operaciones o+m transmisión y radio

131
Operacione s O+M Transmisió n y Radio FUNDAMENTOS DE LA TECNOLOGIA 3G (UMTS) 1 Manuel Quesada Castillo

Upload: chavez

Post on 12-Jan-2016

31 views

Category:

Documents


2 download

DESCRIPTION

Operaciones O+M Transmisión y Radio. FUNDAMENTOS DE LA TECNOLOGIA 3G (UMTS). Manuel Quesada Castillo. 1. Operaciones O+M Transmisión y Radio. Nombre Curso: Fundamentos a la Tecnología Móvil 3G Nº Horas: 12. Conocimientos necesarios para el curso: - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

FUNDAMENTOS DE LA

TECNOLOGIA 3G (UMTS)

1Manuel Quesada Castillo

Page 2: Operaciones O+M Transmisión y Radio

Nombre Curso: Fundamentos a la Tecnología Móvil 3G

Nº Horas: 12

• Conocimientos necesarios para el curso:– Conocimientos básicos de Radio Y

Redes de Telecomunicación

• Objetivos del Curso:– Adquirir conocimientos avanzados

sobre las características y funcionamiento de las Redes de Telefonía Móvil 3G actuales

Operaciones

O+M Transmisión y Radio

2Manuel Quesada Castillo

Page 3: Operaciones O+M Transmisión y Radio

INDICE

• 01 FUNDAMENTOS DE TELEFONÍA MÓVIL CELULAR

• 02 INTRODUCCION A LA TECNOLOGÍA UMTS• 03 SURGUIMIENTO DEL 3G• 04 ARQUITECTURA DE UNA RED MOVIL• 05 UMTS: NUEVA TECNOLOGIA MOVIL• 06 PROCESO DE ESTANDARIZACION• 07 SERVICIOS Y APLICACIONES 3G• 08 FUNDAMENTOS DE LA TECNICA CDMA• 09 BANDAS DE FRECUENCIAS DEL 3G: TDD Y FDD• 10 TIPOS DE CANALES• 11 GESTION DE RECURSOS• 12 HSxPA Y EVOLUCION DE FUTURO

Operaciones

O+M Transmisión y Radio

3Manuel Quesada Castillo

Page 4: Operaciones O+M Transmisión y Radio

01. FUNDAMENTOS DE TELEFONIA MOVIL CELULAR

Operaciones

O+M Transmisión y Radio

4

CURSO EE.BB DE UMTS ERICSSON

• Comunicaciones Móviles aparecen hace poco más de un siglo– Despegue gracias a la telefonía celular– Usan el espectro UHF en la banda 300-3000

MHz

• Telefonía Celular– Distintas tecnologías Evolución Velocidad

y Calidad de Servicio– Desarrollos Tecnológicos Agrupados en

torno al concepto de generación– Una generación se asocia a una tecnología de

transmisión y a un determinado conjunto de servicios

• 1G Tecnología Analógica• 2G Transmisión Digital• 3G Provisión de Servicios Multimedia

Manuel Quesada Castillo

Page 5: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

5

CURSO EE.BB DE UMTS ERICSSON

• En vez de cubrir una zona con un solo transmisor de gran potencia se introducen muchos transmisores de menor potencia que dan cobertura a una zona limitada– + Permite mayor capacidad– + Menor Potencia de los Terminales (y por tanto menor gasto de

batería)– - Es necesario controlar las interferencias entre células– - Complica la Gestión de la Movilidad Es necesario gestionar el

traspaso entre células (handover)

• Se Divide el espacio de cobertura en una serie de células o celdas cada una de las cuales está soportada por una estación base– Incorpora la antena, transmisores y controladores necesarios

para proporcionar comunicación radio en el espacio geográfico asociado a la celda

– GSM Cada celda tiene asociado un conjunto de frecuencias sobre las que opera

• Técnicas de Acceso al Medio– TDMA Las transmisiones de cada usuario tienen reservado un

intervalo temporal– CDMA La transmisión de cada usuario es multiplicada por un

código que le permite diferenciarse de las transmisiones de otros usuarios

– FDMA A cada usuario se le asigna una frecuenciaManuel Quesada Castillo

Page 6: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

6

CURSO EE.BB DE UMTS ERICSSON

• Los principales objetivos de los sistemas de comunicaciones móviles celulares son:– Proporcionar acceso a las redes de comunicaciones

públicas– Permitir la movilidad de los usuarios– Proporcionar un servicio continuo en las zonas de

cobertura– Proporcionar un grado de servicio aceptable

• Los principales problemas que presentan los sistemas móviles– El espectro disponible es limitado

• Situado entre 800 y 2100 MHz– La presencia de otros usuarios genera interferencias

que reducen la capacidad y/o la calidad del servicio– La cobertura que proporciona una estación radiante

está limitada por la distancia a la misma• La solución pasa por dividir el área de cobertura en

células– Otros sistemas de comunicaciones radio (sean

interactivos como LMDS o MMDS, p de distribución de la señal de radio/TV) son también sistemas celulares

Manuel Quesada Castillo

Page 7: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

7

CURSO EE.BB DE UMTS ERICSSON

CONCEPCIÓN INICIAL

Maximizar la zona de cobertura

-Potencia de las estaciones base (BS) muy elevada.-

- Potencia de los móviles (MS) elevada. “handicap”

---Eficiencia en términos de número de canales por

unidad de superficie es pequeña-Un número de usuarios alto requiere un anchode banda muy grande.

-Fragmentación en células de la zona a cubrir.-Potencia de las BS y los MS reducida.-Reuso de frecuencias.

PRINCIPIOS BÁSICOS:

-Estructura pensada para reducir la interferencia cocanal. REQUIERE: -Asignación de frecuencias. -Gestión eficiente de los traspasos de llamadas

Eficiencia N canales

Superficie

N canales BW Total

BW Canal

Eficiencia=Superficie

N n canales

Manuel Quesada Castillo

Page 8: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

8

CURSO EE.BB DE UMTS ERICSSON

FICTICIA IDEAL REAL

Relación entre las coberturas ideales y reales.

Reutilización de Frecuencias

Manuel Quesada Castillo

Page 9: Operaciones O+M Transmisión y Radio

“Rehuso de frecuencias” limitación: f 2 Interferencias

f3 f7

f1 f4 f6

f2 f5 f3 f7

f1 f4 f6

f2 f5 f3 f7

f1 f4 f6

f5

“CLUSTER”: conjunto de células “Hand-off” que emplean frecuencias diferentes Limitación:Complica el control En este caso el cluster es de 7 células. de la red

Reutilizacion de FrecuenciasOperacion

es

O+M Transmisión y Radio

Manuel Quesada Castillo 9

Page 10: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

10

CURSO EE.BB DE UMTS ERICSSON

SECTOR 1

SECTOR 2SECTOR 3

120º

120º 120º

N

Sectorización

Manuel Quesada Castillo

•División de una célula en tres sectores diferentes con una amplitud de 120º cada uno

•Esto permite un mayor aprovechamiento de la banda de frecuencias disponible

•Mejor calidad y fiabilidad de las llamadas

•Disminuye la interferencia cocanal

•El radio de cobertura varia de 0.8 a 35Km (máximo)

•Se puede adaptar el radio de cobertura de cada sector individualmente

Page 11: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

11

CURSO EE.BB DE UMTS ERICSSON

A1

A3A2

B1

B3B2

D1

D3D2

C1

C3C2

B3B2

D1

D3D2

C1

C3C2

B1

A1

A3A2

B1

B3B2

D1

D3D2

C1

C3C2

DISTANCIA MINIMA 2:1

REUTILIZACION12 GRUPOS DE FRECUENCIAS

A1

A3A2

A1

A3A2

B1

B3B2

D1

D3D2

C1

C3C2

A1

A3A2

B1

B3B2

D1

D3D2

C1

C3C2

A1

A3A2

B1

B3B2

D1

D3D2

C1

C3C2

A1

A3A2

B1

B3B2

D1

D3D2

C1

C3C2

A1

A3A2

B1

B3B2

D1

D3D2

C1

C3C2

A1

A3A2

B1

B3B2

D1

D3D2

C1

C3C2

PATRON DE REUTILIZACION DE: 3 CELULAS(sectores) Y 4 ESTACIONES

Manuel Quesada Castillo

Page 12: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

12Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Evolución de la Telefonía

Móvil

Page 13: Operaciones O+M Transmisión y Radio

02. INTRODUCCION A LA TECNOLOGIA UMTS

El objetivo principal de esta unidad es proporcionar una visión general de la Tecnología 3G. En concreto conocer:

- Porque surge la Tecnología 3G- Limitaciones de los sistemas 2G y 2,5G- Ventajas de la Tecnología 3G. Mejora de las prestaciones de

las comunicaciones móviles tanto vocales como de datos- Presentación de cómo se estructura una red de Telefonía

Móvil: Conceptos básicos de la Tecnología GSM- Como la Técnica CDMA utilizada en UMTS, aprovecha el

espectro radioeléctrico de un modo más eficiente- Las bandas de frecuencias que utiliza y utilizará UMTS- Como son los servicios y terminales UMTS- El proceso de estandarización de la tecnología UMTS y las

diferentes versiones- Las previsiones de evolución en el mercado de la

Tecnología UMTS

Operaciones

O+M Transmisión y Radio

13Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 14: Operaciones O+M Transmisión y Radio

03. SURGUIMIENTO DE UMTSLas redes GSM/GPRS permiten a sus usuarios establecer

comunicaciones de voz y datos. Las comunicaciones de datos se realizan mediante la técnica de conmutación de paquetes, con la consiguiente mejora de eficiencia y velocidad, permitiendo a los usuarios permanecer siempre conectados (always on).

Sin embargo estas redes presentan una serie de limitaciones (Capacidad, velocidad, etc.) que hacen que sea prácticamente imposible dar cabida a todos los usuarios y a las necesidades de servicio que se esperan.

Por este motivo, los distintos agentes del sector de las comunicaciones móviles se pusieron a trabajar en el desarrollo de una nueva Generación de tecnología móvil, la 3G, de la cual el sistema UMTS forma parte.

Operaciones

O+M Transmisión y Radio

14Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 15: Operaciones O+M Transmisión y Radio

3.1. LIMITACIONES DE LOS SISTEMAS 2G Y 2,5G

La 3G móvil, y con ella el sistema UMTS, nace con el objetivo de superar las limitaciones de los sistemas GSM/GPRS para la prestación de servicios más complejos y avanzados. Estas limitaciones son las siguientes:

Estas limitaciones provocaron que los principales organismos normativos del sector de las comunicaciones móviles se plantearan el desarrollo de las tecnologías de 3G.

Operaciones

O+M Transmisión y Radio

15Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 16: Operaciones O+M Transmisión y Radio

• Problemas de capacidad: El crecimiento explosivo de la penetración de la telefonía móvil ha llevado a las redes GSM a estar cercanas a su límite de capacidad en determinadas zonas (ciudades, centros turísticos). La reutilización de de frecuencias lograda con la división celular y la técnica TDMA (junto a otras mejoras más sofisticadas) no es suficiente, por lo que se necesitan nuevas bandas de frecuencia.

• Velocidad de Transmisión de Datos limitada: En la práctica, el sistema GPRS permite alcanzar velocidades de Tx. De datos en torno a 30-40 Kbps, aunque es posible que sean mayores en un futuro cercano. Sin embargo, se han identificado servicios tan atractivos como la reproducción de música y de video que requieren velocidades bastante mayores para ser viables.

• Rigidez en la definición de servicios: En 2G y 2,5G el proceso es bastante rígido, ya que está muy ligado a las especificaciones técnicas de los sistemas, lo que permite poca diferenciación entre operadoras. Por otro lado, los servicios que se han ido incorporando al margen de las especificaciones de 2G, como por ejemplo WAP, han dado lugar a una cierta falta de homogeneidad en su funcionamiento.

• Mínimo Control de la Calidad de Servicio: Existen un conjunto de parámetros (ancho de banda, retardo, prioridad, etc.) que influyen en la calidad que percibe el usuario al recibir un servicio. Estos parámetros son poco controlables en las redes 2G y 2,5G.

