blog de acero y madera

19
REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN SUPERIOR INSTITUTO UNIVERSITARIO POLITECNICO “SANTIAGO MARIÑO” CARRERA: INGENIERIA CIVIL; CODIGO: 42 ASIGNATURA: PROYECTO DE ESTRUCTURA DE ACERO Y MADERA REALIZADO POR: ALEXANDRA M. PRIMERA V. DISEÑO DE MIEMBR OS SOMETI DOS A CARGA

Upload: alexandra-primera

Post on 05-Dec-2015

60 views

Category:

Documents


2 download

DESCRIPTION

hablaremos un poco sobre cargas axiales

TRANSCRIPT

Page 1: Blog de Acero y Madera

REPUBLICA BOLIVARIANA DE VENEZUELA

MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN SUPERIOR

INSTITUTO UNIVERSITARIO POLITECNICO “SANTIAGO MARIÑO”

CARRERA: INGENIERIA CIVIL; CODIGO: 42

ASIGNATURA: PROYECTO DE ESTRUCTURA DE ACERO Y MADERA

REALIZADO POR:

ALEXANDRA M. PRIMERA V.

C.I: 15.531.069

MARACAIBO, EDO ZULIA

DISEÑO DE

MIEMBROS

SOMETIDOS A CARGA AXIAL

Page 2: Blog de Acero y Madera

INDICE

1.- TRACCIÓN

2.- DEFORMACIONES

3.- RESISTENCIA EN TRACCIÓN

4.- ENSAYO DE TRACCIÓN

5.- COMPORTAMIENTO DE LOS MATERIALES ANTE LA TRACCIÓN

6.- PANDEO

7.- FLEXOTRACCIÓN

8.- CRITERIOS Y MÉTODOS DE DISEÑO DE ELEMENTOS A TRACCIÓN

9.- ELEMENTOS SOMETIDOS A TRACCIÓN

Page 3: Blog de Acero y Madera

1.- TRACCIÓN: En el cálculo de estructuras e ingeniería se denomina tracción al esfuerzo interno a que está sometido un cuerpo por la aplicación de dos fuerzas que actúan en sentido opuesto, y tienden a estirarlo.

Lógicamente, se considera que las tensiones que tiene cualquier sección perpendicular a dichas fuerzas son normales a esa sección, y poseen sentidos opuestos a las fuerzas que intentan alargar el cuerpo.

2.- DEFORMACIONES:

Un cuerpo sometido a un esfuerzo de tracción sufre deformaciones positivas (estiramientos) en ciertas direcciones por efecto de la tracción. Sin embargo el estiramiento en ciertas direcciones generalmente va acompañado de acortamientos en las direcciones transversales; así si en un prisma mecánico la tracción produce un alargamiento sobre el eje "X" que produce a su vez un encogimiento sobre los ejes "Y" y "Z". Este encogimiento es proporcional al coeficiente de Poisson (ν):

\varepsilon_y = \varepsilon_z = -\nu \varepsilon_x

Cuando se trata de cuerpos sólidos, las deformaciones pueden ser permanentes: en este caso, el cuerpo ha superado su punto de fluencia y se comporta de forma plástica, de modo que tras cesar el esfuerzo de tracción se mantiene el alargamiento; si las deformaciones no son permanentes se dice que el cuerpo es elástico, de manera que, cuando desaparece el esfuerzo de tracción, aquél recupera su longitud primitiva.

La relación entre la tracción que actúa sobre un cuerpo y las deformaciones que produce se suele representar gráficamente mediante un diagrama de ejes cartesianos que ilustra el proceso y ofrece información sobre el comportamiento del cuerpo de que se trate.

Page 4: Blog de Acero y Madera

3.- RESISTENCIA EN TRACCIÓN:

Como valor comparativo de la resistencia característica de muchos materiales, como el acero o la madera, se utiliza el valor de la tensión de fallo, o agotamiento por tracción, esto es, el cociente entre la carga máxima que ha provocado el fallo elástico del material por tracción y la superficie de la sección transversal inicial del mismo.

