resumen - noticias. instituto universitario del agua y las ...€¦ · mediterráneo español, y...

54
Pág. 1 RESUMEN Este trabajo se ha realizado en las instalaciones de la Estación Regeneradora del Agua residual depurada de Rincón de León, Ciudad de Alicante. La capacidad de tratamiento de esta instalación es de 60.000 m 3 /día. Se identificaron tres tipos de tratamiento del agua a regenerar. Las instalaciones cuentan con sistemas de tratamiento convencional y tratamiento avanzado a través de membranas para ultrafiltración y ósmosis inversa. Dos de los procesos de tratamiento aplicados corresponden a tratamiento sin desalación y uno con desalación. El uso de membranas para ultrafiltración y ósmosis inversa dan como respuesta una alta eficiencia en reducción de contenidos de sólidos y conductividad respectivamente en el efluente. Los resultados analíticos del agua demuestran una alta eficiencia en los procesos de tratamiento aplicados. Se han comparado los resultados del agua regenerada con las normas de calidad del RD 1620/2007, sobre reutilización del agua, y los usos a los que se puede destinar su calidad. Las medidas de parámetros del agua a través de los índices de Langelier, SDI, SAR, demuestran estar dentro de los rangos normales. Los consumos de energía para la regeneración del agua se han analizado para cada una de las líneas de tratamiento identificadas. Los volúmenes del agua regenerada y reutilizada a través de las comunidades de regantes, se entregan con niveles de conductividad media de 1800 μS/cm. Palabras clave Estación de Tratamiento del Agua Residual (EDAR). Estación Regeneradora del Agua (ERA). Punto de Entrega del Agua Depurada (PEAD). Punto de Entrega del Agua Regenerada (PEAR). Tratamiento Avanzado. Ultrafiltración (UF). Ósmosis Inversa (OI). Comunidad de Regantes. Regeneración Planificada.

Upload: others

Post on 30-Apr-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Pág. 1

RESUMEN

Este trabajo se ha realizado en las instalaciones de la Estación Regeneradora

del Agua residual depurada de Rincón de León, Ciudad de Alicante. La

capacidad de tratamiento de esta instalación es de 60.000 m3/día. Se

identificaron tres tipos de tratamiento del agua a regenerar. Las instalaciones

cuentan con sistemas de tratamiento convencional y tratamiento avanzado a

través de membranas para ultrafiltración y ósmosis inversa. Dos de los

procesos de tratamiento aplicados corresponden a tratamiento sin desalación y

uno con desalación. El uso de membranas para ultrafiltración y ósmosis inversa

dan como respuesta una alta eficiencia en reducción de contenidos de sólidos y

conductividad respectivamente en el efluente. Los resultados analíticos del

agua demuestran una alta eficiencia en los procesos de tratamiento aplicados.

Se han comparado los resultados del agua regenerada con las normas de

calidad del RD 1620/2007, sobre reutilización del agua, y los usos a los que se

puede destinar su calidad. Las medidas de parámetros del agua a través de los

índices de Langelier, SDI, SAR, demuestran estar dentro de los rangos

normales. Los consumos de energía para la regeneración del agua se han

analizado para cada una de las líneas de tratamiento identificadas. Los

volúmenes del agua regenerada y reutilizada a través de las comunidades de

regantes, se entregan con niveles de conductividad media de 1800 µS/cm.

Palabras clave

Estación de Tratamiento del Agua Residual (EDAR). Estación Regeneradora

del Agua (ERA). Punto de Entrega del Agua Depurada (PEAD). Punto de

Entrega del Agua Regenerada (PEAR). Tratamiento Avanzado. Ultrafiltración

(UF). Ósmosis Inversa (OI). Comunidad de Regantes. Regeneración

Planificada.

Pág. 2

1.- Introducción.

1.1. Descripción de la zona de estudio.

Este trabajo hace una descripción de las instalaciones y características del

tratamiento terciario ó estación regeneradora del agua (ERA) en Rincón de

León (RL), que se encuentran ubicadas al sur en la Ciudad de Alicante,

Provincia de Alicante en la Comunidad Valenciana. El agua a regenerar es el

agua que proviene del sistema secundario de la EDAR de RL.

La EDAR de RL sirve a una parte importante de la población ubicada en los

términos municipales de Alicante, Elche y San Vicente del Raspeig. Esta

instalación cuenta con una capacidad de tratamiento de dos líneas de agua

bruta (A y B). La línea de agua A corresponde al agua residual doméstica y la

línea de agua B que corresponde al agua residual industrial. (EPSAR, 2012).

La ERA o sistema terciario avanzado, se ha instalado para regenerar el agua

residual del sistema de tratamiento secundario para un caudal de 60000 m3/d

(EPSAR, 2012).

La descripción de las instalaciones hidráulicas, en cada una de sus fases

abordará la forma de explotación, la eficiencia según el tipo de tecnología

aplicada, y los posibles usos para su reutilización del agua regenerada.

Finalmente se presentarán los resultados que se obtengan en las diferentes

fases de tratamiento. En la Figura 1.1 se observa una topografía de la ERA y

EDAR de Rincón de León (EPSAR, 2012).

Figura 1.1. ERA - EDAR Rincón de León.

EEERRRAAA EEEDDDAAARRR

Pág. 3

1.2. Necesidades de agua en la Provincia de Alicante.

Al sureste del mediterráneo español, existe un déficit de agua con una escasez

estructural (Juárez, 2008), lo que ha obligado a los administradores del agua y

usuarios a buscar alternativas de eficiencia en los usos del agua y búsqueda de

recursos no convencionales (Olcina, & Moltó, 2010). La gestión planificada del

agua de fuentes no convencionales como por ejemplo: los trasvases de agua

de las cuencas del Segura y Tajo, desaladoras de agua de mar y reutilización

del agua residual depurada, son procesos que se han incorporados al plan de

aguas (Sanz et al., 2008).

Estudios realizados en la Universidad de la Laguna, sostienen que los lugares

donde mayormente se ha reutilizado las aguas depuradas corresponden a la

Región de Murcia, Comunidad Valenciana, Canarias, Baleares y Andalucía

(Delgado, 2011).

En la Comunidad Valenciana se han identificado un total de 495,9 hm3/año de

agua depurada, de ese volumen de agua 163 hm3/año se reutiliza de forma

directa. De este volumen de agua reutilizada el 52,9% corresponde a la

Provincia de Alicante (Prats, & Melgarejo, 2006). Las depuradoras de Monte

Orgegia y Rincón de León, en la ciudad de Alicante, cuentan con diferentes

tipos de tratamiento terciario para regenerar el agua depurada. Las aguas

regeneradas por un lado se usan para la limpieza de vías públicas provocando

de esta manera el ahorro de agua potable y por otro lado se aprovecha el agua

para riego de plantaciones (EPSAR, 2012). En la provincia de Alicante el

volumen de agua depurada con tratamiento terciario estaría sobre los 100

hm3/año (Prats, 2008). Según datos de EPSAR, 2012., en la Comunidad

Valenciana estaría en condiciones de reutilizar 305 hm3/año (EPSAR, 2012) de

aguas regeneradas directa e indirectamente.

1.3. Marco Legal.

En el año 2007 se aprobó el RD 1620/2007 en España, que define el marco

legal para la reutilización del agua residual depurada y regenerada. En este

decreto se establecen los criterios de calidad requerida para los diferentes usos

del agua, entre ellos se refiere al:

Uso urbano.-

- Calidad 1.1 Residencial.

a. Riego de jardines privados

b. Descarga de aparatos sanitarios

Pág. 4

c. Sistemas de calefacción y

refrigeración de aire.

d. Otros usos domésticos.

- Calidad 1.2 Servicios.

a. Riego de zonas verdes urbanas

(parques, campos deportivos y

similares).

b. Baldeo de calles

c. Sistemas contra incendios

d. Lavado industrial de vehículos.

e. Fuentes y láminas

ornamentales.

Uso agrícola.-

- Calidad 2.1

a. Riego de cultivos con sistema de

aplicación del agua que permita

el contacto directo del agua

regenerada con las partes

comestibles para alimentación

humana en fresco.

- Calidad 2.2

a. Riego de productos para

consumo humano con sistema

de aplicación de agua que no

evita el contacto directo del agua

regenerada con las partes

comestibles, pero el consumo no

es en fresco sino con un

tratamiento industrial posterior.

b. Riego de pastos para consumo

de animales productores de

leche o carne.

c. Acuicultura.

- Calidad 2.3

a. Riego localizado de cultivos

leñosos que impida el contacto

del agua regenerada con los

frutos consumidos en la

alimentación humana.

b. Riego de cultivos de flores

ornamentales, viveros,

Pág. 5

invernaderos sin contacto directo

del agua regenerada con las

producciones.

c. Riego de cultivos industriales,

viveros, forrajes ensilados,

cereales y semillas oleaginosas.

Uso industrial.-

- Calidad 3.1

a. Aguas de proceso, limpieza y

refrigeración industrial, excepto

en la industria alimentaria.

b. Otros usos industriales.

Uso recreativo.-

- Calidad 4.1

a. Riego de campos de golf.

- Calidad 4.2

b. Estanques, caudales circulantes

de uso recreativo accesibles al

público (excepto baño).

- Calidad 4.3

c. Estanques, masas de agua y

caudales circulantes

ornamentales, en los que está

impedido el acceso del público

al agua.

Uso ambiental.-

- Calidad 5.1

a. Recarga de acuíferos por

percolación localizada a través

del terreno.

- Calidad 5.2

b. Recarga de acuíferos por

inyección directa.

- Calidad 5.3

a. Riego de bosques, zonas verdes

y de otro tipo no accesibles al

público.

b. Silvicultura.

- Calidad 5.4

Pág. 6

a. Otros usos ambientales

(mantenimiento de humedales,

caudales mínimos y similares).

El control de parámetros de calidad del agua en reutilización, según los usos,

está descrito en el Anexo I.A del RD 1620/2007. La calidad del agua

regenerada debe cumplir con los parámetros anotados en el citado anexo

anterior, entre ellos tenemos: presencia o ausencia de organismos vivos,

turbidez, sólidos en suspensión y otros contaminantes que están incluidos en la

calidad del agua para el vertido según la Directiva 91/271/CEE del Consejo, de

21 de mayo de 1991, relativa al tratamiento de las aguas residuales urbanas.

