electro st á tica

19
Electrostática Con el estudio de la electrostática se da inicio a la búsqueda del conocimiento que nos permitirá comprender algunos fenómenos eléctricos. La electrostática es el punto de partida para el estudio del fenómeno de la electricidad, su control por parte del hombre y, por cierto, es la base de numerosas aplicaciones científicas y tecnológicas. ¿Qué es la electrostática? Podríamos decir que es el área de la física que se encarga de estudiar fenómenos asociados a cargas eléctricas en reposo. ¿Qué entenderemos como carga eléctrica? Ya desde la antigüedad se sabía que al frotar objetos se obtenía como consecuencia la propiedad que adquirían para atraer pequeñas partículas. Posteriormente se descubre que dos objetos de la misma naturaleza frotados por un mismo objeto se repelen entre sí, por ejemplo dos barras de caucho frotadas con un paño; al acercar entre sí las barras estas se repelen. También se descubrió que dos materiales distintos al ser frotados por un mismo objeto tiene la propiedad de atraerse, por ejemplo una barra de caucho y una de vidrio frotadas por un paño; al acercarse entre sí éstas se atraen. Bueno, entonces se dijo que unos tenían carga eléctrica de un tipo y los otros de otro tipo. Posteriormente fue Benjamín Franklin quien les asignó los nombres de cargas positivas y cargas negativas.

Upload: daniel-ballesteros

Post on 17-Jan-2016

2 views

Category:

Documents


0 download

DESCRIPTION

electroestatica y procesos

TRANSCRIPT

Page 1: Electro St á Tica

Electrostática

Con el estudio de la electrostática se da inicio a la búsqueda del conocimiento que nos permitirá comprender algunos fenómenos eléctricos. La electrostática es el punto de partida para el estudio del fenómeno de la electricidad, su control por parte del hombre y, por cierto, es la base de numerosas aplicaciones científicas y tecnológicas.

¿Qué es la electrostática?

Podríamos decir que es el área de la física que se encarga de estudiar fenómenos asociados a cargas eléctricas en reposo.

¿Qué entenderemos como carga eléctrica?

Ya desde la antigüedad se sabía que al frotar objetos se obtenía como consecuencia la propiedad que adquirían para atraer pequeñas partículas. Posteriormente se descubre que dos objetos de la misma naturaleza frotados por un mismo objeto se repelen entre sí, por ejemplo dos barras de caucho frotadas con un paño; al acercar entre sí las barras estas se repelen. También se descubrió que dos materiales distintos al ser frotados por un mismo objeto tiene la propiedad de atraerse, por ejemplo una barra de caucho y una de vidrio frotadas por un paño; al acercarse entre sí éstas se atraen. Bueno, entonces se dijo que unos tenían carga eléctrica de un tipo y los otros de otro tipo. Posteriormente fue Benjamín Franklin quien les asignó los nombres de cargas positivas y cargas negativas.

¿Cuándo un cuerpo está cargado eléctricamente?

Veamos: Un cuerpo cualquiera está formado por moléculas y éstas están formadas por átomos. Los átomos poseen, básicamente, tres tipos de partículas: electrones, protones y neutrones. Se ha descubierto que los electrones y los protones tienen propiedades eléctricas mientras que los neutrones no la poseen. A los electrones se les asignó la propiedad de tener carga negativa y a los protones carga positiva. Se dice, entonces, que

Page 2: Electro St á Tica

un cuerpo está cargado negativamente si tiene un exceso de electrones y está cargado positivamente si tiene una ausencia de electrones, es decir, si tiene más protones que electrones.

Algunas propiedades de un cuerpo cargado eléctricamente.

- Ya se ha mencionado anteriormente que cargas del mismo tipo se repelen y de distinto tipo se atraen. Esta atracción o repulsión entre cuerpos cargados eléctricamente permite la introducción de la existencia de fuerzas eléctricas, que serían de atracción o de repulsión.

- Alrededor de un cuerpo o partícula cargada eléctricamente se forma una zona en donde otro cuerpo o partícula cargada eléctricamente va a ser atraída o repelida por la primera, a esta zona se le llama campo eléctrico.

