bcra 12-1-1985

Upload: cae-martins

Post on 07-Aug-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/21/2019 BCRA 12-1-1985

    1/36

      a

    e

    Science

    The

    Transactions

    o the

    British Cave

    Research ssociation

    seR

    [

    Volume

    2

    Number 1

    March

    985

    Amorphous speleothems

    peleology in

    the

    U S S R

    B C R A Symposium

    abstracts

    Percolation water at Altamira

    The

    earliest cave

    photograph

  • 8/21/2019 BCRA 12-1-1985

    2/36

      aveScience

    The Transact ions o f

    the

    Br i t i sh Cave Research covers a l l aspects o f spe leologica l

    sc i e nc e , inc luding geology,

    geomorphology, hydrology

    ,

    chemistry

    , physics ,

    archaeology and

    biology

    in

    t he i r appl ica t ion to caves .

    I t a l so publishes

    a r t i c l e s on

    t echnica l

    mat te rs such as

    explora t ion ,

    equipment , diving, surveying,

    photography

    and

    documentation, as well as expedi t ion

    repor ts

    and h i s t o r i ca l

    or

    biographical s tudies .

    Papers may be

    read

    a t meetings

    held

    in var ious par ts of

    Bri ta in ,

    but

    they

    may be submit ted for

    publ ica t ion

    without being read .

    Manuscripts should be sent to the Edi tor , Dr T. D. Ford , a t the Geology

    Department ,

    Univers i ty o f

    Leices ter , Leices te r LEI

    7RH.

    In tending authors are

    welcome to contac t e i t he r

    the

    Edi to r o r

    the

    Product ion Edi to r who wi l l be pleased

    to

    advise in any cases of

    doubt concerning

    the

    prepa ra t ion

    of manuscrip ts .

    NOTES

    FOR CONTRIBUTORS

    These notes are

    in tended

    to he lp the authors

    to

    pr e par e

    the i r mater ia l

    in the most advantage ous

    way

    so

    as

    to

    expedi

    te publ ica

    t i cn and

    to reduce

    both t he i r

    own

    and e d i t o r i a l labour. I t

    saves a

    l o t o f

    t ime i f the

    ru le s

    below

    are fo l lowed .

    All

    material should be

    presented

    in a format

    as

    c lose

    as

    possib le to t ha t of

    C VE

    SCIENCE since

    1985. Text

    should

    be typed double-spaced on one

    s ide

    o f

    the paper only. Subheadings within

    an

    ar t i c l e

    should

    fo l low the

    system

    used

    in

    C VE

    SCIENCE;

    a

    system of primary, secondary and if

    neccesary

    ,

    t e r t i a r y subheadings should be

    c lea r ly

    in d

    i ca te

    d.

    Abstrac t :

    All mater ia l should be

    accomoanied

    by an abs t rac t s t a t ing the es sent i a l re su i t s of

    the i n v e s t i g t a t i o n for

    use

    by

    abs trac t ing , l ibrary

    and

    other

    s erv i ce s . The

    abs trac t may also be

    publ i shed in C VES ND CAVING.

    References to prev ious ly

    published work

    should

    b e g iven in the s tandard

    format

    used in

    C VE SCIENCE. In the t ex t the s ta tement re ferred

    t o should

    be

    fol lowed

    by the re levant author

    ' s

    name and date and page number, if appropr ia te ) in

    brackets . Thus : Smith,

    1969,

    p.

    42).

    All

    such

    r e f e r e n c e s c i t ed in the t ex t

    should

    be

    given

    in

    fu l l , in

    a lp h ab e t ica l

    order , a t the

    end.

    Thus:

    Smith, D.E. , 1969. The speleogensis of

    the

    avern

    H ole . B ul l e t ing Yorkshire

    Caving

    A s s o c . , Vol . 7,

    p . 1- 63 .

    Books

    should

    be

    ci ted

    by the

    author ,

    date ,

    titl

    ,

    publ i sher

    and

    where

    publ i shed .

    P e r i o d i c a l titl s should b e abbrev ia ted

    in

    s tandar d s t y l e , or , where

    doubt

    e x i s t s ,

    should

    be

    wri t ten out in f u l l .

    Acknowledgements :

    Anyone

    who has g iven a

    grant

    or he

    l

    ped with

    the

    in v es t ig a t io n , or

    with

    the prepara t ion o f the a r t i c l e

    , should

    be

    acknowledged br ie f ly . Contr ibutors in

    U nivers i t i e s

    and

    other

    i n s t i t u t i o n s

    are

    reminded

    that grants

    towards the cost of publicat ion

    may

    be

    av a i lab le

    and

    they should make the appropria te

    enquir ie s as

    ear ly

    as poss ib l e . Expedit ion

    budgets

    should

    include

    an

    element

    to

    help

    publ i ca t ion ,

    and

    the e d i t o r should b e informed a t

    the

    t ime o f

    submiss ion .

    I l l us t ra t i on:

    Line

    diagrams and drawings

    must

    be in BL CK

    ink

    on e i ther c lean white paper or

    card ,

    or on t rac ing paper or

    such

    mater ia l s

    as

    kodat race

    .

    Anaemic grey ink and penci l

    wi l l

    not

    reproduce

     

    I l l us t ra t i ons

    should

    be

    designed to

    make maximum

    us

    e o f

    page space .

    Maps must

    have

    bar

    s c a l e s only .

    I f

    photo-reduction

    is

    contemplated a l l l in es

    and l e t t e r s must

    be large

    and th ick enough

    to a l low

    for

    the i r

    reduct ion .

    Let ters must

    be

    done by s t e n c i l

    ,

    l e t r a s e t or

    s im i lar

    methods

    ,

    not handwrit ten . Diagrams should

    be

    numbered in sequence as f i gures , and re ferred

    to

    in

    the t ex t ,

    where necessary , by inser t ing

    Fig.

    1 etc

    in

    brackets . A

    fu l l

    l i s t of f igure

    capt ions should

    be

    submitted

    on

    a separate shee t .

    Photographs

    are

    welcome. They must be good

    c l ear

    black and white

    pr int s , with

    sharp focus and

    not

    too

    much

    contras t ;

    pr int s

    about 15

    x

    10 cm 6

    x 4 inches)

    are

    bes t ;

    if

    in doubt a s e l ec t i on may

    be submi t t ed .

    They should

    be numbered in

    sequence , and re ferred to where necessary in the

    t ex t

    as

    Pla te 1   e tc . A

    f u l l

    l i s t of

    p la te

    capt ions , with photographer cred i t s where

    relevant , should

    be

    submitted on a separate shee t .

    Tables

    : These should

    not

    be

    included in the

    t ex t

    but should

    be

    typed,

    or c l ear l y handwrit ten ,

    on

    separate shee t s .

    They

    should

    be numbered in

    sequence , and a

    list

    o f capt ions ,

    if

    necessary ,

    should

    be

    submitted

    on

    a separate shee t .

    Approximate

    locations

    for

    t ab les , pla tes and

    f igures should be

    mark.ed in

    penc i l

    in the

    manuscript margin, unless

    already

    c l ear from the

    t ex t .

    Copyright :

    I f any

    t ex t ,

    d i

    agrams

    or

    photos

    have

    been

    publ ished

    e l sewhere ,

    it

    i s

    up

    to

    the

    author

    to

    c l ear any copyr ight or acknowledgment

    matters

    .

    Spe leo log i ca l

    exped i t ions

    have a

    moral

    obl iga t ion to produce reports contrac tua l

    in the

    cases o f r e c i p i e n t s

    o f

    awards from the Ghar Parau

    Foundation)

    . These should

    be conc i se and cover

    the res u l t s o f the exped i t ion as soon as p o s s i b l e

    af t er

    the re turn from

    overseas , so that

    l a t t e r

    exped i t ions are

    informed

    for t h e i r planning

    .

    Personal anecdotes

    should

    b e ke pt to

    a

    minimum,

    but

    use fu l advice

    such

    as l oca t ion

    o f food

    suppl ie s

    , medica l

    s e r v i c e s , e t c . ,

    may

    be

    inc luded .

    Authors

    may o rder

    repr int s

    o f the i r contr ibut ion

    for

    t h e i r own

    pr ivate

    use . The order must

    be

    not i f i ed

    to

    the Editor

    a t

    the

    t ime

    o f

    submiss ion .

    I f

    you have any problems regard ing

    your

    mater ia l , please consult e i the r of the Editors in

    advance o f submiss ion .

  • 8/21/2019 BCRA 12-1-1985

    3/36

      ave

    Science

    TRANSACTIONS OF

    THE BRITISH CAVE

    RESEARCH ASSOCIATION

    Volume 12

    Number

    1

    March

    1985

    Contents

    Amorphous Speleothems

    Brian L.

    Findlayson and

    John A. Webb

    Speleology in the U.S.S.R

    V.N. Dublyansky,

    A

    .B.

    Klimchouk

    and

    V.E.

    Kisse l

    y ov

    B.C.R.A.

    Cave

    Science

    Symposium, November 1984

    Abst r ac t s

    Natura l Evolu t ion of

    Perco la t ion Water

    in Altamira Cave

    E. Vi l l a r e t a l

    The

    World s E a r l i e s t Underground Cave Ph o tograp h

    by

    Alf r e d Bro ther s F.R.A.S .

    Chr is

    Howes

    3

    9

    19

    21

    25

    Cover:

    A s t a l agmi te gr o t t o in the Archery cave, a 3000 metr e l on g

    system

    in th e

    Malyykavkaz

    mountains

    near

    T b i l i s i in th e

    southern U.S.S.R

    . .

    By

    A.B. Klimchouk

    Edi to r : Dr . T . D. Ford   Geology Dept

    .

    Leices te r Univer s i ty   Leices te r

    LEi

    7RH

    Product ion Edi to r

    : Dr . A. C. Waltham  

    Ci v

    .

    Eng.

    Dept.   Trent Poly techn ic   Nottingham

    NG1

    4BU

    Cave Science i s pub l i shed by

    the

    Bri t i sh Cave

    Research

    Assoc ia t ion   and i s i s sued

    to

    a l l

    paid up members of the Assoc ia t ion .

    1985

    subsc r ip t ion

    r a t e s are

    : Indiv i dual - £10 . 00  

    I n s t i t u t i on

    or

    Club

    - £12 . 50

    Subsc r ip t ions

    should be sent

    to

    the Membership

    Secretary:

    D. Stoddard  

    23

    Claremont Avenue, Bishopston   Bris to l BS7 8JD

    Ind iv idua l cop ies and

    back numbers of

    Cave Science

    are

    ob ta inab le f r om :

    B. C. R. A. Sa les 30 Ma in Road   Westonzoyland  

    Bridgwater

     

    Somerset

    TA7 OEB

    Copyright

    the Br i t i sh Cave Research Assoc ia t ion   1

    98 5

    . No

    pa r t

    of t h i s pub l ica t ion may be

    reproduced in

    any

    o the r publ ica t ion   used in

    adver t i s ing

      s toreQ in

    an

    e l ec t ron i c

    r e t r i eva l

    system

     

    or

    o therwise

    used

    f

    or

    commercia

    l

    purposes

      without the

    pr i o r wr i t t en

    consent of

    th

    e

    authors

    and

    of the

    Assoc ia t

    i

    on

    .

