atomos y moleculas - exapuni

24
CLASIFICACION PERIÓDICA La tabla periódica de los elementos es la ordenación que, atendiendo a diversos criterios, distribuye los distintos elementos químicos conforme a ciertas características. Suele atribuirse la tabla a Dimitri Mendeleiev, quien ordenó los elementos basándose en la variación computacional de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo una ordenación a partir de las propiedades físicas de los átomos. Orígenes Aunque algunos elementos como el oro, plata, estaño, cobre, plomo y Mercurio ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en 1669 cuando el alquimista Henning Brand descubrió el Fósforo. El descubrimiento de la mayor parte de los elementos se llevó a cabo durante el siglo XIX; en 1830 ya se conocían 55 elementos. Un requisito previo necesario a la construcción de la tabla periódica era el descubrimiento de un número suficiente de elementos individuales, que hiciera posible encontrar alguna pauta en comportamiento químico y sus propiedades. Durante los siguientes 2 siglos, se fue adquiriendo un gran conocimiento sobre estas propiedades, así como descubriendo muchos nuevos elementos. El concepto actual de elemento químico según la idea expresada por Robert Boyle en su famosa obra "The Sceptical Chymist", "ciertos cuerpos primitivos y simples que no están formados por otros cuerpos, ni unos de otros, y que son los ingredientes de que se componen inmediatamente y en que se resuelven en último término todos los cuerpos perfectamente mixtos", desarrollado posteriormente por Lavoisier en su obra "Tratado elemental de Química", condujo a diferenciar en primer lugar qué sustancias de las conocidas hasta ese momento eran elementos químicos, cuáles eran sus propiedades y cómo aislarlos. El descubrimiento de un gran número de nuevos elementos, así como el estudio de sus propiedades, pusieron de manifiesto algunas semejanzas entre ellos, lo que aumentó el interés de los químicos por buscar algún tipo de clasificación. Tríadas de Döbereiner Uno de los primeros intentos para agrupar los elementos de propiedades análogas se debe al químico alemán Johann Wolfgang Döbereiner(1780-1849) quien en 1817 puso de manifiesto el notable parecido que existía entre las propiedades de ciertos grupos de tres elementos, con una variación gradual del primero al último. Posteriormente (1827) señaló la existencia de otros grupos de tres elementos en los que se daba la misma relación (cloro, bromo y yodo; azufre, selenio y teluro; litio, sodio y potasio). A estos grupos de tres elementos se les denominó tríadas y hacia 1850 ya se habían encontrado unas 20, lo que indicaba una cierta regularidad entre los elementos químicos. Döbereiner intentó relacionar las propiedades químicas de estos elementos (y de sus compuestos) con los pesos atómicos, observando una gran analogía entre ellos, y una variación gradual del primero al último. Tríadas de Döbereiner Litio LiCl LiOH Calcio CaCl 2 CaSO 4 Azufre H 2 S SO 2 Sodio NaCl NaOH Estroncio SrCl 2 SrSO 4 Selenio H 2 Se SeO 2 Potasio KCl KOH Bario BaCl 2 BaSO 4 Teluro H 2 Te TeO 2

Upload: others

Post on 08-May-2022

15 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ATOMOS Y MOLECULAS - Exapuni

CLASIFICACION PERIÓDICA

La tabla periódica de los elementos es la ordenación que, atendiendo a diversos criterios, distribuye los distintos elementos químicos conforme a ciertas características.

Suele atribuirse la tabla a Dimitri Mendeleiev, quien ordenó los elementos basándose en la variación computacional de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo una ordenación a partir de las propiedades físicas de los átomos.

Orígenes

Aunque algunos elementos como el oro, plata, estaño, cobre, plomo y Mercurio ya eran conocidos desde la antigüedad, el primer descubrimiento científico de un elemento ocurrió en 1669 cuando el alquimista Henning Brand descubrió el Fósforo.

El descubrimiento de la mayor parte de los elementos se llevó a cabo durante el siglo XIX; en 1830 ya se conocían 55 elementos. Un requisito previo necesario a la construcción de la tabla periódica era el descubrimiento de un número suficiente de elementos individuales, que hiciera posible encontrar alguna pauta en comportamiento químico y sus propiedades. Durante los siguientes 2 siglos, se fue adquiriendo un gran conocimiento sobre estas propiedades, así como descubriendo muchos nuevos elementos.

El concepto actual de elemento químico según la idea expresada por Robert Boyle en su famosa obra "The Sceptical Chymist", "ciertos cuerpos primitivos y simples que no están formados por otros cuerpos, ni unos de otros, y que son los ingredientes de que se componen inmediatamente y en que se resuelven en último término todos los cuerpos perfectamente mixtos", desarrollado posteriormente por Lavoisier en su obra "Tratado elemental de Química", condujo a diferenciar en primer lugar qué sustancias de las conocidas hasta ese momento eran elementos químicos, cuáles eran sus propiedades y cómo aislarlos.

El descubrimiento de un gran número de nuevos elementos, así como el estudio de sus propiedades, pusieron de manifiesto algunas semejanzas entre ellos, lo que aumentó el interés de los químicos por buscar algún tipo de clasificación.

Tríadas de Döbereiner

Uno de los primeros intentos para agrupar los elementos de propiedades análogas se debe al químico alemán Johann Wolfgang Döbereiner(1780-1849) quien en 1817 puso de manifiesto el notable parecido que existía entre las propiedades de ciertos grupos de tres elementos, con una variación gradual del primero al último. Posteriormente (1827) señaló la existencia de otros grupos de tres elementos en los que se daba la misma relación (cloro, bromo y yodo; azufre, selenio y teluro; litio, sodio y potasio).

A estos grupos de tres elementos se les denominó tríadas y hacia 1850 ya se habían encontrado unas 20, lo que indicaba una cierta regularidad entre los elementos químicos.

Döbereiner intentó relacionar las propiedades químicas de estos elementos (y de sus compuestos) con los pesos atómicos, observando una gran analogía entre ellos, y una variación gradual del primero al último.

Tríadas de Döbereiner

Litio LiClLiOH

Calcio CaCl2CaSO4

Azufre H2SSO2

Sodio NaClNaOH

Estroncio SrCl2SrSO4

Selenio H2SeSeO2

Potasio KClKOH

Bario BaCl2BaSO4

Teluro H2TeTeO2

Page 2: ATOMOS Y MOLECULAS - Exapuni

En su clasificación de las tríadas (agrupación de tres elementos) Döbereiner explicaba que el peso atómico promedio de los pesos de los elementos extremos, es parecido al peso atómico del elemento de en medio. Por ejemplo, para la tríada Cloro, Bromo, Yodo los pesos atómicos son respectivamente 36, 80 y 127; si sumamos 36 + 127 y dividimos entre dos, obtenemos 81, que es aproximadamente 80 y si le damos un vistazo a nuestra tabla periódica el elemento con el peso atómico aproximado a 80 es el bromo lo cual hace que concuerde un aparente ordenamiento de tríadas.

Vis tellurique de Chancourtois

En 1864, Chancourtois construyó una hélice de papel, en la que se estaban ordenados por pesos atómicos los elementos conocidos, arrollada sobre un cilindro vertical. Se encontraba que los puntos correspondientes estaban separados unas 16 unidades. Los elementos similares estaban prácticamente sobre la misma generatriz, lo que indicaba una cierta periodicidad, pero su diagrama pareció muy complicado y recibió poca atención.

Ley de las octavas de Newlands

En 1864, el químico inglés John Alexander Reina Newlands comunicó al Real Colegio de Química su observación de que al ordenar los elementos en orden creciente de sus pesos atómicos (prescindiendo del hidrógeno), el octavo elemento a partir de cualquier otro tenía unas propiedades muy similares al primero. En esta época, los llamados gases nobles no habían sido aún descubiertos.

Esta ley mostraba una cierta ordenación de los elementos en familias (grupos), con propiedades muy parecidas entre sí y en Periodos, formados por ocho elementos cuyas propiedades iban variando progresivamente.

El nombre de octavas se basa en la intención de Newlands de relacionar estas propiedades con la que existe en la escala de las notas musicales, por lo que dio a su descubrimiento el nombre de ley de las octavas.

Como a partir del calcio dejaba de cumplirse esta regla, esta ordenación no fue apreciada por la comunidad científica que lo menospreció y ridiculizó, hasta que 23 años más tarde fue reconocido por la Royal Society, que concedió a Newlands su más alta condecoración, la medalla Davy.

Tabla periódica de Mendeleiev

La tabla periódica de los elementos fue propuesta por Dimitri Mendeleiev y Julius Lothar Meyer quienes, trabajando por separado, prepararon una ordenación de todos los 64 elementos conocidos, basándose en la variación computacional de las propiedades químicas (Mendeleiev) y físicas (Meyer) con la variación de sus masas atómicas. A diferencia de lo que había supuesto Newlands, en la Tabla periódica de Mendeleiev los periodos (filas diagonales y oblicuas) no tenían siempre la misma longitud, pero a lo

Ley de las octavas de Newlands

1 2 3 4 5 6 7

Li6,9

Na23,0

K39,0

Be9,0

Mg24,3

Ca40,0

B10,8

Al27,0

C12,0

Si28,1

N14,0

P31,0

O16,0

S32,1

F19,0

Cl35,5

Page 3: ATOMOS Y MOLECULAS - Exapuni

largo de los mismos había una variación gradual de las propiedades, de tal forma que los elementos de un mismo grupo o familia (columnas monocromáticas de hipotenusa a cuadrado PI) se correspondían en los diferentes periodos. Esta tabla fue publicada en 1869, sobre la base de que las propiedades de los elementos son función periódica de sus pesos atómicos.

Tabla periódica de los elementosGrupo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

I II III IV V VI VII VIIIPeriodo

1 1H

2He

2 3Li

4Be

5B

6C

7N

8O

9F

10Ne

3 11Na

12Mg

13Al

14Si

15P

16S

17Cl

18Ar

4 19K

20Ca

21Sc

22Ti

23V

24Cr

25Mn

26Fe

27Co

28Ni

29Cu

30Zn

31Ga

32Ge

33As

34Se

35Br

36Kr

5 37Rb

38Sr

39Y

40Zr

41Nb

42Mo

43Tc

44Ru

45Rh

46Pd

47Ag

48Cd

49In

50Sn

51Sb

52Te

53I

54Xe

6 55Cs

56Ba

* 72Hf

73Ta

74W

75Re

76Os

77Ir

78Pt

79Au

80Hg

81Tl

82Pb

83Bi

84Po

85At

86Rn

7 87Fr

88Ra

** 104Rf

105Db

106Sg

107Bh

108Hs

109Mt

110Ds

111Rg

112Uub

113Uut

114Uuq

115Uup

116Uuh

117Uus

118Uuo

Lantánidos * 57La

58Ce

59Pr

60Nd

61Pm

62Sm

63Eu

64Gd

65Tb

66Dy

67Ho

68Er

69Tm

70Yb

71Lu

Actínidos ** 89Ac

90Th

91Pa

92U

93Np

94Pu

95Am

96Cm

97Bk

98Cf

99Es

100Fm

101Md

102No

103Lr

Alcalinos Alcalinotérreos Lantánidos Actínidos Metales de transición

Metales del bloque p Metaloides No

metalesHalógenos Gases nobles

Grupos

A las columnas verticales de la Tabla Periódica se les conoce como grupos. Todos los elementos que pertenecen a un grupo tienen la misma valencia, y por ello, tienen características o propiedades similares entre si. Por ejemplo los elementos en el grupo IA tienen valencia de 1 (un electrón su último nivel de energía) y todos tienden a perder ese electrón al enlazarse como iones positivos de +1. Los elementos en el último grupo de la derecha son los Gases Nobles, los cuales tienen su último nivel de energía lleno (regla del octeto) y por ello son todos extremadamente no-reactivos.

Los grupos de la Tabla Periódica, numerados de izquierda a derecha son:

Grupo 1 (IA): los metales alcalinos

Page 4: ATOMOS Y MOLECULAS - Exapuni

Grupo 2 (IIA): los metales alcalinotérreos Grupo 3 al Grupo 12: los metales de transición , metales nobles y metales mansos Grupo 13 (IIIA): Térreos Grupo 14 (IVA): carbonoideos Grupo 15 (VA): nitrogenoideos Grupo 16 (VIA): los calcógenos o anfígenos Grupo 17 (VIIA): los halógenos Grupo 18 (Grupo VIII): los gases nobles

Períodos

Las filas horizontales de la Tabla Periódica son llamadas Períodos. Contrario a como ocurre en el caso de los grupos de la tabla periódica, los elementos que componen una misma fila tienen propiedades diferentes pero masas similares: todos los elementos de un período tienen el mismo número de orbitales. Siguiendo esa norma, cada elemento se coloca de acuerdo a su configuración electrónica. El primer período solo tiene dos miembros: hidrógeno y helio, ambos tienen solo el orbital 1s.

La tabla periódica consta de siete períodos:

Período 1 Período 2 Período 3 Período 4 Período 5 Período 6 Período 7

CLASIFICACION DE LOS ELEMENTOSGRUPO I:

EL HIDROGENO

El hidrógeno, con un único electrón, se sitúa normalmente dentro de la tabla periódica en el mismo grupo de los metales (aunque otras veces aparece separado de éstos o en otra posición). Sin embargo, para arrancar este electrón es necesaria mucha más energía que en el caso de los alcalinos. Como en los halógenos, el hidrógeno sólo necesita un electrón para completar su nivel de energía más externo, por lo que en algunos aspectos el hidrógeno es similar a los halógenos; en su forma elemental se encuentra como una molécula diatómica, H2, e incluso puede formar sales, llamadas hidruros, MH, con los alcalinos, de forma que el metal le da un electrón al hidrógeno, como si el hidrógeno fuera un halógeno.

Por este motivo, además de que no comparte sus propiedades en los enlaces y otras, no se considera al hidrógeno un alcalino, sino un gas, no metal, cuya configuración electrónica en estado fundamental es 1s1

METALES ALCALINOS

Los metales alcalinos son aquellos que están situados en el grupo 1 de la tabla periódica. Todos tienen un solo electrón en su nivel energético más externo, con tendencia a perderlo, con lo que forman un ion monopositivo, M+. Los alcalinos son los del grupo I A y la configuración electrónica del grupo es ns¹. Por ello se dice que se encuentran en la zona "s" de la tabla.

PROPIEDADES DE LOS ALCALINOS

Los metales alcalinos son metales muy reactivos, por ello se encuentran siempre en compuestos como óxidos, haluros, hidróxidos, silicatos, etc y no en estado puro

Page 5: ATOMOS Y MOLECULAS - Exapuni

Son metales blandos (contrario a duros, pueden ser rayados; no confundir con frágil, contrario a tenaz "que puede romperse").Los metales alcalinos tienen un gran poder reductor; de hecho, muchos de ellos deben conservarse en aceite mineral o gasóleo para que su elevada reactividad no haga que reaccionen con el oxígeno o el vapor de agua atmosféricos. Son metales de baja densidad, coloreados y blandos.

En disolución acuosa muestran propiedades básicas obteniendo protones del agua. En disolución con el amoniaco tiñen la disolución de azul muy intenso y son capaces de conducir corriente eléctrica.

GRUPO II

ALCALINOTERREOS

Los alcalinotérreos o metales alcalinotérreos son un grupo de elementos que forman una familia. Estos elementos se encuentran situados en el grupo 2 de la tabla periódica y son los siguientes: berilio(Be), magnesio(Mg), calcio(Ca), estroncio(Sr), bario(Ba) y radio(Ra). Este último no siempre se considera, pues tiene un tiempo de vida media corto.

El nombre de alcalinotérreos proviene del nombre que recibían sus óxidos, tierras, que tienen propiedades básicas (alcalinas). Poseen una electronegatividad ≤ 1,3 según la escala de Pauling.

Son metales de baja densidad, coloreados y blandos. Reaccionan con facilidad con halógenos para formar sales iónicas, y con agua (aunque no tan rápidamente como los alcalinos) para formar hidróxidos fuertemente básicos. Todos tienen sólo dos electrones en su nivel energético más externo, con tendencia a perderlos, con lo que forman un ion dipositivo, M2+.y la configuración electrónica del grupo al cual pertenecen que es el 2a es ns2

GRUPO III

Un elemento del grupo 3 es un elemento situado dentro de la tabla periódica en el grupo 3, que comprende los siguientes elementos:

Escandio (21) Itrio (39) Lantano (57) Lutecio (71) Actinio (89) Laurencio (103)

El itrio presenta similitudes con los lantánidos y las propiedades del escandio son intermedias entre el itrio y el aluminio; todos éstos se caracterizan por presentar como estado de oxidación más estable el +3 y se encuentran de forma natural (excepto el prometio) en la corteza terrestre, aunque en cantidades relativamente pequeñas. Muchos de los actínido también presentan el +3 como estado de oxidación más estable.