4.- ENSAYO DE TRACCIÓN:

El ensayo de tracción de un material consiste en someter a una probeta normalizada a un esfuerzo axial de tracción creciente hasta que se produce la rotura de la probeta. Este ensayo mide la resistencia de un material a una fuerza estática o aplicada lentamente. Las velocidades de deformación en un ensayo de tensión suelen ser muy pequeñas (ε = 10–4 a 10–2 s–1).

Máquina para ensayo de tracción por computadora.

Probeta de cobre durante el ensayo de tracción.

Page 5: Blog de Acero y Madera

Probeta de cobre fracturada después del ensayo de tracción.

DATOS EXTRAÍDOS DEL ENSAYO: En un ensayo de tracción pueden determinarse diversas características de los materiales elásticos:

Módulo de elasticidad o Módulo de Young, que cuantifica la proporcionalidad anterior. Es el resultado de dividir la tensión por la deformación unitaria, dentro de la región elástica de un diagrama esfuerzo-deformación.

Coeficiente de Poisson, que cuantifica la razón entre el alargamiento longitudinal y el acortamiento de las longitudes transversales a la dirección de la fuerza.

Límite de proporcionalidad: valor de la tensión por debajo de la cual el alargamiento es proporcional a la carga aplicada.

Límite de fluencia o límite elástico aparente: valor de la tensión que soporta la probeta en el momento de producirse el fenómeno de la cedencia o fluencia. Este fenómeno tiene lugar en la zona de transición entre las deformaciones elásticas y plásticas y se caracteriza por un rápido incremento de la deformación sin aumento apreciable de la carga aplicada.

Límite elástico (límite elástico convencional o práctico): valor de la tensión a la que se produce un alargamiento prefijado de antemano (0,2%, 0,1%, etc.) en función del extensómetro empleado. Es la máxima tensión aplicable sin que se produzcan deformaciones permanentes en el material.

Carga de rotura o resistencia a tracción: carga máxima resistida por la probeta dividida por la sección inicial de la probeta.

Page 6: Blog de Acero y Madera

Alargamiento de rotura: incremento de longitud que ha sufrido la probeta. Se mide entre dos puntos cuya posición está normalizada y se expresa en tanto por ciento.

Estricción: es la reducción de la sección que se produce en la zona de la rotura.

Normalmente, el límite de proporcionalidad no suele determinarse ya que carece de interés para los cálculos. Tampoco se calcula el Módulo de Young, ya que éste es característico del material; así, todos los aceros tienen el mismo módulo de elasticidad aunque sus resistencias puedan ser muy diferentes. Los datos obtenidos en el ensayo deben ser suficientes para determinar esas propiedades, y otras que se pueden determinar con base en ellas. Por ejemplo, la ductilidad se puede obtener a partir del alargamiento y de la reducción de área.

CURVA TENSIÓN-DEFORMACIÓN

En el ensayo se mide la deformación (alargamiento) de la probeta entre dos puntos fijos de la misma a medida que se incrementa la carga aplicada, y se representa gráficamente en función de la tensión (carga aplicada dividida por la sección de la probeta). En general, la curva tensión-deformación así obtenida presenta cuatro zonas diferenciadas:

Page 7: Blog de Acero y Madera

Deformaciones elásticas: Las deformaciones se reparten a lo largo de la probeta, son de pequeña magnitud y, si se retirara la carga aplicada, la probeta recuperaría su forma inicial. El coeficiente de proporcionalidad entre la tensión y la deformación se denomina módulo de elasticidad o de Young y es característico del material. Así, todos los aceros tienen el mismo módulo de elasticidad aunque sus resistencias puedan ser muy diferentes. La tensión más elevada que se alcanza en esta región se denomina límite de fluencia y es el que marca la aparición de este fenómeno. Pueden existir dos zonas de deformación elástica, la primera recta y la segunda curva, siendo el límite de proporcionalidad el valor de la tensión que marca la transición entre ambas. Generalmente, este último valor carece de interés práctico y se define entonces un límite elástico (convencional o práctico) como aquél para el que se produce un alargamiento prefijado de antemano (0,2%, 0,1%, etc.). Se obtiene trazando una recta paralela al tramo proporcional (recto) con una deformación inicial igual a la convencional.