Operaciones

O+M Transmisión y Radio

16Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 17: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

17Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

04. ARQUITECTURA DE UNA RED MOVIL

ISDN PSTN

GMSC

MSC MSC

BS BSBS BS

HP HPMS

SIG

SIG/MAP

N7

BS: Base Station (Estación Base)GMSC: Gateway MSC (Central MSC de cabecera)HP: Handportable equipment (Equipo portátil)ISDN: Red Digital de Servicios IntegradosMAP: Parte Aplicación MóvilMSC: Mobile Switching Center (Central de Conmutación del ServicioMóvil)MS: Mobile Station (Estación Móvil)N7: Sistema de Señalización Nº 7SIG: Señalización

RED TELEFÓNICA MÓVIL GSM (PLMN)

Page 18: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

18Manuel Quesada Castillo

Surge a principios de los 90

Sistemas de telefonía digital celulares orientados a transportar voz mediante conmutación de circuitos

Alta calidad de comunicación

Servicios de Valor Añadido

Roaming, Mensajes Cortos, Desvío de llamadas, Identificación del llamante,

Estándar Europeo GSM

(Global System For Mobile Communications)

Acceso múltiple por división de tiempos

Típicamente en la banda de los 900, 1800

850 y 1900 Mhz en América

Estándares Americanos

En EEUU y otros países a la 2G se la conoce como PCS (Personal Communications Systems)

TDMA (IS-136), típica evolución desde AMPS

Time Division Multiple Access

CDMAOne (IS-95 A/B)

Code Division Multiple Access

Estándar Japonés PDC (Personal Digital Cellular)

Segunda Generación (2G)

Page 19: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

19Manuel Quesada Castillo

Mayor eficiencia espectral (modulaciones más eficientes) y mejor protección frente a interferencias

Posibilidad de utilización de codificaciones de fuente más eficientes

Ejemplo: la voz en GSM se codifica a 13 Kbps ganándose capacidad frente a las redes analógicas

La digitalización del enlace radio aumenta la seguridad y se facilita la introducción de mecanismos adicionales de cifrado

Posibilidad de introducir nuevos servicios: SMS, GPRS, etc

Miniaturización de los terminales

Se reduce el tamaño y consumo de los componentes de los terminales pudiéndose aumentar el grado de integración

Ventajas de la digitalización de las redes móviles:

Segunda Generación (2G)

Page 20: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

20Manuel Quesada Castillo

GSM proporciona acceso a Datos mediante llamada conmutada CSD Circuit Switched DataEl usuario realiza una llamada para conectarse a la red móvilUna vez establecida se dispone de un canal vocal dedicado a la transmisión de datos durante el tiempo que dura esa llamada

Velocidad máxima 9600 bpsSe necesita un módem GSM conectado a un portátil o una PDA o bien un móvil GSM con capacidad de acceso WAP (todos en la actualidad lo tienen)La llamada del usuario se encamina por la red de conmutación GSM hasta los Servidores de Acceso Remoto (RAS), los cuales se encargarán de descolgar y establecer el nivel de enlace (PPP) con el usuario

Finalmente y una vez autenticado el usuario se le asignará una dirección IP

InconvenientesBaja velocidadExcesivo tiempo de establecimiento de conexiónDesperdicio de recursos radio y de conmutación ya que se utiliza un canal vocal, establecido permanentemente para transmitir datos

Tráfico de Datos Aleatorio y A ráfagasTarificación por tiempo de conexión y no por tráfico generado

Costes variables y no predecibles

La aparición de las redes 2.5G de conmutación de paquetes, como es el caso de GPRS, ha hecho caer en desuso el uso de GSM para transmitir datosLas redes 2.5G y 3G han surgido como respuesta a la necesidad de transmitir datos en redes móviles con una velocidad y coste aceptables

GSM (Transmisión de Datos)

Page 21: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

21Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

4.1. FUNDAMENTOS DEL SISTEMA GSM

A comienzos de los 90, la ausencia a nivel mundial de un sistema móvil digital común hizo que el sistema GSM se

expandiera hacia Europa del Este, África, Asia y Australia. EEUU, América del Sur y Japón adoptaron otros sistemas de telefonía móvil no compatibles con GSM (Global System for

Mobile Communications)

CRONOLOGIA:• 1982 – Constitución del grupo de trabajo GSM en la CEPT

(Conference Européenne des administrations des Postes et des Télécommunications).

• 1985 - La CEPT decide el plan de acción y plazos. La Comisión Europea acuerda que la norma que elabore el grupo GSM será adoptada en todos los países comunitarios.

• 1986 – Se propone el empleo de la banda de 900 MHz para GSM

• 1987 – Se acuerda que GSM sea un sistema digital y que emplee la técnica TDMA

• 1988 – El grupo GSM se convierte en una comisión del ETSI (European Telecommunications Standard Institute)

Page 22: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

22Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

CRONOLOGIA:• 1990 – Se cierra la Fase I de las especificaciones.

Validación de los sistemas implementados y primer congreso mundial GSM en Roma con 650 participantes

• 1991 - Primera llamada oficial GSM en el mundo (1 de julio)

• 1992 - Primera red GSM en el mundo (Finlandia). Primeras pruebas en la Expo de Sevilla

• 1993 - 13 operadoras en enero. Debido al considerable aumento de usuarios comienza a utilizarse adicionalmente la banda de 1800 MHz. Primeros acuerdos de itinerancia internacional

• 1994 - 32 operadoras en enero. Primera red en Afrecha (Sudáfrica). Lanzamiento de los servicios portadores de datos/fax de GSM fase 2. 69 operadoras en diciembre

• 1995 - 117 operadoras. Implementación de servicios de fax, datos e itinerancia de SMS. Se completa la estandarización de GSM fase 2 incluyendo la adaptación para GSM 1900 (PCS 1900). Primera red GSM 1900 en USA

Page 23: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

23Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

CRONOLOGIA:• 1996 - 120 operadoras en diciembre. Mas de 4 millones

de usuarios de GSM 1900 en USA y un total de 250 millones de GSM 900/1800/1900 en todo el mundo

• 2004 – 626 operadoras. Se alcanza la cifra de mil millones de usuarios a lo largo del primer cuatrimestre, finalizando el año con 1.268 millones

• 2005 – Finaliza el año con 670 redes comerciales en 200 países y 1.675 millones de clientes.

Page 24: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

24Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

• Funciones de movilidad de una Red Móvil:– Registro (attach)– Localización– Aviso (paging)– Traspasos (handover)– Itinerancia (roaming)– Abandono de la red (detach)• Roaming o itinerancia internacional: Permite recibir

y realizar llamadas en el extranjero sin cambiar de terminal y utilizar todos los servicios suscritos si están disponibles. Se caracteriza por el pago del tramo internacional de la llamada por parte del desplazado y por la posibilidad de elección de la operadora destino.

• Si en el país destino no hay tecnología GSM, la operadora puede prestar un terminal al cliente, desviando las llamadas desde el móvil original al prestado y en situaciones especiales sin cobertura se proporciona telefonía móvil por satélite.

Page 25: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

25Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

• Funciones de gestión de red– Operación y Mantenimiento (gestión de alarmas,

estadísticas, software de elementos de red, reclamaciones de clientes, etc)

– Gestión de abonados (facturación, atención al cliente)

• Gestión de los recursos radio– Asignación de frecuencias– Mediciones de señal– Saltos de frecuencia

Page 26: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

26Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

4.2. JERARQUÍA EN LA RED MÓVIL

• Zona de sistema: Es el nivel más alto, constituido por el área resultante de la unión de todas las zonas del mundo en las que se presta servicio GSM. El área de la zona GSM de España tiene un código, el MCC (Mobile Country Code), cuyo valor es 214.

• Zona de servicio PLMN: Es el área geográfica servida por un operador GSM. El código MNC (Mobile Network Code) de Telefónica Móviles España es el 07, el de Vodafone el 01 y el de Amena el 03.

• Zona de conmutación: Es la superficie controlada por un MSC, es decir, el conjunto de zonas de cobertura de estaciones base conectadas al mismo MSC.

Page 27: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

27Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

• Zona de servicio PLMN-GSM

Page 28: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

28Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

• Zona ó Área de localización (LA=Location Area) : Es el área dentro de la cual una estación móvil puede moverse libremente sin que se modifique su registro de localización. Comprende varias estaciones base. Cuando es necesario alertar a un móvil para pasarle un mensaje o una llamada entrante, se le avisa por las estaciones base de la zona de localización.

Page 29: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

29Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

• Cada móvil realiza una actualización de localización cuando accede a una nueva LA. Un mismo MSC puede controlar varias áreas de localización. El LAI es la identificación del área de localización. Consta de tres partes: el MCC, el MNC y el LAC.

Page 30: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

30Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

• Zona de celda o de estación base (CI): Es el área cubierta por una estación base, dentro de la cual un móvil puede conectarse vía radio a esa estación base. Si se utiliza cobertura sectorizada con 2 ó 3 sectores, se definen 2 ó 3 áreas de celda servidas por otras tantas estaciones base. Cada estación base se identifica mediante el CI (Cell Identity).

Page 31: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

31Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

• CGI (Cell Global Identificación). Incluye el MCC, MNC, LAC y CI. Ejem. 214-07-00201-

00781

Page 32: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

32Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

ARQUITECTURA DE LA RED GSM

La arquitectura de UMTS es igual que ésta en la parte de Núcleo de Red, y similar en la parte del subsistema Radio.

Page 33: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

33Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

BSS

NSS

OSS

GSM Agrupación de elementos en subsistemas

Subsistemas del GSM

Page 34: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

34Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

• SIM (Subscriber Identity Module)• Contiene la siguiente información del sistema GSM:

Parámetros como el IMSI, MSISDN y TMSI que identifican al abonado en la red, información de localización (identidad de área de localización LAI), algoritmos (algoritmos de autentificación A3 de obtención de la clave kc (A8) y de cifrado (A5)), autenticación para acceder al terminal (parámetros PIN, Personal Identification Number, PUK, Personal Unblocking Key) y a la red (ki), PLMN no autorizadas e información del usuario como la agenda, SMS recibidos y enviados, servicios GSM adicionales etc.

4.3. UNIDADES FUNCIONALES DEL SISTEMA

Page 35: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

35Manuel Quesada Castillo

• Estación móvil (MS, UE:User Equipment)• Es el equipo físico utilizado por el

usuario de GSM para acceder a los servicios proporcionados por la red a través de la interfaz Um. Se identifica por su IMEI (International Mobile Equipment Identity). Como equipo, la MS proporciona la plataforma física para el acceso pero es anónima y no puede funcionar con la red hasta que se personaliza mediante la inserción de una SIM (Subscriber Identity Module) donde figura, entre numerosas informaciones, la identidad del abonado, IMSI (International Mobile Subscriber Identity)

UNIDADES FUNCIONALES: MS

Page 36: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

36Manuel Quesada

UNIDADES FUNCIONALES:BTS• Estaciones base (BTS) • Constituidas por los equipos transmisores/receptores de

radio (transceptores), los elementos de conexión al sistema radiante (combinadores, multiacopladores, cables coaxiales), las antenas y las instalaciones accesorias (torres soporte, pararrayos, tomas de tierra, etc..). Debido a que funcionan en lugares donde no hay mantenimiento “in situ”, los equipos de BTS deben ser sencillos, fiables, duraderos y de coste moderado.

• La BTS maneja el interfaz de radio a la estación móvil.

Operaciones

O+M Transmisión y Radio

36Manuel Quesada Castillo

Page 37: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

37Manuel Quesada Castillo

UNIDADES FUNCIONALES:BSC• Controlador de estaciones base (BSC)• Elemento de red que se encarga de la gestión de

varias BTS en lo relativo a los recursos radio : asignación, utilización y liberación de las frecuencias, ciertos tipos de traspasos, control de potencia etc... También puede realizar ciertas funciones de conmutación

• Se interacciona con él a través del OMC para labores de operación y mantenimiento. También recoge todo tipo de estadísticas y alarmas tanto de su propio funcionamiento como de las BTS que controla para detectar posibles problemas en la red radio

Page 38: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

38Manuel Quesada Castillo

UNIDADES FUNCIONALES:TRAU• TRAU (Transcoder)• Es la unidad de

transcodificación/adaptación de velocidad

• En la interfaz Abis, cada canal de voz tiene una velocidad de 16 kbit/s mientras que en la interfaz A la velocidad es de 64 kbit/s. La TRAU se encarga de la conversión de velocidades para poder adaptar la velocidad entre ambas interfaces.

Page 39: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

39Manuel Quesada Castillo

UNIDADES FUNCIONALES:MSC• Centro de conmutación de móviles (MSC): • Es, en esencia, una central telefónica que realiza las

funciones de encaminamiento y conmutación de llamadas para las MS situadas en su demarcación. Además, proporciona las funciones adicionales necesarias para sustentar la movilidad y organizar la asignación de los recursos radioeléctricos al realizar los traspasos de llamadas entre BTS controladas por distintas MSCs• Las G-MSC (Gateway-MSC) son aquellas MSC dotadas de una funcionalidad adicional encargadas de dar acceso a redes externas a la propia PLMN.

• Otras MSCs incorporan funcionalidades más especializadas para el procesado y encaminamiento de los mensajes cortos (SMS-IW-MSC y SMS-G-MSC)

Page 40: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

40Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

• Registro general de abonados (HLR)

• Es una base de datos donde están inscritos todos los clientes de un operador, que se utiliza para la gestión de los abonados móviles. El HLR contiene información estática: toda la información administrativa de cada abonado (parámetros de identificación, servicios contratados, limitaciones de servicio) junto con los datos de localización del mismo (información dinámica: direcciones del VLR y del MSC e identidad temporal de la MS).

Page 41: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

41Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

• Registro de abonados itinerantes (VLR):

• Base de datos, asociada a un MSC, donde se almacena información dinámica (temporal) sobre los usuarios transeúntes en el área geográfica cubierta por la MSC. Cuando un MS itinerante entra en una zona de MSC, éste lo notifica al VLR asociado. El MS recibe una dirección de visitante que sirve para encaminar las llamadas destinadas a ese móvil.

• El VLR contiene otras informaciones necesarias para el tratamiento de las llamadas desde/hacia el móvil como los datos de los servicios contratados por el usuario, identificación completa del cliente, estado del terminal (apagado, registrado), restricciones...etc..

Page 42: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

42Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

• Centro de autentificación (AuC):

• Base de datos en donde se guardan las identidades IMSI de los clientes junto con la clave secreta de identificación ki de cada usuario, el cual tiene almacenada en la tarjeta SIM de su teléfono móvil una copia de ki.

• El AuC está asociado al HLR y proporciona la información necesaria para la validación de los usuarios por parte de la red.

Page 43: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

43Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

• Registro de identidad de equipos (EIR):

• Base de datos que contiene las identidades de los equipos móviles, IMEI (International Mobile Equipment Identity). El IMEI permite identificar cada terminal internacionalmente de forma unívoca. Incluye, junto a otra información, el código del fabricante y el número de serie del equipo. También se almacena en la memoria del terminal. Cuando un MS trata de realizar una llamada, el MSC consulta al EIR la validez del IMEI de ese equipo.

• Contiene tres tipos de listas:– lista blanca: terminales autorizados para el

acceso a la red– lista gris: terminales en observación (fallos,

irregularidades)– lista negra: terminales que tienen prohibido el

acceso a la red (por ejemplo por haber sido robados)

Page 44: Operaciones O+M Transmisión y Radio

05. UMTS: NUEVA TECNOLOGIA MOVILLa tecnología UMTS (Universal Mobile Telecommunications

System) nace con un objetivo muy claro: solucionar las limitaciones de los sistemas 2G y 2,5G, y de este modo, poder ofrecer servicios móviles más avanzados y atractivos.

El sistema UMTS requiere el despliegue de una nueva red, ya que introduce importantes cambios en los distintos subsistemas de sus predecesores de 2G y 2,5G, que hace que éstos no sean reaprovechables. Incluye desde nuevas antenas y estaciones base hasta nuevas centrales de conmutación en las siguientes fases.

Operaciones

O+M Transmisión y Radio

44Manuel Quesada Castillo

Estas novedades son significativas en el Subsistema de acceso radio:

• Nuevas bandas de frecuencia: Ayudan a superar los problemas de capacidad de los sistemas 2G y 2,5G.

• Nueva técnica de acceso compartido al medio, CDMA: Esta técnica permite un mayor aprovechamiento espectral y, por tanto, un aumento de la capacidad de la red.

En cambio, en el Subsistema de red troncal:

• Se conserva la filosofía de 2,5G, manteniendo la conmutación de circuitos para las comunicaciones vocales y la conmutación de paquetes para las comunicaciones de datos.

• También se requieren nuevos equipos e infraestructuras en este subsistema. Debido a la existencia de diferencias en los protocolos, codificadores y otros elementos definidos en UMTS.

CURSO EE.BB DE UMTS ERICSSON

Page 45: Operaciones O+M Transmisión y Radio

5.1. PRINCIPALES VENTAJAS DE UMTS

Por las razones anteriores se suele hablar de UMTS como una evolución/revolución respecto a GSM/GPRS: Evolución en el subsistema de red troncal y revolución en el subsistema de acceso radio.

La solución de 3G que adoptaron las operadoras GSM/GPRS es la tecnología UMTS. ¿Qué ventajas presenta UMTS respecto a GSM/GPRS?

Mayor Aprovechamiento Espectral: Gracias a la técnica de acceso compartido CDMA, UMTS consigue utilizar de un modo más eficiente cada frecuencia dando cabida a más usuarios simultáneos (incrementando por tanto la capacidad).

Operaciones

O+M Transmisión y Radio

45Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 46: Operaciones O+M Transmisión y Radio

Control de la Calidad de Servicio: Los usuarios UMTS podrán, antes de utilizar el servicio, definir los principales parámetros de calidad del mismo, como la velocidad mínima garantizada y el tiempo máximo que puede durar el servicio. Las operadoras pueden utilizar la calidad de servicio elegida como una nueva variable de facturación.

Operaciones

O+M Transmisión y Radio

46Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 47: Operaciones O+M Transmisión y Radio

Entorno de servicios amigable y consistente: Gracias a la capacidad avanzada VHE (Virtual Home Environment o Entorno Doméstico Virtual) que incorpora UMTS, los usuarios accederán de mismo modo a los distintos servicios de la operadora, independientemente del país y de la red en que se encuentren. Sus preferencias personales de acceso y uso de los servicios se mantendrán constantes en las distintas redes.

Definición de Servicios flexible: En las especificaciones de UMTS no se definen los servicios, sino únicamente las capacidades y estructuras sobre las que se apoyarán éstos (se define una arquitectura de servicios estándar). Esta forma de trabajar permite a las operadoras definir de forma más flexible y dinámica sus servicios utilizando las capacidades de la red.

Operaciones

O+M Transmisión y Radio

47Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON UMTS: NUEVA TECNOLOGÍA MÓVIL

Page 48: Operaciones O+M Transmisión y Radio

Altas Velocidades de Transmisión deDatos: Como se puede ver en la tabla, en UMTS se podrán alcanzar mucho más altas velocidades de transmisión que en GSM/GPRS.

Operaciones

O+M Transmisión y Radio

48Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 49: Operaciones O+M Transmisión y Radio

5.2. FUNDAMENTOS DE LA TECNOLOGÍA UMTS

La arquitectura de UMTS esta constituida por Entidades Funcionales, Interfaces y Puntos de acceso al servicio:

Entidades Funcionales: UE: User Equipment (Equipo de Usuario). UTRAN: UMTS Terrestrial Radio Access Network (Red de

Acceso Radio). CN: Core Network (Núcleo de Red).

Interfaces: Uu: Radio (Air) Interface Iu: Interface CN/UTRAN

Entidades Funcionales: se insertan en dos estratos:– Estrato de no acceso.– Estrato de acceso: El estrato de acceso contiene

básicamente todos los elementos específicos de radiotransmisión que proporcionan servicios al estrato de no acceso.

Operaciones

O+M Transmisión y Radio

49Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 50: Operaciones O+M Transmisión y Radio

Estratos de acceso y no acceso: Plano de control.

Estratos de acceso y no acceso: Plano de usuario.

Operaciones

O+M Transmisión y Radio

50Manuel Quesada Castillo

WCDMA L1

MS

MAC

RRC

MMCC SM

WCDMA L1

Node B

Transportlayers

RNC

RRC

Transportlayers

Iub

Transportlayers

CN

MM

CC SM

Transportlayers

Iu

RANAP RANAP

MAC'

BSAPBSAPBS-RRC

Uu

MAC

RLCRLC

RRM

RAN protocols (Access Stratum, AS), UTRAN

CN protocols (Non Access Stratum, NAS), UMTS

PDCPL3CE

RLC

MAC

WCDMA/TD-CDMA

Relay

MAC

WCDMA/TD-CDMA

GTP

L1 L1

L2

RLC

GTP GTP

UDP/TCP

IP

L2

L1

GTP

UDP/TCP

IP

L2

L1

UE UTRAN 3G-SGSN 3G-GGSNUu

GnIu

L2

IP

UDP/TCP UDP/TCP

IP

PDCP

RAN protocols (Access Stratum, AS)

CURSO EE.BB DE UMTS ERICSSON

Page 51: Operaciones O+M Transmisión y Radio

Arquitectura de la red UMTS (Rel. 99)

Esta es la versión básica, y esta formada por los elementos que se muestran en la gráfica:

Core-Network proporciona el control de las llamadas, la movilidad y la localización del UE. También se encarga de la tarificación.

Operaciones

O+M Transmisión y Radio

51Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 52: Operaciones O+M Transmisión y Radio

RAN (Radio Access Network) esta formada por RNCs y Nodos B y proporciona la conexión entre el CORE y el UE.

Aparecen un interfaces nuevo y otro se desdobla: Iur: Interface que comunica dos RNCs entre sí. Iu-CS: Interface que comunica la RNC con el COREde conmutación de circuitos. Iu-PS: Interfaces que comunica la RNC con el CORE de

conmutación de paquetes.

Operaciones

O+M Transmisión y Radio

52Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 53: Operaciones O+M Transmisión y Radio

El subsistema de acceso radio, UTRAN consta de un conjunto de sistemas radio RNS (El subsistema RNS está constituido por un controlador de red RNC y varios nodos B) conectados a la red CN a través de interfaces Iu e interconectados entre sí por las interfaces.

• Proporciona la cobertura radioeléctrica de la red UMTS.• Controla el acceso de los terminales móviles al sistema.• Proporciona privacidad y seguridad a las comunicaciones.• Realiza funciones de gestión de parte de la movilidad de los

terminales móviles.

Operaciones

O+M Transmisión y Radio

53Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 54: Operaciones O+M Transmisión y Radio

Los Nodos B realizan las mismas funciones que las estaciones base de GSM: Dan cobertura radioeléctrica y se comunican directamente con los terminales. Cada Nodo B está controlado por un único RNC, el cual controla un número determinado de Nodos B.En UMTS, cada terminal puede comunicarsesimultáneamente con varios nodos B.El RNC combina/selecciona las señales querecibe del móvil a través de varios Nodos Bobteniéndose una ganancia en la calidad dela comunicación. Esta técnica se denominaMacrodiversidad en Recepción.

Operaciones

O+M Transmisión y Radio

54Manuel Quesada Castillo

• El nodo B está formado por amplificadores de potencia, tranceptores (llevan la señal en banda base a la radiofrecuencia de emisión y viceversa) y procesadores en Banda Base que se encargan del procesamiento de la señal digital y su estructuración en canales.

CURSO EE.BB DE UMTS ERICSSON

Page 55: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

55Manuel Quesada Castillo

Potencia de transmisión:

Enlace ascendente:

Se ha previsto utilizar terminales de usuario de clase 4 para servicios de voz y datos:

• Potencia máxima de 21 dBm (125 mW).

Enlace descendente: Potencia total disponible en el Nodo B:

- Valores típicos: Macrocélulas 43 dBm (20 W), Micro y Picocélulas 30 dBm (1 W).

- Se utiliza entre un 5 y un 10% de la potencia para los canales piloto y de control.

- La potencia asignada a los canales de tráfico es variable según el número de usuarios activos en la célula y su localización.