- Por último, y no porque sea menos importante, mencionaremos que la cantidad de carga eléctrica se conserva. Es decir, si consideramos las cargas eléctricas de todos los cuerpos, la suma total de la cantidad de carga se mantiene constante. Se verifica, entonces, que si un cuerpo “pierde” carga eléctrica hay otro u otros que la están “ganando” para sí. Procesos de electrización:

Trataremos tres procedimientos, a saber: por fricción, por contacto y por inducción. Un cuerpo que se carga eléctricamente, por algún mecanismo, se dice que adquiere carga electrostática.

Por fricción:

Para cargar un cuerpo neutro por el método de fricción se necesitan dos cuerpos neutros eléctricamente. Si no hay seguridad de que lo estén deberán conectarse, brevemente, a tierra. Una vez que se tiene la seguridad de contar con dos cuerpos neutros eléctricamente se ponen en contacto y se friccionan entre sí.

Ocurre que a nivel superficial de ambos cuerpos se produce un traspaso de electrones de uno a otro cuerpo. Aquel que reciba más electrones quedará cargado negativamente y el otro, que cedió más electrones, quedará cargado positivamente.

Hay materiales que por características propias al ser frotados van a quedar con un tipo determinado de carga, por ejemplo, si frotamos piel de gato con ámbar, el ámbar quedará cargado negativamente y la piel con carga positiva. Y si frotamos un paño de seda con un trozo de vidrio el vidrio quedará cargado positivamente y el paño con carga negativa.

Page 3: Electro St á Tica

En este proceso, la carga que “pierde” un cuerpo la “gana” el otro, por lo tanto la carga total entre ambos cuerpos se mantiene constante. La electrización por fricción ocurre con más frecuencia de la que imaginamos. Por ejemplo, un vehículo cuando está en movimiento está en constante fricción con el aire, además que sus mecanismos móviles también lo están, en consecuencia al cabo de un tiempo el vehículo se cargará eléctricamente. Seguramente más de alguna vez te habrá ocurrido que al tocar el borde de la puerta de un automóvil “te ha dado la corriente”, en este caso lo que ha sucedido es que la carga electrostática que acumuló el automóvil durante su movimiento se ha descargado a través de ti hacia tierra. De igual forma entre los artefactos que hay en una casa, muchos de ellos se cargan eléctricamente mientras están en funcionamiento, no se trata – como algunos piensan – que la corriente de la instalación eléctrica domiciliaria sea la que recibe quien los llegue a tocar y sienta una descarga eléctrica, se trata de la carga eléctrica que acumuló por su funcionamiento. Es necesario poner mucho cuidado con este tipo de carga pues, a veces, un cuerpo o artefacto aparentemente inocente posee gran cantidad de carga eléctrica y si lo tocamos con nuestras manos va a pasar a tierra a través de nuestro cuerpo.

Por contacto:

Aquí necesitamos un cuerpo previamente cargado, por ejemplo negativamente, y otro neutro. Ya sabemos que hacer para asegurarnos de que esté neutro.

El procedimiento es muy simple: basta ponerlos en contacto, que se toquen entre sí.

Lo que sucede es que mientras dure el contacto la carga total que existe entre ambos cuerpos tiene a dividirse proporcionalmente según las capacidades que tiene cada uno de ellos para poseer carga eléctrica, consecuencia de esto es que el cuerpo que está cargado (negativamente se dijo) le traspasa, a nivel superficial, parte de sus electrones que tenía en exceso al que estaba neutro.

De esta forma el que estaba neutro quedará cargado negativamente y el que estaba cargado previamente seguirá cargado, pero con menor carga que la que tenía.

Al final del proceso ambos cuerpos quedan cargados negativamente y, nuevamente, se tiene que la carga total del conjunto de los dos cuerpos se mantiene constante.

Page 4: Electro St á Tica

Describe el proceso de electrización por contacto si el cuerpo inicialmente cargado hubiera estado cargado en forma positiva.

Por inducción o por influencia:

Igual que el método anterior, necesitamos un cuerpo neutro eléctricamente y otro cargado. Supongamos que el cuerpo cargado tiene carga positiva.