En la tabla 1.1 se observan datos del Plan Nacional de Aguas que tienen que

ver con la inversión en regeneración del agua depurada, instalaciones

hidráulicas complementarias y los volúmenes estimados con horizonte en el

año 2015. El agua regenerada se reutilizar mayormente en el sector agrícola,

tal como se observa en la Tabla 1.1 (Córdova, 2008.).

Tabla 1.1. Uso del agua regenerada horizonte 2015 (Fuente. CEDEX 2008).

TIPO USO DEL

AGUA

VOLUMEN A

UTILIZAR O

ADECUAR AL RD

(hm3/año)

INVERSIÓN ESTIMADA

TRATAMIENTO

REGENERACIÓN

(€)

INVERSIÓN

ESTIMADA

TRANSPORTE

(€)

AGRÍCOLA 123,95 87.071.082 64.796.807

AMBIENTAL 64,61 38.260.502 62.965.894

INDUSTRIAL 36.72 25.558.321 23.955.639

RECREATIVO 5,23 1.610.552 9.502.677

URBANO 18,75 7.855.736 23.028.280

TOTAL

GENERAL

249,25 160.356.192 184.249.297

En España, hasta el año 2010, el MAGRAMA había identificado el uso del agua

regenerada en los porcentajes que se indican en la Figura 1.2.

Pág. 7

Figura 1.2. Porcentajes de uso del agua regenerada (Fuente: MAGRAMA 2010).

1.4. Regeneración del agua residual.

Por regeneración del agua residual se entiende el tratamiento al que se somete

el agua residual y cuya calidad al final del proceso utilizado es apta para un uso

en particular (Asano, 1998).

En España en el RD 1620/2007, de 7 de diciembre, se define al agua

regenerada como las aguas residuales depuradas que, en su caso, han sido

sometidas a un proceso de tratamiento adicional o complementario que permite

adecuar su calidad al uso al que se destinan.

El agua regenerada y los posibles usos a los que se destine para su

reutilización incluye un sistema integral de obras hidráulicas y de energía para

su aprovechamiento. Se debe planificar el sistema de transporte del agua

desde la instalación de regeneración hasta el destino para su uso, el

almacenamiento-regulación para distribuir caudales, normas de uso y control

de riesgos para el medio ambiente y salud pública (Mujeriego, 2005).

La regeneración y reutilización planificada de las aguas residuales juegan un

papel importante en la solución al problema de la contaminación además de

provocar un ahorro importante en el aprovechamiento del agua convencional y

agua potable que se destina a otros usos (Mujeriego, 2008).

La reutilización del agua residual forma parte del ciclo natural del agua, cuando

el agua residual se aprovecha de forma indirecta después de su descarga a

cauces o acuíferos. La reutilización planificada del agua regenerada, juega un

Pág. 8

papel importante en las zonas costeras españolas. Este nuevo recurso hídrico

alternativo aporta caudales para el riego de plantaciones y mantenimiento de

áreas públicas en zonas con escasez estructural, como en el Sureste del

mediterráneo español, y por otro lado libera recursos destinados para

abastecimiento público (Mujeriego, 2008).

1.5. Tipos de tratamiento terciario.

El tratamiento terciario o avanzado se utiliza para dar un tratamiento adicional

al proceso secundario del agua residual. Diferentes tratamientos se utilizan en

el tratamiento terciario para el proceso de regeneración y reutilización del agua

residual en diferentes usos (Ramalho, 1996). Los procesos más conocidos son

los siguientes:

- Adsorción en carbón activo.

- Intercambio iónico.

- Ultrafiltración

- Ósmosis inversa.

- Nanofiltración

- ED y EDR.

- Oxidación química.

- Métodos de eliminación de nutrientes.

En Estados Unidos de Norteamérica, el tratamiento del agua residual en fase

de regeneración actualmente es más eficiente y su tratamiento es menos

costoso, pero la percepción pública para reutilizar el agua regenerada es un

obstáculo, frente a los usos de las aguas convencionales. Además de los usos

frecuentes conocidos del agua de sistemas avanzados, la tendencia en la

regeneración del agua es tener una fuente de disponibilidad de agua limpia

para hacer frente a la escasez futura (Paulson, 2013). La Agencia Nacional de

Aguas de Singapur (Blasco, 2011), reconoce tener asegurado el

abastecimiento público a 4,7 millones de habitantes de la Ciudad-Estado de

Singapur para los próximos 100 años, su principal fuente de abastecimiento es

el agua de lluvia, aguas residuales y desalinización del agua de mar. La FAO,

sostiene que más de 3300 instalaciones de regeneración de aguas residuales a

nivel mundial, sirven para distintos usos, en el que se incluye la potabilización.

En Europa, la mayoría de los sistemas de reutilización de aguas se ubican en

las zonas costeras del mediterráneo, estando la mayor escasez acentuada en

España, Italia, Grecia, Malta, en estos países es el riego donde mayormente se

aprovecha el agua regenerada (FAO, 2013).

Pág. 9

Del Plan Nacional de Reutilización de Aguas en España 2010, se conoce que

se estaría reutilizado 368 hm3/año de agua residual con tratamiento terciario

(CEDEX, 2008), de un total 3375 hm3 del agua residual depurada en 2514

estaciones depuradoras. Los usos permitidos del agua regenerada se regulan

según el RD 1620/2007. El uso agrícola estaría utilizando el 71% del agua

regenerada mientras que el uso urbano (baldeo de calles, riego jardines y

campos de golf) estarían usando un 12%. La evolución de los caudales de

reutilización en España, tomando como referencia el año 1995, podría llegar en

el año 2015 a los 1000 hm3/año. Una buena parte de los caudales reutilizados

se encuentran en la Costa Brava y las Comunidades Autónomas de Valencia y

Murcia (MAGRAMA, 2010).

El CEDEX, 2008., en su informe preliminar ha elaborado unas figuras que

identifica diferentes alternativas dentro del marco de los tipos de tratamientos

descritos en el Anexo I.A del RD 1620/2007. Estos tratamientos están en las

Figuras 1.3 y 1.4.

Figura 1.3. Tipos de tratamiento sin desalación (Fuente: CEDEX, 2008).

Pág. 10

Figura 1.4. Tipos de tratamiento con desalación (Fuente: CEDEX, 2008)

Tres distintas opciones de tratamiento terciario se han identificado en la

provincia de Alicante (Prats & Melgarejo, 2006). Dos de ellas corresponden a

tratamiento terciario sin desalación y uno con desalación.

Figura 1.5. Esquemas de tratamiento terciario.

Los esquemas de la Figura 1.5, corresponden a procesos de regeneración de

aguas depuradas aplicados en estaciones de regeneración de aguas

depuradoras en la Provincia de Alicante, en la que se desarrollan procesos

Pág. 11

avanzados como la ultrafiltración con membranas (UF) y la ósmosis inversa

para procesos de desalación (OI).

Las distintas opciones para los tipos de tratamiento terciario o avanzado están

en función de las necesidades de su reutilización, la calidad del agua y el coste

que represente el proceso a utilizar. En este sentido se puede ver en la Figura

1.5., los tipos de procesos en función de los tratamientos de regeneración sin

desalación y con desalación (Trapote, 2013).

Figura 1.6. Esquemas de tratamiento sin desalación.

Las opciones (1-4) del esquema de la Figura 1.6, incluyen el uso de reactivos

químicos para lograr reducir sólidos y microorganismos. El uso de membranas

para ultrafiltración, nanofiltración, microfiltración considerados como

tratamientos avanzados, permiten obtener un agua de alta calidad, cubriendo

así una buena parte de las exigencias del RD 1620/2007 (Trapote A, 2013).

Las opciones de tratamiento 5 y 6 del esquema de la Figura 1.7, son

tratamientos avanzados. El uso de OI y electrodiálisis reversibles (EDR)

permite la eliminación del contenido de sales de las aguas residuales. El

proceso de OI puede ser utilizado para separar sal del agua de aguas salobres

o agua de mar, mientras que la EDR se utiliza para separar sal del agua de

aguas salobres. Los procesos de depuración de los esquemas en las figuras

1.6 y 1.7, describen procesos de tratamiento convencional y no convencional.

Pág. 12

Figura 1.7. Esquemas de tratamiento con desalación.

1.5.1. Pre-tratamiento.

Los sistemas de tratamiento terciario utilizan instalaciones para remover cargas

de sólidos y niveles de turbidez que están presentes en el agua depurada. Los

procesos químicos y físicos permiten la reducción de sólidos y niveles de

turbidez, y los procesos de desinfección se usan para el control de organismos

vivos. El pre-tratamiento puede influir en el rendimiento y mantenimiento de los

procesos no convencionales como por ejemplo el de la OI (López et al., 2004).

El pretratamiento físico y químico en procesos avanzados para la regeneración

del agua depurada (usando procesos convencionales y no convencionales), en

las instalaciones se puede ordenar de la siguiente manera (González, 2012):

- Pre-tratamiento físico: desbaste, tamizado, decantación, filtración,

microfiltración, ultrafiltración

- Pretratamiento químico: uso de coagulantes, floculantes, cloración,

decloración, corrección del pH, antiincrustantes.

El pre-tratamiento convencional más utilizado sigue los siguientes pasos:

- Coagulación.- Este proceso se aplica al inicio del tratamiento,

añadiendo reactivos químicos para la sedimentación de los sólidos

en suspensión en forma de flóculos.

- Decantación.- Los flóculos formados precipitan en el tanque de

decantación, logrando de esta manera clarificar el agua residual.

Pág. 13

- Filtración.- Los filtros se usan para afinar el proceso de

sedimentación de los sólidos del agua residual que han sido objeto

del proceso de coagulación y decantación. El resultado de este

proceso debe darnos como respuesta un agua con bajo contenido de

sólidos y turbidez.

- Desinfección.- la desinfección con reactivos químicos, UV, etc.,

puede verse afectada por la presencia de sólidos. Los sólidos

presentes hacen que los reactivos químicos se oxiden y no sean

efectivos, por otro lado el uso de UV en un agua con contenido de

sólidos no es efectivo porque los sólidos forman pantallas que los

rayos no pueden atravesar. La presencia de microorganismos en el

agua es un parámetro que se debe controlar para los usos previstos

en el RD 1620/2007.

