77 estudio

Upload: nelly-gomez

Post on 05-Jul-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/16/2019 77 estudio

    1/5

    Thermodynamic Properties of Binary and Ternary Mixtures ContainingDi-isopropyl Ether, 2-Propanol, and Benzene at  T   )  313.15 K

    R. M. Villamañán,† M. C. Martı́n,† M. A. Villamañán,† C. R. Chamorro,† and J. J. Segovia*

    Research Group TERMOCAL, Dpto. Ingenierı́a Energética y Fluidomecánica, Escuela de Ingenierı́as Industriales Paseo del

    Cauce 59, Universidad de Valladolid, E-47071 Valladolid, Spain

    Vapor-liquid equilibrium data for the ternary system di-isopropyl ether (DIPE)   +   2-propanol   +  benzeneand the binary system 2-propanol   +  benzene at   T   )  313.15 K are reported. An isothermal total pressurecell has been used for the measurements. Experimental data have been correlated by Barker’s method usingthe Margules equation for the binary system and the Wohl expansion for the ternary system. The Wilson,nonrandom two-liquid (NRTL), and universal quasichemical activity coefficient (UNIQUAC) models havealso been applied for the calculations. A comparative study of the effect of the alcohol in mixtures containingDIPE or benzene is included, using the data previously published by the group.

    Introduction

    Ethers such as isopropyl ether, also known as di-isopropyl

    ether or DIPE, are potential blending agents in the preparation

    of the reformulated gasolines. Isopropyl ether is synthesized

    from reactions between propene and 2-propanol which is also

    obtained from the hydration of the propene. Therefore, the

    synthesis of DIPE depends on the availability of propene.

    Any process simulation of the synthesis, the purification, or

    the gasoline blending prior to the design stage needs reliable

    thermodynamic models for the description of the physical

    behavior. The highest quality of thermodynamic data is required

    to improve the interaction parameters of the predictive models

    which are used in process simulation packages.

    Our group is carrying out a research program of the

    thermodynamic characterization of multicomponent mixtures

    containing a different type of hydrocarbons (paraffins, cyclo-

    paraffins, aromatics, oleffins) and ethers and alcohols as

    oxygenated additives with the purpose of improving the

    understanding and the model of the reformulated gasolines.

    We performed a series of measurements of ternary mixtures

    containing DIPE   +   alcohol   +   benzene which have been

    published.1-4 Now, we report vapor-liquid equilibrium data

    for the ternary system DIPE   +   2-propanol   +  benzene and the

    binary system 2-propanol + benzene both at 313.15 K; the other

    two binary systems involved have been measured previously.5,6

    Experimental Section Materials. All of the compounds were purchased from Fluka

    Chemie AG and were of the highest purity available, chroma-

    tography quality reagents (of the series puriss. p.a.) with a stated

    purity by gas chromatography  >  0.990 (GC area) for the DIPE

    and >  0.995 (GC area) for the benzene and the 2-propanol. They

    were degassed before measurements by a modified distillation

    method based on the one suggested by Van Ness and Abbott. 7

    The purities of the chemicals were also checked by gas

    chromatography and were found to be   >  0.995 (GC area) for

    all of the compounds. The average value of the experimental

    vapor pressures for the pure compounds is compared with those

    reported in the literature as a check for complete degassing,

    and the values are summarized in Table 1.

     Apparatus and Procedure.  A static vapor-liquid equilibrium

    apparatus, consisting of an isothermal total pressure cell, has

    been used for measuring the vapor-liquid equilibrium of the

    binary and ternary mixtures. The apparatus and measuring

    technique, based on that by Van Ness and co-workers,8,9 have

    been described in a previous paper.10

    Three positive displacement pumps of 100 mL capacity(model: Ruska 2200-801) were used to inject known volumes

    of degassed components into a cell immersed in a high precision

    water bath (model: Hart Scientific 6020) assuring a temperature

    stability of  ( 0.5 mK and thermostatted at  T  ) 313.15 K. The

    pump resolution is 0.01 mL, and the resulting uncertainty in

    the volume injected is   (  0.03 mL.