    S S ~

    0263

    -7 6 X

  • 8/21/2019 BCRA 12-1-1985

    4/36

  • 8/21/2019 BCRA 12-1-1985

    5/36

    CAVE

    SCIENCE

    Vol. 12

    ,

    No

    . 1,

    March 1985

    Transac t ions

    of

    the Br i t i sh

    Cave

    Research

    Associa t ion

    morphous

    Speleothems

    Brian L . FINLAYSON and

    John

    A.

    WEBB

    Abstrac t

    :

    Attent ion is

    drawn to

    three

    amorphous mineral

    groups which

    may

    be more widely represented

    in

    speleothems than speleolog i c a l litera ture

    suggests .

    Opal is

    hydrous

    s i l i c a ,

    in three

    s t r uc t u r a l

    groups

    (opal

    -C

    ,

    opal - CT and opal - A) ,

    usua l ly

    ident i f i ed

    using

    X-

    ray

    d i f f r ac t i on . Opal

    speleothems

    are r e l a t i ve l y

    common

    in

    lava caves and

    have a l so been

    ident i f i ed in

    l imestone

    and

    gran i t e caves . The cond i t ions under which

    opal

    prec ip i t a tes from

    solut ion

    are l ike ly to be cont r o l l ed by

    temperature

    and

    evaporat ion . Allophane i s amorphous

    a luminos i l i ca te

    clay

    mineral

    of widely

    varing composition . I t can be ident i f i ed

    using

    the

    t e s t

    of

    Fieldes

    and

    Per ro t t 1966)

    , confirmed

    by

    IR spectroscopy.

    Allophane

    speleothems

    have

    been pos i t i ve ly

    ident i f i ed

    in grani te

    caves

    and

    may

    a l so be present

    elsewhere . Prec ip i t a t i on of

    al lophane

    i s most l i ke l y due to a

    r i se in

    pH

    produced

    by CO, outgassing .

    The

    i ron -

    r i ch mineral

    ser ies

    fe r r ihydr i t e - his inger i t e has

    not been pos i t i ve ly

    ident i f i ed in speleothems

    but may

    have been

    misident i f ied

    as goe thi t e in some cases . These

    minerals

    can be

    ident i f i ed

    using IR spectroscopy .

    INTRODUCT I ON

    Speleothems secondary

    mineral deposi ts

    formed

    in

    caves ) may be composed of a

    wide

    var ie ty

    of minera ls ,

    the

    vas t major i ty

    of them

    c r ys t a l l i ne

    (Hi l l , 1976 ) . Only two amorphous minerals , opal

    and al lophane ,

    have been

    posi t ive l y ident i f i ed in

    speleolog i ca l l i t e r a t u r e . Furthermore , the

    names

    ap p

    l

    ied to these

    minerals

    have of ten been

    co n t radic tory and i nco r r ec t , and the methods of

    i den t i f i c a t i on

    have

    f r equent ly

    been f a r

    from

    r igorous .

    The

    purpose

    of t h i s paper i s to draw

    a t t en t ion

    to opal

    and

    al lophane

    as

    speleothem

    minerals , to

    s e t out

    c lear ly the

    bes t

    minera logica l nomenclature for them , and to list

    the most r e l i ab l e methods of ident i f i ca t ion .

    I n add i t i on , the

    i ron

    -

    r i ch

    mi

    nera l

    se r i es

    f e r r i hyd r i t e - h i s i nge r i t e

    i s br i e f l y d iscussed .

    Although no posi t ive

    ident i f i ca t ions

    of these

    minerals

    have

    be

    en made in speleothems, perusal o f

    the l i t e r a t u r e suggests t ha t

    they

    may have been

    misident i f ied

    as goe thi t e

    in

    some

    cases .

    AMORPHOUS MINERALS

    Amorphous minerals are no n - c r ys t a l l i n e (i . e .

    they have littl or no s t r uc t u r a l organi sa t ion ,

    and thus do not form

    c rys t a l s )

    .

    These

    minerals

    are

    op t i ca l

    l y iso t

    ropic

    in th i n

    sec t ion dark

    under

    crossed

    polars

    )

    and they

    do

    not

    d i f f r ac t

    X-

    rays

    . As a r esu l t ,

    t he i r

    X-

    ray

    d i f f r ac t ion

    pat te rns lack sharp , well - defined peaks , a l

    though

    they may show one or

    more broad

    re f lec t ions .

    Amphorous minerals

    can

    form e i ther

    by rapid

    c o o l i n g rom

    th e mol t en

    st te

    e   g silic

    g l a s s

    ) ,

    .or

    by slow hardening and

    dehydrat ion of

    gels

    prec ip i t a t ed from

    col lo ida l solu t ions .

    The la

    t

    t e r

    process

    i s

    the

    more

    important ,

    as

    a

    number

    of

    natura l ly occur r ing

    substances

    can

    form

    co l lo ida l

    so lu t ions : hydrated s i l i c a , hydrated

    a luminos i l i ca te s

    , and hydrated i ron , manganese and

    a lumini urn oxides and hydroxides (Mason and Berry,

    1968) The

    ge l s

    formed

    from

    many

    of

    thes e

    solut ions wi l l

    t ransform to c r ys t a l l i ne minerals

    with in a comparatively shor t period of ti m e , given

    the

    correc t

    chemical

    condi t ions

    . However , in

    th

    e

    case

    of

    the

    s i l i c a and

    a luminos i l i ca te

    gels , the

    amorphous minerals formed (

    opal

    and

    allophane

    respect ive ly ) may pe r s i s t for long

    time spans

    .

    OPAL

    Terminology

    and

    St ruc ture

    Si l i c a

    d i s t inc t

    (

    SiO,

    ) occurs

    minerals :

    in na tu re

    quar tz ,

    as

    se\·en

    tr idym i t e ,

    3

    cr i s toba l i t e , opal ,

    coes i te ,

    s t i shovi te

    and

    lecha

    te

    l i e r i

    te

    ;

    each

    of

    these

    polymorphs has

    i t s

    own d i s t inc t

    morphology

    and c e l l dimensions. The

    th r ee pr inc ipa l c r ys t a l l i ne forms

    of s i l i c a

    are

    quartz

    ,

    t r idymi te and

    cr i s toba l i t e ,

    and each has

    a

    low temperature and high

    temperature

    phase,

    designated and respect ive ly . These three

    minerals

    have

    qui te d i s t inc t crys ta l s t ruc tures ,

    which are t r i gona l

    , orthorhombic and t e t ragonal

    respect ive ly for the

    low temperature

    ( )

    phases.

    The high

    temperature phases,

    along with coes i t e ,

    s t i shovi te and l echa te l i e r i t e , cannot form a t

    atmospheric temp era tures and pressures and wi l l

    not be considered

    fur the r

    .

    Quartz

    i t s

    e l f occurs as

    two d i s t inc t

    var ie t i es

    :

    macrocrysta l l ine

    and

    cryptocrys ta l l ine

    submicrocrysta l l in e ) . The l a t t e r

    i s

    normally

    classed as

    the

    subspecies chalcedony, and cons is t s

    of

    quartz c r y s t a l l i t e s ,

    of ten

    f ib rous in

    form

    ,

    sep

    ara ted

    by submicroscopic pores .

    Two

    of the

    s i l i c a

    minerals

    are amphorous

    :

    l echa te l i e r i t e s i l i ca

    glass)

    and

    opal .

    The

    term

    opal i s gene ra l ly used for the compact,

    vi t r eous

    forms of na tu ra l l y occurr ing

    hydrous

    s i l i cas ; the

    f r i ab le or

    dispersed

    forms (

    e .g

    . geyser i te ,

    d i a t

    omite

    )

    have been termed

    opaline

    s i l i c a

     

    (Jo n es and Segnit , 1971).

    However

    , many authors

    use

    opal

    as an a l l -enc

    ompassing

    term for

    na tura l

    hydr ous s i l i c a .

    His to r i ca l l y

    opal

    has been

    considered

    an

    amorphous mineralo id

    without

    crys ta l

    s t ruc tu re

    ,

    but recent work has indica ted t ha t there are

    seve ra l va r i e t i e s with di f fe rent

    degrees

    of

    s t r uc t u r a l order . Jones and

    Segni

    t 1971)

    have

    shown

    th a t natura l hydrous s i l i c a s

    can

    be

    subdivided

    in to

    three

    s t ruc tura l

    groups

    : o pal-C

    (

    well

    ordered

    <

    cr i s toba l i t e

    ) , opal -C

    T d is

    ordered

    c r i s t o l i t e and

    opal -A

    (highly

    disorde red) .

    Although

    the

    X-ray

    d i f f r ac t i on

    pa t t e rn of

    opa

    l -C

    is

    very s imi lar to t ha t

    of

    < cr i s toba l ite , it i s

    not appropr ia te to r e f e r to opal - C

    as

    C cr is tobal i t e

    because

    opal - C (and

    opal

    - CT) shows

    evidence of t r idymit ic s tack ing (Jones and Segni t ,

    1971, p .

    57

    ) .

    Furthermore

    , <

    cr i s toba l i t e

    contains littl or

    no

    wa t e r ,

    whereas

    opal contains

    a t l eas t

    3

    water

    J

    ones and Segnit ,

    1971

    ; Wilding

    e t

    a l

    . ,

    1977)

    .

    Thus

    the three va r i e t i e s

    of

    opal are

    s t r uc t u r a l l y d i s t inc t

    from

    eac h other and

    from

    t he i r r e l a t i ve

    cr i s toba l i t e .

    Previously some

    minera logis ts had

    regarded

    op a l

    as

    a form of

    cr i s toba l i t e (e . g . Frondel , 1962 ) , and some

    spe leogica l

    workers (e . g . Hil l , 1976; White 1976)

    have cont inued to use the tw o terms synonymously

    when desc r ib ing opal ine speleothems.

    However

    ,

    pure

    c r ys t a l l i ne cr i s toba l i t e

    has ye t

    to be

    pos i t i ve ly

    ident i f i ed

    as

    a

    spe l

    eo

    them

    mineral

    .

    High magnif ica t ion transmission

    e lec t ron

  • 8/21/2019 BCRA 12-1-1985

    6/36

    microscopy

    has shown tha t

    some

    var i e t i es

    of

    opal

    - A,

    in par t i cu la r

    gem

    opals from

    volcanic

    host

    rocks , are

    not ent i r

    ely amorphous , but conta in

    extremely

    smal l

    crys ta l s

    of t r idymite

    embedded

    in

    an amorphous

    matrix

    (S anders , 1975 ) .

    The presence

    of

    the c r ys t a l l i ne

    phase

    tridym

      te

    in some va r i e t

    i

    es of opal has been

    a t t r i bu t ed e i t he r to

    opal

    diagenesis upon ag e ing

    or

    to coprec ip i ta t ion

    during

    formation of the opal

    (Wi lding

    e t

    a l . ,

    1977)

    .

    On

    a

    macromo

    l

    ec u l ar sca le

    ,

    opal i s composed

    of

    close -

    packed ag g

    r egates of s i l i c a

    spheres

    ranging

    from

    1 5 0 0 S O O ~

    i n diameter , arranged

    hexagonally

    in layers (Jones e t a l . ,

    1964)

    . In

    precious opal these

    l aye r s

    serve as gra t ing

    surfaces tha t d i f f r a c t l ght and

    r esu l t

    in a play

    of

    colou

    r

    s .