En los tratamientos que se incluyan sistemas no convencionales como

ultrafiltración y ósmosis inversa, se requiere de un riguroso sistema de pre-

tratamiento. Los filtros de anillas (Figura 1.8) son usados a modo de pre-

filtración en el proceso avanzado y la capacidad de retención de sólidos es de

mayor de 100 µm. Las anillas se encuentran fuertemente comprimidas y la

pérdida de carga puede ser de 5 m.c.a. (Benito et al., 2010).

Las empresas dedicadas a las instalaciones de membranas utilizan filtros de

seguridad para los procesos de ultrafiltración y ósmosis inversa. Los altos

costes que representan las membranas obligan a incluir sistemas de control

físicos y químicos para asegurar la durabilidad de las membranas (Zarzo &

Candel, 2009).

Figura 1.8. Esquema filtros de anillas.

Pág. 14

1.5.2. Sistemas de filtración avanzada. Ultrafiltración.

El sistema de filtración avanzada, al que se refiere este trabajo en la ERA de

Rincón de León (RL), tiene que ver con el uso de membranas mediante

ultrafiltración (UF). En este sentido hay dos líneas de tratamiento en la ERA de

RL, por un lado está la aplicación de membranas para UF sin desalación y la

otra en la que la UF es parte del pre-tratamiento para la OI.

El proceso de UF con membranas incluye las siguientes operaciones:

- Una fuerza impulsora a presión,

- Un mecanismo de separación o cribado

- Una estructura de mesoporos, en la que la fase de separación se

realiza de líquido a líquido (Macías, 2012).

La UF se define también como la operación intermedia entre la microfiltración y

la nanofiltración, el tamaño medio del poro está entre 0,1-0,01, posee una capa

activa, estructura asimétrica y mayor resistencia hidrodinámica (Mulder, 2000).

El propósito de las membranas de ultrafiltración es separar partículas

suspendidas, coloidales disueltas del agua (Figura 2.9).

Figura 1.9. Esquema UF.

El flujo que va a ser filtrado se divide en dos líneas: por una parte el agua

permeada pura y por otra el agua rechazada que contiene un concentrado de

impurezas.

- Diferentes tipos de membranas de ultrafiltración existen en el

mercado (Lora, 2011).

Pág. 15

Según su geometría las membranas son planas (arrollamiento espiral),

tubular/capilar y fibras huecas. Figura 1.10.

- Membranas planas.- sirven tanto para procesos de IO como para

UF. La membrana en espiral se forma con láminas planas

intercaladas con un espacio para transportar el agua. Otro espacio

entre láminas planas sirve para transportar el permeado.

- Membranas huecas.- son cilíndricas con un diámetro entre 0,1 a 2

mm. El flujo de alimentación tiene lugar por dentro de las fibras.

Pueden trabajar a presiones menores de 5 bar.

- Membrana tubular.- tiene pequeña superficie de filtrado, el diámetro

de los tubos puede estar entre los 6 y 25 mm. La membrana está

contenida dentro de un tubo poroso que sirve de soporte. Puede

trabajar a régimen turbulento, lo que le beneficia para evacuar sólidos

y residuos que puedan almacenarse en su superficie. Es más común

su uso en aguas residuales.

Figura 1.10. Tipos de membranas adaptadas diferentes fabricantes.

- Ensuciamiento de las membranas: El principal problema que se

presenta en las membranas es el ensuciamiento, debido

principalmente concentración de polarización y ensuciamiento de la

superficie y de los poros. El ensuciamiento de la membrana puede

conllevar el fallo del proceso debido al aumento excesivo de la

presión transmembrama (Macías, 2012).

Pág. 16

- La limpieza de las membranas debido al ensuciamiento se

realizan a través de diferentes procesos (Vargas, 2008):

Retrolavado con agua permeada, difusión de aire, dosificación

química (detergentes y desinfectantes). La limpieza debe ser

periódica y permanente.

- Limpieza con retrolavado: se realiza el retrolavado con agua del

permeado y la dosificación ácida o básica y detergentes, con buenos

resultados para restituir la membrana y mantener su periodo de vida

útil.

Existen diferentes fabricantes de membranas para el proceso de ultrafiltración.

Cada uno presenta diferentes características y la conversión del agua filtrada

es de 94 – 96% (González, 2012). Las marcas conocidas son las siguientes

(Figura 1.11):

- NORIT.- Sistema en presión, trabaja con configuración horizontal

(XIGA) y configuración vertical (SEAFLEZ). Ambas configuraciones

pueden trabajar dentro fuera. Las presiones de trabajo pueden estar

entre 2 y 4 bares.

- MEMCOR. – Sistema de aspiración que cuenta con configuración

sumergida y configuración presurizada. El tamaño de poro puede ser

de 0,1 µm.

- ZENON.- Sistema de aspiración que cuenta con configuración

sumergida y presurizado. La configuración sumergida pueden ser

módulos Zeeweed 500 – Zeeweed 1000. La filtración puede ser fuera

o dentro. Este sistema requiere de una pre-filtración de entre 1mm –

500 µm.

Otras marcas que venden membranas con sistema a presión son:

HYDRANAUTICS – DOW – KOCH.

Figura 1.11. Tipos de membranas según fabricante.

Pág. 17

1.5.3. Sistemas de desalación OI.

El proceso de desalación de aguas a través de ósmosis inversa requiere de un

exhaustivo pre-tratamiento, en el que se incluye la UF. Previo al proceso de

permeado y separación del agua es necesario incluir un último sistema de

seguridad a través de los filtros de cartucho, Figura 1.12. Los filtros cartucho se

componen de un alma de plástico y tela filtrante soldada.

La eliminación de agentes químicos para el control biológico, que se hayan

aplicado en el proceso de limpieza de las membranas en el proceso de UF,

deben ser oxidadas en la fase de filtración de seguridad, debido a que

concentraciones altas de desinfectantes afectan la capa activa de las

membranas que se utiliza para el proceso de desalación con OI (Susial, &

Soriano, 2001).

Figura 1.12. Filtros de Cartucho.

El proceso de desalación a través de OI se puede ver en el esquema de la

figura 1.13.

Figura 1.13. Esquema ósmosis inversa.

Pág. 18

- Ósmosis inversa.- El proceso contrario al de osmosis convencional

se les conoce como ósmosis inversa. La ósmosis inversa se logra

aplicando altas presiones al lado de la membrana con mayor

contenido de sales e impurezas, logrando de esta forma que pase al

otro lado de la membrana agua pura. Las presiones habituales sonde

60 -70 bares en el caso del agua de mar y mucho mas reducidas en

aguas salobres, dependiendo de su salinidad. La conversión puede

ser 45-50% en aguas de mar y 60-80 % en aguas salobres.

- Agua filtrada a presión.- Es el agua que ingresa a presión al

sistema de OI y que previamente ha sido sometida a los procesos de

pre-tratamiento.

- Concentrado.- Es la sal muera o rechazo del proceso de OI.

- Permeado.- Es el agua pura con bajo contenido de sal que ha

atravesado la membrana.

Las características del agua que se deben conocer para el proceso de OI, son

los siguientes:

- Salinidad del agua.- Las aguas de mar pueden contener

concentraciones de STD de 15000 - 45000 ppm. Las aguas salobres

pueden estar entre los 500 – 15000 ppm.

- Otros parámetros que se deben conocer.- Índice de Langelier y

Stiff & Davis, pH, turbidez, índice de ensuciamiento (SDI),

temperatura, precipitados.

Uno de los problemas mayores de las membranas es el ensuciamiento de las

mismas. En el proceso de filtrado, las concentraciones del agua de rechazo

puede alcanzar entre 2 a 8 veces del contenido inicial de sales. Las sales

orgánicas presentes en el agua pueden exceder su producto solubilidad y

precipitar en la superficie de la membrana provocando incrustaciones. En este

sentido, la reducción del periodo de vida de las membranas y la limitación a

una mayor conversión tienen que ver con las siguientes causas:

- Precipitaciones de sales minerales

- Óxidos metálicos

- Partículas coloidales

- Grasas y aceites.

El lavado de las membranas se hace con agua permeada o concentrada, libre

de cloro residual o cualquier otro oxidante. La limpieza de las membranas en su

fase mecánica, se hace a altas presiones, combinando el agua de lavado con

reactivos químicos ácidos, alcalinos y biocidas. Para aguas salobres es común

Pág. 19

la presencia de carbonatos (CO3Ca y SO4Ca) que provocan problemas de

precipitaciones (Susial & Soriano, 2001).

El índice de ensuciamiento orgánico (SDI) nos permite valorar la capacidad de

ensuciamiento que tiene el agua sobre las membranas (causadas por

precipitación de sales y crecimiento de microorganismos). Los períodos de

tiempo considerados para este control han sido de 15 minutos y los valores de

SDI están entre 0-6 (Gonzales, 2012).

El control de pH del agua en el proceso de permeado en muy importante. El

usos de ácidos en el agua de entrada favorece el permeado y evita las

precipitaciones de carbonato cálcico y magnésico (Arias et al, 2011).

Otro parámetro importante en este proceso es la medida de agresividad o

corrosión de un agua. El índice de Saturación Langelier, calculado entre la

diferencia del pH del agua y el pHs de saturación, aporta información sobre el

tipo de agua. Así, si el pH<pHs el agua es corrosiva., si el pH>pHs es

incrustante y si el pH=pHs hay equilibrio.

Las membranas pueden ser de distinta composición química, siendo la

poliamida aromática una de las más empleadas, se fabrican de forma plana y

luego se enrollan para formar la membrana. La capa de poliamida sobre una

capa de polisulfona porosa y un tejido soporte en poliéster forman la

membrana. Entre membranas se forman los espaciadores que impiden que se

peguen las membranas y permite que circule el agua permeada, por otro lado

circula el agua concentrada en sales (Figura 1.14). Los rollos o módulos de

membrana son colocados en tubos de presión llamados bastidores

Figura 1.14. Esquema modulo enrollado para OI.

Pág. 20

.

Figura 1.15. Esquema de procesos operativos de OI.

