radioactividad y medioambiente. - unlp

51
Radioactividad y Medioambiente. Dr. Leonardo Errico Dra. Luciana Montes Departamento de Física, Facultad de Ciencias Exactas - UNLP radioactividadymedioambiente@ gmail.com

Upload: others

Post on 25-Jul-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Radioactividad y Medioambiente. - UNLP

Radioactividad y Medioambiente.

Dr. Leonardo ErricoDra. Luciana Montes

Departamento de Física, Facultad de Ciencias Exactas - [email protected]

Page 2: Radioactividad y Medioambiente. - UNLP

El núcleo

Page 3: Radioactividad y Medioambiente. - UNLP

Esquema de niveles de energía atómicos

9/2+

111In

EC

7/2+ 0.12 ns

171keV

245

keV

85 ns

estable

5/2+

1/2+

2.83 d

111Cd

2

1

El núcleo

Esquema de niveles de energía nucleares

El núcleo

Page 4: Radioactividad y Medioambiente. - UNLP

El núcleo

Cada átomo contiene un núcleo extremadamente denso con carga positiva, mucho más pequeñoque el átomo pero que contiene la mayor parte de su masa.

Describiremos algunas propiedades generales importantes de los núcleos y de la fuerzanuclear que los mantiene unidos.

La estabilidad o inestabilidad de un núcleo: competencia entre la fuerza nuclear de atracciónentre protones y neutrones y las de repulsión eléctrica entre protones.

Los núcleos inestables decaen o se desintegran, transformándose en forma espontánea enotras estructuras, a través de diversos procesos de decaimiento.

Las reacciones nucleares que alteran las estructuras pueden inducirse también mediante elimpacto de una partícula o de algún núcleo sobre otro núcleo.

Page 5: Radioactividad y Medioambiente. - UNLP

❖ materia: átomos, unidos entre sí por enlaces químicos

NAZ X

El núcleo

❖ átomo: electrones + núcleo

❖ núcleo: neutrones + protones

❖ N = número de neutrones

Z = número de protones (número atómico)A = N +Z (número másico)

Page 6: Radioactividad y Medioambiente. - UNLP

La unidad de masa atómica (uma) se define como:

1/12 parte de la masa de un átomo de 12C.

El núcleo

Un mol de 12C contiene un número de Avogadro de átomos (6,02x1023 átomos) y tiene unamasa exactamente igual a su peso atómico.

Entonces:

masa de un átomo de 12C =12 g/6,02 x 1023 =1,99x10-23 g/átomo

1 u = 1,66053886 x 10-27 kg

E=mc2 1 uma = 931,48 MeV

Page 7: Radioactividad y Medioambiente. - UNLP

me = 9,109x10-31 kg = 0,000549 uma

mp = 1,672x10-27 kg = 1,007594 uma

mn = 1,675x10-27 kg = 1,008986 uma

El núcleo

Page 8: Radioactividad y Medioambiente. - UNLP
Page 9: Radioactividad y Medioambiente. - UNLP
Page 10: Radioactividad y Medioambiente. - UNLP

❖ Isótopos: átomos con igual Z y diferente A y N

Elemento mezcla natural de isótopos

NAZ X

I53

132

79

Hg80

204

Pb82

204

14

30

16 P15

31

16S16

32

16

I53

131

78

El núcleo

❖ Isóbaros: igual A diferente Z

❖ Isótonos: igual N, diferente A y Z

❖ Isómeros: igual N, A y Z, diferentes estados energéticos (t1/2 > ms)

137mBa, 137Ba

Page 11: Radioactividad y Medioambiente. - UNLP

El núcleo

Page 12: Radioactividad y Medioambiente. - UNLP

Composición de algunos nucleídos

El núcleo

Page 13: Radioactividad y Medioambiente. - UNLP

Masas de átomos neutros, para algunos nucleídos ligeros.

El núcleo

Page 14: Radioactividad y Medioambiente. - UNLP

La estructura electrónica de un átomo, que es la responsable de sus propiedades químicas,está determinada por la carga Ze del núcleo.

El núcleo

Los diversos isótopos de un elemento suelen tener propiedades físicas lígeramente diferentes,como sus puntos de fusión y de ebullición, y sus velocidades de difusión.

Ejemplo: Los dos isótopos del U, 235U y 238U, se separan a escala industrial en el hexafluorurode uranio (UF6) aprovechando las distintas velocidades de difusión en la fase gaseosa.