Fluencia o cedencia. Es la deformación brusca de la probeta sin incremento de la carga aplicada. El fenómeno de fluencia se da cuando las impurezas o los elementos de aleación bloquean las dislocaciones de la red cristalina impidiendo su deslizamiento, mecanismo mediante el cual el material se deforma plásticamente. Alcanzado el límite de fluencia se logra liberar las dislocaciones produciéndose la deformación bruscamente. La deformación en este caso también se distribuye uniformemente a lo largo de la probeta pero concentrándose en las zonas en las que se ha logrado liberar las dislocaciones (bandas de Lüders). No todos los materiales presentan este fenómeno, en cuyo caso la transición entre la deformación elástica y plástica del material no se aprecia de forma clara.

Deformaciones plásticas: si se retira la carga aplicada en dicha zona, la probeta recupera sólo parcialmente su forma quedando deformada permanentemente. Las deformaciones en esta región son más acusadas que en la zona elástica.

Page 8: Blog de Acero y Madera

Estricción. Llegado un punto del ensayo, las deformaciones se concentran en la parte central de la probeta apreciándose una acusada reducción de la sección de la probeta, momento a partir del cual las deformaciones continuarán acumulándose hasta la rotura de la probeta por esa zona. La estricción es la responsable del descenso de la curva tensión-deformación; realmente las tensiones no disminuyen hasta la rotura, sucede que lo que se representa es el cociente de la fuerza aplicada (creciente hasta el comienzo de la estricción) entre la sección inicial: cuando se produce la estricción la sección disminuye (y por tanto también la fuerza necesaria), disminución de sección que no se tiene en cuenta en la representación gráfica. Los materiales frágiles no sufren estricción ni deformaciones plásticas significativas, rompiéndose la probeta de forma brusca. Terminado el ensayo se determina la carga de rotura, carga última o resistencia a la tracción: la máxima resistida por la probeta dividida por su sección inicial, el alargamiento en (%) y la estricción en la zona de la rotura.

Otras características que pueden caracterizarse mediante el ensayo de tracción son la resiliencia y la tenacidad, que son, respectivamente, las energías elásticas y totales absorbidas y que vienen representadas por el área comprendida bajo la curva tensión-deformación hasta el límite elástico en el primer caso y hasta llegar a rotura en el segundo.

5.- COMPORTAMIENTO DE LOS MATERIALES ANTE LA TRACCIÓN:

Son muchos los materiales que se ven sometidos a tracción en los diversos procesos mecánicos. Especial interés tienen los que se utilizan en obras de arquitectura o de ingeniería, tales como las rocas, la madera, el hormigón, el acero, varios metales, etc.

Cada material posee cualidades propias que definen su comportamiento ante la tracción. Algunas de ellas son:

Page 9: Blog de Acero y Madera

elasticidad (módulo de elasticidad) plasticidad ductilidad fragilidad

Catalogados los materiales conforme a tales cualidades, puede decirse que los de características pétreas, bien sean naturales, o artificiales como el hormigón, se comportan mal frente a esfuerzos de tracción, hasta el punto que la resistencia que poseen no se suele considerar en el cálculo de estructuras.

Por el contrario, las barras de acero soportan bien grandes esfuerzos a tracción y se considera uno de los materiales idóneos para ello. El acero en barras corrugadas se emplean en conjunción con el hormigón para evitar su fisuración, aportando resistencia a tracción, dando lugar al hormigón armado.

Ejemplos

Cualquier elemento sometido a fuerzas externas, que tiendan a flexionarlo, está bajo tracción y compresión. Los elementos pueden no estar sometidos a flexión y estar bajo condiciones de tracción o compresión si se encuentran bajo fuerzas axiales.

Page 10: Blog de Acero y Madera

6.- PANDEO:

El pandeo es un fenómeno de inestabilidad elástica que puede darse en elementos comprimidos esbeltos y que se manifiesta por la aparición de desplazamientos importantes transversales a la dirección principal de compresión.

Pandeo de una columna

Puede calificarse al pandeo como un fenómeno que obedece a la inestabilidad de ciertos materiales al ser sometidos a una compresión. La manifestación de fenómeno se evidencia a partir de una deformación transversal.