CURSO EE.BB DE UMTS ERICSSON

Page 56: Operaciones O+M Transmisión y Radio

RNC (Radio Network Controller): Sustituye al BSC y a la PCU de las redes GSM/GPRS. Competen al RNC las funciones de traspaso incluida la combinación, para soportar macrodiversidad entre nodos B propios o dependientes de otros RNC

• Establece y libera los canales de comunicación con los terminales (gestión de los recursos radio).

• Cada RNC controla un conjunto de Nodos B (fija los valores de las potencias y las frecuencias de cada transceptor) y dispone de enlaces para comunicarse con el núcleo de red.

• Gestiona la movilidad decidiendo cuando se deben hacer los traspasos de los terminales de una célula a otra.

Operaciones

O+M Transmisión y Radio

56Manuel Quesada Castillo

•En UMTS se permite la interconexión entre RNCs para facilitar el traspaso de las llamadas entre ellos. Esta interconexión no implica un enlace físico directo entre ambos, sino que puede hacerse a través del UMSC.•En cada conexión UE-UTRAN el RNS involucrado inicialmente es el Servidor: SRNS si es necesario en un traspaso tomar recursos de otro RNS, éste se conecta en paralelo como soporte: D-RNS cerrándose la conexión por la interfaz Iur

D-RNS S-RNS

CN

UE

Iur

Iu

CURSO EE.BB DE UMTS ERICSSON

Page 57: Operaciones O+M Transmisión y Radio

Subsistema del Núcleo de Red (CORE)

• Realiza la conmutación y el encaminamiento de las comunicaciones de voz y datos entre su origen y su destino.

• Ofrece seguridad a los usuarios en sus comunicaciones.

• Realiza funciones de Gestión de la Movilidad.

• Genera la información necesaria para la posterior facturación de las llamadas.

Operaciones

O+M Transmisión y Radio

57Manuel Quesada Castillo

• Conectada a redes externas fijas (RDSI, PDNs, Internet) y móviles (PLMN).

• Los equipos del Núcleo de Red UMTS constituyen una evolución de las centrales MSC de GSM y de los nodos SGSN de GPRS.

• El Núcleo de Red realiza las funciones de conectividad, control y soporte de las aplicaciones, que facilita a la red de acceso.

CURSO EE.BB DE UMTS ERICSSON

Page 58: Operaciones O+M Transmisión y Radio

• Los elementos más importantes del CORE son:• La UMSC (relación con la Red de Acceso) y la UGMSC (relación

con otras redes) que pertenecen a la parte de conmutación de circuitos. Se ocupan de cursar las llamadas para los servicios basados en conmutación de circuitos

• El USGSN (se encarga del encaminamiento de las comunicaciones de datos por conmutación de paquetes, de tareas de administración de sesión, movilidad, autenticación y tarificación) y el UGGSN (encaminamiento hacia otras redes de externas de paquetes) que pertenecen a la parte de conmutación de paquetes.

Operaciones

O+M Transmisión y Radio

58Manuel Quesada Castillo

• El Núcleo de Red UMTS de la R99:

- Conserva la estructura de red GSM/GPRS es decir la separación de los dominios de circuitos y paquetes.

- Se adapta a las nuevas interfaces de radio UMTS en los nodos U-MSC y U-SGSN.

CURSO EE.BB DE UMTS ERICSSON

Page 59: Operaciones O+M Transmisión y Radio

Aparte de los subsistemas de acceso radio y red troncal o núcleo de red, UMTS también necesita del Subsistema de transmisión, el Subsistema de señalización y el Subsistema de Operación y Mantenimiento.La novedad más destacada es que el subsistema de transmisión está basado en tecnología ATM capaz de soportar la gran capacidad de los enlaces requeridos entre los elementos de la red.

• RXI: Se encarga de la transmisión ATM. Estos equipos se denominan Passport y son concentradores de tramas PDH de 2Mbps, para llegar a la RCN a una velocidad de 155 Mbps.

Operaciones

O+M Transmisión y Radio

59Manuel Quesada Castillo

Nodo B

Nodo B

Nodo B

RNCRXI

Tramas PDH 2 Mbps

Enlaces 155 Mbps

CURSO EE.BB DE UMTS ERICSSON

Page 60: Operaciones O+M Transmisión y Radio

06. PROCESO DE ESTANDARIZACIÓN El proceso de estandarización de los sistemas 3G ha sido largo y

laborioso. ¿Cuándo surgió la idea de 3G y cómo se ha llegado a la definición de UMTS?

Operaciones

O+M Transmisión y Radio

60Manuel Quesada Castillo

El objetivo de partida era contar con un único sistema de 3G que se empleara en todo el mundo, alcanzando así la utópica idea de poder comunicarse con cualquier persona y en cualquier momento.Esta idea de sistema 3G recibió el complicado nombre de FPLMTS (Future Public Land Mobile Telecommunications System).

La nueva idea, denominada IMT_2000, ya no hace referencia a un único sistema, sino a una familia de sistemas que aunque tendrán capacidades de servicio similares, no tienen por qué ser compatibles entre sí.Esta solución se alejaba de la idea original de definir un solo sistema, único y global.

CURSO EE.BB DE UMTS ERICSSON

Page 61: Operaciones O+M Transmisión y Radio

ESTANDARIZACIÓN (II)• La situación en 1992 ¿Qué se buscaba entonces?

Flex

Rad

io

Men

s.NMT

TACSGSM

DCSUMTS

CT0 CT1CT2

DECTPHS/

CTM

MTP Tetra

Pocsag Ermes

PACS

D-amps IS95Cel

ula

rS

in h

ilos

Operaciones

O+M Transmisión y Radio

61Manuel Quesada Castillo

Page 62: Operaciones O+M Transmisión y Radio

ESTANDARIZACIÓN (III)• Definidos los requisitos de IMT-2000, la UIT convocó un

proceso de presentación de tecnologías candidatas en el que participaron los principales organismos normativos de las distintas regiones del mundo (ETSI europeo, TIA americana, ARIB japonés).

• División de opiniones

TIA cdma2000UWC-136

T1 W-CDMA

ETSI TD-CDMAW-CDMA

ARIB W-CDMA

TTA CDMA ICDMA II

CATT TD-SCDMA3GPP

Operaciones

O+M Transmisión y Radio

62Manuel Quesada Castillo

Page 63: Operaciones O+M Transmisión y Radio

FORO 3GPP• El organismo encargado de la estandarización de UMTS

(y del futuro del GSM, GPRS y EDGE) es el 3GPP (Third Generation Partnership Project). Se trata de un foro global del que forman parte distintos organismos normativos como el ETSI europeo, el ARIB japonés o el T1 norteamericano, que son los encargados de elaborar las normas definitivas aplicables a cada zona. (www.3gpp.org)

• También se creó el 3GPP2 para coordinar la estandarización del cdma2000

Operaciones

O+M Transmisión y Radio

63Manuel Quesada Castillo

Page 64: Operaciones O+M Transmisión y Radio

6.1. LAS DISTINTAS VERSIONES DE UMTS

Como ha sucedido con los estándares celulares de 2G, en la especificación del estándar UMTS se han ido publicando distintas versiones que han incorporado nuevas y más avanzadas capacidades. ¿ Quién se encarga de la estandarización del sistema UMTS? ¿ Qué versiones existen?

El organismo encargado de la estandarización de UMTS es el 3GPP (Third Generation Partnership Proyect). Se trata de un foro global del que forman parte distintos organismos normativos como el ETSI europeo, el ARIP japonés o el T1 norteamericano, que son los encargados de elaborar las normas definitivas aplicables en cada zona.

Por el momento, existen cuatro versiones de las especificaciones de UMTS:

En la actualidad se esta hablando ya de una versión siete.

Operaciones

O+M Transmisión y Radio

64Manuel Quesada Castillo

6

CURSO EE.BB DE UMTS ERICSSON

Page 65: Operaciones O+M Transmisión y Radio

• Versión 99 (Release 99): Es la primera versión y, por lo tanto, la que introduce todos los nuevos elementos de red necesarios para la puesta en marcha de este sistema, tanto en el subsistema de acceso radio (Modos UTRA FDD y TDD) como en el de red troncal. En esta versión se define un nuevo codificador de voz y una nueva arquitectura de servicios abierta y flexible.

Operaciones

O+M Transmisión y Radio

65Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 66: Operaciones O+M Transmisión y Radio

• La versión 99 (Release 99) desde el punto de vista de la red troncal, evoluciona desde redes GSM/GPRS hacia una nueva red con mayores velocidades de datos, mayor capacidad y que permite definir una buena calidad de servicio.

• Mantiene la filosofía de las redes 2,5G: conmutación de circuitos para las comunicaciones de voz y conmutación de paquetes para las comunicaciones de datos. También se permite realizar comunicaciones de datos por conmutación de circuitos.

Operaciones

O+M Transmisión y Radio

66Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 67: Operaciones O+M Transmisión y Radio

• Versión 4 (Release 4): Esta versión introduce múltiples mejoras. El cambio más significativo se produce en la red de conmutación de circuitos, donde las tradicionales centrales de conmutación se desdoblan en dos entidades separadas: una que se hace cargo de la conmutación física (Media Gateway) y otra que se encarga de las funciones de control (MSC Server). Este modelo se aproxima al utilizado en las redes IP y prepara el camino para la convergencia futura.

Operaciones

O+M Transmisión y Radio

67Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 68: Operaciones O+M Transmisión y Radio

• La versión 4 (Release 4) es la evolución natural de la release 99. Esta versión está más cerca de lo que se considera una verdadera red 3G, es decir, una red multimedia.

• Evolución únicamente en el núcleo de red. Aparecen dos planos: El plano de transporte: Lleva el tráfico de voz y datos en

modo conmutación de circuitos. Formado por media gateways o MGW.

El plano de control: Formado por los UMSC Server y UGMSC Server, que realizan las funciones de control de las comunicaciones.

Operaciones

O+M Transmisión y Radio

68Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 69: Operaciones O+M Transmisión y Radio

• Versión 5 (Release 5): En esta versión, todavía en definición, la arquitectura de la red UMTS evoluciona aún más incorporando un subsistema de red troncal basado en el protocolo de Internet IP (El IMS, IP Multimedia Subsistem). Este nuevo subsistema permitirá la convergencia plena entre las redes móviles y la “red de redes” Internet.Introducción del HSDPA (High Speed Downlink Packet Access).

Operaciones

O+M Transmisión y Radio

69Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 70: Operaciones O+M Transmisión y Radio

• La versión 5 (Release 5) es la actual del estándar UMTS. Se produce un cambio drástico con respecto a las redes 2,5G. Esto se debe a que este estándar permite una integración de las comunicaciones móviles en una red multimedia.

• También se producen cambios en el subsistema radio: se introduce la técnica HSDPA, lo que permite la alta velocidad en la transmisión de datos en el enlace descendente.

• El modelo tiende a la total utilización del protocolo Internet en todos los enlaces de la red UMTS.

Operaciones

O+M Transmisión y Radio

70Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 71: Operaciones O+M Transmisión y Radio

• Versión 6 (Release 6): Se ha comenzado ya a trabajar en las especificaciones de esta nueva versión, que incluye, entre otras mejoras, nuevas técnicas basadas en el empleo de múltiples antenas y el nuevo servicio de difusión de contenidos multimedia (MBMS, Multicast Broadcast Multimedia Service).Red “All IP” en la que desaparece la conmutación de circuitos. Interfuncionamiento entre UMTS y Wireless LAN

Operaciones

O+M Transmisión y Radio

71Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 72: Operaciones O+M Transmisión y Radio

07. SERVICIOS Y APLICACIONES DE UMTSUno de los objetivos fundamentales de UMTS es permitir a las

operadoras ofrecer servicios móviles más sofisticados y atractivos y en todo caso, mejorar los existentes en 2G y 2,5G.

Por supuesto las redes UMTS permiten ofrecer todos los servicios disponibles ya en 2G y 2,5G, mejorando en muchos casos sus prestaciones, como con los siguientes servicios:

Junto a todas estas mejoras, UMTS permitirá la introducción de nuevos servicios denominados multimedia, entre los que destacan:

• Videotelefonía: Se podrá ver a la otra persona en la pantalla del móvil mientras se habla con ella.

• Video y Audio Bajo Demanda: Se podrá reproducir en el terminal móvil vídeos, canciones, etc.

Operaciones

O+M Transmisión y Radio

72Manuel Quesada Castillo

Mensajería Multimedia: A los mensajes MMS de GPRS que incluyen típicamente fotografías, tonos y texto con formato, se les podrá añadir video y música.

Internet e intranet: La velocidad de acceso a Internet y a las Intranets de las empresas será mucho mayor que en GSM/GPRS, pudiendo llegar a 2 Mbps en el interior de edificios (gracias al empleo de células muy pequeñas o picocélulas) y a 384 Kbps en entornos urbanos.

CURSO EE.BB DE UMTS ERICSSON

Page 73: Operaciones O+M Transmisión y Radio

Videotelefonía: Servicio de tiempo real, con requisitos de calidad de servicio muy exigentes siendo necesario que se minimice el retardo de transmisión y sus posibles variaciones mediante la utilización de conmutación de circuitos para garantizar un retardo mínimo al disponer de un canal reservado para el usuario y utilizando codificadores de audio y vídeo para comprimir el tamaño de los datos para poderlos transmitir por un canal de 64 kbps (codificación de audio y vídeo a baja velocidad)

Para ello de emplean algunos de los siguientes codificadores:– Codificación de vídeo:• H.263: Considerado esencial en los terminales 3G para

servicios como videoconferencia o vídeo bajo demanda• MPEG-4: Desarrollado a partir de MPEG-1 y MPEG-2 y la

tecnología Quicktime de Apple Computers. Permite codificar vídeo y audio a baja velocidad, teniendo un perfil especialmente pensado para comunicaciones móviles (perfil de baja velocidad, Simple Visual Profile).

Operaciones

O+M Transmisión y Radio

73Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 74: Operaciones O+M Transmisión y Radio

- Codificación de audio:

• AMR (Adaptative MultiRate): Codec empleado para codificar y decodificar la voz en el servicio de telefonía convencional en UMTS. Incluye algunos modos de baja velocidad

• G.723.1: Este codec permite dos modos de baja velocidad a 5,3 y 6,3 Kbps. Los organismos de estandarización recomiendan su incorporación en los terminales 3G.

Audio bajo demanda: Servicio que permite a sus usuarios seleccionar una grabación sonora de cualquier tipo (música, noticias, conferencias, cursos etc) y reproducirla en el terminal móvil. Un posible servicio de este tipo sería convertir el móvil en una Juke Box, en la que el usuario elige sus canciones y las reproduce en el orden apetecido. Las canciones se encontrarían en algún servidor remoto, por ejemplo de la discográfica, al que se accedería a través de la red 3G de la operadora

Aunque el formato de codificación de audio más popular es MP3, los terminales incorporarántambién el codec de audio de MPEG-4 denominadoAAC (Advanced Audio Coding) Low Complexity.Esta nueva versión consigue, para una misma calidadde audio, una compresión un 30% más eficiente que la lograda con MP3 (MPEG-1 Layer 3).

Operaciones

O+M Transmisión y Radio

74Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 75: Operaciones O+M Transmisión y Radio

Vídeo bajo demanda: Estos servicios permiten a sus usuarios seleccionar un contenido audiovisual de cualquier tipo (películas, noticias, deportes, etc) y reproducirlo en el terminal móvil.

Operaciones

O+M Transmisión y Radio

75Manuel Quesada Castillo

DVB-H (Digital Video Broadcasting - Handheld):- La televisión es el único medio de masas que todavía no ha llegado a los teléfonos móviles y esto será posible con el DVB-H.- Optimización del estándar DVB-T (Terrestrial) de televisión digital terrestre para su uso en terminales móviles.- Modificaciones en lo referente a optimización de las baterías de los dispositivos móviles, mayor tolerancia al ruido para terminales con una sola antena receptora, traspasos con mantenimiento del servicio etc - Validación de la tecnología a finales de 2004 y comienzo de pilotos y servicios comerciales durante 2005.

CURSO EE.BB DE UMTS ERICSSON

Page 76: Operaciones O+M Transmisión y Radio

7.1. TERMINALES UMTS

Para utilizar los atractivos servicios UMTS, es necesario un nuevo terminal móvil, ya que UMTS introduce múltiples cambios en la comunicación radio entre la estación base y el terminal móvil. No obstante, las operadoras han puesto una condición ineludible a los fabricantes de terminales UMTS: Los nuevos terminales deben ser GSM/GPRS/UMTS, es decir, deben ser compatibles con los tres sistemas.

El terminal UMTS adquiere más importancia que el de GSM, tiene mucha mayor capacidad de proceso, incorpora más tecnología y es mucho más complejo.

Operaciones

O+M Transmisión y Radio

76Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 77: Operaciones O+M Transmisión y Radio

Las nuevas funcionalidades que incorporan los terminales son: Pantallas más grandes, a color y de alta resolución Cámaras integradas para videoconferencia Reproducción de vídeo en formato MPEG-4 Reproducción de audio en formato MP3 Reconocimiento de voz y de escritura (pantalla táctil) Potentes sistemas operativos y entornos de ejecución de

aplicaciones Localización por GPS o por algún otro método

Con todas estas nuevas funcionalidades, la evolución del concepto de terminal móvil iniciada en 2G y 2,5G continúa en 3G lográndose la integración en un único dispositivo de las capacidades de los teléfonos móviles, los ordenadores personales y las agendas electrónicas PDAs.

Operaciones

O+M Transmisión y Radio

77Manuel Quesada Castillo

Velocidades de transmisión típicas de los primeros terminales:

• 64 Kbps en modo circuito

• 384 Kbps(DL)/64 Kbps(UL) en conmutación de paquetes.

CURSO EE.BB DE UMTS ERICSSON

Page 78: Operaciones O+M Transmisión y Radio

7.2. FACTURACIÓN EN UMTS

La utilización de una arquitectura de prestación de servicios abierta (OSA) facilita aún más la incorporación de nuevos proveedores de contenidos y aplicaciones ajenos a la operadora ya iniciada en 2G y 2,5G.

En cuanto a las modalidades de contratación no se esperan cambios, siguiendo con los modelos de prepago y contrato.

Junto a las variables de facturación utilizadas en 2,5G (tiempo, evento y volumen de información) se incorpora la calidad de servicio ofrecida y el tipo de contenido.

También se demandarán nuevos requerimientos para los sistemas de facturación para ofrecer al cliente una factura única integrando los diferentes sistemas y plataformas, con diferentes criterios de facturación.

UMTS introduce una serie de parámetros de calidad de servicio que podrán ser empleados como criterios de facturación:

Operaciones

O+M Transmisión y Radio

78Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 79: Operaciones O+M Transmisión y Radio

Retardo de transmisión máximo: Se garantiza que la comunicación se realiza en menos tiempo de un cierto valor prefijado. En los servicios conversacionales este requisito es crítico, siendo necesario que se produzca en tiempo real

Velocidad de transmisión mínima: Se garantiza que la prestación del servicio se realizará al menos a esta velocidad, pudiendo alcanzarse valores mayores

Máxima tasa de bits erróneos: Algunos servicios pueden tolerar una tasa de errores de transmisión más elevada que otros

Prioridad de utilización de recursos, de la que existen varias modalidades:– Prioridad de concesión de recursos o Allocation Priority: Cuando

varios usuarios pretenden acceder a la red simultáneamente y no hay recursos para satisfacer a todos, se da preferencia de acceso a aquellos que tengan contratada un mayor nivel de prioridad.

– Prioridad de retención de recursos o Retention Priority: Cuando todos los recursos están ocupados y llega una petición de acceso de alta prioridad, se le transfieren los recursos concedidos inicialmente a un usuario con bajo nivel de prioridad.

– Prioridad de gestión del tráfico o Traffic Handling Priority: Cuando está en curso una transmisión de información de un usuario con bajo nivel de prioridad y llega otra transmisión de mayor prioridad, se le conceden más recursos a esta última.

Operaciones

O+M Transmisión y Radio

79Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 80: Operaciones O+M Transmisión y Radio

Con el objetivo de utilizar el espectro radioeléctrico de un modo más eficiente que su antecesor GSM, UMTS utiliza la técnica de acceso compartido CDMA. Esta técnica consiste en:

La mejora en capacidad del sistema UMTS debido a esta técnica se observa en la siguiente tabla:

08. FUNDAMENTOS DE LA TECNICA CDMA Operaciones

O+M Transmisión y Radio

80Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 81: Operaciones O+M Transmisión y Radio

Existen tres Técnicas de acceso al medio:– FDMA (Acceso Múltiple por División de Frecuencia): Utilizada en

Tecnología TACS (TMA-900), 1G. También Se utiliza junto a la siguiente Técnica en GSM/GPRS, 2G/2,5G.

– TDMA (Acceso Múltiple por División del Tiempo): Utilizada en GSM/GPRS, 2G/2,5G.

– CDMA (Acceso Múltiple por División de Código): Utilizada en Tecnología UMTS, 3G..

CDMA (Code División Múltiple Access) es una técnica de acceso múltiple por división de código. Permite que varios usuarios compartan un canal de comunicación mediante la asignación a cada uno de ellos de un código distinto con el que se codifica toda la información que se genera, de modo que sea posible distinguir su comunicación de las de otros usuarios.

Operaciones

O+M Transmisión y Radio

81Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 82: Operaciones O+M Transmisión y Radio

En UMTS es posible cursar comunicaciones en la misma frecuencia y en el mismo instante de tiempo. Se distinguen porque cada una de ellas posee un código diferente que la diferencia de las demás.

Operaciones

O+M Transmisión y Radio

82Manuel Quesada Castillo

La información que transmite un usuario desde su móvil se codifica con un código previamente asignado. En el aire, la onda resultante se mezcla con otras ondas de la misma frecuencia procedentes de otros usuarios. Estas ondas han sido codificadas con códigos distintos. La estación base conoce los distintos códigos y es capaz de separar las informaciones de los distintos usuarios para transmitirlas por la red troncal. El proceso en el enlace descendente es análogo a éste.

CURSO EE.BB DE UMTS ERICSSON

Page 83: Operaciones O+M Transmisión y Radio

Este esquema gráfico muestra como funciona la técnica de codificación CDMA:

Operaciones

O+M Transmisión y Radio

83Manuel Quesada Castillo

En la diapositiva de la página 32 se muestra como se consiguen separar las señales en recepción.

CURSO EE.BB DE UMTS ERICSSON

Page 84: Operaciones O+M Transmisión y Radio

8.1. TIPOS DE CODIGOS

Para que los Nodos B puedan distinguir las comunicaciones de los distintos usuarios se emplean dos tipos de códigos, código de canalización (spreading) y código de aleatorización (scrambling), utilizados de forma diferente en cada enlace.

El proceso se lleva a cabo en dos etapas:

Código de canalización: También se denominan de ensanchamiento ó códigos OVSF (Orthogonal Variable Spreading Factor codes). Consiste en una secuencia de bits de corta duración, llamados “chips” que se aplica multiplicativamente bit a bit a la señal de datos original para ensancharla.

Operaciones

O+M Transmisión y Radio

84Manuel Quesada Castillo

Ensanchamiento = Canalización + Aleatorización

• Si Tb y Tc son los períodos de bit y de chip:

Tb=N·Tc., donde N es el factor de ensanchamiento.

El ancho de banda de una señal modulada es inversamente proporcional a la anchura del símbolo (periodo) antes de la modulación.

CURSO EE.BB DE UMTS ERICSSON

Page 85: Operaciones O+M Transmisión y Radio

• SF (Spread Factor - Factor de Ensanchamiento) = W/R`• PG (Procesing Gain - Ganancia de Procesado) = W/R• Señal/Ruido = (Portadora/Ruido) * PGComo la potencia de la portadora se debe repartir entre todos los

usuarios, cuando entra en el nodo alguno nuevo, la potencia por cada uno disminuye y para mantener fija la S/R min. exigible se debe aumentar la Ganancia de Procesado. Para conseguir esto, debemos disminuir la velocidad de transmisión de datos (R).

Se asigna un código distinto a cada comunicación permitiendo su identificación unívoca. Estos códigos tienen una propiedad que los hace ser independientes unos de otros (ortogonales), son cortos y escasos. Es decir, si existen varias comunicaciones, cada una de ellas con un código distinto, un usuario podrá acceder sólo a la comunicación asociada al código que se le ha asignado. La ortogonalidad de los códigos es sólo parcial, debido a la dispersión temporal asociada al multitrayecto

Son códigos independientes de la identidad de usuario, de modo que cada vez el usuario inicie una comunicación, puede recibir un código distinto.

Operaciones

O+M Transmisión y Radio

85Manuel Quesada Castillo

FUENTECódigoControlErrores

CódigoCanalización

R (Kb/s) R`(Kb/s) W (Kchip/s)

3,84 Mchps/s

CURSO EE.BB DE UMTS ERICSSON

Page 86: Operaciones O+M Transmisión y Radio

Al aplicar un código de canalización a una señal, se aumenta el volumen de información que debe transportar la señal de radio, lo que se traduce en un incremento del ancho de banda de ésta. El ensanchamiento del espectro se consigue multiplicando la secuencia de datos por otra de mayor velocidad binaria (3.84 Mcps).

La potencia de la señal se distribuye más uniformemente dentro de un rango de frecuencias más amplio. Por eso se dice que se emplea una técnica de espectro ensanchado. Como contrapartida a la necesidad de usar un mayor ancho de banda, se consigue una mejor relación señal-ruido y las interferencias afectarán a la señal en menor grado.

Operaciones

O+M Transmisión y Radio

86Manuel Quesada Castillo

Señal original

Secuencia deensanchamiento

Señal codificada(tasa 1/3)

Señalensanchada

Con codificación de canal

CURSO EE.BB DE UMTS ERICSSON

Page 87: Operaciones O+M Transmisión y Radio

Por la interfaz radio se transmitirá la siguiente información de los tres usuarios del ejemplo de la diapositiva de la página 28:

XA*CA+XB*CB+XC*CC= Señal Recibida por Nodo B, donde

CA, CB, CC Son los códigos de canalización asignados a cada

uno de los usuarios A, B, C, respectivamente, y XA, XB ,XC

Son las señales de información de los usuarios A, B, C, respectivamente.

El sistema conoce cada uno de los códigos asignados a cada usuario, y lo que hace para obtener las señales de información es multiplicar la Señal Recibida por el código correspondiente:

(XA*CA+XB*CB+XC*CC)*CA= Señal Usuario A

XA*CA *CA +XB*CB *CA +XC*CC *CA = Señal Usuario A

Señal Usuario A = XA+ Residuo -> Debido a las

Interferencias.

Operaciones

O+M Transmisión y Radio

87Manuel Quesada Castillo

Para códigos ortogonales (l.i.) el producto entre ellos es 0.

El producto de dos códigos idénticos es igual a 1.

CURSO EE.BB DE UMTS ERICSSON

Page 88: Operaciones O+M Transmisión y Radio

Se generan árboles de códigos, pudiéndose construir códigos de cualquier longitud que sea potencia de 2

Para generar desde un código A las dos ramas que parten de él, se coloca en la rama superior el código repetido (A, A), y en la inferior (A, -A).

Cada código es ortogonal a todos los del árbol, excepto a

los que descienden de él y sus ascendientes.

Dos secuencias cualesquiera son ortogonales a menos que una sea “descendiente” de la otra. Esta restricción determina el número máximo de códigos

El número de códigos de canalización que se pueden utilizar está limitado. La longitud (el número de chips) del código varía en función de la velocidad máxima que se requiera para la comunicación. Para las velocidades mayores se utilizan códigos más cortos, de forma que la elección de un código corto equivale a la eliminación de todos los códigos largos que descienden de él.

Diferentes factores de ensanchamiento C: apropiados para sistemas con diferentes velocidades binarias

Número limitado de secuencias, dependiente de los factores de ensanchamiento seleccionados

Operaciones

O+M Transmisión y Radio

88Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 89: Operaciones O+M Transmisión y Radio

• El árbol de códigos de canalización es como se indica en la figura:

Operaciones

O+M Transmisión y Radio

89Manuel Quesada Castillo

SF = 1 SF = 2 SF = 4 SF = 8

C1,0 = {1

C2,1 = {1,-1}

C4,2 = {1,-1,1,-1}

C4,3 = {1,-1,-1,1}

C2,0 = {1,1}

C4,0 = {1,1,1,1}

C4,1 = {1,1,-1,-1}

C8,0 = {1,1,1,1,1,1,1,1}

C8,1 = {1,1,1,1,-1,-1,-1,-1}C8,2 = {1,1,-1,-1,1,1,-1,-1}

C8,3 = {1,1,-1,-1,-1,-1,1,1}C8,4 = {1,-1,1,-1,1,-1,1,-1}

C8,5 = {1,-1,1,-1,-1,1,-1,1}C8,6= {1,-1,-1,1,1,-1,-1,1}

C8,7= {1,-1,-1,1,-1,1,1,-1}

CURSO EE.BB DE UMTS ERICSSON

Page 90: Operaciones O+M Transmisión y Radio

Código de aleatorización (scrambling code): No son totalmente ortogonales entre sí. Multiplican a la señal previamente ensanchada por un código de canalización. Se utiliza para identificar un terminal móvil en sentido ascendente o bien un Nodo B en sentido descendente (se utilizan códigos distintos en el enlace ascendente y en el descendente, eligiendo en este último hasta 512).

La combinación de una frecuencia, con un código de canalización y un código de aleatorización definen lo que se conoce como canal físico.

Operaciones

O+M Transmisión y Radio

90Manuel Quesada Castillo

Banda base

Secuencia de canalización

(una por usuario de una misma

célula)

Secuencia de aleatorización o spreading (una

por célula)

Señal moduladora

CURSO EE.BB DE UMTS ERICSSON

Page 91: Operaciones O+M Transmisión y Radio

8.2. MODULACION Y ANCHO DE BANDA DE UMTS

Como ya se ha indicado anteriormente, antes de transmitirse una señal UMTS es codificada por medio de dos códigos: el código de canalización, que provoca el ensanchamiento de la señal (la potencia se distribuye en un ancho de banda mayor), y el código de aleatorización. A partir de aquí se debe modular la señal obtenida ara poder transmitirla al medio

En UMTS se modula digitalmente utilizando la modulación QPSK (Quadrature Phase Shift Keying). La señal se divide en dos partes (real e imaginaria). Estas partes modulan dos señales portadoras en cuadratura (es decir, con una diferencia de fase de 90 grados), que finalmente se suman y se transmiten al aire. El resultado es una señal de aproximadamente 5 MHz de ancho de banda. Por este motivo, la canalización en UMTS se realiza en radiocanales de 5 MHz de ancho de banda.

Operaciones

O+M Transmisión y Radio

91Manuel Quesada Castillo

En realidad la modulación que se utiliza en UMTS no es exactamente una QPSK. Los canales físicos de control, que cursan la información de señalización entre el equipo de usuario y el nodo B, y los canales de tráfico, que cursan la información de usuario, son soportados sobre el mismo enlace. La forma en la que se integran estos canales en la señal modulada no es la misma el el enlace ascendente que en el enlace descendente.

CURSO EE.BB DE UMTS ERICSSON

Page 92: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

92Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 93: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

93Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 94: Operaciones O+M Transmisión y Radio

En la conferencia Administrativa Mundial de Radiocomunicaciones (WARC) de 1992, se fijaron las bandas de frecuencia para los sistemas 3G:

Las bandas que se utilizaran inicialmente en los dos modos definidos en UMTS son:

09. BANDAS DE FRECUENCIA DE UMTS: FDD Y TDD

Operaciones

O+M Transmisión y Radio

94Manuel Quesada Castillo

De 1885 a 2025 MHz.

De 2110 a 2200 MHz.

Modo FDD (Frequency División Duplex): Se emplean frecuencias distintas para transmitir y recibir:

Enlace ascendente (móvil a Nodo B): De 1920 a 1980 MHz.

Enlace descendente (Nodo B a móvil): De 2110 a 2170 MHz.

Modo TDD (Time Division Duplex): Se utiliza la misma frecuencia para transmitir y recibir, definiéndose una serie de intervalos de tiempo que se reparten entre los dos sentidos de comunicación:

De 1900 a 1920 MHz y de 2010 a 2025 MHz.

CURSO EE.BB DE UMTS ERICSSON

Page 95: Operaciones O+M Transmisión y Radio

En España se han adjudicado 4 licencias, dotada cada una de ellas con 35 MHz de ancho de banda:– 30 MHz para FDD (3 pares de portadoras, UL y DL por par).– 5 MHz para TDD.

Un problema que se repite en UMTS es la utilización de bandas de frecuencia diferentes en las distintas partes del mundo:

Operaciones

O+M Transmisión y Radio

95Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 96: Operaciones O+M Transmisión y Radio

Adicionalmente se ha propuesto un modo de comunicaciones móviles por satélite denominado S-UMTS, para el que se han reservado las bandas de frecuencia de 1980 a 2010 MHz para el enlace ascendente y de 2170 a 2200 MHz para el descendente (6 portadoras por sentido).

En la conferencia WRC de la UIT celebrada en 2000, se identificaron nuevas bandas de frecuencia válidas para la componente terrenal de los sistemas 3G:- De 806 a 960 MHz.- De 1710 a 1785 MHz.- De 2500 a 2690 MHz.Sin embargo, la disponibilidad de equipos funcionando en estas bandas hace que estas frecuencias aun no se puedan utilizar.

Operaciones

O+M Transmisión y Radio

96Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 97: Operaciones O+M Transmisión y Radio

9.1. MODOS FDD Y TDDEn UMTS existen dos modos de funcionamiento que están definidos a

nivel de la red de acceso radio o UTRAN. Estos modos son: Modo FDD (Frequency Division Duplex): Los usuarios transmiten y

reciben simultáneamente, utilizando frecuencias distintas para cada sentido.

Modo TDD (Time Division Duplex): Los usuarios trasmiten y reciben en distintos intervalos de tiempo utilizando una única frecuencia para ambos sentidos. Como en el caso de GSM, existe una trama dividida en 15 intervalos de tiempo, y se realiza una agrupación de estas tramas en una multitrama de 24 tramas. Cada intervalo de tiempo puede ser utilizado por un móvil para transmitir o para recibir y cuanto más se le asignen mayor será la velocidad de la comunicación.

La modulación utilizada en TDD es la misma que en FDD, y el ancho de banda sigue siendo de 5 MHz. También se utiliza el mismo control de potencia. Las principales diferencias son:

Operaciones

O+M Transmisión y Radio

97Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 98: Operaciones O+M Transmisión y Radio

Canal físico: En FDD el canal físico esta definido por una frecuencia, un código de canalización y un código de aleatorización. En TDD, se define además un conjunto de intervalos de tiempo.

Operaciones

O+M Transmisión y Radio

98Manuel Quesada Castillo

Frecuencia: En FDD existe una frecuencia para el enlace ascendente (UL) y otra para el enlace descendente (DL), sin embargo en TDD sólo existe una frecuencia para ambos enlaces.

Áreas de cobertura: El modo TDD es más eficiente en las denominados microcélulas (células con área de cobertura pequeña) y picocélulas (zonas de interiores, donde existe baja movilidad) pudiendo alcanzar en estos entornos velocidades de hasta 2 Mbit/s. El modo FDD se adapta mejor a las áreas de cobertura mayores (macrocélulas), donde no se van a utilizar velocidades superiores a 384 Kbit/s.

Comunicación de datos: El modo TDD es más apropiado para comunicaciones de datos asimétricas, es decir, aquellas en las que un enlace transmite a mayor velocidad que el otro (por ejemplo, en la navegación WEB):

CURSO EE.BB DE UMTS ERICSSON

Page 99: Operaciones O+M Transmisión y Radio

9.2. CARACTERISTICAS Y ESTRUCTURA DE TRAMAS

Tasa de chip fija en todos los casos: W=3.84 Mcps. La Ganancia de Procesado (Processing Gain)=W/R, varía dependiendo de la tasa binaria de información R (bits/s):– FDD

• UL: Potencias de 2 desde 4 hasta 256.• DL: Potencias de 2 desde 4 hasta 512.

– TDD• UL y DL: Potencias de 2 desde 1 hasta 64.

Modulación QPSK Protección frente a errores: Entrelazado y Codificación de

Canal (Códigos Convolucionales o Códigos Turbo). Tramas de 10 ms, divididas en 15 slots. En FDD se utilizan

como marco de referencia temporal. Es una estructura jerárquica con diferentes divisiones del

tiempo: Nivel jerárquico inferior está constituido por

intervalos (TS: Time Slot). Cada intervalo tiene:• Una duración de 0,667 ms (2/3 ms).• Una capacidad de 2/3 3840 = 2560 chips a la

velocidad de 3,84 Mcps (1 chip=0,26 s).

Operaciones

O+M Transmisión y Radio

99Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 100: Operaciones O+M Transmisión y Radio

El nivel básico (intermedio) es la Trama (Frame) formada por 15 TS con una duración de 10 ms.

El nivel superior es la supertrama (SF) constituida por 72 tramas. Su duración es 720 ms que equivale a 6 multitramas MF26 de GSM.

En FDD hay dos tramas diferentes soportadas por dos portadoras, para los enlaces ascendente y descendente, respectivamente.

Operaciones

O+M Transmisión y Radio

100

Manuel Quesada Castillo

Int. # 0

Trama #0

Int. # 1

Trama #1

Int. # i

Trama #i

Int. # 14

Trama #71

Ttrama=10 ms

Tsupertrama=720 ms

Tintervalo=0,667 ms

CURSO EE.BB DE UMTS ERICSSON

Page 101: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

101

Manuel Quesada Castillo

• En TDD la trama y la frecuencia portadora son únicas:• Cada TS puede emplearse tanto para el enlace ascendente

(UL), como para el descendente (DL).• En la trama debe asignarse, al menos, un TS al UL y otro

al DL.10 ms

10 ms

10 ms

10 ms

Configuración con múltiples puntos de conmutación (simétrico)

Configuración con múltiples puntos de conmutación (asimétrico)

Configuración con un punto de conmutación (simétrico)

Configuración con un punto de conmutación (asimétrico)

CURSO EE.BB DE UMTS ERICSSON

Page 102: Operaciones O+M Transmisión y Radio

10. TIPOS DE CANALES DE UMTSExisten tres tipos de canales en UMTS: Los canales lógicos: Expresan que tipo de información se

transfieren por el interfaz radio. Los canales de transporte: Expresan como se transmite esa

información mencionada anteriormente. Los canales físicos: Denotan los recursos utilizados: Códigos

de expansión, frecuencias portadoras e intervalos de tiempo.

10.1. CANALES LÓGICOSLos canales lógicos de UMTS son básicamente equivalentes a los

que había en GSM/GPRS, aunque se incorporan algunos nuevos. En cualquier caso, existe una diferencia fundamental con GSM/GPRS: en UMTS los canales lógicos se agrupan primero en unos bloques denominados canales de transporte, siendo éstos los que se integran en los canales físicos de la interfaz radioeléctrica. Es decir, se introduce un paso intermedio con respecto a lo que se hacia en GSM/GPRS. Por medio de esta agrupación se determinan las prestaciones de radio que se requieren en cada caso.

Los canales lógicos se definen en función de la información que transmiten y se clasifican según el plano al que corresponden (Control o Tráfico).

Operaciones

O+M Transmisión y Radio

102

Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 103: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

103

Manuel Quesada Castillo

Los canales lógicos que tienen prestaciones radio comunes se agrupan en un nuevo tipo de canales, denominados de transporte.

CURSO EE.BB DE UMTS ERICSSON

Page 104: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

104

Manuel Quesada Castillo

Tabla con los canales Lógicos utilizados en UMTS:

CANAL Sentido Tipo Finalidad

BCCH Descendente ControlDifusióninformación red

PCCH Descendente ControlAviso a móviles nolocalizados

CCCH Bidireccional ControlSeñalización conmóviles sinconexión RRC

DCCH Bidireccional ControlSeñalización conun móvil específico

DTCH Bidireccional TráficoTransferencia deinformación con unmóvil específico

CTCH Bidireccional TráficoTransferencia deinformación punto-multipunto

CURSO EE.BB DE UMTS ERICSSON

Page 105: Operaciones O+M Transmisión y Radio

10.2. CANALES DE TRANSPORTE

Pueden considerarse como servicios ofrecidos por la capa 1 a las capas superiores y se definen de acuerdo con las características del modo en que se transmite la información.

En los canales de transporte las componentes de información y señalización van multiplexadas en tiempo.

Equivalen a los canales lógicos de GSM y se dividen en canales de transporte común y canales de transporte dedicados.

Los canales comunes son compartidos por varios móviles, mientras que los canales dedicados son los que emplea un UE en exclusividad.

Es importante no olvidar, que los canales de transporte se transmiten dentro de canales físicos.

Operaciones

O+M Transmisión y Radio

105

Manuel Quesada Castillo

Canales Lógicos

CURSO EE.BB DE UMTS ERICSSON

Page 106: Operaciones O+M Transmisión y Radio

Tabla con los canales de Transporte usados en UMTS:Operaciones

O+M Transmisión y Radio

106

Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 107: Operaciones O+M Transmisión y Radio

10.3. CANALES FÍSICOS

Un canal físico es una asociación de códigos e intervalos dentro de una estructura de tramas. Por ello:

En FDD: Par (Frecuencia Portadora, Código). En TDD: Tripleta (Frecuencia Portadora, Código, Intervalo).

Los canales físicos se diferencian o clasifican:1) Según el sentido de la transmisión:

- Ascendente.- Descendente.

2) Según la asignación a estaciones móviles:- Comunes.- Dedicados.

3) Según el tipo de información intercambiada:- Datos.- Control.

Cada canal físico está relacionado o soportado por un canal de transporte. Aunque existen algunos canales físicos que no tiene correspondencia con ningún canal de transporte.

Operaciones

O+M Transmisión y Radio

107

Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 108: Operaciones O+M Transmisión y Radio

En el enlace descendente un canal físico está formado respectivamente por:

– Una frecuencia– Un código de aleatorización SC que identifica al Nodo B que transmite

(SC8 y SC12 en la figura). Así se consigue diferenciar las transmisiones de células colindantes aunque se produzcan en la misma frecuencia.

– Un código de canalización CC que identifica a un usuario (CC1, CC2 y CC3 en la figura). El Nodo B transmite a todos los usuarios a la vez. Gracias a la utilización de códigos de canalización distintos, cada terminal es capaz de separar la comunicación dirigida e él del resto de las comunicaciones de la célula.

Operaciones

O+M Transmisión y Radio

108

Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 109: Operaciones O+M Transmisión y Radio

En el enlace ascendente un canal físico está formado respectivamente por:

– Una frecuencia.– Un código de aleatorización SC que identifica a cada usuario (SC1, SC2,

SC3, SC7, SC8 y SC9 en la figura). – Un código de canalización CC para identificar cada comunicación iniciada

por un usuario (CC1, CC2 y CC3 en la figura). Distintos usuarios pueden emplear el mismo código de canalización, pues están usando un código de aleatorización distinto. Un usuario puede realizar por ejemplo una comunicación de voz y otra de datos simultáneamente: para distinguirlas se emplean los códigos de canalización.

Operaciones

O+M Transmisión y Radio

109

Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 110: Operaciones O+M Transmisión y Radio

Enlace ascendente (UL)– PRACH (Physical Random Access Channel) RACH– DPDCH/DPCCH (Dedicated Physical Data/Control Channel) DCH– PCPCH (Physical Common Packet Channel) CPCH

Enlace descendente (DL)– CPICH (Common Pilot Channel)

• Transmite un piloto continuo, que sirve como referencia de potencia y fase– SCH (Synchronisation Channel) – AICH (Acquisition Indicator Channel)

• Responde (con los AI’s) a los preámbulos de acceso del PRACH– AP-AICH (Access Preamble Acquisition Indicator Channel)

• Responde (con los API’s) a los preámbulos de acceso del PCPCH

CD/CA-ICH (Collision Detection / Channel Assignment Acquisition Indicator Channel)

• Responde (con los CDI’s/CAI’s) a los preámbulos de detección de colisión del PCPCH

– P-CCPCH (Primary Common Control Physical Channel) BCH– S-CCPCH (Secondary Common Control Physical Channel) PCH y FACH– DPDCH/DPCCH (Dedicated Physical Data/Control Channel) DCH

• Un DCH (TrCH) emplea un DPCCH y uno o más DPDCH’s• DPCCH y DPDCH multiplexados en el tiempo, con distintas potencias

– PDSCH (Physical Downlink Shared Channel) DSCH– PICH (Page Indicator Channel)

• Indica (con los PI’s) al UE cuándo tiene una llamada en el PCH datos que debe decodificar

Operaciones

O+M Transmisión y Radio

110

Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 111: Operaciones O+M Transmisión y Radio

11. GESTION DE RECURSOSEn UMTS, como ya se ha indicado, cobra gran importancia la

gestión de los recursos radio. Los principales parámetros que se van a gestionar son:

Control de Potencia. Traspaso de llamadas. Respiración celular. Receptor Rake.

11.1. CONTROL DE POTENCIAEn UMTS todas las comunicaciones se producen en la misma

frecuencia y al mismo tiempo por lo que el control de potencia es importantísimo, ya que su utilización es crítica para que la comunicación tenga el grado de calidad adecuado.

Con esta técnica se logra que:– Una estación base transmita menor potencia para comunicarse con un

móvil que esté cerca que con otro que esté más lejos.

– La potencia también varía con las condiciones del medio, es decir, según el nivel de interferencia que está soportando. Si un móvil se encuentra cerca de la base pero ésta no le escucha correctamente debido a que el medio está muy interferido, el terminal incrementará su potencia.

– Corregir el efecto de los desvanecimientos de la señal.

Operaciones

O+M Transmisión y Radio

111

Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 112: Operaciones O+M Transmisión y Radio

Aunque cada comunicación posee un código diferente que las distingue de las demás, estos códigos no son perfectos y las emisiones de las señales codificadas suelen dar lugar a interferencias. En el enlace ascendente se produce interferencia en el Nodo B por el hecho de que los móviles transmiten cuando quieren, fuera de sincronismo, y se pierde la ortogonalidad con respecto a la comunicación. Al aplicar el código a la comunicación se obtienen los datos decodificados pero no se contrarrestan las demás al haber sido transmitidas en instantes de tiempo distintos al deseado. Además llegan transmisiones dirigidas originalmente hacia otros Nodos B. En sentido descendente se generan residuos por el multitrayecto y porque llegan transmisiones de otros Nodos B. Por tanto, cuantos más usuarios haya en un área determinada, mayor interferencia existirá en la misma y en los alrededores.

Operaciones

O+M Transmisión y Radio

112

Manuel Quesada Castillo

Cada cierto tiempo, el Nodo B indica a los terminales móviles a que potencia deben transmitir, además de ajustar la potencia que él transmite a cada móvil. Este tiempo es de 0,6 ms en comparación con los 4,6 ms de GSM.

CURSO EE.BB DE UMTS ERICSSON

Page 113: Operaciones O+M Transmisión y Radio

• Existen dos tipos de control de potencia:Operaciones

O+M Transmisión y Radio

113

Manuel Quesada Castillo

Control de potencia en Bucle Abierto: Unidireccional. Se utiliza cuando el terminal móvil está realizando un acceso inicial a la red UMTS. Se estiman las pérdidas de propagación en enlace ascendente y el propio terminal ajusta la potencia en consecuencia.

Control de potencia en Bucle o Lazo Cerrado: Bidireccional. Se utiliza cuando se está cursando una comunicación. En este caso es el Nodo B el que controla la potencia que emiten los terminales. Se mide la C/I (Relación Señal Portadora/Señal Interferente) en el Nodo B y se compara con la C/I objetivo instruyendo al móvil para que modifique su potencia en consecuencia. El valor objetivo se fija en el RNC en función de la tasa de errores de bloque (BLER).

CURSO EE.BB DE UMTS ERICSSON

Page 114: Operaciones O+M Transmisión y Radio

11.2. TRASPASO DE LLAMADAS

Dependiendo de si las células entre las que se produce el traspaso utilizan la misma frecuencia (caso entre células UMTS en actualidad), o frecuencias distintas (caso de UMTS a GSM), se distinguen tres tipos de traspasos en UMTS:

Traspaso sin continuidad o Hard handover:

Operaciones

O+M Transmisión y Radio

114

Manuel Quesada Castillo

Base 1 Base 2

Nivel recibido

Umbral detraspaso

Se produce cuando el usuario se mueve de una célula a otra en la que se está empleando una frecuencia distinta. En el transcurso de una comunicación, el terminal sólo recibe la señal de un Nodo B en cada instante. En el momento del cambio se desconecta del Nodo B que abandona y se conecta al nuevo Nodo B (se rompe la comunicación antes de hacerse el traspaso: break before make). Este tipo de traspaso también se da entre sistemas (GSM-UMTS) y entre modos (FDD/TDD).