Page 15: Radioactividad y Medioambiente. - UNLP

R = radio (electromagnético)t = espesor de la superficie

Experimentos de dispersión de neutrones

R = radio (fuerza nuclear)

Experimentos de dispersión de electrones

Tamaño, forma y otras propiedades

Tamaño nuclear

R=(1.07±0.02).A1/3 fm

t=2.3±0.3 fm

1.4A1/3 fm

Page 16: Radioactividad y Medioambiente. - UNLP

Densidad nuclear

Tamaño, forma y otras propiedades

Page 17: Radioactividad y Medioambiente. - UNLP

Tamaño, forma y otras propiedades

Page 18: Radioactividad y Medioambiente. - UNLP

3453

0 1012.13

4mAx

ArV −==

Tamaño, forma y otras propiedades

la densidad es la misma en todos los núcleos

= 1.518 kg/m3

12C R= 2,7 fm

= m/ V = m/ (4/3 ) R3 = 12 uma x 1,66x10-27 (kg/uma)/ (4/3 ) x (2,7x10-15 m)3

=2x1017 kg/m3

R=r0.A1/3

Page 19: Radioactividad y Medioambiente. - UNLP

Tamaño, forma y otras propiedades

Experimento de Stern y Gerlach, Uhlenbeck y Goudsmit, 1925. Cada electrón “rota” alrededorde su eje (espín) y entonces contribuye tanto al momento angular como al momento dipolarmagnético del átomo.

El concepto de espín del electrón fue necesario para describir la estructura fina de losespectros ópticos, la dispersión de partículas β por electrones, etc.

Espines y momentos magnéticos nucleares.

Page 20: Radioactividad y Medioambiente. - UNLP

Tamaño, forma y otras propiedades

Análogamente, se encontró empíricamente que el momento angular nuclear jugaba unimportante rol en una variedad de fenómenos moleculares, atómicos y nucleares.

Chadwick, 1932: descubrimiento del neutrón.

Como el neutrón aun no había sido postulado era imposible establecer como los momentosangulares de los constituyentes podrían combinarse para producir el momento angular total.

Page 21: Radioactividad y Medioambiente. - UNLP

Tamaño, forma y otras propiedades

El protón y el neutrón tienen el mismo espín 1/2, igual que el electrón, y obedecen el principiode exclusión de Pauli.

Cada neutrón y protón en el núcleo posee momento angular de espín:

El momento angular total de un núcleo, respecto de su propio eje, es medible.

El movimiento complejo de los nucleones dentro del núcleo no es observable directamente.

Además del espín, puede existir la cantidad de movimiento angular orbital asociada con elmovimientos de los nucleones dentro del núcleo. Ambos se acoplan para dar lugar al momentoangular nuclear total

Page 22: Radioactividad y Medioambiente. - UNLP

Tamaño, forma y otras propiedades

La cantidad de movimiento angular total del núcleo es la suma vectorial de las cantidades demovimiento angulares de espín y orbital individuales de todos los nucleones. Su magnitud es

Cuando el número total de nucleones A es par, J es un entero

Cuando es A es impar, J es semientero.

Todos los nucleidos para los cuales tanto Z como N son pares tienen J = 0.

(lo cual sugiere que un apareamiento de partículas con componentes de espín opuestos puede ser importanteen la estructura nuclear).

La forma en la cual se acoplan j y s de los nucleones individuales para dar lugar a J

no puede ser fácilmente descripta.

Page 23: Radioactividad y Medioambiente. - UNLP

Nomenclatura de los estados de los nucleones

De acuerdo al principio de exclusión de Pauli, dos protones no pueden tener en un núcleo elmismo conjunto de valores para sus números cuánticos orbitales y de spin:

n, l, ml, ms

Recordar que los nucleones cumplen el principio de exclusión (no puede haber dos protones o dos neutrones con el mismo conjunto de números cuánticos).

Un protón y un neutrón pueden tener iguales números cuánticos ya que difieren en la carga.

o, alternativamenten, l, j, mj

ν, l, j, mj

Tamaño, forma y otras propiedades

Es conveniente describir los estados de las partículas nucleares en analogía con los estados delos electrones atómicos en el campo central del núcleo.

Este nivel nuclear puede ser el fundamental o un nivel excitado.

Page 24: Radioactividad y Medioambiente. - UNLP

Asociado con la cantidad de movimiento angular nuclear hay asociado un

momento magnético nuclear.