    The cell with a capacity of 180 mL is provided with an

    externally operated magnetic stirrer. Initially about 50 mL of 

    one component is injected into the evacuated cell, and the vapor

    pressure is recorded. The second and third components are then

    injected in appropriate proportions so as to achieve a desired

    composition. The total mass injected is determined from the

    * Corresponding author. Tel./fax: +34 983423756. E-mail: [email protected].† E-mail: [email protected]; [email protected]; [email protected]; [email protected].

    Table 1. Average Values of Experimental Vapor Pressures ( pisat) for

    the Pure Compounds Measured in this Work and Literature Values( pi

    sat(lit.)), Molar Volumes of Pure Liquids (V iL), and the Second

    Virial Coefficients ( Bii,  B ij) at  T   ) 313.15 K Used for theCalculations

    DIPE (i  )  1) 2-propanol (i   ) 2) benzene (i  )  3)

     pisat /kPa 37.108 13.897 24.386

     pisat(lit.)/kPa 37.128a 13.902b 24.398a

    37.090c 13.853d  24.341e

    37.081d  13.895 f  24.380g

    14.161e

    V iL /(cm3 · mol-1)h 145 78 91

     Bi1 /(cm3

    · mol-1)i -1687.8   -1381.9   -1701.0 Bi2 /(cm

    3· mol-1)i -1381.9   -1878.9   -871.0

     Bi3 /(cm3

    · mol-1)i -1701.0   -871.0   -1310.5

    a Ref 6.   b Ref 5.   c Ref 24.   d  Ref 25.   e Ref 22.   f  Ref 26.   g Ref 27.   h Ref 28.   i Calculated by Hayden and O’Connell15 from Dymond and Smith.16

     J. Chem. Eng. Data  2010,  55, 2741–2745   2741

    10.1021/je900977e   ©   2010 American Chemical SocietyPublished on Web 04/13/2010

  • 8/16/2019 77 estudio

    2/5

  • 8/16/2019 77 estudio

    3/5

    value of 30.175 kPa. Also, we have found a few experimental

    points of the system at the same conditions report by Storonkin

    et al.23 They give lower maximum pressures than those reported

    by Rhodes et al. A direct comparison of the experimental values

    is shown in Figure 2, where the total pressure versus the mole

    fraction of liquid and vapor phases is drawn.The composition and the pressure of the azeotrope have been

    calculated using all of the models, and they are given in Table

    4. The azeotrope is located at a benzene mole fraction of 0.7227,

    and the corresponding pressure is 29.536 kPa, using the five-

    parameter Margules equation.

    The high positive deviation from the ideality behavior is also

    shown with the values of the excess molar Gibbs energy

    calculated with the Margules equation; a maximum of 1025

    J · mol-1 is found for a benzene mole fraction of 0.55.

    The ternary system DIPE (1)   +  2-propanol (2)   +   benzene

    (3) has been correlated using the same models and the Wohl

    expansion. All of the models give similar values of the root-

    mean-square deviation of the pressure; it ranges from 22 Pa for

    the NRTL model to 47 Pa for the UNIQUAC model, and themaximum deviations range from (48 to 178) Pa for the same

    Table 3. Total Pressure p  for the Ternary System DIPE (1)  +2-Propanol (2)   + Benzene (3) at T  )  313.15 K and at VariousCompositions of the Liquid Phase x 1  and  x 2   and the CalculatedVapor Phases y1  and  y2   Using the Wohl Expansion

     x 1   x 2   y1   y2   p /kPa

    1.0000 0.0000 1.0000 0.0000 37.1090.7004 0.2996 0.8034 0.1966 37.1310.6767 0.2895 0.7742 0.1951 36.9520.6600 0.2823 0.7538 0.1941 36.7880.6257 0.2676 0.7124 0.1921 36.4340.5914 0.2529 0.6719 0.1902 36.074

    0.5563 0.2379 0.6314 0.1883 35.7050.5218 0.2231 0.5924 0.1864 35.3310.4873 0.2083 0.5543 0.1844 34.9420.4529 0.1936 0.5170 0.1822 34.5530.4185 0.1789 0.4803 0.1797 34.1480.3873 0.1655 0.4475 0.1772 33.7620.3486 0.1490 0.4073 0.1736 33.2720.0000 1.0000 0.0000 1.0000 13.8950.3016 0.6984 0.6493 0.3507 30.6580.2944 0.6815 0.6148 0.3447 30.8000.2869 0.6642 0.5812 0.3386 30.9540.2709 0.6268 0.5153 0.3261 31.2140.2566 0.5937 0.4635 0.3160 31.3860.2416 0.5588 0.4150 0.3064 31.5020.2265 0.5239 0.3718 0.2979 31.5780.2114 0.4888 0.3330 0.2903 31.6000.1963 0.4539 0.2983 0.2834 31.595