    Composit ion

    Opal i s hydrous s i l i c a (S iO,

    .nH,

    0) . The

    water content commonly var ies

    between

    3 and

    11

    ,

    a lt

    hough

    t

    can

    occas iona l ly

    be

    much

    higher

    (Segni t

    e t

    a l . , 1965; Wilding e t

    a l

    , . 1977 ) . Opal

    may a l s o include s i gn i f i c an t amo

    unts

    of occluded ,

    chemisorbed or so l id solut ion impur i t i e s including

    Al ,

    O,

    (u p to

    3

    ) Fe,O, (

    up

    to 2 ),

    MgO

    (

    up to

    1.S ),

    CaO

    , Na,O and K,O (

    a l l

    l

    ess than

    1  ;

    Frondel,

    1962 ) . Opal

    in plants

    and

    so i l s

    may

    contain higher l eve ls of some of these impur i t ies

    (

    Wilding

    e t

    a l .

    ,

    1977).

    Ident i f i ca t ion

    In

    hand specimen opal

    i s

    dis t inguised by i t s

    vi t reous or waxy

    l u s t r e ,

    moderate

    hardness

    (S . 5-

    6.S ) , low dens i ty (2 .0-

    2 . 2)

    and i t s

    common

    occurrence in

    rounded or bot ryodia l forms .

    Opaline speleothems may be almost

    ident ica l in

    gross morphology

    to

    calcareous ones , but can

    be

    readi ly d is t inguised by h

    ardness

    (

    ca lc i t e

    - 3 ) or

    reac t ion with d i l u t e

    hydrochoric

    ac

    id

    (

    ca lc i t e

    ef fervesces vigorously

    ,

    whereas opal

    sh ows

    no

    reac t ion a t a l l

    ) .

    Chacedony

    ,

    the

    c ryp toc rys t a l l i ne va r i e ty of quar

    tz ,

    may be

    very

    s imi lar in appearence to opal ,

    but

    t i s harder

    (7)

    and

    denser

    (

    about

    2 . 6) ,

    and usual ly has

    a

    dul l

    lus t re

    .

    In th in

    sec t ion opal

    i s i so t ropic (dark under

    crossed nicols) , and

    i s

    also

    dis t inguished

    by i t s

    low

    index

    of

    re f rac t ion

    (usual ly about 1 . 4S),

    giving

    t

    a

    moderate

    -

    high

    r e l ie f .

    Of

    the

    othe r

    minerals tha t

    can

    occur

    in

    speleothems

    ,

    on

    l y

    f luor i te , ha l i t e , al lophane

    ,

    hal loys i t e

    and

    l imoni te are

    i so t ropic

    . Fluor i te and

    ha l i t e

    are

    readi ly d is t inguished from

    opal

    by

    t he i r

    obvious

    crys t a l l i n i ty , al lophane and ha l loys i t e are c lay

    A

    ________

    I

    50

    I

    40

    30

    20

    Figure 1. X-ray di f fr c t ion p tterns for the structur l

    s ubd i v i s i ons o f

    opa l

    ( f rom

    Jones

    and

    Se gn i t ,

    1

    97

    J ) . A:

    opa l

    - C

    B :

    opa l

    - CT .

    C: opal-A

    .

    (Q

    -

    qua r t z

    peaks= T -

    peaks due

    to

    tr idymit ic stacking

    4

    minerals and occur only as sof t

    , opaque deposi ts ,

    and l imoni te

    i s

    always

    brown

    or

    yel low

    in

    colour

    and has an

    ear thy

    lus t re

    .

    The

    ana ly t i ca l

    technique tha t

    most

    eas i ly

    dis t inguishes

    the

    d i f f e r en t va r i e t i e s of op a l

    i s

    X

    - r ay di f f rac t ion

    (XRD). As

    Fig.

    1 shows,

    the XRD

    pat te rns

    of

    opal

    - C,

    opal

    -

    CT and opal

    - A

    are qui te

    d i f f e r en t

    from each

    othe r and

    XRD provides

    a

    rapid , r e l i ab l e way of ident i fy ing the

    opal

    type

    present in

    a

    speleothem

    . The cent re

    of the broad

    ,

    di f fuse peak cha r ac t e r i s t i c s of opal-A

    may

    vary

    s l i gh t l y in

    wave

    l

    ength

    ,

    from

    a n

    ormal posi t ion

    of

    about

    4 . 3 ~

    (J

    ones and

    Se2ni t ,

    1971

    ;

    Wilding

    e t

    a

    1. ,

    1977 ) to

    as low as

    7J\ (Webb and Finlayson,

    1984) .

    Chalcedony can

    be

    readi ly dis t inguished from

    opal using XRD.

    Because

    chalcedony i s an

    extremely f ine -

    grained form

    of

    quar tz , t gives

    the quar tz

    XRD

    pat te rn ,

    with prominent

    peaks a t

    . 3 4 ~ and 4 . 26Jt.

    Other ana ly t i ca l

    techniques, e . g .

    in f ra - red

    absorpt ion spectroscopy (Plyusnina

    ,

    1979),

    can

    be

    used to dis t inguish the

    opal

    var i

    e t i es from

    each

    othe r and

    from

    the othe r s i l i c a minerals.

    However, such techniques are usual ly l e s s widely

    avai lable than XRD

    .

    Opal in Speleothems

    Opal has been

    recorded

    in

    lava caves and grani te caves

    ,

    sandstone overhangs .

    speleothems

    and also

    form

    from

    Opal

    speleothems

    are most

    abundant in lava

    caves

    , where

    they

    occur

    as cora l lo ids ,

    flows tone ,

    s t a l a c t i t e s ,

    s ta lagmi te s

    amd he l i c i t i t e s ,

    sometimes

    intergrown with chalcedony Hil l , 1976

    ) .

    Cora l lo ida l

    opal

    appears to be

    the commonest form

    ;

    of ten laye r s o f bot ryoida l

    opal

    coa t lava

    s ta lac t i t e s

    or

    globules (Sw artz low and Keller ,

    1937 ) .

    Most opal

    speleothems in lava caves are

    qui te small

    less

    than

    S

    cm in

    maximum

    dimension

    ) ,

    a l

    th

    ough Bartrum

    (

    1930

    )

    recorded

    a 30

    cm high opal

    and clay s ta lagmi te in a New

    Zealand

    lava

    cave

    ) .

    In

    li m

    estone caves opal

    i s

    uncommon,

    but

    does

    occur occasiona l l y as

    wall

    and f loor encrus ta t ions

    (Hil l , 1976) . Opal has also been found in

    limestone

    caves in te r layered with ca lc i t e and

    gypsum

    in

    cave b l i s t e r s (Siegal

    e t a l . ,

    1968;

    Hil l ,

    1976)

    .

    Al

    though speleothems

    are

    qui te

    r a r e

    in

    grani te

    caves ,

    small opal ine cora l lo ids (P1.2)

    have

    been

    descr i bed from an eas tern Austra l ian

    grani te cave by

    Webb

    and Finlayson (1984)

    .

    Sma

    l l opal ine

    cor ra l lo ids

    ,

    s t a l a c t i t e s

    ,

    s ta lagmi te s and bot ryoida l coat ings have been

    recorded on

    exposures of quar tz

    sandstone

    a t

    l oca l i t i es

    in

    U

    .S .

    A. and

    Aust ra l ia

    (Por t e r , 1979 ;

    Lassak ,

    1970)

    . The Austra l ian examples are

    act ive ly

    growing,

    and cons is t

    of

    a l te rna t ing

    l aye r s of

    opal

    and a mixture of l imoni te

    and

    s ider i t e

    (Lassak , 1970 ) .

    Very few s tudies of opal ine speleothems have

    included

    X-

    ray

    d i f f r a c t i

    on

    data , but in

    a l l cases

    these have

    shown tha t the speleothems

    are

    composed

    o f one of the

    var i e t i es

    of op a l and

    not

    cr i s toba l i t e . Siegel e t a1. (1968) descr ibed

    s ta lac t i t e s of in tergrown

    ca lc i t e and

    opal from

    a

    l imestone cave

    i n

    Argent ina

    .

    The

    X-

    ray

    d i f f r ac t i on

    pat te rn

    published in

    t he i r

    paper

    c lear ly i den t i f i es the opal as opal -A

    (

    although

    White (19

    76 ) e

    r r oneously

    re fer red to t

    as

    c r i s t oba l

      te ) . Webb (

    1979)

    used

    XRD

    to i den t i fy

    chalcedony , opal - CT amd opal - A from a lava cave in

    eas tern

    Aus t ra l i a .

    The opal-A occurred as

    bot ryoida l

    crus t s

    where

    as

    th e

    chalcedony and

    opal - CT formed f lowstone , s ta lac t i t e s ,

    vein

    i n f i l l i ngs and ?zeol i te pseudomorphs .

    Cody (1980)

    descr ibed opal

    s ta lagmi t

    es and

    f loor

    encrus ta t ions

    from lava caves in

    New Zealand ;

    al though he

    performed XRD analyses , he

    did

    not use

    Jones

    and

    Segni t ' s s t ruc tu ra 1

    groups

    ,

    or reproduce

    the

    di f f rac t ion

    pat te rns ,

    so

    t

    i s not

    poss ib le

    to

    i den t i fy the

    opal types

    present

    in his

    specimens .

    The

    cave

    cora l (P1.1)

    descr ibed by Webb and

    Finlayson (1984) from

    two grani te caves in eas tern

    Aust ra l ia was ident i f i ed as opal

    - A

    by XRD;

    chemical

    ana lys i s indica ted

    tha t

    these

    speleothems

    a l so had a

    small a l lophane

    component . Opaline

  • 8/21/2019 BCRA 12-1-1985

    7/36

      em

    P late 1. pa l -A

    co ra ll

    o ids fr om

    South Bald

    Ro ck Cave, a

    gr a

    n

    i te ca

    ve

    in

    Gi r

    ra

    we e n

    Na t

    i o

    nal Park,

    s o uth-east

    Q

    ueen s la

    nd.

    outgrowths

    on

    sands tone exposures in Vir g in i a ,

    U.

    S.

    A . , we

    re shown by

    XRD to be

    amorphous

    , i . e .

    o p a l - A (

    Por te r

    , 1979 ) .

    Format ion o f opal speleothems

    The c o n c e n t r a t io n o f d i s s o l v e d s i l i c a in

    groundwater

    i s determined l a r g e l y

    by the rock type

    in

    con tac t

    with

    t he

    water

    (

    Davis

    ,

    1964 ) .

