, such a s t he ha lf-w a ve dipole or rhombic

    loop a nt enna s fed from a t w o-w ire line a s illust ra t ed in Fig. 1.2, t he

    st ruct ura l discont inuit y bet }f-een t he line a nd t he ra dia tor sllggest s a

    driving point . lhis, how ever , is not enough; it is necessa ry t ha t t he

    current dist r ibut ion in t he line be t ha t cha ra ct er ist ic of a t ra nsmission

    line up t o t he a ssigned driving point .

    At long w a velengt hs t his condi-

    t ion is rea lized w it h t he a nt enna s cit ed a bove: t he int era ct ion bet w een

    t he a nt enna a nd line ca n be represent ed by a lumped rea ct ive impeda nce

    a cross t he driving t ermina ls in pa ra llel w it h t he impeda nce cha ra c-

    t er ist ic of t he a nt enna it self.

    At short w a velengt hs, how ever , t he in t er-

    a ct ion bet w een t he ra dia t ing syst em a nd t he line ca uses a per t urba tion

    of t he current dist ribut ion on t he la t t er t ha t ma y ext end ba ck over a n

    a pprecia ble dist a nce; elect rica lly t her e is n o poin t of t ra nsit ion fr om t ra ns-

    mission-line cur ren ts t o a nt enna curren ts.

    This is a pa rt icula rly cogent

    point in t he ca se of microw a ve syst e,ms t ha t ma ke use of w a veguide

    lines, in w hich t he elect roma gnet ic fields exist in t he form of a number of

    modes.1

    A w a veguide is equiva lent t o a t w o-w ire line only w hen it is

    support ing propa ga t ion of a w a ve in a single mode.

    Microw a ve lines

    a re, in fa ct , genera lly so designed t ha t t hey ca n support free propa ga tion

    of only on e mode. Nevert heless, t hough a single mode is incident on t he

    a nt enna , t he a nt enna it self excit es ot h er modes, in a ddit ion t o giving rise

    t o a reflect ed w a ve in t he incident mode.

    I t is only a t poin t s so fa r

    from t he a nt enna t ha t t he ot her modes ha ve been a tt enua ted t o negligible

    a mplit udes t ha t a w a veguide is eq uiva lent t o a t w o-w ire line.

    Attention

    should a lso be ca lled t o t he a bsence of a unique driving point in ca ses

    w here t he t ra nsit ion from t he line t o t he ra dia t or is effect ed by a con-

    t in uous st ruct ur a l t ra n sit ion . An exa mple of t his is a w a veguide fla ring

    gra dua lly int o a horn w it hout st ruct ura l discont inuit ies in t he w a lls.

    In t hese ca ses, a ga in, t he t ra nsit ion from t ra nsmission-line current s t o

    a nt enna current s ca nnot be loca lized t o a point .

    The a ct ion of a n a rbit ra ry a nt enna a s a t ermina l loa d on t he line ca n

    be specified in t erms of t he reflect ion coefficient r mea sured in t he t ra ns-

    mission line, a t a point so fa r from t he a nt enna t ha t it s only effect is t he

    product ion of t he reflect ed t ra nsmission-line w a ve. At a ny point in t he

    t ra nsmission-line r egion a n impeda nce (or a dmit ta nce) ca n be det er min ed

    from t he mea sured r , by mea ns of E q . (30); t his ca n be t a ken a s t he loa d

    impeda nce t ermina t ing t he line a t t ha t point .

    F urt hermore, a ny such

    point ma y be rega rded a s t he junct ion bet w een t he line a nd t he input

    t ermina ls t o t he a nt enna in so fa r a s t he pra ct ica l a na lysis of t he syst em

    is concerned .

    This ra ises t he quest ion of t he represent a t ion of a n a nt enna by a n

    equiva lent net ~ vork. There is no unique net w ork a ssocia t ed w it h a

    1Se e C ha p . 7.

  • 7/28/2019 microondas magnticas en el espacio vectorial

    52/635

    SE

  • 7/28/2019 microondas magnticas en el espacio vectorial

    53/635

    40

    C I R C U I T 12E L A T I ON S , R E C I PR OC I T Y T H E OR E M S

    [SEC.

    211

    point of t he line) t o t he genera t or .