    0.1813 0.4190 0.2668 0.2771 31.5470.1663 0.3844 0.2383 0.2711 31.4780.1510 0.3490 0.2114 0.2650 31.3640.0000 0.0000 0.0000 0.0000 24.3750.3010 0.0000 0.4066 0.0000 29.5150.2938 0.0240 0.3787 0.0564 30.5440.2858 0.0505 0.3565 0.1001 31.2780.2714 0.0984 0.3296 0.1515 32.0000.2562 0.1490 0.3112 0.1853 32.2740.2407 0.2004 0.2978 0.2093 32.3250.2259 0.2497 0.2875 0.2272 32.2580.2106 0.3003 0.2782 0.2432 32.1000.1956 0.3503 0.2696 0.2580 31.8670.1809 0.3992 0.2613 0.2723 31.5790.1655 0.4504 0.2526 0.2877 31.2010.1505 0.5000 0.2438 0.3037 30.7561.0000 0.0000 1.0000 0.0000 37.1280.7164 0.0000 0.7787 0.0000 34.358

    0.6983 0.0253 0.7453 0.0409 34.9430.6803 0.0504 0.7192 0.0725 35.3440.6422 0.1035 0.6791 0.1208 35.7520.6097 0.1489 0.6549 0.1496 35.8170.5726 0.2008 0.6338 0.1745 35.7150.5371 0.2503 0.6175 0.1937 35.5070.5011 0.3006 0.6031 0.2106 35.2010.4653 0.3505 0.5900 0.2263 34.8360.4296 0.4003 0.5773 0.2416 34.3920.3936 0.4506 0.5642 0.2576 33.8610.3580 0.5002 0.5506 0.2745 33.2470.0000 1.0000 0.0000 1.0000 13.8920.0000 0.7020 0.0000 0.4111 26.7180.0327 0.6790 0.0696 0.3927 27.4910.0580 0.6612 0.1200 0.3790 28.0750.0991 0.6323 0.1953 0.3580 28.9760.1520 0.5951 0.2806 0.3335 30.064

    0.2001 0.5613 0.3481 0.3136 30.9740.2498 0.5264 0.4090 0.2953 31.8350.2993 0.4916 0.4625 0.2788 32.6320.3500 0.4561 0.5109 0.2635 33.3710.4002 0.4208 0.5539 0.2494 34.0420.4496 0.3861 0.5923 0.2364 34.6440.4998 0.3509 0.6283 0.2235 35.2030.0000 0.0000 0.0000 0.0000 24.3770.0000 0.2996 0.0000 0.2834 29.5150.0253 0.2920 0.0361 0.2753 29.8470.0562 0.2828 0.0786 0.2660 30.2510.1014 0.2692 0.1378 0.2533 30.8180.1524 0.2539 0.2007 0.2399 31.4310.1997 0.2397 0.2557 0.2282 31.9630.2521 0.2240 0.3134 0.2157 32.5270.3005 0.2095 0.3641 0.2046 33.0160.3499 0.1947 0.4136 0.1933 33.4920.4000 0.1797 0.4621 0.1820 33.949

    0.4494 0.1649 0.5082 0.1706 34.3720.4998 0.1498 0.5541 0.1589 34.777

    Table 4. Calculated Parameters of the Models Obtained for theBinary System Benzene (1)  + 2-Propanol (2) at  T  )  313.15 K,together with the Root-Mean-Square Deviation of Pressure (rms ∆ p)and the Maximum Value of the Deviation (max |∆ p|) a

    Margules Wilson NRTL UNIQUAC

     A12   1.4509 0.5469 1.6351 0.6271 A21   2.2095 0.1817 0.8188 0.8901

     λ12   0.8271 λ21   1.9318η   1.2685

    R 12   0.5634rms  ∆ p /kPa 0.006 0.057 0.042 0.207max |∆ p|/kPa 0.010 0.154 0.107 0.527

     x 1,azeotrope   0.7227 0.7175 0.7200 0.7071 pazeotrope /kPa 29.536 29.523 29.553 29.474

    a The   ∆ p   term is defined as the difference between the experimentaland the calculated pressure.