    Because

    conver s ion o f

    fe ld spa r

    p a r t i c u l a r l y

    p lag ioc la se

    )

    t o c l ay i s more im por tan t in r e l e a s i n g

    s i l i c a

    than

    d i r ec t s o l u t i o n o f quar t z (Gar r e l s and

    MacKenzie

    ,

    1967) ,

    groundwater

    assoc ia ted wi th

    p l g i o c l s e ~ i c h rocks (p y r o c l a s t i c s , l avas ,

    i n t r u s i v e s

    o r sediments ) has t he h ighes t

    s i l i c a

    c o n t e n t . Thus groundwater in

    carbonate rocks has

    very low

    s i l i c a

    c o n c e n t r a t i o n s (1 0 - 15 ppm ) ,

    whereas

    t h a t

    from

    b a s a l t

    t e r r a i n s may con ta in

    40 - 50 ppm s i l i c a , and water from

    se d ime n t s

    r i c h

    in

    bas i c pyroc l a s t i c s

    may

    have up

    to

    85 ppm si

    l i ca

    (White

    e t

    a l . ,

    1963

    ; Davis ,

    19 6 4) . As l ava caves

    a r e almost

    always

    formed in b a s a l t , t h i s chemical

    d a t a shows why opa l ine speleothems are common in

    l ava caves .

    It

    a l s o exp la ins why

    the l a r g e s t

    known s i l i c a

    spe l e o the ms

    (

    c ha l c e dony

    f l

    ows tone up

    to

    30

    mm t h i c k and

    s t a l a c t i t e s up to 40 cm long )

    a r e

    presen t

    in

    a cave

    in

    l im es tone

    o v e r l a i n by

    p y r o c l a s t i c s

    depos i t s

    (

    Broughton

    , 1974 ) .

    In t he

    f r ee a tmosphere amorphous

    s i l i c a

    pr e c i p i t a te s more r ead i l y than c r y s t a l l i n e s i l i c a

    from

    supe rsa tu r

    a

    t ed s o l u t i o n s

    . Apar t from

    ov e rgrowths on quar t z

    gra ins

    in s ands tones ,

    ev idence f o r t he d i r e c t prec i p i t a t i ons of quar t z

    a t e a r t h - s u r f a c e

    c o n d i t i o n s

    i s very

    meagre

    (Wilding e t al. 1977 ) .

    Thus groundwater

    so lu t ions supe rsa tu ra ted with re spec t to

    s i l i c a

    w i l l

    initia

    l l y

    p r ec i p i t a t e

    an amorphous s i l i c a

    g e l ;

    t h i s gr adua l ly d e

    hydr a t es

    and harderns

    to

    form opa l (Ei t e l , 1954) .

    Secondary

    t r ans f o r mat ion

    from o p a l - A

    to

    opa l - CT to

    c ha l c e dony

    to

    quar t z ,

    r e f l e c t i n g

    pr ogr ess ive

    c r y s t a l l i a t i o n

    , has been

    commo

    n ly

    o

    bserv

    e d e .g .

    Markova, 1978

    ) ,

    and

    t he

    form a t i o n o f

    qu

    a

    r t z

    a t t he e a r t h ' s su r face

    i s

    gene ra l ly

    a t r r i b u t e d

    to

    t h i s proces s

    (Wilding e t

    a l .

    ,

    1977-).

    A

    f a i r l y

    long t ime

    per iod

    (

    mil l ions

    o f

    ye a r s )

    i s

    b e

    l i eved to be

    neces sa ry

    for

    t h i s

    c o nv e

    r s i

    o n (Mizu tan i , 1970) . This exp la ins why

    c ha l c e dony

    speleothems a r e r a r e and usua l ly

    i n a c t i v e (Brough ton , 1974

    ) .

    The

    f ac

    t o r s caus ing p r e c i p i t a t i

    o ns o f s i l i c a

    g e l

    in ca

    ves a r e

    unknown, bu t

    could i nc lude

    ev a po ra ti o n , lo w e r termpera

    tu re s

    and

    changes

    in

    pH

    . The s o l u b i l i t y o f a morphous

    s i l i c a

    i n c r e a s e s

    1 i nea r ly with

    tempera tu re

    from 0 C , bu t

    i s

    i nd ep e

    nd en

    t o f pH b e l o w 9 (Wilding e t a l . ,

    1977

    ) ,

    so

    e v a

    po r

    a t i o n a nd

    t em pera tu re

    a r e

    l i k e l y

    to

    be

    th e c o n t r o l l i n g f ac t o r s . Evapora t ion

    i s

    probably

    mo s t im

    por

    t a n t i n th e fo rm at i o n o f

    co ra l10 ida l

    opa l in e s

    pe

    l e o th e ms (P o

    r t e r ,

    19 7 9) .

    The fo rm t a

    ken by

    o pa l ine

    spe l e o the ms seems

    t o de pend o n

    th

    e same f a c t o rs t h a t a f f e c t

    t he

    sh ape o f ca l c a r eo us sp e l eo

    thems,

    p a r t i c u l a r l y the

    t

    ype an

    d r a t e o f

    th

    e wa t e r

    supply

    .

    Thus

    c o r a l l o i d s a ppea r to form from

    the

    t h i n f i lms o f

    s e e p i ng f ro m or

    f l

    owing o ver

    t he

    w a l l

    rock

    ,

    5

    whereas s t a l a c t i t e s and

    s ta lagmi te s

    a r e depos i t ed

    by

    water dr ipp ing from a

    p a r t i c u l a r

    spo t on t he

    cave

    r oo f . Undoub ted ly o the r fac to r s e . g.

    shape

    o f

    the

    cave wal l s o r r oo f , and compos i t i o n and

    dynamics

    o f the

    cave

    atm

    o sphere , a l so

    p l a y a pa r t .

    ALLOPHANE

    Termino logy

    and

    s t r u c t u r e

    The c l ay miner a l s a r e a complex

    and

    l o o s e l y

    def ined

    group o f f ine ly c r y s t a l l i n e ,

    metacol

    l o ida l

    o r amorphous

    hydrous s i l i c a t e s , es sen t i a l l y o f

    aluminium

    ,

    with

    a

    monocl in ic

    c r y s t a l

    l a t t i c e

    o f

    the two or

    th ree

    l a y e r type (

    Bates

    and Jackson ,

    1980

    ) .

    Based on s t ruc t u re and

    c ompos i t i on

    , t he

    c r y s t a l l i n e c l ay miner a l s can be d iv ided i n t o

    seve ra l groups , e . g . illite group ,

    kao l i n i t e

    group.

    The name a l lophane has been in use s ince

    1816

    to

    desc r ibe a c l a y mineral

    t h a t

    i s na t u ra l l y

    occur r ing

    amorphous

    hydrous a luminos i l i ca te o f

    wi de ly vary ing

    composi t ion

    (

    Frye

    , 1981 ) . Many

    authors

    (e . g . Weaver and Po l l a r d , 1973 ; Pyman

    e t

    a l. ,

    1979

    ) have

    used

    t he name in t h i s genera 1

    sense . Allophane has been shown

    to

    be randomly

    s t r u c t u r e d r a t he r than amorphous ,

    with

    a bas i c

    s t r u

    c t ur

    e

    composed o f A1

    - 0 ,

    Al-O

    -

    OH and

    A1 - 0-

    S i

    bonds

    (

    Fielded

    , 1966 ; Wells e t a l . , 1977

    ) .

    High

    r e so l u t i on e l e c t r o n microscopy has ind ica ted

    t h a t

    a l lophane

    con s i s t s o f hol low spher u l es   with

    d i

    ameter s

    o f

    35

    - 55.8. (

    Wada

    ,

    1980 ) .

    Wada

    (1980

    ) subd iv ided

    a l lophane

    (

    sensu l a t o

    )

    i n t o a l lophane (sensu s t r i c t o ) and a l lophane - l i ke

    c o n s t i t u e n t s . The

    d i s t i n c t i o n

    was made in t e rms

    o f d i f f e r ences

    in

    t he IR spec t ra (see F i g . 2 ) and

    t he molar

    Si O

    , jA1, 0) r a t i o s (

    a l lophane

    0 . 8-

    2.5

    ;

    a l lophane

    -

    l i ke cons t i t uen t s

    0 . 2 - 1 . 4

    ) .

    Allophane

    c o n s t i t u e n t s a r e d i sso lved by d i t h i on i t e - c i t r a t e

    and 2

    Na,

    CO ) s o l u t i o n , whereas a l lophane i s

    no t

    (Wada and Greenland , 1970

    ) .

    Some workers have

    found

    d i f f i c u l t y

    in matching t h e i r samples to

    t h i s

    c l a s s i f i c a t i o n

    (e . g . Young

    e t a l .

    ,

    1980

    ;

    Webb and

    Fi

    nlayson

    , 1984 ) , and Wada (1 98 2 ) adm i t t ed t h a t

    A

    B

    c

    13

    12

    1 B

    x100 c m·

    1

    Fi

    gure 2 . In f r a - red

    abso

    r pt ion spe c tra fo r al lophanc

    and

    a l l

    ophane  l kc co

    ns

    t i t uen t s . A : al

    lophane

    , preCipitated

    in

    s ide

    g

    ra n

    i t e

    ca v

    e ,

    easte

    r n Aus

    tr

    a l

    i a fr

    om e b b

    and

    Fi n d l a y s

    on

    , 1984). B: a

    l lop hane- l ik

    e c

    on s t i

    t uen t , d

    er

    i ved

    from

    we athere d

    pumic

    e , Japan f rom Wad a , 198 0   . C: a l

    lopha

    ne ,

    de r

    ived from we

    ath

    ered p u n i cc , Ja pan f r om Wad a , 1

    980)

    .

  • 8/21/2019 BCRA 12-1-1985

    8/36

    the d i s t i nc t i on may be debatable . Fieldes

    (1966)

    argued

    tha t the

    dis t ingui shing

    proper ty o f

    al lophanes i s the i r s t ruc tura l randomness , which

    enables them

    to

    be recognised

    as

    a group desp i t e

    var ia t ions

    in

    composi t ion.

    Lassak (1 970 ) s tudied some ac t ive ly grow ing

    opa l / l imoni te

    s t a l a c t i t e s i n

    eas te rn

    Aust ra l ia ,

    and

    found

    tha t these

    were always assoc ia ted

    with

    ex tens ive

    areas

    of decaying

    vegeta t ion .

    He

    pos tula ted

    tha t

    organic matter

    in

    the f r e shly

    prec ip i t a t ed l imon i te caused it to r e t a i n a

    negative charge . Once ox i dation had destroyed

    th i s

    organic

    mat te r

    , the l imonite

    surface

    would

    become

    ca t ion i c and so

    prec ip i t a t e the

    negat ively

    charged s i l i c a

    so l .

    Composit ion

    Allophane

    i s

    noted

    for

    i t s rang e of

    compostion . Besides the

    var iable

    SiO,

    /Al,

    0,

    ra t ios mentioned

    above

    (0 .2-2. 5 ) , the amoun t of

    water can vary

    grea t ly

    (up to 40%; Wells e t a l.

    1977) .

    Phosphate-bearing a l lophane with

    7-10

    phosphate has

    been

    desc r ibed

    by

    a number of

    authors (see Weaver and Pol la rd , 1973 ) and organic

    carbon

    may

    a l so

    be a r e l a t i ve l y major cons t i tuent

    (u p to 13 . 2%; Young e t a l . ,

    1980)

    . The Fe, Ca and

    Mg contents of

    most

    al lophanes

    a re

    low,

    a

    l th

    o

    ugh

    the percentage

    o f Fe can be as high as 8 (Young

    e t

    a l

    . ,

    1980). Other elements , e . g. Mn, Ca , K and

    Na,

    are

    usual ly present in

    minor amounts 0.5 ).