CURSO EE.BB DE UMTS ERICSSON

Page 115: Operaciones O+M Transmisión y Radio

El Traspaso sin continuidad requiere: La realización de medidas en otra portadora exige:

Dos receptores en el mismo terminal, o Modo comprimido.

El modo comprimido produce intervalos libres aumentando la velocidad binaria instantánea. Esto requiere: Reducir de ganancia de procesado, o Entresacar bits del código de control de errores

(puncturing),

lo cual se compensa con una mayor potencia instantánea.

Operaciones

O+M Transmisión y Radio

115

Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 116: Operaciones O+M Transmisión y Radio

Traspaso con continuidad o Soft Handover:Operaciones

O+M Transmisión y Radio

116

Manuel Quesada Castillo

Tiempo

Nivel recibido

Tiempo

Base 1 Base 2Bases 1 y 2

Umbral deinclusión

Umbral deexclusión

Se produce cuando el usuario se mueve de una célula a otra que emplea la misma frecuencia en modo FDD. En este caso el terminal puede recibir simultáneamente la señal de los dos Nodos B combinándolas, hasta que llega un momento en que abandona la antigua (por no tener ya calidad suficiente). En este caso se hace primero el traspaso y luego se rompe la comunicación con el Nodo B antiguo (make before break)

CURSO EE.BB DE UMTS ERICSSON

Page 117: Operaciones O+M Transmisión y Radio

Traspaso con continuidad: enlace ascendente

El conjunto de bases que atienden a un usuario en traspaso se denomina conjunto activo.

Las señales en las bases activas se seleccionan (soft handover si los Nodos B están en sitios diferentes), o se combinan (softer handover, si los Nodos B están en el mismo sitio).

La existencia de móviles en traspaso con continuidad exige dimensionar adecuadamente el número de elementos de canal en la estación base. Se suele considerar un incremento del 30-40%.

Operaciones

O+M Transmisión y Radio

117

Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 118: Operaciones O+M Transmisión y Radio

Traspaso con continuidad: enlace descendente

La información se transmite al móvil desde todas las bases del conjunto activo.

En el móvil las señales se combinan en el receptor Rake (se tratan como si fueran distintas componentes multitrayecto, sólo que con secuencias código diferentes).

El hecho de que varias bases transmitan al móvil puede incrementar el nivel de interferencia en el enlace descendente, en función de cómo se elijan los valores de potencia de transmisión.

Operaciones

O+M Transmisión y Radio

118

Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 119: Operaciones O+M Transmisión y Radio

11.3. RESPIRACION CELULAR

Existe un fenómeno que se produce en las redes UMTS debido al hecho que la tecnología que utiliza en la parte radio es CDMA, es la respiración celular.

Los Nodos B de la red de acceso radio del sistema UMTS utilizan la técnica de control de potencia. Por tanto, cuando un Nodo B baja su potencia de transmisión, el radio de la célula se hace más pequeño y los móviles que estuvieran al borde de la célula dejarán de estar cubiertos por dicha célula.

De igual forma, cuando el Nodo B aumenta la potencia de transmisión, la célula se hace más grande y cubre a más usuarios. Se dice entonces que las células en UMTS “respiran”, ya que su radio celular de cobertura cambia dinámicamente dependiendo de las condiciones de la red radio.

Operaciones

O+M Transmisión y Radio

119

Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 120: Operaciones O+M Transmisión y Radio

• También cuando en un Nodo B aumenta la interferencia, el radio de la célula se hace mas pequeño y los móviles que estuvieran al borde de la célula dejarán de estar cubiertos por ésta. Cuando disminuye la interferencia (interna o externa), la célula se hace más grande y cubre a más usuarios.

Operaciones

O+M Transmisión y Radio

120

Manuel Quesada Castillo

Por lo tanto las características de la Respiración Celular son:

Compartición automática de carga.

Célula poco cargada Menor interferencia sobre células vecinas Mayor capacidad para células vecinas.

La carga de las células tiende a equilibrarse, lográndose un uso más eficiente de los recursos.

Ello requiere un algoritmo de asignación de móviles a Nodos B adecuado (mínima potencia).

El equilibrio de carga se logra de manera más “natural” que en sistemas clásicos, en los que la compartición de carga exige asignación dinámica de canales.

CURSO EE.BB DE UMTS ERICSSON

Page 121: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

121

Manuel Quesada Castillo

Mayor carga

Mayor interferencia

Mayor potencia necesaria

Menor cobertura

CURSO EE.BB DE UMTS ERICSSON

Page 122: Operaciones O+M Transmisión y Radio

11.4. RECEPTOR RAKE

Al igual que en GSM, la señal de radio sufre diversos efectos durante la propagación. Entre ellos el multitrayecto que consiste en que la señal transmitida por el Nodo B llega al móvil convertida en la superposición de las distintas componentes que se producen como consecuencia de las reflexiones de la señal en los obstáculos presentes en el medio (edificios, árboles, ...).

Operaciones

O+M Transmisión y Radio

122

Manuel Quesada Castillo

Esto también sucede en GSM y en general, en todos los sistemas de comunicaciones móviles, pero en UMTS, tiene mayor impacto, debido a que funciona a frecuencias sobre los 2 GHz.

Para mejorar considerablemente la calidad de recepción en la interfaz radio, los equipos de usuario y los nodos B utilizan un tipo de receptor denominado Rake.

El receptor Rake hace uso de la diversidad multitrayecto, mediante la utilización de un conjunto de ramas, denominadas dedos (fingers), que permiten detectar los rayos en distintos instantes de tiempo. A la salida del receptor se realiza la combinación de las distintas señales detectadas por cada rama, obteniéndose una señal de mayor calidad.

CURSO EE.BB DE UMTS ERICSSON

Page 123: Operaciones O+M Transmisión y Radio

Los efectos más importantes de la propagación multitrayecto son:

Diversidad multitrayecto: Al receptor le van a llegar varias componentes, cada una de ellas con un retardo distinto. El receptor puede sacar partido de ello por medio de la diversidad multitrayecto, que consiste en combinar esas componentes recibidas con distintos retardos para conseguir reconstruir la señal original.

Operaciones

O+M Transmisión y Radio

123

Manuel Quesada Castillo

Desvanecimiento rápido: Un efecto negativo es el desvanecimiento rápido, producido por la recepción en un instante dado de varios rayos que producen que se anule la señal.

Características del receptor Rake:

- Cada dedo aporta un camino.

- Estos caminos se distinguen porque son una versión desplazada de la secuencia de conexión.

- Se puede distinguir un camino que el retardo sea mayor de un chip.

CURSO EE.BB DE UMTS ERICSSON

Page 124: Operaciones O+M Transmisión y Radio

12. HSxPA Y EVOLUCION DE FUTUROYa se ha iniciado la evolución de la red hacia la cuarta

generación.

HDSPA (High Speed Downlink Packet Access – Acceso en modo paquete de alta velocidad en el enlace descendente), es un paso más en la evolución del UMTS especificado en la Rel5. También conocida como generación 3,5G.

Operaciones

O+M Transmisión y Radio

124

Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 125: Operaciones O+M Transmisión y Radio

Con la introducción de HSDPA se ha comenzado a ofrecer velocidades de bajada de 1,8 Mbps pudiéndose llegar teóricamente hasta los 14,4 Mbps.

Esto es debido a las mejoras introducidas en la Interfaz Radio: Modulación y codificación adaptativa. Rápida función de cronoejecución (scheduling). Retransmisiones a gran velocidad. Multiplexación en el tiempo de los canales dedicados de

transporte entre varios usuarios.

Operaciones

O+M Transmisión y Radio

125

Manuel Quesada Castillo

AMC (Adaptative Modulation and Coding): Se puede seleccionar la velocidad de codificación entre ¼ y 4/4 y una modulación de 16QAM y QPSK. La adaptación se basa en una rápida respuesta por parte del móvil de la calidad del canal.

Incluye el uso de 5, 10 ó 15 códigos de aleatorización, que junto con la multiplexación en el tiempo pueden incrementar el número de usuarios.

CURSO EE.BB DE UMTS ERICSSON

Page 126: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

126

Manuel Quesada Castillo

Rápida función de Cronoejecución: La transmisión de los paquetes de datos hacia los usuarios en la interfaz radio se traslada desde el RNC al Nodo B. Se gana en rapidez ya que el algoritmo se sitúa lo más cerca posible de la interfaz radio. Además, utiliza una más corta en el interfaz aire (entrelazado rápido, 2 ms). Retransmisiones a gran velocidad: Cuando el móvil solicita retransmisiones eran procesadas por el RNC. En HSDPA es el Nodo B el encargando de procesarlas y las retransmisión puede ser recibida en tan sólo 10 ms.Aparte, también se usa la redundancia incremental, que consiste en seleccionar los bits correctos de las transmisiones para minimizar las necesidades futuras de petición de más retransmisiones cuando hay múltiples errores en las señales transmitidas.

CURSO EE.BB DE UMTS ERICSSON

Page 127: Operaciones O+M Transmisión y Radio

Aunque la optimización de la velocidad de transmisión en sentido descendente es suficiente para aplicaciones contenido-a-persona, los servicios persona-a-persona requieren también una optimización en el sentido ascendente. Para ello se ha iniciado la estandarización del HSUPA, que se espera este pronto en el mercado, una vez que asentado el HSDPA y con el que se podrán conseguir velocidades de hasta 5,8 Mbps.

HSUPA concentra en el Nodo B la cronoejecución y las retransmisiones, reduciendo así los retardos.

Ejemplos comparativos de tiempo de descarga

Operaciones

O+M Transmisión y Radio

127

Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 128: Operaciones O+M Transmisión y Radio

Ya se ha visto que la evolución de las redes de comunicaciones móviles, va hacia una red únicamente de conmutación de paquetes y por tanto, totalmente IP.

En la actualidad la red ya ha evolucionado hacia la Generación 3,5G y se están iniciando los pasos hacia la 4G. Acceso a través de múltiples redes de radio.

Operaciones

O+M Transmisión y Radio

128

Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 129: Operaciones O+M Transmisión y Radio

Velocidad requerida y latencia frente a tecnologías de acceso radio.

Cobertura y velocidad de desplazamiento frente a velocidad de transmisión de las distintas tecnologías de acceso.

Operaciones

O+M Transmisión y Radio

129

Manuel Quesada Castillo

CURSO EE.BB DE UMTS ERICSSON

Page 130: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

130

Manuel Quesada Castillo

11 Mbits/s

2 Mbits

/s

170 kbits/s

76.8 kbits/s

14.4 kbits/s

43.2 kbits/s

5.4 Mbits/s

10 Mbits/s

EDGETDMA (IS-41)CDPD

473 kbits/s

115.2 kbits/s

GPRSGSM

(MAP)HSCSD

PDC/PDC-P

cdmaOne

(IS-41)

WCDMA FDD

WCDMAHSPA

cdma2000-1X

307.2 kbits/s

WLAN802.11b

54 Mbits/s

1XEV - DO, phase 1 1XEV - DV, phase 2

HiperLAN 2

EDGE Ph. 2

GERAN

473 kbits/sReal Time

IP

IEEE802.11a

WCDMA TDD

Harmonised HL2-

IEEE802.11a

standard

200kHz

5MHz

1.25MHz

30kHz

2.4 Mbits/s

2 Mbits/s

Enhanced WLAN

High Speed Downlik Packet Access

Enhanced

EDGE

Local

Wid

e a

rea c

overa

ge

2Mbit/s

TD-SCDMA

Higher data rate WLAN100 Mbps

54 Mbits/s

Evolution of 3G

Future Wireless

Page 131: Operaciones O+M Transmisión y Radio

Operaciones

O+M Transmisión y Radio

131

Manuel Quesada Castillo

FINFIN