Acercamos los cuerpos sin que haya contacto.

Veremos que en el cuerpo neutro se produce una polarización, donde el cuerpo cargado positivamente atrae a la carga negativa del que está neutro.

Posteriormente hacemos contacto a tierra en el cuerpo neutro.

Page 5: Electro St á Tica

Para que se produzca un equilibrio entre los extremos cercanos y polarizados, suben electrones de tierra hacia el cuerpo neutro a través de la conexión a tierra.

Luego se desconecta la conexión a tierra y se separan los cuerpos.

Se observará que el cuerpo neutro quedará cargado negativamente y el que estaba positivo continúa así. [1]

Ley de Ohm

Hay una relación fundamental entre las tres magnitudes básicas de todos los circuitos, y es:

Es decir, la intensidad que recorre un circuito es directamente proporcional a la tensión de la fuente de alimentación e inversamente proporcional a la resistencia en dicho circuito.

Esta relación se conoce como Ley de Ohm.

Es importante apreciar que:

1. podemos variar la tensión en un circuito, cambiando la pila, por ejemplo;

2. podemos variar la resistencia del circuito, cambiando una bombilla, por ejemplo;

3. no podemos variar la intensidad de un circuito de forma directa, sino que para hacerlo

También debemos tener claro que:

Page 6: Electro St á Tica

Cuando resolvemos problemas de la ley de Ohm tendremos que saber despejar cada una de las variables en función de cuál sea la incógnita que nos pregunten. El siguiente gráfico te servirá para hacer esto: tapa la variable que deseas despejar y si las que te quedan a la vista está, a la misma altura, pon entre ellas un signo de multiplicar; si quedan una sobre la otra, pon un signo de dividir. [2]

Potencial de acción

Las señales nerviosas se transmiten mediante los llamados potenciales de acción, que son cambios en la polaridad de la membrana de células excitables, que provocan que los potenciales de acción se propaguen a lo largo de una fibra nerviosa. Mientras la membrana permanezca inalterada no sucederá un potencial de acción en una fibra nerviosa normal, manteniendo ésta su valor de reposo de –90 mV (1 en el gráfico). En este estado se dice que la membrana se halla polarizada.

Excitación: Pero si algún estímulo provocase un aumento del potencial de membrana desde ese valor de reposo hacia cero, desencadenará una serie de acontecimientos que darán lugar al desarrollo de un potencial de acción. Este estímulo puede darse a consecuencia de una alteración mecánica de la membrana, de acciones químicas sobre ella o del paso de electricidad que haga que una suficiente cantidad de iones sodio difunda hacia interior de la membrana. No cualquier estímulo puede producir un potencial de acción. Para que este fenómeno suceda, por lo general hará falta un aumento repentino de entre 25 y 35 mV; por lo tanto una elevación del potencial de reposo de –90 mV a cerca de –65 mV inducirá el desarrollo del potencial de acción. A este valor (-65 mV) se lo conoce como umbral de estimulación. De no alcanzarse este valor, el estímulo no generará potencial de acción alguno.

Page 7: Electro St á Tica

Despolarización: La mencionada elevación de voltaje hará abrirse más canales sodio (2 en el gráfico) cuyas compuertas se operan voltaje, de modo que su conductancia aumentará hasta unas 5.000 veces su valor en reposo (dicho de otra manera, aumenta terriblemente la permeabilidad de la membrana para el sodio) permitiendo más ingreso del mismo al interior celular. El ingreso de estas cargas positivas continúa elevando el valor del potencial de membrana hacia 0 pudiendo alcanzar un valor máximo de unos 35 mV. A esta etapa se la denomina despolarización de la membrana debido al cambio de signo ya que quedará positiva en la cara intracelular y negativa del lado extracelular (3 en el gráfico)

Repolarización: Luego de otra fracción de milisegundos, el potencial de membrana en aumento inducirá el cierre de los canales sodio, así como la apertura de los canales de fuga para el potasio. Por lo tanto dejarán de ingresar cargas positivas (los iones sodio) y comenzarán a salir iones, también positivos, de potasio, volviéndose a invertir el signo del potencial de membrana (4 en el gráfico). A esto se lo denomina repolarización de la membrana. Finalmente la permeabilidad de la membrana toma los valores de reposo, reestableciéndose el potencial correspondiente (5).