    Table 5. Calculated Parameters of the Models Obtained for theTernary System DIPE (1)  + 2-Propanol (2)   + Benzene (3) at T  )313.15 K, together with the Root-Mean-Square Deviation of Pressure (rms ∆ p) and the Maximum Value of the Deviation (max|∆ p|) a

    Wilson NRTL UNIQUAC Wohl

     A12   0.6747 1.0802 0.3474   C 0   ) 2.9771

     A21   0.3254 0.3924 1.4564   C 1   ) 0.4020 A13   0.3822   -0.5237 1.1660   C 2   ) -1.0078 A31   1.6639 0.8434 0.8082 A23   0.1965 0.8469 1.1436 A32   0.5300 1.5884 0.4113

    R 12   0.4516

    R 13   0.3000

    R 23   0.5634rms  ∆ p /kPa 0.030 0.022 0.047 0.029max |∆ p|/kPa 0.099 0.048 0.178 0.054

    a The   ∆ p   term is defined as the difference between the experimentaland the calculated pressure.

    Table 6. Calculated Parameters of the Margules Equation for theBinary Systems Involved in the Ternary System DIPE (1)   +2-Propanol (2)  +  Benzene (3) at T   ) 313.15 K, Used in the Wohl

    Expansion

     Aij   A ji   λij   λ ji   η

    DIPE (i)  +  2-propanol ( j)a 1.0988 1.4201 0.1902 0.4307DIPE (i)  +  benzene ( j)b 0.2134 0.1277 0.0282 0.02822-propanol (i)  +  benzene ( j) 2.2095 1.4509 1.9318 0.8271 1.2685

    a Ref 5.   b Ref 6.

     Journal of Chemical & Engineering Data, Vol. 55, No. 8, 2010   2743

  • 8/16/2019 77 estudio

    4/5

    models. The ternary pressure surface is shown in Figure 3. In

    general, the results obtained using the Margules equation and

    the Wohl expansion are better than the other models, and the

    Wilson model used to be the best of these semiempirical models.

    The experimental values point out that the two azeotropes of maximum pressure, formed in the binary mixtures containing

    the 2-propanol, disappear when the third component is added

    to the mixture. The excess molar Gibbs energy was calculated

    for the ternary system using the Wohl expansion, and the results

    are presented graphically in Figure 4. It is shown that the highest

    deviation from the ideality corresponds to the binary system

    benzene   +  2-propanol, as mentioned before.

    Finally, a series of ternary systems containing DIPE   +

    benzene + alcohol has been studied, for the alcohols 1-butanol,4

    2-butanol,3 isobutanol,1 1-propanol,2 and 2-propanol (presented

    in this paper). All of the systems show a positive deviation from

    the ideality. The excess molar Gibbs energies were calculated,

    and in all of the systems the order of the highest values obtained

    for the binary systems containing benzene   +   alcohol was thefollowing: 2-propanol  >  1-propanol  >   isobutanol  >  1-butanol  >

    2-butanol. The maximum values were obtained for a mole

    fraction of benzene around 0.55. Those values range from (1025to 885) J · mol-1. Also, those binary mixtures (except for benzene

    +  1-butanol) exhibit a maximum pressure azeotrope.

    The comparison of the binary mixtures DIPE + alcohol give

    also quite high positive deviations from the ideality whose

    excess molar Gibbs energies range from (586 to 771) J · mol-1

    for a mole fraction of the ether around 0.55. The order for the

    studied alcohols was the following: 2-propanol  >   1-propanol  >

    2-butanol   ∼  1-butanol  >  isobutanol. Only the system DIPE   +

    2-propanol shows an azeotrope, and neither of the ternary

    systems present an azeotrope.