Se utiliza bombas de alta presión para lograr el paso del flujo a través de las

membranas y bombas booster para recuperar energía. El proceso de OI puede

funcionar por etapas y pasos, y en dos etapas. En la figura 1.15., se observan

los esquemas de diferentes alternativas para la operación de membranas. Para

el proceso de etapas, es el rechazo de la primera atapa la que se introduce a

una segunda etapa para obtener una segunda parte de agua purificada. Para el

proceso de pasos, el agua permeada se pasa por segunda vez por el proceso

de permeado. Esto se hace para obtener una agua de mejor calidad y bajar los

niveles de cloruro y de boro (Lora, 2011).

Figura 1.16. Esquema de tubos de presión y bastidores.

Pág. 21

Los tubos de presión sirven para sostener los módulos de las membranas y

soportar las altas presiones necesarias para el proceso de OI. Estos tubos de

presión pueden contener entre 6 y 8 módulos de membranas que ubicados en

una instalación son conocidos como bastidores (Figura 1.16). La conversión en

OI, depende del tipo de agua. Para aguas de mar (±45%) y salobres (±80%),

varios autores dan similares referencias.

1.5.4. Necesidades de energía.

El consumo de energía para desalar agua y producir agua dulce ha variado con

el tiempo, especialmente por el avance tecnológico equipos eléctricos,

mecánicos y tipos de membranas (Latorre, 2004). Las nuevas metodologías de

desalar el agua y la mejora continua en la explotación de las instalaciones han

permitido reducir costes de energía de 5.3 kWh/m3 de agua en 1995 hasta 2,9

kWh/m3 de agua producida en el 2010 (Gonzales, 2012). Para aguas

regeneradas los costes de energía pueden variar entre 1,1 a 1,7 kWh/m3 de

agua. Los costes ambientales tienen que ver con las emisiones de CO2, siendo

estos costes del orden 0.01 €/m3 (Mujeriego, 2005). Los costes de energía

pueden representar un 35 – 45% del coste total de explotación (Bueno, &

Ribes, 2011).

Pág. 22

2. Objeto y alcance del presente trabajo.

El objetivo de este trabajo es describir los procesos de regeneración del agua

residual depurada a través de tratamiento terciario ó avanzado de la EDAR de

Rincón de León, Alicante, así como también comparar la calidad del agua

regenerada con la normativa española para su reutilización según marco legal

vigente a la fecha.

Este trabajo ha sido realizado en las propias instalaciones de la ERA de RL

ubicada en la Ciudad de Alicante. La explotación del sistema de tratamiento se

hace a través de la empresa EMARASA.

La información ha sido suministrada por EMARASA y comprende los resultados

analíticos del agua y volúmenes de explotación en cada una de las líneas de

tratamiento del agua, dentro de los períodos del año 2012 y primer trimestre del

año 2013. El análisis de la información se ha realizado para el año 2012,

procesando resultados mensuales, semestrales y anuales del período en

mención. Los parámetros analizados en cada línea de tratamiento guardan

estrecha relación con los objetivos de calidad del RD 1620/2007. Se realizan

los análisis eficiencia de rendimiento en eliminación de contaminantes como

sólidos en suspensión, sales disueltas, población biológica, así como también

determinar los niveles de conversión y volúmenes de agua regenerada, y

energía consumida por metro cúbico de agua regenerada en este proceso.

Pág. 23

3. Resultados y discusión.

3.1. Explotación del Tratamiento Terciario de Rincón de León.

La estación depuradora del agua residual (EDAR) de Rincón de León (RL),

cuenta con un tratamiento secundario a través del sistema de depuración

biológica. El agua depurada es enviada a la estación regeneradora o

tratamiento terciario ubicada en la misma área de la instalación Figura 3.1.

Figura 3.1. Esquema de reparto del agua.

La ERA tiene una capacidad de tratamiento de 60.000 m3/día y sirve a una

población cercana a los 420.000 habitantes de Alicante y San Vicente del

Raspeig.

El agua regenerada está destinada por un lado a comunidades de regantes

(1.500 usuarios de las dos comunidades de riego suscritas y 3.140 hectáreas

de cultivos de esta provincia), y por otro lado al mantenimiento y limpieza de

áreas públicas.

Se han identificado tres alternativas de tratamiento en el proceso de

regeneración del agua depurada en Rincón de León en la ERA-RL (procesos

que se podría asimilar a los denominados TR-2, TR-1 y TR-5 en el estudio

CEDEX, 2008), los que se explicara con más detalle en los siguientes

apartados.

Pág. 24

3.1.1. Alternativa 1. Tratamiento físico – químico más desinfección.

3.1.1.1. Pre-tratamiento.

El agua bruta (AB) ingresa a la estación regeneradora de agua (ERA) desde un

repartidor de caudales ubicado a la salida del sistema secundario de la EDAR-

RL. Antes de llegar el agua depurada al sistema de filtros rápidos en la ERA, el

AB entra en contacto con el cloruro férrico a través de una cámara de mezcla y

pasa por el decantador lamelar. En la Figura 3.2 se presenta una fotografía del

pretratamiento.

Figura 3.2. Instalación pre-tratamiento que incluye cámara de mezcla de químicos y filtros

rápidos EDAR-ERA de RL.

El agua filtrada tiene dos destinos. 1) hacia los regantes pasando por

desinfección UV. 2) hacia el sistema de UF. Los fangos resultantes de la

limpieza de los filtros rápidos son enviados a un sistema químico de

coagulación con cloruro férrico. En este proceso el agua decantada se vierte al

emisario si cumple con los parámetros de la Directiva 271/91 y el fango se

recircula a la cabecera de la EDAR. El sistema de UF con membranas es parte

del sistema de pre-tratamiento cuando las instalaciones de OI empiezan a

funcionar. En este sentido se puede decir que existe un proceso convencional y

dos procesos no convencionales.

3.1.1.2. Calidad del agua a regenerar.

En la Tabla 3.1 se muestra la calidad media del agua a regenerar que proviene

del sistema secundario de la EDAR de Rincón de León (RL).

Pág. 25

Los parámetros de calidad corresponden a una media anual de la calidad del

agua depurada, la misma que cumple con Directiva 91/271/CEE.

Tabla 3.1. Calidad mensual media (año 2012) del agua a regenerar (Fuente: EMARASA).

PARÁMETROS 1 2 3 4 5 6 7 8 9 10 11 12

pH 7,51 7,47 7,45 7,43 7,52 7,46 7,26 7,49 7,38 7,38 7,38 7,41

S.S. (mg/L) 17,19 20,11 20,38 20,21 18,25 23,77 18,44 15,26 13,26 12,89 12,89 11,31

Sól.totales

disueltos

(mg/L) 1456 1484 1581 1684 1497 1552 1439 1591 1575 1346 1382 1585

Conductividad

20ºC (µS/cm) 2313 2234 2204 2542 2477 2487 2329 2367 2479 2092 2065 2474

Turbidez (NTU) 4,19 6,05 6,57 5,43 4,48 6,39 5,16 5,1 3,18 3,81 3,34 3,91

D.Q.O. (mg/L) 45,6 58,75 63,8 59,7 49,7 62 51,7 51,3 47,88 48,9 46,38 42,88

D.B.O.5 (mg/L) 16 14 10 16 8 14 22 8 16 16 4 8

Jar-Test 26,7 25,75 23,8 26 26,3 26,25 28,4 25,3 26,38 26,4 26,3 26,13

Nitrógeno total

(mg/L) 37,5 44,5 39,5 44,5 42,5 45,5 43 41,5 36 36 29,5 39

Fósforo total

(mg/L) 5,65 4,3 3,7 3,6 5,05 2,3 4,15 5,15 5,55 6,05 4,95 4,75

Fosfatos (mg/L) 15,84 12,14 9,29 9,18 6,5 8,89 8,06 14,18 13,09 19,12 12,97 14,81

Hierro total

(mg/L) 0,41 0,52 0,5 0,54 0,45 0,61 0,58 0,44 0,37 0,35 0,32 0,41

Fe2+

(mg/L) 0,33 0,37 0,3 0,46 0,37 0,49 0,35 0,3 0,25 0,27 0,25 0,25

Fe3+

(mg/L) 0,08 0,15 0,2 0,1 0,08 0,11 0,22 0,15 0,13 0,08 0,06 0,16

Calcio (mg/L) 92 97,25 82,68 82,9 96,6 90,43 89,42 86,86 91,18 88,18 85,47 83,75

Cloruros (mg/L) 485,5 517,7 518,3 535 479,8 507,8 526,2 587,5 575,3 506 393,2 517,2

E. coli

(UFC/100mL) 21420 58938 3E+05 36225 68700 4E+05 4E+05 3E+05 2E+05 2E+05 1E+05 64875

3.1.1.3. Filtros rápidos.

La primera fase de este proceso empieza cuando el AB entra a un depósito de

laminación de 8500 m3 de volumen previo contacto con el cloruro ferrico

(CL3Fe), a continuación, el agua es enviada a los filtros rápidos. El proceso

químico consiste en la aplicación de cloruro férrico (FeCl3). La elección del

FeCl3 tiene que ver con las características de este producto: acción de

coagulación a gran velocidad, alta capacidad de adsorción de contaminantes

orgánicos e inorgánicos y capacidad de trabajo en un amplio rango de pH (4 –

10). El cloruro férrico se utiliza para depurar las aguas residuales y para

tratamiento de aguas de consumo. El FeCl3 en medio acuoso ligeramente

Pág. 26

básico reacciona con el ión hidróxido para formar flóculos de FeO(OH)-

{oxihidróxido de hierro (III)}, que puede eliminar los materiales en suspensión.

Se observa en la Figura 3.3, la línea de agua en el sistema de filtración y líneas

de distribución en dirección de la cámara de UV y por otra vía a los trenes de

UF.

Figura 3.3. Pantalla control de proceso filtrado.

El ingreso al sistema de filtros rápidos es en una estructura de hormigón

armado. Son un total de 60 los filtros de arena de sílice y funcionan con un

sistema de lavado continuo con aire. La superficie de filtración es de 317,4 m2 y

una velocidad de filtración de 7,88 m/h., para un caudal de 2500 m3/h. La

pérdida de agua por efecto de lavado está entre el 7 – 8 %. Otros parámetros:

granulometría de arena de 1-2 mm, densidad 1500 kg/m3 y cantidad 1236 t.