Período refractario: Una característica muy importante de la inactivación de los canales sodio es que la compuerta de activación no se vuelve abrir hasta que el potencial de membrana recupera (o se aproxima) al valor del potencial de membrana en reposo. Como consecuencia de esto, un potencial de acción no puede darse en una fibra excitable mientras esta siga despolarizada a consecuencia de un potencial de acción precedente, más allá de la intensidad del estímulo, denominándose a este periodo refractario absoluto. Tras el período refractario absoluto aparece el período refractario relativo que dura sólo la cuarta parte del anterior, en la cual puede desencadenarse un potencial de acción si el estímulo es lo suficientemente alto.

Page 8: Electro St á Tica

Propagación: Un potencial de acción generado un punto cualquiera de la membrana suele excitar a porciones adyacentes a la misma, despolarizándolas, provocando la propagación del potencial de acción a lo largo de toda la fibra nerviosa o muscular que se denomina impulso nervioso. Para el correcto desarrollo de la propagación las fibras se encuentran recubiertas en cápsulas de mielina, las que impiden que el impulso nervioso se propague inadecuadamente, por fuera de la fibra nerviosa. Está cubierta presenta interrupciones para permitir el intercambio de iones, llamadas nódulos de Ranvier. En patologías desmielinizantes (Parkinson/alcoholismo crónico) se evidencia la incorrecta transmisión de los estímulos nerviosos. [3] y [4]

El circuito eléctrico elemental.

El circuito eléctrico es el recorrido preestablecido por por el que se desplazan las cargas eléctricas.

Circuito elemental

Las cargas eléctricas que constituyen una corriente eléctrica pasan de un punto que tiene mayor potencial eléctrico a otro que tiene un potencial inferior. Para mantener permanentemente esa diferencia de potencial, llamada también voltaje o tensión entre los extremos de un conductor, se necesita un dispositivo llamado generador (pilas, baterías, dinamos, alternadores...) que tome las cargas que llegan a un extremo y las impulse hasta el otro. El flujo de cargas eléctricas por un conductor constituye una corriente eléctrica.

Se distinguen dos tipos de corrientes:

Corriente continua: Es aquella corriente en donde los electrones circulan en la misma cantidad y sentido, es decir, que fluye en una misma dirección. Su polaridad es invariable y hace que fluya una corriente de amplitud relativamente constante a través de una carga. A este tipo de corriente se le conoce como corriente continua (cc) o corriente directa (cd), y es generada por una pila o batería.

Este tipo de corriente es muy utilizada en los aparatos electrónicos portátiles que requieren de un voltaje relativamente pequeño. Generalmente estos aparatos no pueden tener cambios de polaridad, ya que puede acarrear daños irreversibles en el equipo.

Corriente alterna: La corriente alterna es aquella que circula durante un tiempo en un sentido y después en sentido opuesto, volviéndose a repetir el mismo proceso en forma constante. Su polaridad se invierte periódicamente, haciendo que la corriente fluya alternativamente en una dirección y luego en la otra. Se conoce en castellano por la abreviación CA y en inglés por la de AC.

Este tipo de corriente es la que nos llega a nuestras casas y sin ella no podríamos utilizar nuestros artefactos eléctricos y no tendríamos iluminación en nuestros hogares. Este tipo de corriente puede ser generada por un alternador o dinamo, la cual convierten energía mecánica en eléctrica.

El mecanismo que lo constituye es un elemento giratorio llamado rotor, accionado por una turbina el cual al girar en el interior de un campo magnético (masa), induce en sus terminales de salida un determinado voltaje. A este tipo de corriente se le conoce como corriente alterna (a).

Page 9: Electro St á Tica

Pilas y baterías:

Las pilas y las baterías son un tipo de generadores que se utilizan como fuentes de electricidad.