Tamaño, forma y otras propiedades

Cuando se describieron los momentos magnéticos electrónicos se introdujo el magnetón deBohr como unidad del momento magnético:

se puede definir una cantidad análoga, se define el magnetón nuclear

Ya que la masa del protón es 1836 veces mayor que la masa del electrón, el magnetón nucleares 1836 veces menor que el magnetón de Bohr.

Page 25: Radioactividad y Medioambiente. - UNLP

Tamaño, forma y otras propiedades

Pese a no tener carga, el neutrón presenta una magnitud correspondiente:

Protón: carga positiva, µ paralelo a S.

Neutrón: µ antiparalelo a S, como cabría esperar para una distribución de carga negativa.

Estos momentos magnéticos anómalos se deben a que en realidad el protón y el neutrón no son partículas fundamentales, sino que están hechos de partículas más simples llamadas quarks

Cuando un núcleo se coloca en un campo magnético externo hay una energía de interacciónU= µ.B

Page 26: Radioactividad y Medioambiente. - UNLP

Protones en un campo magnético con dirección z y 2.30 T de magnitud.a) ¿Cuál es la diferencia de energía entre un estado con la componente z de cantidad demovimiento angular de un protón paralela al campo, y uno con la componente antiparalela?

Un ejemplo de aplicación. Resonancia magnética nuclear

b) Un protón puede hacer una transición de uno a otro de esos estados emitiendo oabsorbiendo un fotón de energía igual a la diferencia de energías entre los dos estados ¿Cuáles la frecuencia y la longitud de onda de ese fotón?

Page 27: Radioactividad y Medioambiente. - UNLP

Esta frecuencia queda a la mitad de la banda FM de radio.Cuando H se coloca en un campo magnético de 2.30 T y se irradia con estafrecuencia, pueden detectarse giros de espín de los protones por laabsorción de la energía de la radiación.

Un ejemplo de aplicación. Resonancia magnética nuclear

Campo magnético de 2.30 T: es suficiente para levantar un automóvil.

Si bien RMN es segura si se utiliza correctamente, el campo magnético intenso requieremuchos cuidados: evitar la presencia de materiales ferromagnéticos cerca del aparato RNM.

Han ocurrido varios accidentes, como en el año 2000, cuando una pistola escapó de la mano deun guardia y se disparó al golpear contra la máquina.

Page 28: Radioactividad y Medioambiente. - UNLP
Page 29: Radioactividad y Medioambiente. - UNLP

Formas nuclearesQ > 0 : elipsoide prolado. Q = 0 : distribución esférica.Q < 0 : elipsoide oblado.

Tamaño, forma y otras propiedades

Las unidades de Q son las de área. La unidad se denomina “barn”:

22410barn1 cm−=

Momento cuadrupolar nuclear, Q.

Page 30: Radioactividad y Medioambiente. - UNLP

Tamaño, forma y otras propiedades

Page 31: Radioactividad y Medioambiente. - UNLP

No todas las combinaciones de neutrones y protones forman núcleos estables

Sistemática de Z y N

De unos 2700 nucleídos conocidos sólo 264 son estables

158 Z par N par49 Z impar N par53 Z par N impar4 Z impar N impar

Los demás son inestables. Se desintegran para formar otros nucleídos, emitiendo partículas yradiación electromagnética (radioactividad).

La escala de tiempos de esos procesos de decaimiento va desde una pequeña fracción demicrosegundo hasta miles de millones de años

Page 32: Radioactividad y Medioambiente. - UNLP

Gráfica de Segré.

Sistemática de Z y N

Page 33: Radioactividad y Medioambiente. - UNLP

Cada línea azul perpendicular a la línea N=Zrepresenta un valor específico del número másico A.

La mayor parte de las líneas de A constante sólo pasanpor uno o dos nucleídos estables: en general hay unintervalo muy pequeño de estabilidad para undeterminado número másico.

Sistemática de Z y N

La relación N/Z aumenta en forma gradual con A hastaaproximadamente N/Z =1.6.

Para elementos livianos, estables cuando N~Z.

Page 34: Radioactividad y Medioambiente. - UNLP

A la derecha de la región de estabilidad:Exceso de protones en relación a los neutrones.Gana la repulsión, y el núcleo se divide.Decaen conviertiendo los protones en neutrones.