Otras características son: -No metálicos -Son sólidos -Tienen brillo -Son reactivos -Conducen la electricidad

GRUPO IV

El grupo 4 de la tabla periódica lo comprenden los elementos titanio (Ti), circonio (Zr) y hafnio (Hf), así como el elemento rutherfordio (Rf), aunque no se suele tener en cuenta al referirse al grupo 4 pues se trata de un elemento sintético y radiactivo. "Grupo 4" es el nombre recomendado por la IUPAC; el antiguo nombre europeo es "grupo IVA", mientras que el nombre antiguo estadounidense es "grupo IVB". El nombre de la IUPAC no debe confundirse con los antiguos, dados con números romanos.

Page 6: ATOMOS Y MOLECULAS - Exapuni

Los elementos del grupo se parecen entre sí, especialmente el circonio y el hafnio, que se encuentran juntos en la naturaleza y tienen unas propiedades químicas prácticamente idénticas.

GRUPO V

Un elemento del grupo 5 es un elemento situado dentro de la tabla periódica en el grupo 5 que comprende los elementos:

vanadio (23) niobio (41) tántalo (73) dubnio (105)

Estos elementos tienen en sus niveles electrónicos más externos 5 electrones. El dubnio no se encuentra en la naturaleza y se produce en el laboratorio, por lo que al hablar de las propiedades de los elementos del grupo 5 se suele obviar este elemento.

GRUPO VI

Un elemento del grupo 6 es un elemento situado dentro de la tabla periódica en el grupo 6 que comprende los elementos:

cromo (24) molibdeno (42) wolframio (74) seaborgio (106)

"Grupo 6" es el actual nombre recomendado por la IUPAC. Antes se empleaba "grupo VIA" en el sistema europeo y "grupo VIB" en el estadounidense.

GRUPO VII

El grupo 7 de la tabla periódica lo comprenden los elementos manganeso (Mn), tecnecio (Tc) y renio (Re), así como el elemento de número atómico 107, con el nombre sistemático de unnilseptio (Uns); aunque éste no se suele considerar al referirse al grupo 6. "Grupo 6" es el nombre recomendado por la IUPAC; el antiguo nombre europeo es "grupo VIIA", mientras que el nombre antiguo estadounidense es "grupo VIIB". El nombre de la IUPAC no debe confundirse con los antiguos, dados con números romanos.

El manganeso es un metal muy común en la naturaleza, mientras los otros elementos son muy raros. El tecnecio no tiene isótopos estables y durante mucho tiempo se creyó que no se encontraba en la naturaleza. El renio se encuentra tan sólo en trazas.

GRUPO VIII

Un elemento del grupo 8 es un elemento situado dentro de la tabla periódica en el grupo 8 que comprende los elementos:

Hierro (26) Rutenio (44) Osmio (76) Hassio (108)

En los niveles electrónico externos de estos elementos hay ocho electrones, aunque el hierro no alcanza el estado de oxidación +8. El hassio se produce sólo en el laboratorio, no se encuentra en la naturaleza, y al referirse al grupo 8 se suele obviar este elemento.

Page 7: ATOMOS Y MOLECULAS - Exapuni

"Grupo 8" es el actual nombre recomendado por la IUPAC. El antiguo sistema europeo y el estadounidense englobaban dentro del "grupo VIII" (o VIIIA el europeo y VIIIB el estadounidense) a los actuales grupos 8, 9 y 10.

GRUPO IX

Los elementos del grupo 9 son:

Cobalto (27) Rodio (45) Iridio (77) Meitnerio (109)

A temperatura ambiente todos son sólidos. El Meitnerio es sintético, no se encuentra en la naturaleza.

GRUPO X

Los elementos del grupo 10 son:

Níquel (28) Paladio (46) Platino (78) Darmstadtio (110)

A temperatura ambiente todos son sólidos. Los estados de oxidación más comunes de los elementos de este grupo son 0 y +II. Todos se encuentran en la naturaleza en forma elemental aunque el níquel como el más reactivo de ellos, sólo en forma de aleación en algunos meteoritos.

Todos estos elementos tienen completados los orbitales "d" de su capa de valencia lo que explica su relativa inercia frente a los agentes oxidantes que se hace más patente bajando en el grupo. Todos son metales importantes en orfebrería y en la industria química dada sus propiedades catalíticas. Además se emplean o emplearon como metales en la acuñación de monedas.

GRUPO XI

El grupo 11 o de la tabla periódica lo comprenden los elementos cobre (Cu), plata (Ag) y oro (Au).

Estos tres metales son denominados "metales de acuñar", aunque no es un nombre recomendado por la IUPAC.

Son relativamente inertes y difíciles de corroer. De hecho los tres existen en forma de elemento en la coteza terrrestre y no se disuelven en ácidos no oxidantes y en ausencia de oxígeno. Se han empleando ampliamente en la acuñación de monedas, y de esta aplicación proviene el nombre de metales de acuñar. El cobre y el oro son de los pocos metales que presentan color.

Aparte de sus aplicaciones monetarias o decorativas, tienen otras muchas aplicaciones industriales debido a algunas de sus excelentes propiedades. Son muy buenos conductores de la electricidad (los más conductores de todos los metales son la plata, el cobre y el oro, en este orden). La plata también es el elemento que presenta una mayor conductividad térmica y mayor reflectancia de la luz. Además, la plata tiene la poco común propiedad de que la capa que se forma al oxidarse sigue siendo conductora de la electricidad.

El cobre también se emplea ampliamente en cables eléctricos y en electrónica. A veces se emplean contactos de oro en equipos de precisión. En ocasiones también se emplea

Page 8: ATOMOS Y MOLECULAS - Exapuni

la plata en estas aplicaciones, y también en fotografía, agricultura (sobre todo el cobre en formulaciones de fungicidas), medicina, equipos de sonido y aplicaciones científicas.

Estos metales son bastante blandos y no soportan bien el uso diario de las monedas, desgastándose con el tiempo. Por esto deben ser aleados con otros metales para conseguir monedas más duraderas, más duras y más resistentes al desgaste.

GRUPO XII

Elementos del grupo 12: Se denomina grupo en la Tabla periódica de los elementos, a cada una de sus columnas verticales, clasificadas tradicionalmente de izquierda a derecha, desde el número 1 al 18.

Vale recordar que todos los elementos de un grupo tienen una gran semejanza, compartiendo muchas propiedades químicas y físicas, y generalmente son diferentes de los elementos de los otros grupos. Por ejemplo, los elementos del grupo 1, a excepción del hidrógeno, son metales, mientras que los del grupo 7, exceptuando el astato, son no metales.

De tal modo, en el Grupo (o columna) 12 encontramos:

zinc. cadmio. mercurio.

GRUPO XIII

El primer elemento del grupo 13 es el boro (B), un metaloide con un punto de fusión muy elevado y en el que predominan las propiedades no metálicas. Los otros elementos que comprenden este grupo son: aluminio (Al), galio (Ga), indio (In), y talio (Tl), que forman iones con un carga triple positiva (3+).

La característica del grupo es que los elementos tienen tres electrones en su capa más externa, por lo que suelen formar compuestos en los que presentan un estado de oxidación +3. El talio difiere de los demás en que también es importante su estado de oxidación +1. Esta baja reactividad del par de electrones s conforme se baja en el grupo se presenta también en otros grupos, se denomina efecto del par inerte y se explica considerando que al bajar en el grupo las energías medias de enlace van disminuyendo. Esta es una característica fundamental de el grupo III A.

GRUPO XIV

El grupo 14 de la tabla periódica de los elementos, también se conoce como grupo del carbono (el carbono es el elemento cabecera de este grupo). El grupo lo comprenden los siguientes elementos:

Carbono Silicio Germanio Estaño Plomo

La mayoría de los elementos de este grupo son muy conocidos, por ejemplo el carbono es uno de los elementos que más compuestos puede formar. La química orgánica estudia la mayoría de estos compuestos que contienen carbono. A su vez, el silicio es uno de los elementos más abundantes en la corteza terrestre.

Al bajar en el grupo, estos elementos van teniendo características cada vez más metálicas: el carbono y el silicio son no metálicos (aunque a veces se clasifica al silicio como semimetal), el germanio es un semimetal, y el estaño y el plomo son metálicos.

Page 9: ATOMOS Y MOLECULAS - Exapuni

GRUPO XV

El grupo del nitrógeno o grupo de los nitrogenoideos o nitrogenoides, también llamado grupo 15 o VA de la tabla periódica, está formado por los siguientes elementos: nitrógeno, fósforo, arsénico, antimonio y bismuto. A alta temperatura son muy reactivos. Suelen formar enlaces covalentes entre el N y el P y enlaces iónicos entre Sb y Bi.

El nitrógeno reacciona con O2 y H2 a altas temperaturas.

Ejemplo de reacción con H2:

N2 + 3H2 → 2NH3 El bismuto reacciona con O2 y con halógenos.

A continuación se muestra una tabla con las características generales de estos elementos.

GRUPO XVI

El grupo de los anfígenos o calcógenos es el grupo 16 o VIA de la tabla periódica de los elementos, formado por los siguientes elementos: Oxígeno (O), Azufre (S), Selenio (Se), Telurio (Te) y Polonio (Po). El término anfígeno significa formador de ácidos y bases.

Aunque todos ellos tienen seis electrones de valencia, sus propiedades varían de no metálicas a metálicas, en cierto grado conforme aumenta su número atómico.

También varía su abundancia con el número atómico, pero inversamente, siendo el Oxígeno muy abundante (50% de la superficie del planeta) y el Polonio muy raro.

Las combinaciones hidrogenadas de los elementos de este grupo, salvo el agua, son tóxicas.

El Oxígeno y el Azufre se utilizan ampliamente en la industria y el Teluro y el Selenio en la fabricación de semiconductores.

GRUPO XVII

Los halógenos son los elementos no metales del grupo 17 (anteriormente grupo VIIA) de la tabla periódica:

Flúor (F) Cloro (Cl)

Page 10: ATOMOS Y MOLECULAS - Exapuni

Bromo (Br) Yodo (I) Astato (At)

En forma natural se encuentran como moléculas diatómicas, X2. Para llenar por completo su último nivel energético necesitan un electrón más, por lo que tienen tendencia a formar un ion mononegativo, X-. Este ion se denomina haluro; las sales que lo contienen se conocen como haluros.

Poseen una electronegatividad ≥ 2,5 según la escala de Pauling, presentando el flúor la mayor electronegatividad, y disminuyendo ésta al bajar en el grupo. Son elementos oxidantes (disminuyendo esta característica al bajar en el grupo), y el flúor es capaz de llevar a la mayor parte de los elementos al mayor estado de oxidación que presentan.

Muchos compuestos orgánicos sintéticos, y algunos naturales, contienen halógenos; a estos compuestos se les llama compuestos halogenados. La hormona tiroidea contiene átomos de yodo. Los cloruros tienen un papel importante en el funcionamiento del cerebro mediante la acción del neurotransmisor inhibidor de la transmisión GABA.

Algunos compuestos presentan propiedades similares a las de los halógenos, por lo que reciben el nombre de pseudohalógenos. Puede existir el pseudohalogenuro, pero no el pseudohalógeno correspondiente. Algunos pseudohalogenuros: cianuro (CN-), tiocianato (SCN-), fulminato (CNO-), etcétera.

Los fenicios y los griegos de la antigüedad utilizaron la sal común para la conservación de alimentos, especialmente en la salazón del pescado.

GRUPO XVIII

Los gases nobles son elementos químicos situados en el grupo VIII A de la tabla periódica de los elementos. Concretamente los gases nobles son los siguientes:

Helio Neón Argón Kriptón Xenón Radón

El nombre de gas noble proviene del hecho de que no tienden a reaccionar con otros elementos. Debido a esto, también son denominados a veces gases inertes, aunque realmente sí participan en algunas reacciones químicas. El xenón reacciona espontáneamente con el flúor y a partir de los compuestos resultantes se han alcanzado otros. También se han aislado algunos compuestos con kriptón.

Tienen ocho electrones en su ultimo nivel lo que a veces les impide formar compuestos fácilmente; sus moléculas son muy estables. Todos tiene su último nivel de energía más externo totalmente lleno (dos electrones en el helio y ocho en los demás).

Como curiosidad indicar que la discusión científica sobre la posibilidad de licuar estos gases dio lugar al descubrimiento de la superconductividad por el físico holandés Heike Kamerlingh Onnes.

ELEMENTOS DE TRANSICIÓNSon aquellos elementos cuyos átomos tienen su electrón diferencial en un orbital d del penúltimo nivel ( n-1 ). Es decir, van completando el orbital del nivel n-1.Ocupan los periodos cuarto, quinto, sexto y séptimo y están comprendidos dentro de los grupos que van desde el 3 hasta el 12, que se hallan en el centro de la tabla.Son todos metales, algunos muy conocidos como Fe, Cu, Zn, Ag, Au y Hg. Además de las semejanzas entre los elementos de un mismo grupo, presentan similares propiedades físicas dentro de un mismo periodo, conocidas como analogías horizontales.

Page 11: ATOMOS Y MOLECULAS - Exapuni

ELEMENTOS DE TRANSICIÓN INTERNALos átomos de estos elementos tienen su electrón diferencial ubicado en un orbital f del antepenúltimo nivel ( n-2 ), que es el que están completando. Van llenando los orbitales 4f ( lantánidos ) y 5f ( actínidos ). Pertenecen a los periodos 6 y 7 de la tabla aunque el grupo no está definido. Las propiedades de los miembros de cada serie son muy semejantes y también se registran analogías entre los elementos de ambas series.

PROPIEDADES PERIODICAS

RADIO ATOMICO

El radio atómico es la distancia entre el núcleo del átomo y el electrón estable más alejado del mismo. Se suele medir en picómetros (1 pm=10 -12 m) o Angstroms/Ångströms (en honor a Anders Jonas Ångström) (1 Å=10-10 m).

Al ser los núcleos y los electrones partículas cuánticas, sometidas al principio de indeterminación o incertidumbre de Heisenberg, las medidas directas de distancias no pueden tener sino un significado estadístico. Convencionalmente, se define como la mitad de la distancia existente entre los centros de dos átomos enlazados, y dependiendo de ese enlace podremos hablar de radios atómicos, iónicos, metálicos o radios de van der Waals.

En función del tipo de enlace químico se definen también otros radios como el covalente (generalmente para elementos no metálicos) y el iónico (para elementos metálicos). Situados ahora en la tabla periódica, una sencilla regla mnemotécnica para recordar el modo en que aumenta el radio atómico es la siguiente:

El radio atómico de un elemento aumenta de arriba a abajo y de derecha a izquierda en la tabla periódica.

La explicación a este fenómeno se encuentra en que la fuerza de atracción que el núcleo del átomo ejerce sobre los electrones es mayor al final de cada período, de manera que los electrones de los átomos de los elementos que se encuentran más a la derecha se encuentran más atraídos por el núcleo, de modo que, como el número de niveles en el que se enlazan los átomos es el mismo, el radio disminuye.

Paralelamente a esto, en cada período aumenta en una unidad el número de capas en el que se distribuyen los electrones del átomo, de manera que los átomos de los elementos de mayor período tienen mayor radio.

RADIO IONICO

El radio iónico va aumentando en la tabla de izquierda a derecha por los periodos y de arriba hacia abajo por los grupos. El radio iónico es, al igual que el radio atómico, la distancia entre el centro del núcleo del átomo y el electrón estable más alejado del mismo, pero haciendo referencia no al átomo, sino al ion. Se suele medir en picómetros (1 pm=10-12) m o Ángstrom (1 Å=10-10 m).

En el caso de cationes, la ausencia de uno o varios electrones diminuye la fuerza eléctrica de repulsión mutua entre los electrones restantes, provocando el acercamiento de los mismos entre sí y al núcleo positivo del átomo del que resulta un radio iónico menor que el atómico.

En el caso de los aniones, el fenómeno es el contrario, el exceso de carga eléctrica negativa obliga a los electrones a alejarse unos de otros para restablecer el equilibrio de fuerzas eléctricas, de modo que el radio iónico es mayor que el atómico.

Series Isoelectrónicas: Cuando se producen los iones éstos adquieren la configuración del gas noble más cercano lo cual les confiere estabilidad. Estas 3 especies: K+, Ar y Cl-

tienen igual N° de electrones por lo cual se dice que son isoelectrónicas.Una serie isoelectrónica es una secuencia de especies que tienen igual N° de electrones pero difieren en su carga nuclear. El radio de las especies isoelectrónicas disminuye con

Page 12: ATOMOS Y MOLECULAS - Exapuni

el incremento de la carga nuclear, ya que el mismo N° de electrones es atraído por una carga positiva cada vez mayor.

ENERGIA DE IONIZACION

El potencial de ionización o energía de ionización o EI es la mínima energía que hay que suministrar a un átomo neutro y en su estado fundamental, perteneciente a un elemento en estado gaseoso, para arrancarle un electrón. La reacción puede expresarse de la siguiente forma:

Siendo A(g) los átomos neutros de una sustancia elemental en estado gaseoso; EI, la energía de ionización y un electrón.

Esta energía corresponde a la primera ionización. El segundo potencial de ionización representa la energía precisa para sustraer el segundo electrón; este segundo potencial de ionización es siempre mayor que el primero, pues el volumen de un ion positivo es menor que el del átomo y la fuerza electrostática es mayor en el ion positivo que en el átomo, ya que se conserva la misma carga nuclear.