Existen diferentes tipos de pandeos. Puede hablarse de pandeo torsional, pandeo flexional, pandeo lateral-torsional y otros. Cada clasificación depende de la manera en que se produce la deformación a partir de una cierta compresión.

Page 11: Blog de Acero y Madera

Tipos de Pandeo

Falla de una Columna por Pandeo

Page 12: Blog de Acero y Madera

7.- FLEXOTRACCIÓN:

La Flexotracción se da principalmente en las vigas y como resulta complicado realizar los ensayos de tracción pura en el concreto, se simplifican a través del Ensayo de Flexotracción, el cual consiste en someter a una deformación plástica una probeta recta de sección plena, circular o poligonal, mediante el pliegue de ésta, sin inversión de su sentido de flexión, sobre un radio especificado al que se le aplica una presión constante.

8.- CRITERIOS Y MÉTODOS DE DISEÑO DE ELEMENTOS A TRACCIÓN:

Criterio de resistencia, consistente en comprobar que las tensiones máximas no superen ciertas tensiones admisibles para el material del que está hecho el elemento.

Criterio de rigidez, consistente en que bajo la acción de las fuerzas aplicadas las deformaciones o desplazamientos máximo obtenidos no superan ciertos límites admisibles.

Criterios de estabilidad, consistente en comprobar que desviaciones de las fuerzas reales sobre las cargas previstas no ocasionan efectos autoamplificados que puedan producir pérdida de equilibrio mecánico o inestabilidad elástica.

Criterios de funcionalidad, que consiste en un conjunto de condiciones auxiliares relacionadas con los requisitos y solicitaciones que pueden aparecer durante la vida útil o uso del elemento estructural.

9.- ELEMENTOS SOMETIDOS A TRACCIÓN:

En el caso de construcciones estos elementos estructurales pueden tener estados de tensión uniaxiales, biaxiales o triaxiales según su dimensionalidad y según cada una de las direcciones consideradas pueden existir tanto tracciones como compresiones y finalmente dicho estado puede ser uniforme sobre ciertas secciones transversales o variar de punto a punto de

Page 13: Blog de Acero y Madera

la sección. Los elementos estructurales suelen clasificarse en virtud de tres criterios principales:

Dimensionalidad del elemento, según puedan ser modelizados como elementos unidimensionales (vigas, pilares, entre otros), bidimensionales (placas, láminas, membranas) o tridimensionales.

Forma geométrica y/o posición, la forma geométrica concreta afecta a los detalles del modelo estructural usado, así si la pieza es recta como una viga o curva como un arco, el modelo debe incorporar estas diferencias, también la posición u orientación afecta al tipo de estado tensional que tenga el elemento.

Estado tensional y/o solicitaciones predominantes, los tipos de esfuerzos predominantes pueden ser tracción (membranas y cables), compresión (pilares), flexión (vigas, arcos, placas, láminas) o torsión (ejes de transmisión, etc.).

10.- LÍMITE ELÁSTICO Y RESISTENCIA A LA TRACCIÓN

La determinación de las propiedades mecánicas en el acero, como el límite elástico (fy), la resistencia a tracción (fu), así como de otras características mecánicas del acero como el Módulo de Elasticidad (E), o el alargamiento máximo que se produce en la rotura, se efectuará mediante el anteriormente definido ensayo de tracción normalizado en la UNE-EN 10002-1.

El valor de la tensión última o resistencia a la tracción se calcula a partir de este ensayo, y se define como el cociente entre la carga máxima que ha provocado el fallo a rotura del material por tracción y la superficie de la sección transversal inicial de la probeta, mientras que el límite elástico marca el umbral que, una vez se ha superado, el material trabaja bajo un comportamiento plástico y deformaciones remanente.

Page 14: Blog de Acero y Madera

En la sección ANEXOS de este tutorial se pueden consultar los valores del límite elástico y la resistencia a tracción para las distintas calidades de aceros según las normativas europeas y americana.

Se adjunta tabla con los valores de la resistencia a la tracción, así como del límite elástico y dureza, según la norma americana AISI: