modulo del numero y operaciones

175
1 PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN BÁSICA REGULAR COMPONENTE PEDAGOGÍA Y DIDÁCTICA DEL ÁREA DE MATEMÁTICA CON ORIENTACIÓN INTERCULTURAL Bloque Temático: Marco situacional educativo y didáctica del número y operaciones PROGRAMA DE ESPECIALIZACIÓNEN MATEMÁTICA MÓDULO FORMATIVO I CICLO

Upload: leandro-cisneros

Post on 23-Mar-2016

234 views

Category:

Documents


8 download

DESCRIPTION

MODULO DEL NUMERO Y DIDACTICA

TRANSCRIPT

Page 1: modulo del numero y operaciones

1

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

COMPONENTE PEDAGOGÍA Y DIDÁCTICA DEL

ÁREA DE MATEMÁTICA CON ORIENTACIÓN

INTERCULTURAL

Bloque Temático: Marco situacional educativo

y didáctica del número y operaciones

PROGRAMA DE ESPECIALIZACIÓNEN MATEMÁTICA

MÓDULO FORMATIVO

I CICLO

Page 2: modulo del numero y operaciones

2

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Componente: Pedagogía y didáctica del área de matemática con orientación intercultural

Bloque temático:Marco situacional educativo y

didáctica del número y operaciones

Jefe de Proyecto : Enrique Carpena Velásquez

Coordinador académico : Jenny Magaly Chávez Taboada

Diagramación y corrección de estilo : Jorge Luis Miranda Vílchez

Equipo de especialistas :José Melanio García Flores

Jorge Luis Miranda Vílchez

Edwin Chávez Sánchez

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA-NIVEL DE

EDUCACION SECUNDARIA 2012- 2014

I CICLO

Universidad Nacional “Pedro Ruíz Gallo.

Facultad de Ciencias Históricos Sociales y Educación.

Dirección: Av. Juan XXIII N° 391 Lambayeque. Teléfono: (51) (74)-283146

Correo Electrónico: [email protected]

Página Web: www.unprg.edu.pe

© Reproducción: Derechos reservadosconforme a ley. Se prohíbe la

reproducciónparcial o total del texto sin autorización del MED.

Agosto 2012

Page 3: modulo del numero y operaciones

3

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

PRESENTACIÓN

En este MÓDULO “Marco situacional educativo y didáctica del número y operaciones”

para docentes de las instituciones educativas públicas de Educación Básica Regular- nivel de

educación secundaria. Proponemos ofrecer una visión general de la educación matemática.

Tratamos de crear un espacio de reflexión y estudio sobre las matemáticas, en cuanto objeto

de enseñanza y aprendizaje, y sobre los instrumentos conceptuales y metodológicos de

índole general que la Didáctica de las Matemáticas está generando como campo de

investigación.

Deseamos que los docentes adquieran una visión de la enseñanza de las matemáticas

enmarcados en los enfoques que orientarán el diseño, ejecución y evaluación de los

programas de especialización docente son:

La perspectiva de formación docente crítico reflexiva, que pone énfasis en el desarrollo

de su autonomía profesional y la capacidad para investigar, innovar y reflexionar críticamente

sobre su práctica pedagógica para auto-regularla, resinificarla y producir el saber

matemático.

El enfoque de interculturalidad crítica que orienta la afirmación de una docencia mediadora

del diálogo intercultural, con actitud crítica frente a las inequidades que imposibilitan el diálogo

y con capacidad para indagar y proponer alternativas educativas pertinentes a cada contexto

sociocultural y sociolingüístico del país.

Además teniendo en cuenta los principios de la enseñanza de las matemáticas descritos en

los Principios y Estándares 2000 del NCTM

1. Equidad. La excelencia en la educación matemática requiere equidad unas altas

expectativas y fuerte apoyo para todos los estudiantes.

2. Currículo. Un currículo es más que una colección de actividades: debe ser coherente,

centrado en unas matemáticas importantes y bien articuladas a lo largo de los distintos

niveles.

3. Enseñanza. Una enseñanza efectiva de las matemáticas requiere comprensión de lo que

los estudiantes conocen y necesitan aprender, y por tanto les desafían y apoyan para

aprenderlas bien.

4. Aprendizaje. Los estudiantes deben aprender matemáticas comprendiéndolas,

construyendo activamente el nuevo conocimiento a partir de la experiencia y el

conocimiento previo.

Page 4: modulo del numero y operaciones

4

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

5. Evaluación. La evaluación debe apoyar el aprendizaje de unas matemáticas importantes y

proporcionar información útil tanto a los profesores como a los estudiantes.

6. Tecnología. La tecnología es esencial en la enseñanza y el aprendizaje de las

matemáticas; influye en las matemáticas que se enseñan y estimula el aprendizaje de los

estudiantes.

Este módulo consta de tres unidades, distribuidas en 17 sesiones Cada actividad ha sido

estructurado en tres secciones. En la primera sección, que denominamos Analizando mi

práctica, proponemos una situacióninicial de reflexión y discusión colectiva sobre un aspecto

del tema, En la segunda, Construyamos nuestro aprendizaje, presentamos las principales

posiciones e informaciones, así como una colección de actividades o tareasintercaladas en el

texto que pueden servir como situaciones introductorias alos distintos apartados, o bien como

complemento y evaluación del estudio.

La tercera sección, Reflexionando sobre lo aprendido, incluye una colección de"problemas

de didáctica de las matemáticas" que amplían la reflexión y el análisis de los conocimientos

propuestos en cada tema.