El potencial o energía de ionización se expresa en electrón-voltio, julios o en kilojulios por mol (kJ/mol).

1 eV = 1,6 × 10-19 C × 1 V = 1,6 × 10-19 J

Si el potencial de ionización de un átomo fuera 1 eV, para ionizar un mol (6,02×1023

átomos) de dichos átomos serían necesarios 96,5 kJ.

En los elementos de una misma familia o grupo el potencial de ionización disminuye a medida que aumenta el número atómico, es decir, de arriba abajo.

En los alcalinos, por ejemplo, el elemento de mayor potencial de ionización es el litio y el de menor el francio. Esto es fácil de explicar, pues el último electrón se sitúa en orbitales cada vez más alejados del núcleo y, a su vez, los electrones de las capas interiores ejercen un efecto de apantallamiento de la atracción nuclear sobre los electrones periféricos.

En los elementos de un mismo período, el potencial de ionización crece a medida que aumenta el número atómico, es decir, de izquierda a derecha.

Esto se debe a que el electrón diferenciador o último de los elementos de un período está situado en el mismo nivel energético, mientras que la carga del núcleo aumenta, por lo que será mayor la fuerza de atracción, y, a su vez, el número de capas interiores no varía y el efecto pantalla no aumenta.

Sin embargo, el aumento no es continuo, pues en el caso del berilio y el nitrógeno se obtienen valores más altos que lo que podía esperarse por comparación con los otros elementos del mismo período. Este aumento se debe a la estabilidad que presentan las configuraciones s2 y s2 p3,respectivamente.

La energía de ionización más elevada corresponde a los gases nobles, ya que su configuración electrónica es la más estable, y por tanto habrá que proporcionar más energía para arrancar los electrones.

ELECTRONEGATIVIDAD

La electronegatividad es una medida de fuerza de atracción que ejerce un átomo sobre los electrones de otro, en un enlace covalente. Los diferentes valores de electronegatividad se clasifican según diferentes escalas, entre ellas la escala de Pauling y la escala de Mulliken.

En general, los diferentes valores de electronegatividad de los átomos determinan el tipo de enlace que se formará en la molécula que los combina. Así, según la diferencia entre las electronegatividades de éstos se puede determinar (convencionalmente) si el enlace será, según la escala de Linus Pauling:

Iónico (diferencia superior o igual a 1.7)

Page 13: ATOMOS Y MOLECULAS - Exapuni

Covalente polar (diferencia entre 1.7 y 0.4) Covalente no polar (diferencia inferior a 0.4)

Cuanto más pequeño es el radio atómico, mayor es la energía de ionización y mayor la electronegatividad y viceversa.

Según Linus Pauling, la electronegatividad es la tendencia o capacidad de un átomo, en una molécula, para atraer hacia sí los electrones. Ni las definiciones cuantitativas ni las escalas de electronegatividad se basan en la distribución electrónica, sino en propiedades que se supone reflejan la electronegatividad. La electronegatividad de un elemento depende de su estado de oxidación y, por lo tanto, no es una propiedad atómica invariable. Esto significa que un mismo elemento puede presentar distintas electronegatividades dependiendo del tipo de molécula en la que se encuentre, por ejemplo, la capacidad para atraer los electrones de un orbital híbrido spn en un átomo de carbono enlazado con un átomo de hidrógeno, aumenta en consonancia con el porcentaje de carácter s en el orbital, según la serie etano < etileno(eteno) < acetileno(etino). La escala de Pauling se basa en la diferencia entre la energía del enlace A-B en el compuesto ABn y la media de las energías de los enlaces homopolares A-A y B-B. R. S. Mulliken propuso que la electronegatividad de un elemento puede determinarse promediando la energía de ionización de sus electrones de valencia y la afinidad electrónica. Esta aproximación concuerda con la definición original de Pauling y da electronegatividades de orbitales y no electronegatividades atómicas invariables. E. G. Rochow y A. L. Alfred definieron la electronegatividad como la fuerza de atracción entre un núcleo y un electrón de un átomo enlazado.

Disminución del radio atómico Aumento de la energía de ionizaciónAumento de electronegatividad

Tabla periódica de los elementosGrupo 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

I II III IV V VI VII VIIIPeriodo

1 1H

2He

2 3Li

4Be

5B

6C

7N

8O

9F

10Ne

3 11Na

12Mg

13Al

14Si

15P

16S

17Cl

18Ar

4 19K

20Ca

21Sc

22Ti

23V

24Cr

25Mn

26Fe

27Co

28Ni

29Cu

30Zn

31Ga

32Ge

33As

34Se

35Br

36Kr

5 37Rb

38Sr

39Y

40Zr

41Nb

42Mo

43Tc

44Ru

45Rh

46Pd

47Ag

48Cd

49In

50Sn

51Sb

52Te

53I

54Xe

6 55Cs

56Ba * 72

Hf73Ta

74W

75Re

76Os

77Ir

78Pt

79Au

80Hg

81Tl

82Pb

83Bi

84Po

85At

86Rn

7 87Fr

88Ra ** 104

Rf105Db

106Sg

107Bh

108Hs

109Mt

110Ds

111Rg

112Uub

113Uut

114Uuq

115Uup

116Uuh

117Uus

118Uuo

Lantánidos * 57La

58Ce

59Pr

60Nd

61Pm

62Sm

63Eu

64Gd

65Tb

66Dy

67Ho

68Er

69Tm

70Yb

71Lu

Actínidos ** 89Ac

90Th

91Pa

92U

93Np

94Pu

95Am

96Cm

97Bk

98Cf

99Es

100Fm

101Md

102No

103Lr

Page 14: ATOMOS Y MOLECULAS - Exapuni

EJERCICIOS RESUELTOS TABLA PERIÓDICA

1) La C.E. 1s22s22p63s23p6 , corresponde a:A. Un actínidoB. Un gas noble C. Un metal de transiciónD. Un halógenoE. Ninguno de los elementos mencionados

2) Seleccionar usando la C. E. Entre los elementos que tienen los N° atómicos siguientes: 2,9,12,17,21,37,55A. Los del mismo periodoB. Los del mismo grupo

3) Dadas las siguientes afirmaciones indicar si son verdaderas o falsas:A. La C. E. E. Del cuarto halógeno es: 5s25p5 VB. Todos los átomos del tercer metal alcalino, tienen 11 protones en sus núcleos FC. La C. E. Del elemento del cuarto periodo y grupo 4 es: {Ar} 4s23d2 VD. Los átomos del elemento del 2 periodo y grupo 15 tienen 3 electrones en su nivel mas externo. FE. El elemento X cuyo nucleído 37X tiene 20 neutrones en su núcleo, es el 2° halógeno. V

4) Dados los siguientes elementos:Se ( C. E. E: 4s24p4 ); K (Z = 19 ); F ( Z = 9 )Ordenarlos según el valor creciente de:A. Sus radios atómicos.B. Sus energías de ionización.

Solución:A. r( F ) r ( Se ) r ( K )B. Ei ( K ) Ei ( Se ) Ei ( F )

5) Indicar la respuesta correcta. Dados un anión y un catión de átomos distintos, pero isoelectrónicos entre sí, podemos afirmar que:A. Tienen el mismo radio.B. El anión tiene mayor radio. C. El catión tiene el mayor radio.D. El ión que corresponde al elemento de mayor Z tiene mayor radio.E. Ninguna de las afirmaciones es correcta.

6) El esquema adjunto representa el aumento que experimenta en la tabla:A. La electronegatividad B. El N° atómicoC. El radio atómicoD. El N° de protonesE. Ninguna de las respuestas es correcta

Li F

Fr

Page 15: ATOMOS Y MOLECULAS - Exapuni

7) El nucleido 16X del elemento X produce un anión divalente que posee 10 electrones. Determinar:A. La configuración electrónica de XB. El periodo y el grupo de XC. El N° de neutrones del núcleo del isótopo

Solución

A. [ He ] 2s22p4 B. 2 y 16C. 9

Un átomo del elemento X pierde 2 electrones formando un ión isoelectrónico con el tercer gas noble. Determinar:A. el N° de masa del isótopo de X que tiene 21 neutrones en su núcleoB. la C. E. E. Del elemento que antecede a X en la tabla periódica.

Solución

A. 41B. 4s1

UNIONES QUÍMICASUn enlace químico es la unión entre dos o más átomos para formar una entidad de orden superior, como una molécula o una estructura cristalina. Para formar un enlace dos reglas deben ser cumplidas regla del dueto y la regla del octeto.

Los primeros planteamientos sobre la naturaleza de los enlaces químicos surgieron a principios del siglo XII, y suponían que ciertos tipos de especies químicas eran vinculados por ciertos tipos de afinidades químicas.

A mediados del siglo XIX Edward Frankland, Friedrich Kekulé, A.S. Couper, A.M. Butlerov y Hermann Kolbe, desarrollaron teorías de radicales, de valencias llamada en un principio “poder de combinar” en la cual los compuestos se atraían gracias a la atracción de polos positivos y negativos.

En 1916, el químico Gilbert Lewis desarrolló la idea de la unión por par de electrones. Walter Heitler y Fritz London fueron los autores de la primera explicación mecánica cuántica de la conexión química, especialmente la del hidrógeno molecular, en 1927, utilizando la teoría de conexiones de Valencia. En 1930, la primera descripción matemática cuántica del enlace químico simple se desarrolló en la tesis de doctorado de Edward Teller.

En 1931, el químico Linus Pauling publicó lo que a veces se considera como el texto más importante de la historia de la química: "The Nature of the Chemical Bond"

TEORIAS DE ENLACE

Es importante indicar que el enlace químico es una situación de equilibrio, donde las fuerzas de atracción entre los átomos son contrarrestadas por fuerzas equivalentes y de sentido contrario (fuerzas de repulsión). El punto de equilibrio suele ser caracterizado por el radio de enlace y la energía. La explicación de las fuerzas involucradas en un enlace químico son descritas por las leyes de la electrodinámica cuántica. Sin embargo al ser un problema de muchos cuerpos se recurre con frecuencia a teorías simplificadas. Estas teorías dan una idea más o menos buena de la situación real. Entre las más recurridas están:

Page 16: ATOMOS Y MOLECULAS - Exapuni

Enlace de valencia: teoría sencilla que se completa con la regla del octeto. Según esta teoría, cada átomo se rodea de 8 electrones, algunos compartidos en forma de enlaces y otros propios en forma de pares solitarios. No puede describir adecuadamente a los átomos con orbitales d activos, como los metales de transición, pero la teoría es muy sencilla y describe adecuadamente un gran número de compuestos.

Mecánica cuántica: Esta teoría es mucho más compleja que la anterior. Da respuesta a muchos fenómenos que escapan al enlace de valencia. En la mecánica cuántica, los enlaces de valencia no tienen un papel destacado (sólo se tienen en cuenta las posiciones nucleares y las distribuciones electrónicas), pero los químicos los representan para que las estructuras les sean más familiares. Los orbitales moleculares pueden clasificarse como enlazantes y antienlazantes.

Interacción electrostática: Útil para cristales de carácter marcadamente ioníceso. Predice la unión entre grupos de átomos, de forma no-direccional.

TIPOS DE ENLACE

El enlace entre dos átomos nunca se corresponde exactamente con una de las siguientes categorías. Sin embargo, son útiles para clasificar muchas de las propiedades y reactividad química de una gran variedad de compuestos.

ENLACE IONICO

Es la unión que se produce entre dos átomos de electronegatividades distintas, con una diferencia igual o mayor a 1.67, en este tipo de enlace ocurre una transferencia de uno o más electrones del átomo menos electronegativo hacia el más electronegativo. Por ende el átomo que cedió electrones queda con carga positiva y el que capto electrones queda con carga negativa.

El enlace iónico se presenta generalmente entre los átomos de los grupos:

I A - VII A II A - VI A III A - V A

Cuando se transfieren electrones de un elemento metálico a uno no metálico, existe una atracción electrovalente entre el catión y el anión lo cual produce un compuesto de tipo iónico y cuya estructura generalmente es cristalina, como es el caso del sodio y la el cloro que por sus distribuciones electrónicas buscan una mayor estabilidad formando una sal donde cada ión de cloro esta rodeado por seis cationes de sodio y cada sodio rodeado por seis aniones de cloro.

Mediante una transferencia de un electrón al cloro de cada sodio adquiere la distribución del neón Na[Ne]3s1 ®Na+ [Ne]+ e-

Mediante la transferencia de un electrón del sodio, el cloro adquiere la distribución del argón Cl[Ne]3s23p5 + e- ®Cl- [Ar]

La energía de las fuerzas de atracción o repulsión entre los elementos que conforman un enlace iónico es función de la distancia internuclear llegando a una distancia mínima donde se compensa las fuerzas de atracción y de repulsión, la cual se denomina distancia de enlace.

ENLACE COVALENTE

Se forma entre átomos de elementos que tienen naturaleza semejante, de manera que no pierden ni ganan electrones si no que los comparte. Las reacciones entre 2 átomos

Page 17: ATOMOS Y MOLECULAS - Exapuni

no metales producen enlaces covalentes. Este tipo de enlace se produce cuando existe una electronegatividad polar.

Enlace Covalente Sencillo

Se forma cuando se comparte un par de electrones entre los átomos que forman el enlace; en otras palabras, cada a átomo aporta un electrón

Cuando no existe suficiente diferencia de electronegatividad para que exista transferencia electrónica, resultan dos átomos compartiendo uno o más pares de electrones y forman una molécula con energía de atracción débil en resultado poseen bajos puntos de fusión y ebullición en comparación con los iónicos. Los enlaces pueden ser simple, doble y triple, según la forma de compartir uno, dos o tres electrones.

Enlace Covalente Simple: Cuando un átomo comparte con otro un par de electrones uno con otros. (alcanos)Enlace Covalente Doble: Cuando un átomo comparte con otro 4 electrones 2 de cada átomo. (alquenos)Enlace Covalente Triple: Cuando un átomo comparte con otro 6 electrones 3 de cada átomo. (alquino)

Enlace Covalente Coordinado

Se define de la siguiente forma: "Es el enlace que se produce cuando dos átomos comparten una pareja de electrones, pero dicha pareja procede solamente de uno de los átomos combinados. En este caso el enlace se llama covalente dativo o coordinado. El átomo que aporta la pareja de electrones recibe el nombre de donante, y el que los recibe, aceptor. Cuando queremos simplificar la fórmula.

ENLACE DE VAN DER WAALS

Las fuerzas de van der Waals son fuerzas de estabilización molecular; forman un enlace químico no covalente en el que participan dos tipos de fuerzas o interacciones, las fuerzas de dispersión (que son fuerzas de atracción) y las fuerzas de repulsión entre las capas electrónicas de 2 átomos contiguos.

1. Fuerzas de dispersión

Todos los átomos, aunque sean apolares, forman pequeños dipolos debidos al giro de los electrones en torno al núcleo (véase átomo). La presencia de este dipolo transitorio hace que los átomos contiguos también se polaricen, de tal manera que se producen pequeñas fuerzas de atracción electrostática entre los dipolos que forman todos los átomos

2. Repulsión electrostática

A estas fuerzas de dispersión se opone la repulsión electrostática entre las capas electrónicas de dos átomos contiguos.

La resultante de estas fuerzas opuestas es una distancia mínima permitida entre los núcleos de dos átomos contiguos. Distancia que se conoce como radio de van der Waals.

Es ésta una fuerza muy importante en biología, porque es uno de los enlaces no covalentes que estabilizan la conformación de las proteínas.

La energía del enlace de van der Waals es de 1 a 2 kcal/mol.

Las fuerzas de van der Waals conforman el tipo más débil de fuerza intermolecular que puede darse en la naturaleza, necesitándose un aporte energético de 0,1 a 35 kJ/mol para romper dicha interacción. Distinguimos tres clases de enlace de van der Waals:

Orientación: interacción dipolo permanente-dipolo permanente. Tienen lugar entre moléculas polares como el HCl por ejemplo, produciéndose una atracción

Page 18: ATOMOS Y MOLECULAS - Exapuni

eléctrica entre polos opuestos de moléculas contiguas, pero no así el solapamiento de los átomos interactuantes al ser de mayor tamaño que en el puente de hidrógeno.(Recordemos que el solapamiento sólo se produce en el enlace de hidrógeno, donde el N, el O y el F son especies más pequeñas). Cuanto mayor sea la polaridad de la molécula (diferencia de electronegatividad entre los átomos que la forman), más fuerte será la interacción.

Inducción: interacción dipolo permanente-dipolo inducido. Se produce entre una molécula polar y otra apolar. En este tipo de interacción, el dipolo permanente de la molécula polar provoca una deformación en la nube electrónica de la molécula apolar que se aproxima (el polo negativo de la molécula polar induce el desplazamiento de lo electrones de la molécula polar hacia el polo opuesto, apareciendo un dipolo). De este modo, se establece una atracción eléctrica entre polos opuestos.