    Ident i f i ca t ion

    Allophane has no r e l i ab l e

    dis t inguishing

    cha r c t e r i s t i c s in

    hand

    specimen and

    i s

    very s imlar

    to other c lay minerals and l imonite .

    Pure

    al lophane i s very

    b r i t t l e

    with a hardness of 3 or

    l ess , a

    conchoidal

    to

    ear thy

    f rac ture and a

    res inous , w

    axy or

    ear thy l u s t r e . Allophane may be

    t r anspa rent

    to t rans lucent

    but i s

    more usua l ly

    opaque , with a wide

    range

    of colours (c olour less ,

    white , green,

    blui sh

    ,

    y el

    l ow , brown

    and pink) ,

    which

    r   derived from impur i t ies .

    The spec i f i c

    gravi ty

    var ies

    from 1. 85

    to

    1.9 .

    In

    t h in sec t ion

    al lophane i s

    i so t rop i c and

    has

    a var iable r e f r ac t i ve index

    (1.

    39-1. 49) .

    Allophane in

    speleothems is f requent ly th in ly

    banded

    and

    may occur

    in

    assoc ia t ion

    with

    othe r

    minerals

    such

    as

    opal (Webb

    and

    Finlayson ,

    1984).

    I t i s c l ea r t ha t r e l i ab l e i d e n t i f i c a t ion of

    allophane

    in hand speciment

    or

    th in

    sec t ion i s not

    poss ib le

    and

    othe r diagnos t i c

    t e s t s

    must

    be used .

    Fieldes

    and

    Per ro t t

    (1966)

    proposed a rapid

    f i e ld

    and l abora tory t e s t for

    a l lophane

    .

    This

    t

    e s t

    i s

    based on the pr inc ip l e t ha t aqueous

    solu t ions

    of

    f luor ides a t pH higher

    than

    7 reac t a t the

    hydroxy-aluminium s i t e s , re l e ase hydroxyl

    ions

    and

    cause a r i se

    in

    pH with a s imultaneous formation

    of f luoaluminate . In the

    t e s t

    for a l lophane

    in

    s o i l s a smal l

    quant i ty (10

    mg) of so i l

    i s

    placed

    on

    dry

    f i

    1

    t e r paper (previously

    soaked with

    phenolphthale in

    ind ica tor ) ,

    and wetted wi th a drop

    of sa t

    ura ted NaF solu t ion .

    I f

    appreciable

    al lophane

    i s present

    the

    f i l t e r

    paper

    wi l l turn

    red .

    Brydon and Day (1 97 0 ) have shown t ha t t h i s

    t e s t cannot

    be

    used

    as a

    spec i f i c t e s t

    for

    a

    ll

    ophanes

    in so i l s ,

    s ince other

    mater ia l s ,

    such

    as ground

    gibbs i te , amorphous

    Al

    (OH)

    synthe t i c

    dioctahedra l

    ch l o r i t e

    and

    so i l s

    with more than 1

    oxala te - ext rac table aluminium a l l produce posi t ive

    resu l t s . In speleothems these

    mate r ia l s

    are

    unl ike ly to be present and the t e s t could be used

    to dis t inguish

    al lophane from

    othe r c lay

    minerals

    and l imoni te .

    The XRD pat te rn of al lophane lacks

    well-def ined peaks,

    having broad bands

    centered a t

    about

    and 2 . 2 ~ the second being the weaker.

    This pat te rn i s r e l a t i ve l y cons is tent (Wada, 1977;

    Wells

    e t

    a l .

    , 1977; Webb and Fin

    la yson

    , 1984) but

    not diagnos t i c .

    The

    bes t

    ana ly t i ca l technique for

    th e

    ident i f i ca t ion of a ll ophane i s IR spectroscopy,

    and Fig . 2 shows IR

    spec t ra

    for a ll

    ophanes

    from

    widely di f fe r ing

    loca t ions

    and paren t mater ia l s .

    Two

    peaks

    a re d iagnos t i c

    ,

    one

    around 9S0-l000/cm

    and the othe r a t SSO -

    S80/cm

    .

    The

    former peak i s

    due to Si - O s t re tching vibra t ions and the

    l a t t e r

    6

    to Si - 0

    bending

    vibra t ions and

    i t s

    pos i

    t ion

    i s

    al te red

    by

    the

    presence

    of

    Al

    in the framework ; in

    the absence of Al the

    peak

    i s

    close

    to 1100/cm .

    Wada ' s (1 980 )

    suggest ion tha t

    var ia t ions

    in

    the

    IR

    spec t ra can

    be

    used to dis t inguish

    two

    types of

    a ll ophane appears to be unre l iable , and the

    observed va r i a t i ons are probably due to

    di f fe rences in A1

    :

    Si

    r a t i o s

    ebb

    and

    Finlayson

    ,

    1984 ) .

    For

    i den t i f i c a t ion of al lophane in

    speleothems ,

    the

    t e s t

    of

    Fie lds and Per ro t t

    (1966)

    noted

    above

    i s the most readi ly

    ava

    ilable and for

    t ha t

    reason

    i s recommended. However,

    a

    posi t ive

    r e s u l t should

    be

    confi rmed by IR

    spectroscopy and

    chemical ana lys i s wherever po s s i b l e .

    Allophane

    in

    Spel eothems

    Early

    minera log ica l references

    to al lophane

    (e .g .

    Dana

    ,

    1982)

    mention s t a l

    ac t

    it

    es and

    mamillary

    enc rus ta t ions

    of

    the

    mine ra l ,

    though

    no deta i led descr ip t ions

    have

    been published .

    Allophane

    in speleothems

    has b

    een ident i f i ed

    by

    Webb and Finlayson (1984) f r om gr an i t i c

    caves

    in

    southern

    Queensland, Aus t r a l i a . They found

    a l loph

    ane

    pr ec i p i t a t ing as f lowstone with a

    microgour surface (P1 . 2 ) and a l s o

    as

    an

    in tergrowth in op a l

    co ra l l o ids . Allophane

    s t a l a c t i t e s up

    t o 10cm l

    ong and

    2cm

    in

    diameter

    are known from a

    lava

    cave in the

    basa l t

    flows of

    western Vic tor i a ,

    Aus t ra l i a

    eb b and Finlayson,

    in

    prepara t ion) .

    late 2

    Allophane

    f lowstone   showing microgours   from South

    Bald

    Rock Cave ( loca l i ty

    as

    Pla te 1) .

    Wilkinson (1950) repor ted al lophane occur r ing

    as a r i pp led flow   on the

    l imestone

    wal

    l s

    and

    roof of a mine

    in

    Derbyshire , England . The

    deposi t i s amorph

    ous

    and composed l a rg e ly

    of

    alumina , s i l i c a , and

    water ,

    ao it

    probably

    r epresent s

    al lophane

    , al though the re

    i s

    some doubt

    because Wilkinson (1950)

    recorded tha t

    it

    dissolved ins tantaneous ly   in d i l u t e hydrochlor ic

    acid (a l l ophane does not r eac t with t h i s

    acid)

    .

    In l i t e r a t u r e there are two descr ip t ions of

    speleothems which may

    have been

    al lophane , though

    not

    ident i f i ed

    as such

    . Hall iday

    (1963,

    1966)

    descr ibed

    pasty, red

    - orange flowstone which he

    ident i f i ed

    as c imol i t e ;

    it

    oc c

    urred in

    severa l

    marble

    caves

    in Washington

    Sta te

    , U.S . A.

    Cimol it

    e

    i s

    a hydrous aluminium s i l i c a t e

    but

    i s no

    longer

    recognised

    as

    a val id mineral name

    because

    the

    type

    example was

    shown to

    be

    a mixture

    of

    montmori l loni te

    and

    a luni te

    (Cai l l e r e and Henin ,

    1963)

    .

    Since

    Hall iday d id not descr ibe the

    ana ly t i ca l

    techniques

    it

    i s no t

    poss ib le

    to

    comment fur the r

    in th i s case .

    Bartrum (1930)

    described

    s ta lagmi te s

    and

    s t a l

    ac t i t es from

    a lava cave

    in

    Auckland , New

    Zealand;

    these

    were

    composed of a l te r na t ing

    l aye r s

    of opal and

    s t rongly hydrated co l lo ida l aluminous

    mater ia l .

    No XRD or IR

    analyses we r e performed

    on th e

    mater ia l ,

    but it could have been al lophane.

    Hil l (1976), in the s tandard t ex t on cave

    mineralogy

    ,

    makes no

    reference to al lophane.

    I t

    i s

    poss ib le

    tha t al lophane may

    be more

    common

    in

    speleothems

    than

    i s

    present ly r ea l i s ed and the re

  • 8/21/2019 BCRA 12-1-1985

    9/36

    A

    cm

    ------

    Smm

    Plate 3.

    Allophane

    s t a l a c t i t e

    from Church

    Cave a l ava cave

    near Byaduk  

    western

    Victoria A : s ide view . B: cross-

    sect ion   showing banding.

    i s a clear

    need

    for more r igorous

    ana lys i s of

    no n

    - c r ys t a l l i ne speleothems.

    Formation of Allophane Speleothems

    L i t t l e i s

    known of

    the mode

    of

    formation

    o f

    a l l ophane

    speleothems

    . Most allophanes described

    in

    the l i t e r a t u r e are from so i l s

    e

    . g . F i e ldes ,

    1966 ; Wada, 1977) and they are

    usual ly

    considered

    to

    be a l t e r a t i on

    products

    of primary

    alumino - s i l i c a t e s or vo lcan ic

    glass .

    In order

    to

    form speleothems ,

    allophane

    must prec ipi t a te

    d i r ec t l y

    from

    solu t ion; two well-documented

    ins tances of

    t h i s

    have been

    reported in

    the

    l i t e r a t u r e .

    Wells

    e t

    a l .

    1977 ) ident i f i ed a creamy-white

    allophane deposi t in the s t ream

    bed

    below Si l i c a

    Springs on

    Mount

    Ruapehau , New Zealand.

    The

    spr ings

    issue

    from an andes i t ic lava flow .

    Prec ip i t a t i on

    of allophane a t

    t h i s s i t e was

    be l

    ieved to be

    due

    to

    a r i se

    in pH downstream of

    the spr ing, caused by outgassing of CO,.

    Webb and

    Finlayson

    1984) described

    al lophane

    flowstone

    P1.3

    )

    in

    a

    grani te

    cave ;

    t h i s f lows

    t one

    was being prec ip i t a t ed by water i s suing

    from a

    hor izonta l jo in t in the cave wal l . The jo in t

    systems from

    which

    the water i s flowing are

    vegeta ted

    a t

    the

    ground surface above

    the cave ,

    and so conta in humic acids and so i l CO which

    promote the solu t ion of alumina col lo ids . A r i se

    in pH

    , due

    to

    CO, outgass ing, would

    be

    expected

    when

    the water

    emerges

    i n to

    the

    cave

    , leading

    to

    the se l ec t i ve

    prec ip i t a t ion

    of

    a luminos i l i ca te

    gel

    i . e . al lophane) .