3.1.1.4. Desinfección ultravioleta.

En esta primera parte del tratamiento se deriva desde el sistema de filtración de

arena la cantidad de 8800 m3/día de agua filtrada a un sistema de desinfección

Pág. 27

a través de un equipo de radiación ultravioleta (UV). Este proceso cuenta con

un tren de tratamiento UVFitTM. El tren contiene entre 1 y 3 cámaras UV. Cada

cámara de UV va provista de brida de entrada y de salida, tapa final y conjunto

de reactor, ver Figura 3.4.

Figura 3.4. Equipo UV.

La primera parte de este sistema terciario concluye con un tratamiento del agua

bruta mediante proceso químico, físico y desinfección. El sistema utilizado

similar al tratamiento Tipo 2 de agua no desalada descrito por CEDEX, 2008.

Figura 3.5., para usos de agua regenerada exigida en el RD 1620/2007.

Figura 3.5. Esquema línea de agua tratamiento sin desalación (Fuente CEDEX, 2008).

Pág. 28

La calidad del agua regenerada media mensual, año 2012, se observa en la

Tabla 3.2. El tratamiento del agua depurada es a través de proceso químico,

físico y UV. Los resultados de los parámetros están dentro de lo exigido en la

normativa del Real Decreto 1260/2007 sobre Reutilización de Aguas

Depuradas en los usos Urbano 1.2. a), b), c) y d); Agrícola 2.1 a); Recreativo

4.1 a).

Tabla 3.2. Resultados medios mensuales (año 2012) de la calidad del efluente.

PARÁMETROS 1 2 3 4 5 6 7 8 9 10 11 12

pH 7,45 7,29 7,36 7,3 7,44 7,49 7,22 7,35 7,37 7,11 7,25 7,36

S.S. (mg/L) 10,18 13,25 12,96 12,64 12,76 15,72 11 11,65 9,51 8,34 8,57 8,61

Turbidez (NTU) 2,53 4,2 4,58 3,61 3,11 5,11 3,07 2,66 2,32 2,76 2,49 1,92

D.Q.O. (mg/L) 34,7 46,63 51,5 44,9 46,5 49 37,4 37,9 40 40,38 40,4 33,63

D.B.O.5 (mg/L) 8 6 10 4 3 9 10 6 10 9 4 4

Nitrógeno

total(mg/L) 35 43 37 43 42,5 43,5 37 33 32 31,5 26,5 40

Fósforo

total(mg/L) 5,1 3,85 3,55 2,85 4,8 2 3,2 4 4,9 5,35 4,3 4,55

Bicarbonatos

(mg/L) 275 305 310 321 401 505 286,7 229 361 350 373 360

Calcio (mg/L) 92 105 83,4 83 86 83,5 84,3 85,5 90,8 86,5 83,8 84,5

Sulfatos (mg/L) 298 313 172 329 264 290 239 249 279 103 245 427

Estroncio

(mg/L) 3,2 3,5 2,4 2,1 2,6 2,4 2,5 2,6 2,2 2,5 2,7 2,9

Fluoruros

(mg/L) 0,12 0,15 0,19 0,09 0,26 <0,1 0,2 0,34 <0,10 0,11 0,16 <0,10

Hierro total

(mg/L) 0,5 0,46 0,57 0,37 0,31 0,61 0,74 0,41 0,54 0,33 0,23 0,5

Bario (mg/L) <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05 <0,05

Silicatos (mg/L) 9,47 9,62 18,96 17,8 2,68 18,66 13,82 14,1 0,16 9,79 8,46 11,6

E. coli

(UFC/100mL) 17,38 61,75 6,25 65,63 109,7 133,5 82 138,5 96,63 81,88 40 49,13

Legionella spp.

(UFC/100mL) 0 0 0 0 0 0 0 0 0 0 0 0

Pág. 29

3.1.2. Alternativa 2. Tratamiento físico-químico más filtración avanzada

mediante ultrafiltración.

El proceso químico y de filtración rápida utilizados para el TR-2, son los

mismos que se utilizan en la alternativa 1. El agua decantada y filtrada se envía

al sistema de filtración avanzada.

Previo al sistema de ultrafiltración (UF) se utilizan filtros de seguridad de mallas

inoxidables de 25 µm de porosidad, con el fin de asegurar el control de

partículas que podrían escapar del pre-tratamiento. La UF se emplea con dos

objetivos en esta ERA. Por un lado para el tratamiento del agua mediante los

procesos de pre-tratamiento explicados anteriormente y la ultrafiltración y por

otro lado como tratamiento previo a desalación con ósmosis inversa. En esta

parte se describe el proceso de UF sin desalación.

Se utilizan membranas huecas marca ZENON, siendo la capacidad de

tratamiento de este sistema de 60000 m3/día. Se han construidos seis trenes

de tratamiento, cada tren con 6 casetes de membranas que se encuentran

sumergidas (Figura 3.6).

Figura.- 3.6. Trenes de UF.

Pág. 30

El flujo medio diseñado es de 19,42 LMH. El permeado va a dos depósitos de

65 m3 cada uno, uno de los depósitos además sirve para el proceso de

retrolavado de los trenes. La conversión media mes de julio año 2012 es del

92,6%, la misma que se repite en el resto del año de estudio (Figura 3.7).

Figura. 3.7 Conversión media mensual trenes UF.

El sistema de limpieza de las membranas tubulares funciona en forma de

retrolavado con agua permeada y aportación de burbujas de oxígeno: Las

limpiezas químicas se hacen aplicando desinfectantes y anti-incrustantes. Los

principales tipos de suciedad en las membranas son: partículas,

microorganismos y acumulación de sales insolubles (Scaling) (Meier et al.

2006).

La limpieza química y física de las membranas se realiza con desinfectantes,

agua presión y ácidos. Este proceso de ultrafiltración requiere de un

mantenimiento riguroso de las membranas para lograr un funcionamiento

eficiente de la instalación y mantener en buen estado las membranas. Se utiliza

ácido sulfúrico (H2SO4) para bajar el pH del agua a 2-3 controlando de esta

manera precipitaciones de bicarbonatos. La limpieza se realiza para eliminar

contaminantes orgánicos con hipoclorito sódico (NaOCL). El ácido cítrico

(C6H8O7) se usa para eliminar contaminantes inorgánicos. En el retrolavado a

presión se utiliza el agua permeada. Este proceso de limpieza dura entre 1 y 5

horas y se lo hace con frecuencias mensuales y trimestrales.

0

10

20

30

40

50

60

70

80

90

100

110

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Conversión sistema UF mes julio año 2012

%

Pág. 31

Figura 3.8. Pantalla control proceso UF.

En la figura 3.8, se observa el sistema de flujo de la alimentación de caudal al

sistema de UF con membranas y las salidas del agua filtrada-permeada y el

rechazo-lodos

Figura 3.9. Registro medios diarios de SDI mes agosto 2012 (EDRA-ERA-RL)

1,99

2,21

1,94

2,32

1,97

2,27

2,11

2,37

2,01

2,18

1,91

1,75

1,57

1,39

1,81 1,76

1,89

1,43

2,28

2,45

2,12

1,58

1,87

1,68 1,67 1,72 1,69

1,87

2,27

2,04

1,2

1,4

1,6

1,8

2

2,2

2,4

2,6

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Tiempo días

SDI t

ren

es U

F

Valores medios SDI

Pág. 32

El potencial de ensuciamiento (SDI) analizado del agua, que sale de los trenes

de UF hacia los bastidores de OI entra en los rangos de los valores

recomendados de SDI, de entre 3 y 4.

En la Figura 3.9, se observa valores medios de SDI a la salida de los trenes de

UF, los mismos que están dentro del rango de valores recomendados

(González, 2012).

Para el uso del agua en riego, se considera la relación de absorción de sodio

(SAR) como indicador de calidad del suelo, por su efecto en la permeabilidad.

Este parámetro incluye en su fórmula, contenidos de sodio respecto al calcio y

magnesio (Mujeriego, 1990). Los valores de referencia se muestran en la Tabla

3.3.

Tabla 3.3. Valores de SAR para uso agrícola.

S.A.R. Riesgo

0 – 10 Bajo

10 – 18 Medio

18 – 26 Alto

Mayor de 26 Muy alto

Formula S.A.R

El índice de SAR media semestral se puede observar en la Tabla 3.4, con

valores de sodio para los suelos dedicados al riego con esta agua. Los

resultados de esta tabla se pueden comparar con valores los de referencia de

la Tabla 3.4, para determinar su nivel de riesgo.

Tabla 3.4. Valor medio proceso UF.

Parámetros

Semestrales

Muestra SAR

UF/UV

FECHA 10.12.12 2,02

Ca2+

(mg/L) 86

Mg2+

(mg/L) 54,5

Na+(mg/L) 288

Pág. 33

Otro parámetro importante en el control del agua depurada para su

regeneración es el índice de Langelier. Wilfred F. Langelier, 1930, descubrió

problemas de corrosión e incrustación en la red pública de agua. Estos

problemas tienen como referencia el grado de saturación de carbonato cálcico

en el agua, lo que guarda relación con parámetros de pH, alcalinidad y dureza.

Si LSI es < 0, se dice que el agua tiende a ser corrosiva, si LSI > 0, la

tendencia es incrustante. Para aguas salobres varios autores recomiendan

trabajar con valores LSI ± 0,5. El índice de Langelier está determinado por la

expresión LSI = pH – pHs (pHs 0 pH saturación), se aplica como referencia

para guas con una salinidad máxima de 5000 ppm.

Tabla 3.5. Calidad media mensual, año 2012, del agua permeada proceso UF.