Este tipo de enlace también se conoce como polarización, siendo tanto más intenso cuanto mayor sea la polarización de la molécula apolar. La intensidad de este fenómeno dependerá de la mayor o menor polaridad (diferencia de electronegatividad entre los átomos que forman la molécula polarizante; la polar) así como del tamaño de la molécula polarizada (a mayor número de electrones, más desigualdad de disposición puede existir).

Dispersión (Fuerzas de London): dipolo instantáneo-dipolo instantáneo. Aparecen en todos los compuestos moleculares, siendo la única fuerza intermolecular que aparece entre moléculas apolares. Se produce por la aparición de una distribución asimétrica de la carga en una molécula (dado el movimiento continuo de los electrones). Este fenómeno induce la aparición de un dipolo instantáneo en la molécula que se aproxima, estableciéndose una interacción muy débil e instantánea.

La intensidad de esta interacción depende del tamaño de la molécula (a mayor número de electrones, mayor posibilidad de la aparición de un dipolo instantáneo).

ENLACE DE HIDRÓGENO

Se produce un enlace de hidrógeno o puente de hidrógeno (correctamente llamado enlace por puente de hidrógeno) cuando un átomo de hidrógeno se encuentra entre dos átomos más electronegativos, estableciendo un vínculo entre ellos. El átomo de hidrógeno tiene una carga parcial positiva, por lo que atrae a la densidad electrónica de un átomo cercano en el espacio.

El enlace de hidrógeno es poco energético frente al enlace covalente corriente, pero su consideración es fundamental para la explicación de procesos como la solvatación o el plegamiento de proteínas.

Diferentes dadores de hidrógeno para formar enlaces de hidrógeno. Los dadores clásicos son:

El grupo hidróxilo (OH) El grupo amino (NH) El fluoruro de hidrógeno (HF)

Mientras que existen dadores no clásicos, como por ejemplo:

un hidrocarburo sustituido (CH) (en el caso de los hidrocarburos no se forman puentes de hidrógeno por la baja electronegatividad del carbono. Sin embargo, cuando el carbono tiene sustituyentes atractores de electrones se pueden dar interacciones débiles, como en el caso del cloroformo)

Page 19: ATOMOS Y MOLECULAS - Exapuni

Un alquino puede dar lugar a interacciones débiles mediante sus hidrógenos ácidos.

Diferentes dadores de electrones para formar enlaces por puente de hidrógeno son:

Pares electrónicos solitarios de oxígeno, azufre, nitrógeno, halógenos...

Dadores y receptores de hidrógenoDentro de las interacciones de puente hidrógeno es conveniente diferenciar entre los enlaces de puente hidrogeno como dador de hidrógenos y como receptor de hidrógenos. En el caso del amoniaco (NH3) encontramos la presencia de enlaces de puente hidrogeno, 3 como dador de hidrógenos (Los 3 protones ligados al N) y uno como receptor, debido a los electrones del nivel de valencia del Nitrógeno. La diferenciación entre enlaces como dador y como receptor es útil para determinar la intensidad de las fuerzas de atracción provocadas por este tipo de enlace, así como predecir la formación de dímeros.

Enlace puente de hidrógeno en el agua

La presencia de enlaces de tipo puente hidrogeno entre las moléculas del agua pura (H20) es responsable de la dilatación particular [fenómeno cotidiano de la flotación del agua sólida (hielo) en el agua líquida], a diferencia del resto de las sustancias en las mismas fases. La disminución de la densidad en el estado sólido se debe a la estructura cristalina que adoptan las moléculas del agua en el estado sólido, lo que se ve propiciado por la presencia de los enlaces de puente hidrógeno. Esta estructura determina una configuración espacial donde la distancia entre las moléculas determina una menor densidad que en el estado líquido.

ENLACE METALICOUn enlace metálico es un enlace químico que mantiene unidos los átomos (Unión entre cationes y los electrones de valencia) de los metales entre sí. Estos átomos se agrupan de forma muy cercana unos a otros, lo que produce estructuras muy compactas. Se trata de redes tridimensionales que adquieren la estructura típica de empaquetamiento compacto de esferas. En este tipo de estructura cada átomo metálico está rodeado por otros doce átomos (seis en el mismo plano, tres por encima y tres por debajo). Además, debido a la baja electronegatividad que poseen los metales, los electrones de valencia son extraídos de sus orbitales y tiene la capacidad de moverse libremente a través del compuesto metálico, lo que otorga las propiedades eléctricas y térmicas de los metales.

Características de los metales

Las características básicas de los elementos metálicos son producidas por la naturaleza del enlace metálico. Entre ellas destacan:

1. Suelen ser sólidos a temperatura ambiente, excepto el mercurio, y sus puntos de fusión y ebullición varían notablemente.

2. Las conductividades térmicas y eléctricas son muy elevadas. (esto se explica por la enorme movilidad de sus electrones de valencia)

3. Presentan brillo metálico.

4. Son dúctiles y maleables. (la enorme movilidad de los electrones de valencia hace que los cationes metálicos puedan moverse sin producir una situación distinta, es decir, una rotura)

5. Pueden emitir electrones cuando reciben energía en forma de calor.

6. Tienden a perder electrones de sus últimas capas cuando reciben cuantos de luz (fotones), fenómeno conocido como efecto fotoeléctrico.

El enlace metálico es característico de los elementos metálicos, es un enlace fuerte, primario, que se forma entre elementos de la misma especie. Los átomos, al estar tan cercanos uno de otro, interaccionan los núcleos junto con sus nubes electrónicas

Page 20: ATOMOS Y MOLECULAS - Exapuni

empaquetándose en las tres dimensiones, por lo que quedan rodeados de tales nubes. Estos electrones libres son los responsables que los metales presenten una elevada conductividad eléctrica y térmica, ya que estos se pueden mover con facilidad si se ponen en contacto con una fuente eléctrica. Presentan brillo y son maleables.

Los elementos con un enlace metálico están compartiendo un gran número de electrones de valencia, formando un mar de electrones rodeando un enrejado gigante de cationes. Los metales tienen puntos de fusión más altos por lo que se deduce que hay enlaces más fuertes entre los distintos átomos. La vinculación metálica es no polar, apenas hay (para los metales elementales puros) o muy poco (para las aleaciones) diferencia de electronegatividad entre los átomos que participan en la interacción de la vinculación, y los electrones implicados en lo que es la interacción a través de la estructura cristalina del metal. El enlace metálico explica muchas características físicas de metales, tales como fuerza, maleabilidad, ductilidad, conducción del calor y de la electricidad, y lustre. La vinculación metálica es la atracción electrostática entre los átomos del metal o los iones y electrones deslocalizados. Esta es la razón por la cual se explica un deslizamiento de capas, dando por resultado su característica maleabilidad y ductilidad. Los átomos del metal tienen por lo menos un electrón de valencia, no comparten estos electrones con los átomos vecinos, ni pierden electrones para formar los iones. En lugar los niveles de energía externos de los átomos del metal se traslapan. Son como enlaces covalentes.

ESTRUCTURA DE LEWIS

Estructura de Lewis, también llamadas diagramas de puntos, son representaciones gráficas que muestran los enlaces entre los átomos de una molécula y los pares de electrones solitarios que puedan existir.

El diagrama de Lewis se puede usar tanto para representar moléculas formadas por la unión de sus átomos mediante enlace covalente como complejos de coordinación. La estructura de Lewis fue propuesta por Gilbert Lewis, quien lo introdujo por primera vez en 1916 en su artículo La molécula y el átomo.

Las estructuras de Lewis muestran los diferentes átomos de una determinada molécula usando su símbolo químico y líneas que se trazan entre los átomos que se unen entre sí. En ocasiones, para representar cada enlace, se usan pares de puntos en vez de líneas. Los electrones desapareados (los que no participan en los enlaces) se representan mediante una línea o con un par de puntos, y se colocan alrededor de los átomos a los que pertenece.

A los diferentes átomos se les pone un punto (o una cruz) alrededor de su símbolo por cada electrón de la capa de valencia. Como la cantidad máxima de electrones posible son ocho, se colocan por parejas: una en la parte superior, otra en la inferior, un par a la izquierda y otro a la derecha. Primero se debe poner uno en cada posición, y después se completan las parejas (ver imagen), exceptuando el helio; sus dos electrones aparecen juntos.

Las moléculas más simples tienen un átomo central que queda rodeado por el resto de átomos de la molécula. En las moléculas formadas por varios átomos de un elemento y uno sólo de otro elemento diferente, éste último es el átomo central. En los compuestos creados por átomos diferentes de diferentes elementos, el menos electronegativo es el átomo central, exceptuando el hidrógeno. Por ejemplo, en el dicloruro de tionilo ( SOCl2), el átomo central es el azufre. Generalmente, en estas moléculas sencillas primero hay que unir cada átomo no central con el central mediante un enlace simple.