Las baterías, por medio de una reacción química producen, en su terminal negativo, una gran cantidad de electrones (que tienen carga negativa) y en su terminal positivo se produce una gran ausencia de electrones (lo que causa que este terminal sea de carga positiva).

Ahora si esta batería alimenta un circuito cualquiera, hará que por éste circule una corriente de electrones que saldrán del terminal negativo de la batería, (debido a que éstos se repelen entre si y repelen también a los electrones libres que hay en el conductor de cobre), y se dirijan al terminal positivo donde hay un carencia de electrones, pasando a través del circuito al que está conectado. De esta manera se produce la corriente eléctrica.

Fuerza electromotriz de un generador:

Se denomina fuerza electromotriz (FEM) a la energía proveniente de cualquier fuente, medio o dispositivo que suministre corriente eléctrica. Para ello se necesita la existencia de una diferencia de potencial entre dos puntos o polos (uno negativo y el otro positivo) de dicha fuente, que sea capaz de bombear o impulsar las cargas eléctricas a través de un circuito cerrado.

A. Circuito eléctrico abierto (sin carga o resistencia). Por tanto, no se establece la circulación de la corriente eléctrica desde la fuente de FEM (la batería en este caso). B. Circuito eléctrico cerrado, con una carga o resistencia acoplada, a través de la cual se establece la circulación de un flujo de corriente eléctrica desde el polo negativo hacia el polo positivo de la fuente de FEM o batería.

Resumiendo, un generador se caracteriza por su fuerza electromotriz, fem, que es la energía que proporciona a la unidad de carga que circula por el conductor.

Fuerza electromotriz = energía/Carga fem= E/Q

La unidad de fuerza electromotriz en el SI es el voltio (V): 1 voltio = 1 julio / 1 culombio

Voltímetro:

La ddp y la fem se pueden medir conectando un voltímetro entre dos puntos de un circuito o entre los terminales de un generador. El voltímetro siempre se conecta en paralelo. La escala de un voltímetro viene expresada en voltios.

Para efectuar la medida de la diferencia de potencial el voltímetro ha de colocarse en paralelo, esto es, en derivación sobre los puntos entre los que tratamos de efectuar la medida. Esto nos lleva a que el voltímetro debe poseer una resistencia interna lo más alta posible, a fin de que no produzca un consumo apreciable, lo que daría lugar a una medida errónea de la tensión. Para ello, en el caso de instrumentos basados en los efectos electromagnéticos de la corriente eléctrica, estarán dotados de bobinas de hilo muy fino y con muchas espiras, con lo que con poca intensidad de corriente a través del aparato se consigue la fuerza necesaria para el desplazamiento de la aguja indicadora.

Page 10: Electro St á Tica

En la actualidad existen dispositivos digitales que realizan la función del voltímetro presentando unas características de aislamiento bastante elevadas empleando complejos circuitos de aislamiento.

En la Figura se puede observar la conexión de un voltímetro (V) entre los puntos de a y b de un circuito, entre los que queremos medir su diferencia de potencial.

En algunos casos, para permitir la medida de tensiones superiores a las que soportarían los devanados y órganos mecánicos del aparato o los circuitos electrónicos en el caso de los digitales, se les dota de una resistencia de elevado valor colocada en serie con el voltímetro, de forma que solo le someta a una fracción de la tensión total.

Conexión de un voltímetro en un circuito

Asociación de pilas:

Asociación De Pilas En Serie

Las pilas pueden conectarse en serie cualesquiera que sean las fuerzas electromotrices y la máxima corriente que cada una de ellas pueda suministrar. Evidentemente, al conectarlas en serie, las fuerzas electromotrices se suman, así como sus resistencias internas. Se puede notar que la pila equivalente al conjunto de las n pilas resulta con una f.e.m. mayor, pero, con una resistencia interna mayor, lo cual empeora la situación en este punto. Se debe considerar, además, la corriente máxima que puede suministrar cada una de ellas. La asociación serie sólo podrá suministrar la corriente de la pila que menos corriente es capaz suministrar.