    I t follow s from S ees. 24 a nd 2.9,

    t he line w ill t ra nsfer ma ximum pow er from t h e genera tor t o a t ermina l

    loa d of im peda n ce

    z; Csc

    @

    ZL = jZO cot @ + z: + jzo

    cot@

    (60)

    w here Zc is t he int erna l impeda nce of t he gen era t or a nd 20 is t he cha r-

    a ct er ist ic impeda nce of t h e line.

    I f t he a nt enna impeda nce Z. is

    d iffer en t fr om Z., it is possible t o int roduce a rea ct ive n et w ork bet w een

    t he input t ermina ls of Z. a nd t he line, w hich (a t on e freq uency a t lea st )

    t ra nsforms Z. in t o Z.; t his net w ork w ill effect ma ximum-pow er t ra nsfer

    t o t he a nt enna .

    I t is t o be not ed t ha t in m icrow a ve syst ems a not her ma t ching prob-

    lem exist s: The cha ra ct er ist ics of t he gen era t or a re such t ha t t he reflect ed

    w a ve in t he line must be elimina t ed. This req uires t ha t t he a nt enna

    impeda nce Z~ be t ra nsformed int o ZOin genera l a different t ra nsforma -

    t ion from t ha t req uired by t he ma ximum-pow er-t ra nsfer condit ion . In

    t hese syst ems t he genera tor must be independent ly ma tched t o t he line;

    t he gen era t or int erna l impeda nce Z. is t ra nsformed int o ZO w it h t he

    result Icf. E q . (60)] t ha t t he ma ximum-pow er condit ion t hen coincides

    w it h t he condit ion for elimina ting t he reflect ed w a ve in t he line.

    2.11. The Receiving Ant enna S yst em.The eq uiva lent circuit repre-

    sent a t ions used in discussing receiving a nt enna s a lso need exa mina t ion .

    C onsider a n a rbit ra ry a nt enna it ma ybe a cer~ t er ;dr iven dipole, a horn ,

    or a combina tion of such element s w it h reflect ors a nd lensesfeeding

    int o one end of a t ra nsmission line t ha t a t t h e ot her end is t ermina t ed

    in a pa ssive loa d impeda nce. (Tha t is, t h e receiving circuit is free from

    genera tors.) When a n ext erna l elect roma gnet ic field fa lls on t he receiv-

    ing-a nt enna syst em, t he int era ct ion bet w een t he a nt enna a nd t he field

    gives r ise t o a w a ve in t he line.

    The a nt enna ma y be rega rded a s a

    device t ha t t ra nsforms energy ca rr ied by a free w a ve in spa ce int o en ergy

    ca rr ied by a guided w a ve on t he t ra nsmission line.

    F rom t he point of

    view of t he t ermina l loa d, how ever , t he a nt enna funct ions a s a genera tor ,

    a nd it is cust oma ry. t o repla ce it by a genera t or in discussing t he efficiency

    of t he receiving syst em a s it depends on t he a nt enna , line, a nd loa d

    impeda nces. I t is our purpose t o discuss t he na t ure of t he equiva lent

    genera t or . In t his connect ion t he problem of modes in microw a ve sys-

    t ems a ga in a r ises. The field excit ed in t he line by t h e a nt enna a lw a ys

    consist s of a number of t he modes t ha t a re possible in t he given line.

    I t w ill be a ssumed t ha t t he line is designed t o support free propa ga t ion

    of a single m ode a nd t ha t t he lengt h of line bet w een t he a nt enna a nd

    loa d is m ore t ha n sufficient t o a t t enua t e t he ot her m odes t o negligible

    a mplit udes; t here w ill t hen be a n a pprecia ble region over w hich t h e guide

    is eq uiva lent t o a t w o-w ire line.

  • 7/28/2019 microondas magnticas en el espacio vectorial

    54/635

    s m. 2.11] T H E R E C117 V I N G A .V 7l?.V .TA .9 J S 71E ilf

    41

    B efor e discussing t he eq uiva lent gener a tor represent a t ion, it w ill be

    w ell t c consider br iefly t he physica l processes of t he int era ct ion bet w een

    t h e receivin g syst em a nd t he ext erna l field. F or t his purpose it w ill be

    a ssumed t ha t a n essent ia lly pla ne w a ve from a ver y dist a nt source is

    fa lling on t he receiving a nt enna .

    In t h e neighborh ood of t he receivin g

    a nt enna t he incident w a vefront ma y be rega rded a s a pla ne sur