PARÁMETROS 1 2 3 4 5 6 7 8 9 10 11 12

pH 7,43 7,38 7,42 7,48 7,44 7,42 7,19 7,42 7,33 7,26 7,3 7,39

S.S. (mg/L) 0,49 0,44 0,6 1,49 2,39 2,15 1,14 0,44 0,5 0,45 0,31 0,46

Sól.totales

disueltos

(mg/L) 1591 1392 1630 1787 1491 1446 1374 1596 1573 1503 823 1732

Conductividad

20ºC (µS/cm) 2326 2256 2178 2468 2434 2413 2376 2487 2476 2006 1920 2403

Turbidez (NTU) 0,4 0,45 0,49 0,42 0,45 0,5 0,49 0,49 0,4 0,38 0,36 0,33

D.Q.O. (mg/L) 25,24 29,13 29,8 24,5 28,64 26,25 24,4 28,75 28,5 29,75 27,08 23,48

D.B.O.5 (mg/L) 4 4 2 2 1 5 5 3 2 7 1 1

Índice de

Langelier 0,28 0,19 0,34 0,12 0,53 0,21 0,46 0,65 0,28 0,06 0.017 0,24

Nitrógeno

total(mg/L) 33 40 31,5 42,5 41,5 45 35,5 32 29,5 30,5 20,5 38,5

Fósforo

total(mg/L) 4,05 3,45 2,9 2,25 3,85 1,7 4,2 2,35 4,8 4,95 4,2 3,75

Fosfatos (mg/L) 12,4 10,76 9,05 8,75 6,58 8,22 7,05 9,91 11,88 13,89 11,49 11,42

Hierro total

(mg/L) 0,21 0,21 0,18 0,23 0,23 0,21 0,23 0,2 0,2 0,19 0,15 0,23

Cloruros (mg/L) 490,8 504,5 497 524,5 481,2 474 515,6 570,8 534,3 485,5 387,6 524,4

E. coli

(UFC/100mL) 41,8 20,75 11,75 12,88 43,3 49,25 44 44,8 39,88 54,25 35,5 6,75

Nematodos

(nºhuevos/L) 0 0 0 0 0 0 0 0 0 0 0 0

Legionella spp.

(UFC/100mL)

39,8 39,5 12,9 29 69,33 81 74 97,4 75,6 67,8 34,4 35,3

Pág. 34

En la Tabla 3.5, se muestra la calidad del agua después del tratamiento que se

ha descrito como Alternativa 2, a través de los procesos de filtración, físico

químico, y UF. Según el Real Decreto sobre Reutilización de Aguas Depuradas

los posibles usos podrían ser Uso Urbano, Agrícola, Industrial, Ambiental,

Recreativo.

La media mensual del Índice de Saturación de Langelier (LSI) se encuentra en

los rangos de 0,1 > 0,6., con tendencia a ser incrustante. El tipo de tratamiento

es similar al tratamiento TR-1 de agua no desalada descrito por CEDEX, 2008.

En la Figura 3.10, se observan las recomendaciones del proceso de

tratamiento y calidad biológica del agua regenerada.

Figura 3.10. Proceso línea del agua con UF sin desalación.

Pág. 35

3.1.3. Alternativa 3. Tratamiento físico-químico más ultrafiltración más

ósmosis inversa.

El proceso de pre-tratamiento para este proceso incluye el sistema de filtración

avanzada a través de membranas para UF. El agua se envía a los bastidores

de OI previo el paso por los filtros de seguridad.

El control de sustancias que puedan deteriorar las membranas y reducir la

eficiencia del sistema, desde el punto de vista económico y de calidad del

agua, tiene que ver con la aplicación de un riguroso tratamiento previo químico

y físico antes de separar el agua por OI.

Para preservar las membranas se hace uso de procesos químicos y físicos. El

proceso químico consiste en controlar residuos de cloro que puedan oxidar las

membranas. Para ello se utiliza bisulfito de sodio (NaHSO3), acción que se

hace efectiva en el sistema físico de filtros de cartucho. El proceso físico se

hace a través de filtros de cartucho. Se instalan 88 filtros de cartucho de 5 µm

en un depósito de acero, para cada bastidor (Figura 3.10). Los filtros se

sustituyen cuando se detecta variación de presión en los manómetros a la

entrada y salida de esta instalación, siendo la variación de presión un indicador

de ensuciamiento de los filtros cartuchos.

Figura. 3.10. Bastidores con filtros de cartucho proceso OI.

Los bastidores están instalados en dos etapas, se utiliza 7 membranas de

poliamida de arrollamiento espiral por tubo de presión. Cada bastidor cuenta

con 60 tubos, de estos el 60% de tubos de presión son de primera etapa y el

40% tubos presión de segunda etapa. La instalación completa está constituida

Pág. 36

por 5 bastidores. La conversión media es del 70%. Para el mantenimiento y

conservación de las membranas se utiliza un anti-incrustante comercial con

sistema de limpieza ácida y básica, en las dos etapas de cada bastidor. Este

proceso debe lograr la remoción de sales y capa biológica que puedan

incrustarse en las superficies de las membranas de OI. Se completa la limpieza

con sistema de retrolavado. En los bastidores se ha instalado una bomba tipo

BOSTER para recuperar energía, la misma que se incorpora al sistema de

energía local de la EDAR-RL. En la figura 3.10 se observa el sistema de

alimentación de caudal a bastidores, el permeado y rechazo-concentrado.

Figura 3.10. Pantalla control proceso OI.

Figura 3.11. Conversión media OI.

68

69

70

71

72

73

74

-1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 Días del mes de julio 2012

Co

nve

rsió

n %

Referencia media conversión

Pág. 37

La conversión media mensual (Julio 2012) en esta fase de OI (EDAR.ERA.RL)

es del 70%, tal como se representa en la Figura 3.11

La calidad del agua resultado del proceso de OI se puede observar en la tabla

3.6. El contenido de SS y de microorganismos de las aguas tratadas ha sido

totalmente eliminado en esta fase de tratamiento. Esta calidad del agua,

después del tratamiento descrito, que se ha descrito como Alternativa 3, a

través de los procesos de filtración, físico químico, UF y OI. La calidad del agua

en este caso se puede usar en todos los usos según de RD 1620/2007.

.Tabla 3.6. La calidad del agua media del efluente de OI.

PARÁMETROS 1 2 3 4 5 6 7 8 9 10 11 12

pH 6,43 6,33 6,86 6,59 6,57 6,64 6,64 6,83 6,83 6,61 7 6,5

S.S. (mg/L) 0,12 0,1 2,1 0,2 0,25 0,05 0,1 0,33 0 0

Sól.Totales

disueltos

(mg/L) 14,5 9 25 7 25 41,5 26 41,5 34,5 10,5 12,5 59,5

Conductividad

20ºC (µS/cm) 48,71 50,75 39,46 51,41 52,31 65,99 76,13 76,57 72,47 61,92 49,99 39,32

Turbidez (NTU) 0,17 0,2 0,22 0,21 0,21 0,17 0,23 0,2 0,21 0,23 0,24 0,15

D.Q.O. (mg/L) 2,6 4,4 3,5 2,16 2,4 3,74 4,43 4,5 7,3 0,8 1,9

D.B.O.5 (mg/L) 1 1 1 0 1 2 1 0 1 1 1 1

Nitrógeno

total(mg/L) 3,5 2,05 3 4,5 8,6 1,85 3,6 7,5 2,55 1,75 2 2,25

Fósforo

total(mg/L) 0,2 0,06 0,13 0,3 0,2 0,11 0,55 0,25 0,2 0,4 0,05 0

Cloruros (mg/L) 11,5 16,5 11,5 14 15,6 18,25 17,6 20,5 22,75 13,75 12 12,6

Nematodos

(nºhuevos/L) 0 0 0 0 0 0 0 0 0 0 0 0

Coliformes total

(UFC/100mL) 0 0 0 0 0 0 0 0 0 0 0 0

Coliformes

fecal

(UFC/100mL) 0 0 0 0 0 0 0 0 0 0 0 0

Legionella spp.

(UFC/100mL) 0 0 0 0 0 0 0 0 0 0 0 0

E. Coli

(UFC/100 mL) 0 0 0 0 0 0 0 0 0 0 0 0

Según se observa en la Tabla 3.7, de acuerdo a los resultados del índice de

SAR, el agua osmotizada está dentro del rango de bajo riesgo de degradación

del suelo por riesgo de sodio.

Pág. 38

Tabla 3.7. Índice SAR efluente OI.

Parámetros

Semestrales

S.A.R

OI 3,5

FECHA 10.12.12

Ca2+

(mg/L) 0,90

Mg2+

(mg/L) 0,05

Na+(mg/L) 6,12

El caudal de rechazo o concentrado es enviado al emisario, las

concentraciones de sales son menores de los 7000 ppm. La salmuera es

vertida al mar (Tabla 3.8) en las inmediaciones de la zona portuaria y área de

captación de las desaladoras Alicante I y II, ubicadas en la Ciudad de Alicante

– Mar Mediterráneo. Los valores de DQO, nitrógeno y fósforo total se han

elevado respecto al influente o agua bruta de entrada a la ERA. En principio

estos serían los únicos parámetros que estarían por encima de lo indicado en

la Directiva 91/271/CEE.

Tabla 3.8. Efluente sal muera – Valor medio mensual periodo año 2012

PARÁMETROS 1 2 3 4 5 6 7 8 9 10 11 12

S.S. (mg/L) 11,1 10,13 6 14,3 12,8 9,38 9,5 16,5 19,75 13,25 11,33 14,58

Sól.Totales

disueltos

(mg/L) 5541 5425 6412 6583 5578 5646 5234 6046 5793 4868 4839 5884

Conductividad

20ºC (µS/cm) 7180 6874 6461 8604 7936 7716 7551 7294 7074 6696 6073 7301

Turbidez (NTU) 0,65 0,78 0,56 0,83 0,48 0,54 0,48 0,58 0,61 0,81 1,62 1,43

D.Q.O. (mg/L) 106,6 152 127,3 171,8 135 128,8 108 112,3 116 114,8 104,3 125,8

D.B.O.5 (mg/L) 6 0 0 6 8 6 40 8 8 8 6 24

Nitratos (mg/L) 19,3 7 10,6 8,1 9,8 2,9 4,7 22,5 13,6 9,6 20,5 14,4

Cloruros (mg/L) 1882 1509 1441 2024 1430 1612 1977 2166 1704 1803 966 2009

Nitrógeno

(mg/L) 105 144 111,5 137,5 153 122 88,5 103,5 101 98,5 82,5 116

Fósforo (mg/L) 19,25 13,75 11,25 9,3 15,35 6 11,65 15,15 17,55 20,05 17,4 16,4

El proceso de tratamiento en esta fase de la EDAR-ERA-RL es equivalente

corresponde a un tratamiento tipo TR-5. (CEDEX, 2008), como se muestra en

la Figura 3.12. En este proceso de tratamiento se cumple con la normativa del

RD 1620/2007, pudiendo el agua ser reutilizada en todos los usos permitidos.

Pág. 39

La calidad del agua al final de este proceso está casi libre de sales disueltas

por lo que su uso en la agricultura podría ser para todo tipo de cultivo.

Figura 3.12. Proceso línea del agua OI.