Sistemática de Z y N

A la izquierda de la región de estabilidad:Exceso de neutrones en relación a protones.La energía asociada con los neutrones “desbalanceada” conrespecto a la de los protones.Decaen convirtiendo los neutrones en protones.

No hay nucleídos estables con A>209 o Z > 83.Un núcleo es inestable si es demasiado grande.No hay nucleído estable con Z=43 (Tc) o 61 (Pm, prometio).

Page 35: Radioactividad y Medioambiente. - UNLP

❖ masa del átomo ≠ masa del núcleo+masa e- Be-

Bátomo = MN c2 + Z.me c

2 – MA c2

BN = Z mp c2 + N mn.c2 – MN c2

Bátomo keV; BN MeV

Masas y energía de enlace

El núcleo más simple es el H.Después viene el núcleo 2H (deuterio).

Una medida de lo fuertemente unido que está núcleo es la energía de enlace por nucleón, EB/A.2H: (2.224 MeV)/2 = 1.112 MeV/nucleónMenor energía de enlace por nucleón de todos los núcleidos.

Page 36: Radioactividad y Medioambiente. - UNLP

BN A

BN/A = 8.3 MeV

BN/A = cte

Saturación de las fuerzas nucleares

Casi todos los nucleídos estables, desde los más ligeros hasta los más masivos, tienen energías de enlace del orden de 7 a 9 MeV por nucleón.

Masas y energía de enlace

Page 37: Radioactividad y Medioambiente. - UNLP

Gráfica tridimensional de Segré para nucleidos

ligeros hasta Z=22 (Ti).

Sistemática de Z y N

Page 38: Radioactividad y Medioambiente. - UNLP

La fuerza que une a los protones y neutrones en el núcleo, que compensa repulsión eléctrica delos protones, se denomina fuerza nuclear fuerte.

La fuerza nuclear

- Independiente de la carga; neutrones y protones se enlazan y el enlace es igual para los dos.

- Corto alcance, del orden de las dimensiones nucleares, 10-15 m. No afecta a los electrones.Mucho más intensa que la eléctrica.

- La densidad nuclear y energía de enlace por nucleón casi constante para A grandes:El nucleón sólo interactúa con sus vecinos inmediatas, no con todos los nucleones.Saturación. Diferente a la fuerza eléctrica, cada protón repele a todos los demás.

- Favorece el enlace de pares de protones o neutrones con espines opuestos, y de pares depares: un par de protones y un par de neutrones, cada uno con espín opuesto. El núcleo de He(dos protones y dos neutrones) es un núcleo muy estable para su A.

Page 39: Radioactividad y Medioambiente. - UNLP

El estudio de la estructura nuclear es más complejo que el de átomos con muchos electrones.Dos interacción diferentes (eléctrica y nuclear).Todavía no se comprende por completo la fuerza nuclear.

Muchas interacciones, pero no las suficientespara un tratamiento estadístico.

Dos modelos sencillos para la estructura nuclear.

La fuerza nuclear

Page 40: Radioactividad y Medioambiente. - UNLP

Modelo de gota líquida

1928, George Gamow y desarrollado por Niels Bohr, es resultado de la observación de quetodos los núcleos tienen casi la misma densidad.

Trata a los nucleones como si fueran moléculas en una gota de líquido. mantenidas juntas porinteracciones de corto alcance y por efectos de tensión superficial.

Interactúan fuertemente entre sí a corta distancia. Colisiones frecuentes al moverse dentrodel núcleo (similar al movimiento de agitación térmica de las moléculas en una gota de líquido).

La fuerza nuclear

Page 41: Radioactividad y Medioambiente. - UNLP

Efecto de volumen. La energía de enlace por cada nucleón es aproximadamente constante eigual en todos los núcleos: la fuerza nuclear se debe únicamente a unos cuantos de sus vecinosmás cercanos y no a todos los otros nucleones que existen en el núcleo.

La energía de enlace total del núcleo es proporcional a A y, por lo tanto, al volumen nuclear.

La contribución de la energía de enlace a todo el núcleo es igual a C1A (C1 es una constante aajustar a partir de datos experimentales)

La fuerza nuclear

Page 42: Radioactividad y Medioambiente. - UNLP

La fuerza nuclear

Número de nucleones superficiales: proporcional al área de la superficie nuclear (4πr2,modelado como una esfera). R es proporcional a A1/3 entonces el término de superficie es:

-C2A2/3

donde C2 es una segunda constante a ajustar.

Efecto de superficie. Los nucleones de la superficie de la gota tienen menos vecinos que los delinterior, por lo cual tienen menor energía de enlace en una cantidad proporcional a su número.

Page 43: Radioactividad y Medioambiente. - UNLP

La fuerza nuclear

-C3Z(Z-1)/A1/3

donde C3 es también una constante ajustable.

Repulsión coulombiana: Cada uno de los Z protones repele a todos los demás (Z-1) protones.

La energía potencial total de repulsión eléctrica es proporcional a Z(Z-1), e inversamenteproporcional al R y, por consiguiente, a A1/3 .

Término negativo, porque los nucleones están menos fuertemente enlazados de lo que estaríansi no hubiera repulsión eléctrica.

Page 44: Radioactividad y Medioambiente. - UNLP

La fuerza nuclear

-C4(A-2Z)2/A

Efecto de simetría: El núcleo debe tener un equilibrio entre las energías asociadas con losneutrones y los protones.

N cercano a Z para A pequeña y N es mayor que Z (pero no mucho mayor) cuando A es grande.

Se necesita un término negativo de energía, que corresponda a la diferencia N-Z.

La mejor correlación con las energías de enlace observadas se obtiene si este término esproporcional a (N-2Z)2/A. Si usamos N=A-Z, este término se puede expresar en la forma

Page 45: Radioactividad y Medioambiente. - UNLP

La fuerza nuclear

El mejor ajuste se logra si este término tiene la forma:

±C5A-4/3

la fuerza nuclear favorece el apareamiento de protones y neutrones.

Término que debe cumplir con:

Es positivo (hay más enlace) si Z y N son pares.

Es negativo (menos enlace) si Z y N son impares.

Es cero si Z o N es impar.

Page 46: Radioactividad y Medioambiente. - UNLP

La fuerza nuclear

Ejemplo: 80Br.La energía de enlace calculada es 696.1 MeV y la medida es 694.2.

Page 47: Radioactividad y Medioambiente. - UNLP

Modelo de capas.

El modelo de la gota describe relativamente bien el comportamiento general de las energíasde enlace nuclear. Pero, al estudiarlas en detalle aparecen problemas.

La fuerza nuclear

Picos uniformemente espaciados no descritos por la fórmula semiempírica anterior.Picos en valores de N o Z, que se conocen como números mágicos: Z+N =2, 8, 20, 28, 50, 82

Page 48: Radioactividad y Medioambiente. - UNLP

La fuerza nuclear

Estudios de alta precisión de los radios nucleares muestran desviaciones con la expresiónsimple para R y picos en la curva de R Vs. N para los números mágicos.

Cuando se grafica el número de isótonos estables en función de N, se presentan picos en lagráfica, otra vez en los números mágicos.

Mediciones de diferentes propiedades nucleares muestran omportamientos anómalos en losnúmeros mágicos

Page 49: Radioactividad y Medioambiente. - UNLP

La fuerza nuclear

Los picos en las gráficas experimentales recuerdan los picosrelativos a la energía de ionización de los átomos, que sepresentan debido a la estructura en capas del átomo.

modelo de capas (o modelo de partículas independientes):desarrollado de forma independiente por María Goeppert-Mayer en 1949 y Hans Jensen en 1950.

Capas similares a las atómicas pobladas por nucleones. Estados de energía cuantizados, pocascolisiones entre ellos.

premio Nobel de física 1963 por su trabajo extraordinariopara la comprensión de la estructura del núcleo

Los estados cuantizados ocupados por los nucleones pueden describirse mediante un conjuntode números cuánticos. El protón y el neutrón tienen espín ½ y cumplen el principio de exclusión.

Page 50: Radioactividad y Medioambiente. - UNLP

La fuerza nuclearLa fuerza nuclear

Fuerte componente de repulsión que impide que los nucleonesse acerquen a distancias menores de 0.4 fm.

Diferencia entre interacciones n–p y p–p: la energía potencialp–p es la suma de interacciones nucleares y coulombianas.

A distancias menores a 2 fm, la energía potencial p–p y la n–pson prácticamente idénticas.Para distancias mayores a 2 fm el potencial p–p presentaconuna barrera de energía positiva con un máximo en 4 fm.

La altura del pico de la curva p–p se ha multiplicado por 10 a fin depoder apreciar la diferencia entre curvas.

Page 51: Radioactividad y Medioambiente. - UNLP

La fuerza nuclear