    Literature Cited

    (1) Villamañán, R. M.; Chamorro, C. R.; Martı́n, M. C.; Segovia, J. J.Phase Equilibria Properties of Binary and Ternary Systems Containing

    Figure 1.  Pressure deviations  ∆ p, defined as differences between experi-

    mental and calculated pressures as a function of the liquid composition, x 1,

    for the system benzene (1)  +  2-propanol (2).  [, this work;  4, Rhodes et

    al.22

    Figure 2. Total pressure at  T  )  313.15 K of the binary system benzene

    (1)   +   2-propanol (2), as a function of the liquid,   x 1, and vapor

    composition,  y 1.  [, this work;  4, Rhodes et al.;22

    /, Storonkin et al.23

    Symbols represent the experimental points; lines are the calculations of 

    the Margules equation.

    Figure 3.   Oblique view of the pressure surface reduced by the Wohl

    expansion for the ternary system DIPE (1)+

    2-propanol (2)+

    benzene (3)at 313.15 K.

    Figure 4. Oblique view of the excess Gibbs energy surface surface reduced

    by the Wohl expansion for the ternary system DIPE (1)  +  2-propanol (2)

    + benzene (3) at 313.15 K.

    2744   Journal of Chemical & Engineering Data, Vol. 55, No. 8, 2010

  • 8/16/2019 77 estudio

    5/5

    di-Isopropyl Ether plus Isobutanol plus Benzene at 313.15 K.  Fluid Phase Equilib.  2006,  239, 178–182.

    (2) Villamañán, R. M.; Chamorro, C. R.; Villamañán, M. A.; Segovia,J. J. Total Pressure and Excess Gibbs Energy for the Ternary MixtureDi-Isopropyl Ether plus 1-Propanol plus Benzene and its Correspond-ing Binary Systems at 313.15 K.  Fluid Phase Equilib. 2006, 239, 183–187.

    (3) Villamañán, R. M.; Martı́ n, M. C.; Chamorro, C. R.; Segovia, J. J.Vapor-Liquid Equilibrium of Binary and Ternary Mixtures ContainingIsopropyl Ether, 2-Butanol, and Benzene at  T  ) 313.15 K.  J. Chem.

     Eng. Data  2006,  51, 148–152.(4) Villamañán, R. M.; Martı́ n, M. C.; Chamorro, C. R.; Villamañán,

    M. A.; Segovia, J. J. Phase Equilibrium Properties of Binary andTernary Systems Containing di-Isopropyl Ether plus 1-Butanol plusBenzene at 313.15 K.  J. Chem. Thermodyn.  2006,  38, 547–553.

    (5) Chamorro, C. R.; Segovia, J. J.; Martı́n, M. C.; Villama ñán, M. A.Isothermal V.L.E. and Excess Molar Gibbs Energy of Binary andTernary Mixtures Containing Diisopropyl Ether,   n-Heptane andIsopropanol at T  ) 313.15 K. J. Chem. Thermodyn.  2002,  34, 13–28.

    (6) Chamorro, C. R.; Segovia, J. J.; Martı́n, M. C.; Villama ñán, M. A.Thermodynamics of Octane Enhancing Additives in Gasolines: Vapor-Liquid Equilibrium of the Ternary System di-Isopropyl Ether (DIPE)+ Cyclohexane  +  Benzene at at 313.15 K.  Entropie  2000,  224, 86–89.

    (7) Van Ness, H. C.; Abbott, M. M. A Procedure for Rapid Degassing of Liquids. Ind. Eng. Chem. Fundam.  1978,  17 , 66–67.

    (8) Gibbs, R. E.; Van Ness, H. C. Vapor-Liquid Equilibria from Total-Pressure Measurements. A New Apparatus.  Ind. Eng. Chem. Fundam.1972,  11, 410–413.

    (9) Dielsi, D. P.; Patel, R. B.; Abbott, M. M.; Van Ness, H. C. ExcessThermodynamic Functions for Ternary Systems: 3. Total Pressure Dataand GE for Acetone-Acetonitrile-Methyl Acetate at 50   °C.  J. Chem.

     Eng. Data  1978,  23, 242–245.(10) Segovia, J. J.; Martı́n, M. C.; Chamorro, C. R.; Villamañán, M. A.

    Excess Thermodynamics Functions for Ternary Systems ContainingFuel Oxygenates and Substitution Hydrocarbons. 1. Total-PressureData and GE for Methyl tert-Butyl Ether-Benzene-Cyclohexane. Fluid Phase Equilib.  1997,  133, 163–172.

    (11) Van Ness, H. C. Thermodynamics in the Treatment of (Vapor   +Liquid) Equilibria.  J. Chem. Thermodyn.  1995,  27 , 113–134.