Pág. 40

3.1.4.- Consumo de energía.

El consumo de energía se ha calculado considerando tres conjuntos de

tratamientos:

- Filtración, físico químico y ultravioleta.- Energía consumida en los

filtros de arena (FA), físico – químico (FQ), equipo ultravioleta (UV) y

agitadores.

- Ultrafiltración.- Energía consumida en las membranas de

ultrafiltración (UF).

- Ósmosis inversa.- Energía consumida membranas de ósmosis

inversa (OI).

En la figura 3.13 se muestran los consumos medios mensuales del proceso de

regeneración de aguas. El 20% del consumo de energía corresponde a los

procesos de filtración, físico químico y desinfección, el 23% a ultrafiltración y el

57% a desalación. Si se suman todos los procesos la media anual de consumo

de energía por cada m3 de agua tratada estaría en los 2,61 kWh/m3.

Figura 3.13. Consumo de energía por áreas de tratamiento.

Para calcular los costes energéticos se consideran las tarifas oficiales del

segundo trimestre del año 2013, que son de 0,138658 €/kWh. Así resulta un

coste energético medio para el agua tratada con Filtración+F-Q+UV de 0,071

€/m3, para el tratamiento con UF de 0,082 €/m3, y para la OI de 0,21 €/m3. Si se

suman todos los costes energéticos el coste total sería de 0,362 €/m3.

0

0,5

1

1,5

2

2,5

3

3,5

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Q+F+UV

UF

OI

Media Total

Consumo energía media mensual

meses (año 2012)

kw/m

3

Pág. 41

3.1.5.- Reutilización del agua regenerada.

Los caudales de agua regenerados en 2012 por cada una de las alternativas

citadas se muestran en la Figura 3.14

Figura 3.14. Línea del agua de los tres tipos de tratamiento.

La ERA de Rincón de León produce una media de 11 hm3 de agua regenerada.

El 63% del agua regenerada está destinada a comunidades de regantes y el

resto para uso urbano en la ciudad de Alicante. El 44% del agua regenerada

corresponde al proceso F+Q+UV. El 43% del agua regenerada corresponde al

proceso UF. El 12 % del agua regenerada corresponde al proceso OI. La suma

de caudales tratados corresponde a las tres alternativas estudiadas.

El agua reutilizada a través de las comunidades de regantes de Alicante

(ARALVI - AGRICOOP), en el año 2012 fue de 7 hm3 que corresponde al 63%

del total del agua regenerada. El resto de volúmenes de agua regenerada son

utilizados para limpieza de calles y riego de áreas verdes en Alicante. En la

Tablas 3.9, 3.10 y 3.11, se indican los volúmenes mensuales destinados a las

comunidades de regantes con la correspondiente conductividad eléctrica.

Como se puede apreciar en los meses de junio a septiembre se produce una

mayor demanda.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

0 1 2 3 4 5 6 7 8 9 10 11 12 13

F+FQ+UV m3/d

UF m3/d

0I m3/d

m3/d

ag

ua

tr

ata

da

Líneas de regeneración de agua ERA - Rincón de León

meses (año 2012)

Pág. 42

Tabla 3.9 Registro de caudales medios mensuales tratados y reutilizados año 2012.

C.R. Agricoop -Depósito 1-

Mes Caudal

OI (m

3/mes)

Conduct. OI

(µS/cm)

Caudal UF/UV

(m3/mes)

Conduct. UF/UV (µS/cm)

Caudal Total

(m3/mes)

Conduct. Promedio (µS/cm)

Enero 41.745 36 113.597 2.398 155.342 1.764

Febrero 38.093 37 110.684 2.399 148.777 1.794

Marzo 41.831 37 178.360 2.163 220.191 1.761

Abril 54.107 46 142.078 2.301 196.185 1.681

Mayo 54.999 54 132.646 2.441 187.645 1.746

Junio 73.862 83 179.356 2.411 253.218 1.736

Julio 103.695 86 228.905 2.395 332.600 1.676

Agosto 112.625 98 237.954 2.622 350.579 1.811

Septiembre 76.271 94 229.927 2.462 306.198 1.872

Octubre 39.997 45 152.300 1.487 192.297 1.187

Noviembre 9.377 57 71.711 2.063 81.088 1.831

Diciembre 45.326 47 107.861 2.549 153.187 1.809

Total 691.928 1.885.379 2.577.307

Promedio 57.661 60 157.115 2.308 214.776 1.722

Tabla 3.10 Registro de caudales medios mensuales tratados y reutilizados año 2012.

C.R. Agricoop -Depósito 2-

Mes Caudal

OI (m

3/mes)

Conduct. OI

(µS/cm)

Caudal UF/UV

(m3/mes)

Conduct. UF/UV (µS/cm)

Caudal Total

(m3/mes)

Conduct. Promedio (µS/cm)

Enero 11.285 32 41.603 2.508 52.888 1.981

Febrero 9.018 33 31.922 2.506 40.940 1.961

Marzo 9.443 31 50.051 2.132 59.494

1.799

Abril 14.427 39 41.569 2.336 55.996 1.744

Mayo 23.267 43 75.640 2.446 98.907 1.881

Junio 24.221 64 84.173 2.374 108.394 1.858

Julio 29.096 67 92.801 2.416 121.897 1.856

Agosto 30.219 73 87.122 2.501 117.341 1.876

Septiembre 21.627 75 81.859 2.541 103.486 2.026

Octubre 10.493 29 47.542 1.345 58.035 1.107

Noviembre 1.649 51 11.686 2.077 13.335 1.826

Diciembre 14.586 46 44.429 2.510 59.015 1.901

Total 199.331 690.397 889.728

Promedio 16.611 49 57.533 2.308 74.144 1.818

Pág. 43

Tabla 3.11 Registro de caudales medios mensuales tratados y reutilizados año 2012.

C.R. Aralvi

Mes Caudal

OI (m

3/mes)

Conduct. OI

(µS/cm)

Caudal UF/UV

(m3/mes)

Conduct. UF/UV (µS/cm)

Caudal Total

(m3/mes)

Conduct. Promedio (µS/cm)

Enero 45.976 36 167.990 2.417 213.966 1.906

Febrero 57.103 37 225.401 2.467 282.504 1.976

Marzo

93.149 37 180.849 2.228 273.998 1.739

Abril 83.934 45 104.972 2.360 188.906 1.813

Mayo 100.798 55 176.100 2.456 276.898 2.221

Junio 111.051 83 228.381 2.398 339.432 1.976

Julio 130.460 87 240.548 2.341 371.008 2.170

Agosto 160.683 100 236.219 2.563 396.902 1.566

Septiembre 130.302 93 189.707 2.518 320.009 1.531

Octubre 33.747 42 245.724 1.842 279.471 1.625

Noviembre 348 74 85.603 2.025 85.951 2.017

Diciembre 9.321 49 24.667 2.516 33.988 1.839

Total 956.872 2.106.161 3.063.033

Promedio 79.739 61 175.513 2.344 255.253 1.865

Pág. 44

4. Resultados globales.

a) Los resultados analíticos del agua media anual para tipo de tratamiento

TR-2 se observa en la Tabla 4.1 y Figura 4.1;

Tabla 4.1. Calidad media anual (año 2012) del efluente de filtros de arena + UV.

FASE PARÁMETROS

EFLUENTE

FILTRO ARENA

RL/FA/UV

pH 7,33

S.S. (mg/L) 11,27

Turbidez (NTU) 3,20

D.Q.O. (mg/L) 41,91

D.B.O.5 (mg/L) 6,92

Nitrógeno total(mg/L) 37,00

Fósforo total(mg/L) 4,04

Bicarbonatos (mg/L) 339,73

Calcio (mg/L) 87,36

Sulfatos (mg/L) 267,33

Estroncio (mg/L) 2,63

Fluoruros (mg/L) 0,14

Hierro total (mg/L) 0,46

Bario (mg/L) 0,00

Silicatos (mg/L) 11,26

E. coli (UFC/100mL) 73,52

Legionella spp. (UFC/100mL) 0,00

Figura 4.1. Usos según calidad del agua regenerada.

Pág. 45

b) Los resultados analíticos medios anuales del agua para tipo de

tratamiento TR-1 se observa en la Tabla 4.2. Figura 4.2.

Tabla 4.2. Calidad media anual (año 2012) del efluente de membranas UF.

PARÁMETROS Media anual 2012

pH 7,37

S.S. (mg/L) 0,91

Sól.totales disueltos (mg/L) 1494,83

Conductividad 20ºC (µS/cm) 2311,92

Turbidez (NTU) 0,43

D.Q.O. (mg/L) 27,13

D.B.O.5 (mg/L) 3,08

Índice de Langelier 0,28

Nitrógeno total(mg/L) 35,00

Fósforo total(mg/L) 3,54

Fosfatos (mg/L) 10,12

Hierro total (mg/L) 0,21

Cloruros (mg/L) 499,18

E. coli (UFC/100mL) 33,74

Nematodos (nºhuevos/L) 0,00

Legionella spp. (UFC/100mL) 0,00

Figura 4.2. Usos según calidad del agua regenerada.

Pág. 46

c) Los índices de calidad identificados (Tabla 4.3), como el de Langelier

dan como resultado una calidad del agua incrustante. Por tanto el control

de precipitaciones se podría hacer con carbonato cálcico considerando

que esta agua contiene valores menores de 5000 ppm de salinidad

(Gonzales, 2012). Los valores de SDI son menores a 5, por lo no se

prevén problemas en el uso de membranas para OI. El valor del SAR

indica valores de riesgo bajo de sodio para los suelos dedicados al riego.

Tabla 4.3. Media anual (año 2012) indicadores de calidad.

PARÁMETROS VALOR

Índice de Langelier 0,28

SAR 3,58

SDI 1,39 – 2,45

pH 6,65

d) Los resultados analíticos del agua media anual para tipo de tratamiento

TR-5 se observan en la Tabla 4.4. y Figura 4.3.

Tabla 4.4. Calidad media anual (año 2012) del efluente de OI.