    7

    On the

    avai lable evidence it would a pp e a r

    tha t di rec t prec ip i ta

    t ion of

    a

    ll

    o

    ph

    a ne

    i s

    r a

    re .

    White

    e t

    al .

    1963),

    in a

    comprehensive survey

    o f

    subsurface waters

    and

    spring

    prec ip i t a tes

    , did not

    r epor t

    any

    al lophane depos i t s .

    HISINGERITE AND FERRIHYDRITE

    His inge r i t e

    i s an

    i ron - r i ch no

    n-crys ta l l in

    e

    hydrated s i l i c a t e mineral

    with

    a

    var iable

    SiD, :

    Fe,O,

    r a t io

    in the range of 2- 4.

    I t

    i s amorphous

    to X-rays

    but has

    a cha r ac t e r i s t i c

    IR

    spectrum

    Henmi

    e t

    a l . ,

    1980

    ) . Fer r ihydr i te

    i s an

    hydrated

    i ron

    oxide

    with a number of charac te r i s t i cs

    but

    waek XRD peaks; it shows some var ia t ion

    in

    the

    development

    of crys t a l l i n i ty Carlson

    and

    Schwertmann , 1981). Wada 1982)

    has

    described

    fe r r ihydr i t e

    as c r ys t a l l i ne

    but with

    defects

    and

    disorde r s .

    Henmi e t

    al . 1980

    )

    described

    i ron- r ich

    prec ip i t a tes from sp r ings

    in

    New

    Zealand

    ; these

    prec ip i t a tes

    were poor ly

    ordered and

    ranged

    in

    composition

    between

    fe r r ihydr i t e

    and

    h i s i nge r i t e .

    Henmi e t a l . 1980) sugges ted t ha t t h i s mate r ia l

    forms as a co - prec ip i t a te from water

    supersa tura ted

    with i ron and s i l i ca .

    His inge r i t e

    and

    f e r r i hydr i t e

    are

    s imi lar

    in

    appearance

    and

    composit ion to l imon i te

    and

    goeth i te . Many i ron - r i ch speleothems have been

    ident i f i ed as l imoni te , which i s a genera l

    f i e ld

    term

    for a

    mixture

    of

    brown

    amorphous hydrous

    fe r r i c

    ox i des . Goethi te is gene ra l ly

    the main

    cons t i tuent of

    l imonite , and

    Hil l 1976) grouped

    a l l i r on - r i ch speleothems toge the r under the

    heading

    of

    goe thi t e

    and

    did not recognise othe r

    spec ie s . However,

    fe r r ihydr i t e -h i s inger i t e may

    have

    been mis ident i f i ed in speleothems

    in the

    same

    way as al lophane , and some

    sp e

    l eothems

    or ig ina l ly

    ident i f i ed as l imon i te could wel l be composed of

    f e r r i hydr i t e

    - h i s i nge r i t e .

    I t

    would appear

    unwise

    to indent i fy

    an

    i ron

    -

    r i ch speleothem as goe thi t e

    unless t he

    presence

    of th i s

    mineral

    has

    been

    ve r i f i ed

    , e . g . by XRD

    or IR ana lys i s

    .

    White 1982) ident i f i ed goeth i te in

    speleothems

    from l imes tone

    caves

    in the

    Appalachians .

    However,

    his analyses indica te

    tha t

    the

    mate r ia l

    i s

    in

    fac t amorphous to X- rays and

    has an

    IR spectrum subs t an t i a l l y

    d i f f e r en t

    from

    tha t

    of

    goeth i te .

    I t

    is

    more l ike ly

    to

    belong

    to

    the compos i t i ona l

    ser ies

    fe r r ihydr i t e - his inger i t e

    cf .

    Henmi

    e t a l . , 1980) .

    Lassak 1970) described

    l imoni t i c speleothems

    from the

    Hakwesbury

    Sandstones of the

    Sydney

    Basin

    Aus t ra l i a ) ,

    but gave only composi t ional analyses

    and no IR or

    X-ray

    spectra . I t i s possible tha t

    these samples

    a l so belong

    to the

    fe r r ihydr i t e -h i s inger i t e

    group.

    More

    de ta i l ed analyses

    of

    i ron -

    r i ch

    speleothems need

    to

    be

    under taken ;

    XRD

    ,

    IR

    and

    composi t ional

    analyses

    especia l ly

    the

    SiD,

    Fe,O, r a t i o s )

    would be

    most use ful . The

    XRD

    ana lys i s wi l l

    indica te whether

    or

    not the

    sample

    i s

    c r ys t a l l i ne an d , i not ,

    IR ana lys i s

    and

    composition

    wi l l enable more prec i se

    i den t i f i c a t i on .

    CONCLUSIONS

    This survey has shown tha t the re i s a

    predi spos i t ion

    in

    the l i t e ra tu re towards the

    ident i f i ca t ion of speleothem

    minerals

    as

    c r ys t a l l i ne phases , even where analyses indica te

    tha t

    t h i s

    i s

    not the case

    .

    Moreover, speleothem

    minerals

    have f requent ly been

    ident i f i ed without

    adequate s t ruc tura l

    ana lys i s

    .

    In t h i s paper the

    main

    areas where confus ion can ar i se have been

    indica ted

    and

    diagnos t i c

    procedures suggested.

    Correct ident i f i ca t ion of

    speleothem

    minerals

    is

    impor tant

    for

    determining t he i r

    mode

    of

    formation

    and

    the condi t ions

    preva i l ing

    in

    the cave a t the

    t ime

    of formation.

    Three groups of

    amorphous minerals

    have been

    discussed and

    appropr ia te diagnost ics

    t e s t s

    ha ve

    been indica ted in each case. Opal speleothems

    should

    be

    indent i f ied

    using

    X-

    ray

    di f f rac t ion

    ;

    al lophane speleothems can

    be indent i f ied i n i t i a l l y

    us ing

    the

    t e s t of Fieldes and Perro t t 1966 )

    and

  • 8/21/2019 BCRA 12-1-1985

    10/36

    then confirmed with IR

    spectroscopy

    ; i ron - r ich

    speleothems should be analysed

    i n i t i a l l y

    using

    X- ray d i f f r ac t i on and , i f amorphous to X- rays ,

    fur ther inves t iga ted using I R spectroscopy . In

    a l l cases t

    i s important

    t ha t as much analy t ica l

    information as possible , both composit

    onal

    and

    s t r uc t u r a l , i s presented to demonstrate

    t ha t

    a

    co r r ec t

    i den t i f i c a t i on has

    been

    made and

    to

    f a c i l i t a t e comparisons with other occurrences . I t

    i s

    c l ea r

    from the

    l i t e r a tu r e

    tha t

    many speleo t hem

    mineral i den t i f i c a t i ons have been made on t he

    bas i s of

    indequate and

    sometimes

    mi s - i n t e r pre ted

    data

    .

    REFERENCES

    Bartrum , J

    .A

    . , 1930. Unusual depost ional s ta lact i t es

    in

    a

    lava tunnel at Mount Albert

    Auckland

    , N. Z.

    J .

    Sci .

    Tech. ,

    vol

    1, pp . 188 - 19 2 .

    Bates, R.L . , and Jackson, J .A

    .

    eds)

    ,

    1980. Glossary

    of

    geology second

    ed i t io

    n . American Geological

    Inst i tu te

    Vigln i

    a , 805 pp.

    Broughton

    , P . L . ,

    1974. S i l i c a

    d ep os i t s

    in eas tern Wyoming

    caves   Na t

    .

    Speleol . Soc.

    Bul l .

    ,

    vo l

    36 3 ) ,

    pp

    . 9-

    1l.

    Brydon

    , J . E

    . and Day

    J .

    H. 1970.

    Use of

    the Fieldes and

    Perrott

    sodium f luor ide t es t

    to dist inguish the B

    horizons of podzols

    in

    the f ie ld . Can. J . s o i l

    s c i . ,

    vol 50,

    pp . 35 -

    4l.

    Call iere 5. ,

    and

    Henin 5 . 1963.

    Mineralogie

    des

    ar g i l e s .

    Masson e t Cie

    ,

    Paris .

    Carlson L. ,

    and

    Schwertmann ,

    U

    1981 .

    Natural ferr ihydri tes

    in

    surface

    deposi t s

    from

    Finland

    and

    their associat ion

    with s i

    l

    ica .

    Geochim .

    Cosmochim. Acta

    ,

    Vo l

    .

    45

    ,

    pp.

    421

    - 42 9 .

    Cody , A. ,

    1980.  Stalgmite

    def los i ts

    in Auckland

    lava caves .

    N.

    Z. spe l e o l .

    Bu l l . ,

    vo l 6,

    pp . 337 - 343 .

    Dana E . S .

    1982 . System

    of minerology s ixth edi t ion .

    Wiley

    New Y

    or

    k .

    Davis

    ,

    S.N.

    1964

    . S i l i c a

    in

    streams

    and

    ground water

    .

    m

    .

    J . s c i . , vo l 262,

    pp . 870 -

    891.

    Eite l

    , W , 1954.

    The p h ys i ca l

    chemistry of the

    s i l i c a t e s .

    Univers i ty of

    Chicago

    Press ,

    Chicago

    ,

    1592

    pp .

    Fieldes M

    ,

    1966. The nature of

    allophane

    in

    so i l s .

    Part 1  

    Signi f icance of s tructural

    randomnes in pedogenesis .

    N.Z

    . J . s c i . ,

    vo l

    9 , pp . 599 -

    607.

    Fieldes , M ,

    and

    Perrott , K. W

    . 1966

    .

    The

    nature of

    al10phane

    in

    so i l s . Part

    3 . Rapid f i e ld and l aborato

    ry t es t

    for

    al lophane .

    N. Z. J .

    sc i

    . ,

    vol   9,

    pp . 623.629 .

    Frondel C. ,

    1962.

    Dana ' s System of

    Mineralogy

    .

    Volume

    3 ,

    Si l i c a minerals .

    Wiley

    , New York .

    Frye

    ,

    K. 1981.

    The encyclopedia of mineralogy.

    Hutchinson

    Ross

    Stroudsburg 794

    pp.

    Garrels

    R. M

    . and MacKenzie

    F .

    T.

    ,

    1967. Origin of the

    chemica

    l

    composit ions

    of some

    springs

    and lakes .

    dvanc e s in Chemistry

    s e r i e s , vo

    l  

    67 , pp.

    22

    -

    242

    .

    Hal l

    id a y

    W R.

    1963

    . Caves of Washington . Wash . Dep.

    Conserv

    .

    iv   Min

    .

    Geol.

    I

    nf . Circ . , vo l   40, pp.

    1-

    132

    .

    Hal l iday,

    W R. ,

    1966.

    Cimoli te?

    Na t

    .

    spe l e o l .

    So c .

    News, vo l  

    24,

    p . 58 .

    Henmi T .

    Wells

    N.

    Childs ,

    C W

    .  

    and Par f i t t

    , R. L. ,

    1980.

    Poorly -

    ordered

    iron - rich prec i p i t a t e s

    from

    springs and

    streams

    on andes i t i c volcanoes . Geochim .

    Cosmochim

    .

    Acta, vo l

    44 , pp. 36 5 - 372.

    Hil l C. A. , 1976 . Cave Minerals .