Pilas en serie

Asociación De Pilas En Paralelo

Al conectar pilas en paralelo debe tenerse en cuenta que sean todas de la misma f.e.m., ya que, en caso contrario, fluiría corriente de la de más f.e.m. a la de menos, disipándose potencia en forma de calor en las resistencias internas, agotándolas rápidamente. Si todas ellas son del mismo voltaje el conjunto equivale a una sola pila de la misma tensión, pero con menor resistencia interna. Además, la corriente total que puede suministrar el conjunto es la suma de las corrientes de cada una de ellas, por concurrir en un nudo. La asociación en paralelo por tanto, podrá dar más corriente que una sola pila, o, dando la misma corriente, tardará más en descargarse.

Pilas en paralelo

Asociación De Pilas En Paralelo

Al conectar pilas en paralelo debe tenerse en cuenta que sean todas de la misma f.e.m., ya que, en caso contrario, fluiría corriente de la de más f.e.m. a la de menos, disipándose potencia en forma de calor en las resistencias internas, agotándolas rápidamente. Si todas ellas son del mismo voltaje el conjunto equivale a una sola pila de la misma tensión, pero con menor resistencia interna. Además, la corriente total que puede suministrar el conjunto es la suma de las corrientes de cada una de ellas, por concurrir en un nudo. La asociación en paralelo por tanto, podrá dar más corriente que una sola pila, o, dando la misma corriente, tardará más en descargarse.

Page 11: Electro St á Tica

Intensidad de corriente.

La intensidad del flujo de los electrones de una corriente eléctrica que circula por un circuito cerrado depende fundamentalmente de la tensión o voltaje (V) que se aplique y de la resistencia (R) en ohm que ofrezca al paso de esa corriente la carga o consumidor conectado al circuito. Si una carga ofrece poca resistencia al paso de la corriente, la cantidad de electrones que circulen por el circuito será mayor en comparación con otra carga que ofrezca mayor resistencia y obstaculice más el paso de los electrones.

Por tanto, definimos la intensidad de corriente eléctrica, I, como la cantidad de carga eléctrica que circula por una sección de un conductor en la unidad de tiempo.

Intensidad = carga/tiempo I= Q/t

Analogía hidráulica. El tubo del depósito "A", al tener un diámetro reducido, ofrece más resistencia a la salida del líquido que el tubo del tanque "B", que tiene mayor diámetro. Por tanto, el caudal o cantidad de agua que sale por el tubo "B" será mayor que la que sale por el tubo "A".

Mediante la representación de una analogía hidráulica se puede entender mejor este concepto. Si tenemos dos depósitos de líquido de igual capacidad, situados a una misma altura, el caudal de salida de líquido del depósito que tiene el tubo de salida de menos diámetro será menor que el caudal que proporciona otro depósito con un tubo de salida de más ancho o diámetro, pues este último ofrece menos resistencia a la salida del líquido.

De la misma forma, una carga o consumidor que posea una resistencia de un valor alto en ohm, provocará que la circulación de los electrones se dificulte igual que lo hace el tubo de menor diámetro en la analogía hidráulica, mientras que otro consumidor con menor resistencia (caso del tubo de mayor diámetro) dejará pasar mayor cantidad de electrones. La diferencia en la cantidad de líquido que sale por los tubos de los dos tanques del ejemplo, se asemeja a la mayor o menor cantidad de electrones que pueden circular por un circuito eléctrico cuando se encuentra con la resistencia que ofrece la carga o consumidor.

La intensidad de la corriente eléctrica se designa con la letra ( I ) y su unidad de medida en el Sistema Internacional ( SI ) es el amper (llamado también “amperio”), que se identifica con la letra ( A ).

EL AMPER

De acuerdo con la Ley de Ohm, la corriente eléctrica en amper ( A ) que circula por un circuito está estrechamente relacionada con el voltaje o tensión ( V ) y la resistencia en ohm () de la carga o consumidor conectado al circuito.

Definición del amper

Un amper ( 1 A ) se define como la corriente que produce una tensión de un volt ( 1 V ), cuando se aplica a una resistencia de un ohm ( 1 ).