    (12) Barker, J. A. Determination of Activity Coefficients from TotalPressure Measurements.  Aust. J. Chem.  1953,  6 , 207–210.

    (13) Abbott, M. M.; Van Ness, H. C. Vapor-Liquid Equilibrium: Part III.Data Reduction with Precise Expressions for GE.  AIChE J.  1975,  21,62–71.

    (14) Abbott, M. M.; Floess, J. K.; Walsh, G. E., Jr.; Van Ness, H. C. Vapor-

    Liquid Equilibrium: Part IV. Reduction of P-x Data for TernarySystems.  AIChE J.  1975,  21, 72–76.

    (15) Hayden, J. G.; O’Connell, J. P. A Generalized Method for PredictingSecond Virial Coefficients.  Ind. Eng. Chem. Process Des. DeV. 1975,14, 209–216.

    (16) Dymond, J. H.; Smith, E. B.  The Virial Coefficients of Pure Gasesand Mixtures- A Critical Compilation; Clarendon Press: Oxford, 1980.

    (17) Margules, M.  Akad. Wiss. Wien, Math. Naturwiss.  1895,  104, 1243.(18) Wohl, K. Thermodynamic Evaluation of Binary and Ternary Liquid

    Systems.  Chem. Eng. Prog.  1953,  49, 218–219.(19) Wilson, G. M. Vapor-Liquid Equilibrium. XI: A New Expression for

    the Excess Free Energy of Mixing.  J. Am. Chem. Soc. 1964, 86 , 127–130.

    (20) Renon, H.; Prausnitz, J. M. Local Compositions in Thermodynamic

    Excess Functions for Liquid Mixtures.  AIChE J.  1968,  14, 135–144.(21) Abrams, D. S.; Prausnitz, J. M. Statistical Thermodynamics of Liquid

    Mixtures: A New Expression for the Excess Gibbs Energy of Partlyor Completely Miscible Systems.  AIChE J.  1975,  21, 116–128.

    (22) Rhodes, J. M.; Griffin, T. A.; Lazzaroni, M. J.; Bhethanabotla, V. R.;Campbell, S. W. Total Pressure Measurements for Benzene with1-Propanol, 2-Propanol, 1-Pentanol, 3-Pentanol, and 2-Methyl-2-Butanol.   Fluid Phase Equilib.  2001,  179, 217–229.

    (23) Storonkin, A. V.; Morachevsky, A. G.; Lazzaroni, M. J.; Bhethanabotla,V. R.; Campbell, S. W. O Ravnovesii Rastvor Par V Sisteme BenzolTsiklogeksan Izopropilovyi Spirt. Zh. Fiz. Khim.  1956, 30, 1297–1307.

    (24) Ambrose, D.; Ellender, J. H.; Sprake, C. H. S.; Townsend, R.Thermodynamic Properties of Organic Oxygen Compounds XLIII.Vapor Pressures of Some Ethers. J. Chem. Thermodyn. 1976, 8, 165–178.

    (25) Riddick, J. A.; Bunger, W. B.; Sakano, T. K.   Organic SolVents,Physical Properties and Methods of Purification, Techniques of 

    Chemistry, Vol. II; Wiley-Interscience: New York, 1986.(26) Ambrose, D.; Sprake, C. H. S. Thermodynamic Properties of Organic

    Oxygen Compounds XXV. Vapor Pressures of Normal BoilingTemperatures of Aliphatic Alcohols.  J. Chem. Thermodyn.  1970,  2 ,631–645.

    (27) Ambrose, D. Reference Values of Vapor Pressure. The Vapor Pressuresof Benzene and Hexafluorobenzene.  J. Chem. Thermodyn.  1981,  13,1161–1167.

    (28)   Thermodynamic Tables of Hydrocarbons and Non Hydrocarbons;Thermodynamics Research Center, The Texas A&M UniversitySystem: College Station, TX, 1973.

    Received for review November 16, 2009. Accepted April 2, 2010.Support for this work came from the Spanish Ministry of Scienceproject ENE2006-133 and from the Junta de Castilla y León referenceGR152.

    JE900977E

     Journal of Chemical & Engineering Data, Vol. 55, No. 8, 2010   2745