    Nat.

    S p e leo l . So c .

    Huntsvi l le ,

    Alabama.

    Jo nes , J. B

    .

    Sanders J . V. and Segnit , E.R.

    1964

    Structur e

    of opal .

    Nature

    vol .

    2 0 4

    pp . 990-991.

    Jones J. B

    . ,

    and Segni t

    E. R. ,

    1971

    .

    The nature of opal . 1.

    Nomenclature

    and const i tuent phases.

    J .

    geo l

    .

    So c

    .

    Aust . , Vol.

    18, pp. 57

    -

    68.

    Lassak E.V

    . ,

    1970.

    A note on

    some

    non -

    calcareous s ta lact i t es

    from

    the

    sandst

    one of

    the

    sydney

    Basin, N.

    S.W.

    J .

    Proc

    .

    Roy .

    Soc.

    N. S.\oJ. vol .

    103 pp. 11-14.

    M

    arkova

    , M

    . 1978.

    Contribution

    to

    lussa t i t e genes i s . I'-lin.

    s lav . ,

    vo l 10,

    pp .

    37

    -

    46

    Min.

    Abstr . , vol .

    30 , p . 417) .

    Mason ,

    B.

    ,

    and

    Berry

    ,

    L.G

    . ,

    1968. Elements

    of

    Mineralogy

    .

    Freeman San Francisco.

    Mizutani S . ,

    1970. Si l ica

    minerals in

    the early

    stage

    of

    diagenes i s . Sedimentology , vol . IS , pp . 41 9 - 436 .

    Nakamoto

    K.

    1978. Infrared and Raman spectra of

    inorganic

    and

    coordina t ion

    compounds. 3rd

    ed.

    Wiley, New York

    .

    Plyusnina 1 . 1 . ,

    1979. Infrared spectra

    of

    opals .

    So v .

    Phys.

    Dokl. ,

    vo l

    24, pp . 332 -

    333. Min

    . Abstr . ,

    vo l 31, p.

    443) .

    Porter W P

    . 1979.

    Opaline outgrowths on

    Lee

    Formation

    Sandstones

    in Wis e

    County

    ,

    Virginia

    .

    Rocks

    and Min

    erals

    ,

    vol

    54, pp. 97

    -

    100.

    Pyman , M A. F

    . Knuiman

    M.

    Armitage

    T . M. &

    Posner

    A

    .

    1979

    .

    Examination

    of

    the

    heterogenei ty

    of

    amorphous

    s i l i coaluminas and al lophanes using the electron

    microphone . J. So i l . Sci . , vol . 30 pp. 33 3 - 34 5 .

    Sanders J . V.

    1975

    .

    Microstructure

    a nd

    crys ta l l in i ty

    of gem

    opals

    .

    m

    . Min

    e ra logi s t

    ,

    vo l

    60,

    pp. 749

    -

    757.

    se gn i t

    , E. R . ,

    stevens,

    T . J . and Jones, J . B

    . , 1965.

    The

    ro l e

    of

    water

    in opal .

    J.

    Geol. Soc.

    Aust .

    vo l .

    12 pp.

    211 -

    226.

    Si ege l .

    F. R . Mills

    , J . P . ,

    and Pierce.

    J . W

    . 1968

    .

    Aspectos

    petrograf icos y geoquim i cos

    de espeleotemas de opalo

    y

    c a lc i ta de

    la Cueva

    de

    la Bruja Mendoza

    ,

    Republica

    Argentina. Rev.

    Assoc

    .

    Geol.

    Argent . , vol .

    23 pp.

    5-

    19.

    8

    Swartzlow

    C. L

    . and Keller

    , W O

    . 1937.

    C orra l l o i da l opa l .

    J .

    Geol . ,

    vol

    45

    ,

    10 1

    -

    10 8

    .

    Wada

    , K. ,

    1977

    .

    Allophane and

    imogol i te; in

    Dixon

    , J.B.

    &

    Weed

    S .

    B.

    (

    ed s

    )

    Minerals

    in

    so i

    l

    en v

    i

    ronme

    nt s .

    Soi l

    sc ience

    soc ie ty

    of

    America

    , Mad ison , pp . 603 -

    638.

    Wada

    , K

    . 1980. Mineralogical

    chrac t er i s t i cs of

    andisols

    ;

    in

    Theng , B. K.G.

    ed.

    so i l s w

    i t h va r i a b le

    charge. N. Z. Soc.

    So i l

    .

    Sci .

    , Lower Hutt , pp. 87 - 107 .

    Wada , K , 1982. Amorphous

    Clay

    minerals - chemical

    composit ion , crys t a l l i ne s t ate , synthes i s and surface

    prope r t i e s

    .

    Proc. 7th

    In te r .

    Clay

    Con

    f . ,

    pp. 385

    - 398 .

    Wada. ,

    K. and Greenland

    , D. J . ,

    1970

    . Se l ec t i ve d i s s o l u t i on

    and

    di f fe r e nt ia l

    infrared spectroscopy

    for

    characteri sat ion of

    amorphous   const i tuents

    in

    s o i l s .

    Clay

    Min. ,

    Vo l .

    8 , pp . 2 4 1- 25 4 .

    Weaver

    , C. E. ,

    and

    Po

    ll

    a rd ,

    L.D.

    ,

    1973

    . The

    chemistry

    of

    clay

    minerals. Dev .

    Sediment .

    vol . 15 , pp . 1-

    213.

    Elsevier ,

    Amsterdam

    .

    Webb,

    J. A . and

    Finlayson , B . L

    . 1984.

    Allophane and opal

    speleothems from

    granite

    caves in southeast Queens l

    and

    .

    Aust.

    ,

    J . Earth sc i . , vo l  

    31 . pp .

    341

    -

    349

    .

    Wells , N. , Childs , C.W. , and

    Downes

    ,

    C. J .

    1977 . Si l i c a

    Springs , Tongariro Na t ional

    Park

    New Zealand - analys i s

    o f the spring water and characteri s tat ion of the

    alumino

    -

    sil i c ate deposi t

    .

    Geochim. Cosomchim.

    Acta

    .

    vo l

    41 , pp .

    1497

    -

    1506

    .

    Whi t e ,

    D.E.

    ,

    Hem

    ,

    J.

    D. ,

    an

    d W

    aring

    , GoA

    .

    1

    96 3

    .

    Data of

    geochemistry ,

    Chapter

    F ,

    Chemical

    composit ion

    of

    subsurface

    waters

    .

    U.S

    .

    Geol. Surv

    . Prof . Pap

    .

    44 0

    - F ,

    pp . 1- 67 .

    White , W B. ,

    1976.

    Cave minerals

    and

    speleothems;

    in

    Ford ,

    T . D. Cul l ingford , C.H . D.

    ed s

    ) The sc ience

    of

    speleology. Acad

    e mi c

    Press,

    London ,

    pp. 267

    -

    238

    .

    White

    , W B

    . , 1982

    . M

    ne

    r

    alogy

    of

    the But l e r Cave -

    Si nk i

    ng

    Creek System. Na

    t .

    Sp e

    l eo l .

    So c

    . B

     l

    l

    . ,

    vol .

    44 ,

    pp.

    90

    - 9 7 .

    Wild

    i ng , L.P. , Smeck , N

    .E

    .

    and Drees

    , L .

    R

    ,

    1977

    .

    Si l ica

    in

    soils quartz ,

    cr

    i stoba l

    i t e

    tr i

    dy

    mi te a nd opal ; in

    Dixon

    , J . B.

    &

    Weed , S . B . (ed s ) M

    nera

    l s in s o i l

    environments . Soi l Scie nce So c i ety of America , Madison

    pp. 471 - 552.

    Wilkinson , P. , 1950 . Allophane from Derbyshire .

    Clay

    Minerals

    Bull .

    ,

    vo l

    1 ,

    no.

    4 , pp .

    122

    -

    12 3

    .

    Young

    A. W ,

    Campbell

    , A . S . ,

    and Walker

    , T.W . ,

    1980

    .

    Allophane

    i s o l a t ed from a

    podsol developed on

    a

    non

    -

    v i t r ic parent

    material .

    Nature

    ,

    vol . 284

    ,

    pp

    .

    46

    -

    48.

    Received Novembe r 198 4

    B.L .

    Finlayson

    Depa r

    tment

    of

    Geography

    ,

    Univers i ty of

    Mellbourne

    ,

    Parkvi l le

    Victoria

    ,

    u s t ra

    l

    i a . 3052

    .

    J .A. Webb ,

    Department of

    Geology

    ,

    Univers i ty of Melbourne ,

    Parkv

    i

    l l e

    ,

    Victoria

    ,

    Au s t

    ra

    l

    ia

    .

    3052

    .

  • 8/21/2019 BCRA 12-1-1985

    11/36

    CAVE

    SCIENCE Vo l . 12 , N o . 1 ,

    March

    1985

    Transac t ions o f the Br i t i sh

    Cave

    Research

    Associa t ion

    peleology

    n

    the

    U S S R

    V.N. DUBLYANSKY A. B. KLIMCHOUK AND

    V.E

    . KISSELYOV

    Abstrac t : Major cave explora t ion s dur ing the per iod

    1978

    to 1984 in

    the

    various cave regions of Russia are br ie f ly descr ibed.

    The most

    important

    progress

    has

    been

    made

    in

    the

    high

    massifs

    of

    the

    Caucasus

    ,

    where

    very

    deep

    caves have been discovered. Dye

    t es t ing

    has proved a

    drainage

    system 2200m

    deep and Snezhnaya cave

    i s

    1370m deep. There i s spec tacula r po ten t i a l

    for

    future

    explora t ion

    . The National Associa t ion

    o f

    Soviet

    Spe leologi s t s

    coordinates research and

    explora t ion .

    INTRODUCTION

    The

    vas t land area of the USSR conta ins 26

    cave regions which group in to 12 la rge cave areas

    Fi g . l ) . Within these

    r egi

    ons , a t o t a l of 5500

    caves had

    been

    recorded by September 1984 and over

    500 of

    these

    were

    discovered

    and

    explored s ince

    1978.

    The

    monograph

    by Dublyansky

    and

    I lukhine

    1982) conta ined descr ip t ions and surveys of a l l

    the l a rges t caves ,

    more

    than 5km

    long

    or 200m

    deep,

    known up

    to

    1980.

    Since then

    the

    Commission

    on Largest Cavi t i e s of the

    National

    Associa t ion

    of

    Sovie t Spe leologi s t s - NASS ) has co l l a t ed da ta

    on a l l caves over 500m long

    or

    100m deep. By

    September 1984,

    there were 402,

    and Table 1

    shows

    the d i s t r i bu t i on of

    these .

    t i s

    not iceable

    t ha t

    the

    Caucasus

    Mountains are of prime importance for

    t he i r

    la rge concent ra t ion o f the deepest known

    caves , while the outs t anding

    fea ture

    0 f the

    d i s t r i bu t i on of the

    longes t caves

    i s the

    group o f

    gypsum caves

    in

    t he Dnestr

    Black

    Sea region.

    Tables 2 and 3 list the longes t and deepest

    caves

    of Russia fr

    om the

    cur rent

    NASS

    records .