En algunos casos es difícil determinar el átomo central, en general cuando todos los átomos de los elementos del compuesto aparecen más de una vez en la molécula. En estas ocasiones, la determinación de cuáles átomos se encuentran unidos a cuáles átomos se debe realizar de algún otro modo, ya sea por prueba y error o mediante el conocimiento previo de estructuras que puedan resultar similares.

Page 21: ATOMOS Y MOLECULAS - Exapuni

El número total de electrones representados en un diagrama de Lewis es igual a la suma de los electrones de valencia de cada átomo. Los electrones que no se encuentran en la capa de valencia de un determinado átomo no se representan.

Cuando los electrones de valencia han sido determinados, deben ubicarse en la estructura. Ellos deben ser ubicados inicialmente como pares solitarios: un par de puntos por cada par de electrones disponible. Los pares solitarios se deben poner inicialmente en los átomos externos (con excepción del hidrógeno) hasta que cada átomo externo tiene ocho electrones en pares de vinculación y pares solitarios; los pares solitarios extra deben ser ubicados en el átomo central. Cuando hay dudas, los pares solitarios deben ser ubicados en los átomos más electronegativos primero.

Una vez que todos los pares solitarios han sido ubicados, los átomos, especialmente los centrales, pueden no tener un octeto de electrones. En ese caso, los átomos deben formar un enlace doble; un par solitario de electrones es movido para formar un segundo enlace entre los dos átomos. Así como el par del enlace es compartido entre los dos átomos, el átomo que originalmente tenía el par solitario sigue teniendo un octeto; y el otro átomo ahora tiene dos electrones más en su última capa.

Fuera de los compuestos orgánicos, solo una minoría de los compuestos tiene un octeto de electrones en su última capa. Octetos incompletos son comunes para los compuestos de los grupos 2 y 13 tales como el berilio, boro, y aluminio. Compuestos con más de ocho electrones en la representación de la estructura de Lewis de la última capa del átomo son llamados hipervalentes, y son comunes en los elementos de los grupos 15 al 18, tales como el fósforo, azufre, yodo y xenón.

Las estructuras de Lewis para iones poliatómicos deben ser dibujadas mediante el mismo método. Cuando se cuentan los electrones, los iones negativos deben tener

electrones extra ubicados en sus estructuras de Lewis; los iones positivos deben tener menos electrones que una molécula neutra.

Cuando se escribe la estructura de Lewis de un ion, la estructura entera es ubicada entre corchetes, y la carga se escribe como un exponente en el rincón derecho superior, fuera de los corchetes.

Un método más simple ha sido propuesto para construir estructuras de Lewis eliminando la necesidad de contar los electrones: los átomos son dibujados mostrando los electrones de valencia, los enlaces son formados, entonces, formando parejas de electrones de valencia de los átomos involucrados en el proceso de crear enlaces, y aniones y cationes son formados añadiendo o removiendo electrones de los átomos apropiados.

LA REGLA DEL OCTETO

Según la regla del octeto, los átomos son más estables cuando consiguen ocho electrones en la capa de valencia, sean pares solitarios o compartidos mediante enlace covalente. Considerando que cada enlace covalente simple aporta dos electrones a cada átomo de la unión, al dibujar un diagrama o estructura de Lewis, hay que evitar asignar más de ocho electrones a cada átomo,

Page 22: ATOMOS Y MOLECULAS - Exapuni

Sin embargo, hay excepciones. Por ejemplo, el hidrógeno tiene un sólo orbital en su capa de valencia, la cual puede aceptar como máximo dos electrones; por eso, solo puede compartir su orbital con sólo un átomo formando un sólo enlace. Por otra parte, los átomos no metálicos a partir del tercer período pueden formar "octetos expandidos"--es decir, pueden contener más que ocho orbitales en su capa de valencia, por lo general colocando los orbitales extra en subniveles.

ENERGIA DE ENLACE

La energía de enlace es la energía que se desprendería por la formación de un enlace químico, a partir de sus fragmentos constituyentes. Los enlaces más fuertes, o más estables, tienen una energía de enlace grande. Los enlaces covalentes, metálicos o iónicos son típicamente muy fuertes, frente a los de puente de hidrógeno o Van der Waals, típicamente más débiles.

Su cuantificación es materia de estudio de la química física. Experimentalmente, es posible preparar ciclos de reacciones y medir sus entalpías de reacción. También es posible hacer cálculos teóricos, por ejemplo de química cuántica, para estimar las energías de los enlaces.

POLARIDAD

La polaridad química o sólo polaridad es una propiedad de las moléculas que representa la desigualdad de las cargas eléctricas en la misma. Esta propiedad se relaciona con otras propiedades químicas y físicas como la solubilidad, punto de fusión, punto de ebullición, fuerza intermolecular, etc.

Al formarse una molécula de forma covalente el par de electrones tiende a desplazarse hacia el átomo que tiene mayor carga nuclear (más número de protones). Esto origina una densidad de carga desigual entre los núcleos que forman el enlace (se forma un dipolo eléctrico). El enlace es más polar cuanto mayor sea la diferencia entre electronegatividades de los átomos que se enlazan; así pues dos átomos iguales atraerán al par de electrones covalente con la misma fuerza (establecida por la Ley de Coulomb) y los electrones permanecerán en el centro haciendo que el enlace sea apolar.

Pero un enlace polar no requiere siempre una molécula polar, para averiguar si una molécula es polar hay que atender a la cantidad de enlaces polares y la estructura de la molécula. Para ello es necesario determinar un parámetro físico llamado momento dipolar eléctrico del dipolo eléctrico. Se define como una magnitud vectorial con módulo igual al producto de la carga q por la distancia que las separa d, cuya dirección es la recta que las une, y cuyo sentido va de la carga negativa a la positiva. Esta magnitud es, por tanto, un vector; y la polaridad será la suma vectorial de los momentos dipolares de los enlaces.

De esta manera una molécula que sólo contiene enlaces apolares es siempre apolar, ya que los momentos dipolares de sus enlaces son nulos. En moléculas diatómicas son apolares las moléculas formadas por un solo elemento o elementos con diferencia de electronegatividad muy reducida. Serán también apolares las moléculas simétricas por el mismo motivo. El agua, por ejemplo, es una molécula fuertemente polar ya que los momentos dipolares de los enlace dispuestos en V se suman ofreciendo una densidad de carga negativa en el oxígeno y dejando los hidrógenos casi sin electrones.

La polaridad es una característica muy importante ya que puede ayudarnos a reconocer moléculas (por ejemplo a diferenciar el trans-dicloroetano que es apolar y el cis-dicloroetano que es fuertemente polar). También es importante en disoluciones ya que un disolvente polar solo disuelve otras sustancias polares y un disolvente apolar solo disuelve sustancias apolares ("Semejante disuelve a semejante"). Por último la polaridad influye en el estado de agregación de las sustancias así como en termodinámica, ya que las moléculas polares ofrecen fuerzas intermoleculares (llamadas fuerzas de atracción dipolo-dipolo) además de las fuerzas de dispersión o fuerza de London.

Page 23: ATOMOS Y MOLECULAS - Exapuni

EJERCICIOS RESUELTOS UNIONES QUÍMICAS

1) Escribir la estructura de Lewis de los siguientes compuestos:A. Cloruro de Sodio, NaCl

xxNa x x Cl xx

xx

B. Fluoruro de Calcio, CaF2 xx xx xx F x x Ca x x F xx

xx xx

2) Indicar en cuáles de los siguientes ejemplos no se cumple la regla del octeto.A. Cloro, Cl2B. Hexafluoruro de Azufre, SF6

C. Tricloruro de Nitrógeno, Cl3ND. Trifluoruro de Boro, BF3

E. Pentacloruro de Fósforo, PCl5

F. Amoníaco, NH3

xx xx xx F xx xx

xx F xx x x x x F xxxx xx

S xxxx x x F xx

xx F xx xx xxxx xx F xx

xx

xx xx F xx

xx xx xx xx F xx B xx F xx

xx xx

xxxx xx Cl xx

xx Cl xx xx xxxx P xx Cl xx xx xx xx

xx Cl xx xx Cl xxxx xx

3) Escribe la Estructuras de Lewis de los siguientes compuestos, e indica que átomos presentan cargas formales en los compuestos que sea necesario:

Page 24: ATOMOS Y MOLECULAS - Exapuni

A. NO2+B. NO3-C. CH2N2D. CH3CN

A. Xx (+) xx C. H O = N = O (-)xx (+) xx xx N = N = C

xx H

B. xx O xx D.

(-) xx xx (-) H xx O N O xx

xx (+) xx xx N = C C HH