FASE PARÁMETROS

OSMOSIS

INVERSA

RL/OI

pH 6,65

S.S. (mg/L) 0,41

Sól.Totales disueltos (mg/L) 25,54

Conductividad 20ºC (µS/cm) 57,09

Turbidez (NTU) 0,20

D.Q.O. (mg/L) 3,43

D.B.O.5 (mg/L) 0,92

Nitrógeno total(mg/L) 3,60

Fósforo total(mg/L) 0,20

Cloruros (mg/L) 15,55

Nematodos (nºhuevos/L) 0,00

Coliformes total

(UFC/100mL) 0,00

Legionella spp. (UFC/100mL) 0,00

0,00

E. Coli (UFC/100 mL) 0,00

Pág. 47

Figura 4.3. Usos según calidad del agua regenerada.

e) Las comunidades de regantes reciben un agua con calidad media en lo

que se refiere a conductividad del agua (Tabla 4.5). Se ha calculado

una media anual de 11 hm3 (año 2012) de agua regenerada que utilizan

tres comunidades de regantes.

Tabla 4.5. Calidad media anual (año 2012) agua reutilizada comunidad de regantes.

FASE PARÁMETROS media

ARALVI pH (U) 7,03

Conductividad 20ºC (µS/cm) 1538,47

AGRICOP-

1

pH (U) 7,16

Conductividad 20ºC (µS/cm) 1807,59

AGRICOP-

2

pH (U) 7,16

Conductividad 20ºC (µS/cm) 1853,98

Pág. 48

f) La calidad del agua media semestral del sistema no convencional con

membranas para UF y OI se observa en la Tabla 4.6. Las muestras

analizadas arrojan resultados de buena calidad del agua osmotizada.

Los resultados demuestran una reducción de sales disueltas (cationes y

aniones) al igual que el contenido de boro (B) está dentro de los límites

exigidos. Ver Tablas 4.6 y 4.7.

Tabla 4.6. Calidad media anual (año 2012) aniones, cationes y boro. Efluente UF y OI.

Parámetros

Semestrales

Muestra

UF/UV OI

FECHA 10.12.12 10.12.12

Ca2+

(mg/L) 86 0,90

Mg2+

(mg/L) 54,5 0,05

Na+(mg/L) 288 6,12

K+(mg/L) 32 0,70

SO42-

(mg/L) 84 0

CO3-2

(mg/L) 0 0

HCO3-(mg/L) 335 20

PO43-

(mg/L) 12,1 0,22

Cl-(mg/L) 480 11

B(mg/L) 0,93 0,38

Tabla 4.7. Calidad media anual (año 2012) efluente UF sales disueltas.

Parámetros

Anuales

Muestra

UF

FECHA 10.12.12

Mn2+

(mg/L) <0,05

Al3+

(mg/L) <0,05

Fe2+

(mg/L) 0,142

Pág. 49

g) Las limpiezas de membranas se realizan por medio de procesos

hidráulicos y químicos. Los reactivos químicos utilizados son: hipoclorito

sódico, ácido sulfúrico, bisulfito sódico, hidróxido sódico.

Pág. 50

5.- Conclusiones.

a) Se han identificado tres alternativas de tratamiento en la estación

regeneradora del agua residual de Rincón de León.

b) Alternativa 1. . Este tipo de tratamiento incluye proceso convencional

físico, químico y desinfección. La calidad del agua regenerada y

requerida para el Uso Urbano 1.2: Servicios (Riego zonas verdes,

baldeo de calles, sistema contra incendios, lavado industrial de

vehículos); y Uso Agrícola 2.1 (Riego de cultivos alimentación

humana);Uso Ambiental (Riego de campos de golf) .

c) Alternativa 2. Este tipo de tratamiento (TR-1) incluye proceso

convencional físico y químico, así como proceso no convencional a

través de membranas para UF. La calidad del agua regenerada y

requerida para el Uso Industrial 3.2 (Torres de evaporación y

condensadores evaporativos); Urbano 1.1 (Riegos de jardín privados y

descarga aparatos sanitarios); Ambiental 5.2 (Recarga de acuíferos por

inyección directa).

d) Alternativa 3. Este tipo de tratamiento incluye proceso convencional

físico, químico y proceso no convencional con membranas para UF y OI.

Su uso es permitido para todas las usos y calidades exigidas en el RD

1620/2007.

e) La conversión media en el proceso de UF ha sido del 90% y en el

proceso de OI la media ha sido del 70%.

f) El consumo de energía en la ERA global identificado a sido de 2,61

kwh/m3 .

g) No se observa problemas relacionados con el SAR y la conductividad

para uso agrícola.

h) No se observa en los resultados de calidad del agua riesgo sanitario por

la presencia de materia orgánica ni por la calidad biológica.

i) El volumen anual de agua regenerada se ha contabilizado en 11 hm3.

Del total del agua regenerada el 63% es usada por la comunidad de

regantes de ARALVI y AGRICOP.

j) El periodo punta de producción de agua fue entre los meses de junio y

septiembre.

Pág. 51

6. Bibliografía.

Arias, M. F. C., Galvañ, P. V., & Beneyto, M. S., 2011. Manipulación de

agua de consumo humano en plantas de ósmosis inversa. Universidad

de Alicante. Asano, T. (Editor) (1998). Wastewater Reclamation and Reuse. Vol. 10.

Water Quality Management Library. Technomic Publishing Inc.

Lancaster, PA EE.UU.

Benito, M. B., Lafuente, M. C., Romero, A. O., & Álvarez, M. R. Diseño

de una Desaladora de Agua de Mar de 60.000 m3/día con Pre-

tratamiento de Ultrafiltración. (http://www.eoi.es/savia/documento/eoi-

48415/diseno-de-una-desaladora-de-agua-de-mar-de-60000-m3dia-con-

pretratamiento-de. Agosto 2013

Blasco, J., 2012. Singapur, un modelo de éxito con reservas: de la

ciudad-estado a la ciudad-empresa. Urban Networks. (http://urban-

networks.blogspot.com.es/2012/12/singapur-un-modelo-de-exito-

con.html. Agosto 2013)

Bueno, I., & Ribes, M., 2011. Aplicación del proceso de ósmosis inversa

al tratamiento de agua salobre. Estudio técnico-económico. Córdova, J. 2008. Diagnostico de la Reutilización del Agua en España.

CEDEX.

Delgado, S. (2011). Evaluación de tecnologías potenciales de reducción

de la contaminación de las aguas de canarias (tecnoagua). Proyecto

Universidad de La laguna.

EPSAR, Memoria de Gestión 2012. Explotación, Depuración y

Reutilización.

FAO, 2013a. Informe Sobre Temas Hídricos. Reutilización del agua en la

agricultura ¿Beneficios para todos? Nº 35. ISBN 978-92-5-306578-3.

Roma.

González, P. M., 2012. Desalación de Aguas Mediante Ósmosis Inversa.

ISBN 9788496709966. MADRID.

Juárez Sánchez-Rubio, C. (2008). Avance y repercusión del regadío

sostenible en las zonas rurales de Alicante: reto y oportunidades.

Gómez, I., 2013. Apuntes de Calidad del Agua Agricola (U. Califormia

1974).

López-Ramírez, J. A., Sales, D., & Quiroga Alonso, J. M. (2004).

Influencia del nivel de pretratamiento de un efluente secundario sobre

las membranas de una unidad de ósmosis inversa. Calidad del

Pág. 52

permeado y costes del proceso. Ingeniería del agua, 2004, vol. 11, núm.

1.

Lora, J., 2011. Apuntes Máster Gestión Sostenible y Tecnologías del

Agua – Tipos de Membranas y Utilización.

Macías Sánchez, A. (2013). Evaluación de procesos de ultrafiltración por

membranas como pre-tratamiento de osmosis inversa. Aplicación a

aguas salobres como el río Llobregat.

MAGRAMA, 2010. Plan Nacional de Reutilización de Aguas. Versión

Preliminar.

Melgarejo, J. (2009). Efectos ambientales y económicos de la

reutilización del agua en España. CLM Economía, 15, 245-270.

Meier, P.; Salehi, F.; Kazner, C.; Wintgens, T.; Melin, T. Ultrafiltration

with precoagulation in drinking water, Techeau (2006) Report

(Deliverable D.5.3.4).

Mujeriego, R. (2005). La reutilización, la regulación y la desalación de

agua. Ingeniería y Territorio, 72, 16-25.

Mujeriego, R. (2008). LA REUTILIZACIÓN PLANIFICADA DEL AGUA

Aspectos reglamentarios, sanitarios, técnicos y de gestión. Mujeriego, R., 1990, Riego con agua residual municipal regenerada.

Manual práctico, Universidad Politécnica de Catalunya y Generalitat

de Catalunya, Barcelona, España.

Mulder, M., 2000. Basic Principles of Membrane Technology. Kluwer

Academic Pub.

Olcina C.J., Moltó M.E., 2010. Recursos de agua no convencionales en

España: Estado de la cuestión, 2010.

Paulson, L., 2013. ¿EN DÓNDE SE PRACTICA LA MAYOR

REUTILIZACIÓN DE AGUA? Water Research & Reports.

(http://www.rwlwater.com/water-reuse-in-biofuel-production/?lang=es.

Agosto 2013)

Prats, D. & Melgarejo, J. 2006. Desalación y reutilización de aguas.

Situación en la provincia de Alicante, Fundación COEPA, Alicante.

Ramalho, R. S., Lora, F. D., & Jiménez Beltrán, D. (1996). Tratamiento

de aguas residuales. Reverté.

Rajindar, S. (2005). Hybrid Membrane Systems for Water Purification:

Technology, Systems Design and Operations.

Vargas, J.C., 2008. Potabilización de aguas superficiales mediante el

proceso de ultrafiltración con membranas arrolladas en espiral. Editorial

de la Universidad de Granada.

Pág. 53

Sanz, B. M., Moreno, J. M., & Rico, D. P. (2010). La eficiencia

económica de la reutilización del agua depurada en Alicante. In Anales

economia aplicada 2010 (p. 61).

Susial, P., & Soriano, E., 2001. Ensuciamiento de membranas en plantas

de ósmosis inversa. INGENIERIA QUIMICA-MADRID-, 33(385), 109-

116. Trapote, A, 2013. Tipos de Tratamiento Terciario. Apuntes de Máster

UA.

Zarzo, D. & Candel, R., 2009. Experiences on desalination of different

brackish water. In IDA World Congress(pp. 7-12).

Pág. 54

7. ANEXOS.

Se entregaran adjunto a este documento en formato digital, datos de

producción como de analítica del agua de la ERA – RL.