Page 12: Electro St á Tica

Un amper equivale una carga eléctrica de un coulomb por segundo ( 1C/seg ) circulando por un circuito eléctrico, o lo que es igual, 6 300 000 000 000 000 000 = ( 6,3 · 1017 ) (seis mil trescientos billones) de electrones por segundo fluyendo por el conductor de dicho circuito. Por tanto, la intensidad ( I ) de una corriente eléctrica equivale a la cantidad de carga eléctrica ( Q ) en coulomb que fluye por un circuito cerrado en una unidad de tiempo.

Resistencia.

La resistencia de un material es una medida que indica la facilidad con que una corriente eléctrica puede fluir a través de él.

La resistencia de un conductor es directamente proporcional a su longitud e inversamente proporcional a su sección y varía con la temperatura.

Símbolos eléctricos

Medida de la resistencia. Ley de Ohm.

La resistencia de un conductor es el cociente entre la diferencia de potencial o voltaje que se le aplica y la intensidad de corriente que lo atraviesa

R= Va-Vb /I. Es la expresión matemática de la ley de Ohm.

La unidad de resistencia en el SI es el ohmio: 1 ohmio = 1 voltio / 1 amperio.

Un ohmio es la resistencia que opone un conductor al paso de la corriente cuando, al aplicar a sus extremos una diferencia de potencial de un voltio, deja pasar una intensidad de corriente de un amperio.

A partir de la ley de Ohm se puede calcular la diferencia de potencial entre los extremos de una resistencia de la siguiente forma:

Va-Vb = I * R

Asociación de resistencias:

Serie: Es cuando las resistencias están una detrás de otra. La intensidad en cada resistencia son iguales.

VT = V1 + V2 + V3 + ...

RT = R1 + R2 + R3 + ...

CAPACITANCIA

Page 13: Electro St á Tica

La Capacitancia es la propiedad de un capacitor de oponerse a toda variación de la tensión en el circuito eléctrico. Usted recordará que la resistencia es la oposición al flujo de la corriente eléctrica. También se define, a la Capacitancia como una propiedad de almacenar carga eléctrica entre dos conductores, aislados el uno del otro, cuando existe una diferencia de potencial entre ellos,como se observa en la figura siguiente, las dos placas actúan como conductores, mientras que el aire actúa como un aislante:

Así como un Resistor está diseñado para tener Resistencia, el Capacitor está diseñado para tener Capacitancia; mientras que los resistores se oponen al flujo de la corriente, los capacitores se oponen a cualquier cambio en el Tensión eléctrica; el Capacitor más pequeño capaz de acumular carga eléctrica se construye de dos placas y un aislante de aire llamado dieléctrico.

MEDIDAS DE CAPACITANCIA

Así como la unidad de medida de la tensión eléctrica es el Volt, etc., la unidad de medida de la Resistencia es el Ohm y la unidad de medida de la Capacitancia es el Faradio, Observe este cuadro:

Capacitancia

Se dice que un capacitor tiene una Capacitancia de un Faradio cuando un voltio acumula en él una carga de un Coulomb; hay que recordar que un Coulomb equivale a una carga de 6.25 x 1018 electrones. La carga del Capacitor es producida por el movimiento de los electrones del circuito y se usa con la letra Q para designarla, y se mide en coulombs; la Carga depende de dos factores fundamentales:

a) la tensióna través del circuito y b) la Capacitancia en Faradios del Capacitor.

Esta relación se expresa con la siguiente ecuación: Q = C x E donde Q es la carga que adquiere el Capacitor, en Coulombs; C es la Capacitancia del Capacitor, en Faradios y E es la Tensión eléctrica a través del Capacitor, en voltios.

Page 14: Electro St á Tica

Bibliografía

Page 15: Electro St á Tica

http://www.hverdugo.cl/conceptos/conceptos/electrostatica.pdf [1].

http://www.iesbahia.es/web/files/Tecnolog%C3%ADa/4_2_leyDeOhm.pdf.pdf [2].

http://filipides42-robi.blogspot.com/2011/03/bioelectricidad-potencial-de-membrana-y.html [3].

http://campuscitep.rec.uba.ar/mod/page/view.php?id=46160&inpopup=1 [4].