    The

    fol lowing descr ip t ions br i e f l y cover the

    major explora t ions

    and

    discove r ie s i n

    the var ious

    regions over the

    l a s t seven years .

    VALDAY - KULOY REGION

    This region in the northern

    pa r t

    of

    European

    Russia has a

    number

    of long

    caves . The

    most

    important

    are Kulogorskaya 7195m) ,

    Konsti tu ts ionnaya 5880m),

    Olimpiyskaya

    5500m )

    and

    Leningradskaya

    3400m),

    a l l developed

    in

    Permian gypsum within the bas in of

    the

    Pinega

    River.

    There are

    another

    22 caves in the reg ion

    each with over a kilometre of explored passage.

    DNESTR -

    BLACK SEA

    REGION

    This region

    encompasses

    most of the Ukraine

    and i s

    bes t

    known for the remarkable gypsum caves

    around

    Podol iya. The

    longest gypsum

    cave

    in the

    world

    i s Optimist icheskaya

    with a length of

    151.3

    km

    by 1984 , while Ozernaya has 10 5 . 3

    km

    of

    mapped passage. Both are

    complex,

    of

    the USS

    peleolog ical

    areas

    peleologi

    cal

    regions

    Figure

    1

    1

    Valday-Kuloy

    2

    Kamsk Srednevolzh

    3 Pr ikaspy

    4

    Dnestr

    Black Sea

    5

    Nor th Ura l

    6 Middle Ura l

    7

    8

    9

    10

    11

    12

    13

    So

    u th Ura l

    East

    Carpathian

    Crimea

    Great

    Caucasus

    Lesser

    Caucasus

    Turkffien   Khorasan

    U styur t -Mangyshlak

    14 Tie n

    Shan

    21

    Leno Enisey

    15

    Gissar Alay

    22

    Baika l

    16

    Pamir-Tadj ik

    23 Zabajkal

    17 Altay

    24

    Dzhug Dzhur

    18

    Sa la i r

    -

    Kuznet

    25 Pr i amur

    19

    Sayan

    26 Primer

    20 Tuvin

    27 Sakhal in

  • 8/21/2019 BCRA 12-1-1985

    12/36

    Region

    Number

    Deeper than

    of

    caves

    100m

    200

    Great Caucas us:

    NW N Caucasus

    42 2 4 8

    W

    Caucasus

    127

    96

    38

    Lesser

    Caucasus

    2

    Crimea

    46 40

    D nestr

    -

    Black

    Sea

    13

    Valday-Kuloy

    37

    Ural

    52

    7

    Pamir Tien

    Shan

    32 23 5

    S ib er ia

    31

    11

    2

    Far

    East

    10

    2

    Tota l

    402

    203

    60

    Table 1

    Dis t r

    i bu t i

    on

    o f

    deep

    and

    long caves

    in the

    Cave Massi f Depth

    Length m

    1 Snezhnaya

      ezhonnogo

    Bzybsky C 13 70

    19

    2

    Napra

    Bzybsky C 956 3

    3 Kievskaya

    KyrKtau T

    950

    1

    4 V. I lyukhin

    Arabika

    C 950 4

    5

    Pione r ksaya

    Bzybsky

    C 800 1

    6

    Kuybyshevskaya

    Arabika

    C

    740

    2

    7

    V.Pantyukhin Bzybsky

    C 650 1

    8

    Ural   skaya

    Bajsuntau

    T

    565

    2

    9 Fore l naya

    Bzybsky

    C

    550

    10

    Ruchcejnaya  

    Zabludshikh

    Alek

    C

    540

    11

    Paryashchaya

    Pt i t s a

    Fish t C

    535

    12 Osennyaya

    -

    Nazarovskaya

    Alek

    C

    500

    13

    Soldat skaya

    Karabi

    K

    500

    14 Mayskaya

    Dzhentu C 500

    15

    Nocturne

    Bzybsky

    C 462

    16

    O ktyabr skaya

    Alek C 450

    17

    A leks insk

    Bzybsky

    C

    450

    18

    Souve nir

    Bzybsky

    C 430

    19

    Nezhdannaya

    Akhtsu C 420

    20 Akhtia rskaya

    Arabika

    C

    410

    21 Vesennaya

    Bzybsky C 403

    22 Kaskadnaya

    A j-Pe t r i

    K

    400

    23

    Genrikhova

    Bezdna

    Arabika

    C

    360

    24 Studentcheskaya

    Bzybsky C 350

    25

    Shkol naya

    Alek

    C 320

    26

    Absolutnaya

    Lagonaki

    C

    317

    27

    G e oqr af ic he skaya

    Alek

    C

    310

    C =

    Caucasus

    T

    Tien

    Shan

    K

    Crimea

    Table

    2 The

    deepest

    caves

    of the

    USSR

    Pla te 1

    Solu t ion f ea tures in Opt imis t i cheskaya

    gypsum cave

    000

    170

    820

    000

    350

    020

    210

    500

    900

    500

    290

    500

    100

    110

    460

    650

    800

    950

    930

    800

    230

    980

    550

    800

    560

    420

    100

    Longer

    than

    500

    500m

    1000

    5000

    10 0

    00

    31 16

    64

    29

    2

    15

    1

    13

    6

    37

    22

    3

    5 1

    33 5

    18

    12 2

    28 15 3

    8

    4

    14

    267 149 23

    12

    USSR

    Pla te

    2 Ri f t

    passage in

    Op t imis t icheskaya

    Cave

    Region

    Length

    m

    Depth

    1

    mist icheskaya

    Dnes tr

    Black

    Sea

    151

    300

    20

    2

    Ozernaya Dnestr Black Sea 105 300

    20

    3

    zolushka Dnestr

    Black Sea

    80

    000

    20

    4

    Kris ta l naya

    Dnestr Black

    Se a

    22

    000

    10

    5

    Snezhnaya  

    ezhonnogo

    Great

    Caucasus

    19

    000

    1370

    6

    Bol shaya Oreshnaya

    Sayan 18

    000

    190

    7 Mlynki

    Dnestr Black

    Sea

    18 000 10

    8

    Krasnaya

    Crimea

    13

    130

    135

    9

    Guardakskaya

    G i s s a r -A l ay

    11

    010 72

    10 Kap- Kutan

    Gissar

    -

    Alay 11 000 155

    11

    Vorontsovskaya

    Great

    Caucasus 10 640

    240

    12 Yaschchik

    Pandory

    S ala i r -

    Kuznetsky

    10

    000 180

    13

    Sumgan

    - Kutuk

    Ural

    9 860 130

    4 Div ya

    Ural 9 720 28

    15 Verteba

    Dnestr

    Black Sea 7 820 10

    16

    Kizelovskaya

    Ural

    7 600 45

    17 Kulogorskaya

    Valday   Kuloy 7 195

    11

    18

    Kinder l inskaya

    Ural

    6

    700 110

    19

    Osennyaya -

    Nazarovskaya

    Grea

    t

    Causcaus 6 500 500

    20

    Badzhejskaya Sayan

    6 000

    170

    21

    Konsti t u ts io n naya

    Va

    ld a

    Kuloy

    5

    880

    32

    22

    Kungurskaya

    Ural

    5 600 23

    23 Olimpi jskaya Valday-K

    uloy

    5

    500

    27

    Table

    3

    The Longes t

    caves

    of

    the USSR

    10

  • 8/21/2019 BCRA 12-1-1985

    13/36

    j o in t

    -

    cont rol l ed

    ,

    two

    - dimensional maze

    caves

    formed

    in th in

    beds

    of

    Upper Ter t i a ry gypsum

    .

    In

    the

    ten years

    up

    to

    1983

    ,

    explora t ion of Ozernaya

    was

    r es t r i c t ed

    by a high groundwater

    l eve l

    which

    submerged most of

    the

    maze passages .

    The

    exi s t ence

    of a

    connect ion between

    these two

    grea t

    caves

    was of ten

    suggested in the

    l i t e r a t u r e but

    the r e s u l t s

    of

    recent work

    now

    indica te t ha t

    a

    connec t ion i s most unl ike ly to ex i s t

    .

    Pla te

    3

    Pas

    s

    age in

    Zo lushk a gy p sum

    cave

    Pla te

    4

    Passage in

    Zolushka gypsum

    cave

    11

    The

    gypsum

    c ave o f Zo lush ka i s be

    ing

    ac

    t i

    ve

    ly

    explored

    and

    cur r

    e nt ly e

    xten ds

    t o a

    len

    g th o f

    80km .

    I t

    i s

    no t

    a ble f o r

    the

    l a

    rge dimensi

    o ns

    of

    many chambers and

    pa ss a

    ges an

    d

    th

    e re a r e g

    oo

    d

    prospects

    for

    fur the r

    di sc ove

    r i

    e s ; a ma j o r ne w

    are a of passages

    was

    f o und in summ

    e r

    1984 . An

    in

    t e r e s t i ng fea ture

    of

    Zolushka

    i s

    t ha t t

    i s a

    phre

    a

    t i c

    cave only dr a

    ined

    within

    the

    l a

    s t

    40

    years by a r t i f i c i a l l owe r in g o f th e l o c a l wa

    t e r

    t ab l e .

    New explora t ions have

    a ls

    o been made in the

    next two

    longes t

    caves in

    the a

    rea

    -

    Kris t

    a

    lnay

    a

    and Mlynki

    .

    The

    Dnestr

    -

    Bl

    ac

    k

    Se

    a

    r egi

    o n

    tak

    e s

    f i r s t

    place

    in

    the

    USSR for

    th

    e t o t a l length of

    explored

    caves

    .

    The

    f ive main gypsum cav e s t o t a l

    376.6 km

    of passages ; a

    fur the r

    16.5 km of

    passag

    e

    has been

    mapped in a n o

    the r s ix

    c a

    ves

    in

    th

    e

    region

    .

    CRIMEA REGION

    Limestone

    mountains form the southern

    pa

    r t of

    the Crimea

    peninsula

    , projec t ing

    i n t o

    the Black

    Se a .

    The Krasnaya

    cave remains

    the

    longes t with

    13.130m of

    passage, whi le

    th e Solda

    t skaya sha f t

    system

    i s the deepest

    a t

    - 500m . I n the

    l a s t few

    years new sec t ions have been d i scovered in the

    Emine-Bair-Coba cave

    800m

    long)

    and in

    th

    e

    Emine

    -

    Bair

    - Khosar

    1460m

    ) , and

    the phrea t i c

    complex of

    the Chernaya

    Cave

    has been surveyed

    t o

    a

    length of 1160m

    .

    Deeper

    explora t ions include

    those

    of the Kaskadnaya -400m)

    and

    Druzhba

    -2

    70m) shaf t systems .

    GRAND CAUCASUS REGION

    The

    Caucasus

    Mountains, s t re tching between

    the Black

    and

    Caspian Seas

    , have

    seen the most

    impor tant cave explora t ions in

    the

    USSR

    over the

    l a s t

    10 years

    .

    The Western Caucasus,

    and

    especia l ly the

    Abkhasia

    area

    , t a kes f i r s t

    place

    in

    the USSR for both

    the

    depth and

    the

    number 0 f

    deep caves

    . The

    Bzybsky,

    Arabika and

    Alek

    massifs

    contain

    most

    of

    the deep caves

    ,