José Melanio, Jorge Luis y Edwin

Page 5: modulo del numero y operaciones

5

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

ENFOQUE Y RUTA METODOLÓGICA

PROGRAMA DE ESPECIALIZACIÓN EN

MATEMÁTICA

Propuesta pedagógica

alternativa

COMPONENTE

ENFOQUES

Docentes de instituciones

educativas públicas del

nivel de educación

secundaria especialidad

Matemática de educación

básica regular 2012 – 2014,

INVESTIGACIÓN

ACCIÓN

REFLEXIVO

CRÍTICO

Fortalecer Las competencias

profesionales, para mejorar su desempeño docente.

PEDAGOGÍA Y

DIDÁCTICA

COMPETENCIA

UNIDADES

INDICADORES

Busca MÓDULO

Profesionalismo

docente

Realidad Política y

lineamientos educativos. Práctica educativa del área

de Matemática

Teoría de los

camposconceptuales y

recursos didácticos-

INTERCULTURAL

Crítico

reflexivo

Didáctica del Numero y Operaciones

La docencia crítico

reflexiva,

El Marco Situacional

Page 6: modulo del numero y operaciones

6

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

El enfoque crítico reflexivo

El enfoque crítico – reflexivo, busca que los docentes participantes del Programa de especialización se involucren en un proceso de cambio educativo y compromiso con las necesidades del desarrollo regional y nacional a partir de la deconstrucción y reconstrucción crítica de su propia práctica pedagógica y de la investigación acción como ejes centrales del proceso formativo y estrategias efectivas para la producción de un saber pedagógico situado.

El enfoque intercultural crítico

La interculturalidad como concepto y práctica significa “entre culturas” la cual hace referencia a la relación armónica, respetuosa y valorativa entre dos o más culturas caracterizados por la diversidad cultural y lingüística. Esta coexistencia y la interrelación permanente de comunicación y aprendizaje entre personas y grupos propician la interculturalidad. Sin embargo, cuando hablamos de la relación de una cultura consigo misma, mediante procesos de recuperación, revitalización y desarrollo identidario con la propia cultura, estamos refiriéndonos a la interculturalidad.

El profesionalismo docente

El profesional de la educación considerado dentro del profesionalismo docente es ético, reflexivo e innovador, capaz de autoevaluarse y actualizarse constantemente para construir nuevos saberes, asumir compromisos con la sociedad, trazarse objetivos y metas con sus estudiantes y con la colectividad profesional.

Los Programas de Especialización del MED, asumen el compromiso de formar docentes con profesionalismo, para transformar la práctica pedagógica considerando como elementos fundamentales de la docencia, tres aspectos:

La enseñanza como acción social, corresponde a una docencia con una perspectiva intercultural crítica, que construya una cultura que refleje un impacto social y político en los contextos de enseñanza-aprendizaje para el desarrollo integral del país.

La ética de educar, que nutre y emerge desde la pedagogía social, mediante la reflexión ética, política y la autorreflexión sobre las creencias y formas de actuar del docente y los recursos que posee para educar a sus estudiantes, hacia el logro del bien común sobre los derechos humanos universales.

El saber específico sobre la pedagogía, permite fortalecer la docencia como una profesión autónoma, que protagonice la construcción de una educación intercultural, inclusiva y de calidad; a fin de concebir saberes que promuevan la reflexión en los estudiantes, basados en el amor, el saber ser, conocer y hacer, a partir de la relación con su historia, el contexto cultural y la acción pedagógica.

Docentes de instituciones educativas públicas del nivel de educación secundaria de educación básica regular 2012 – 2014.

Fortalecer sus competencias profesionales y personales, para mejorar su desempeño docente.

Diseño metodológico para el diagnóstico del problema.

ENFOQUES

BENEFICIARIOS

BENEFICIARIOS

FINES DEL MÓDULO

BENEFICIARIOS

PRODUCTOS A LOGRARSE

BENEFICIARIOS

Page 7: modulo del numero y operaciones

7

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

COMPETENCIAS

UNIIDAD I

Realidad, Política y

Lineamientos

Educativos

UNIDAD II

Práctica educativa

del área de

matemática.

Concepciones de

enseñanza

aprendizaje.

UNIDAD III

Teoría de los

campos

conceptuales y

recursos didácticos

INDICADORESDE

DESEMPEÑO

INDICADORES DE

LOGRO

Conoce el enfoque y tratamiento del área de matemática en el marco de las políticas educativas regionales y nacionales.

Maneja diversidad de estrategias, innovaciones para el tratamiento didáctico de números y operaciones, fortaleciendo la resolución de problemas contextualizados a su entorno.

Demuestra en su práctica,

conocimientos sobre el

marco situacional

educativo, enfoques,

fundamentos teóricos y

estrategias innovadoras

para el desarrollo del

Número y operaciones, en

espacios de aprendizaje

colaborativo como medio

para desarrollar y compartir

información a través de la

resolución de problemas,

tomando en cuenta su

contexto.

Analiza las Políticas educativas nacionales, regionales y establece la relación entre ellas, mediante un cuadro comparativo.

Analiza el proyecto educativo regional y establece la relación con los contenidos del DCN

Desarrolla capacidades utilizando recursos del

contexto

Analiza las diferentes concepciones de la enseñanza y aprendizaje.

Aplica el método heurístico y el método de Polya en la solución de problemas

Diseña estrategias para resolver problemas aplicando propiedades de razones y porcentajes

MÓDULO I

PEDAGOGIA

Y DIDACTICA

COMPETENCIAS, CONTENIDOS, EJES E INDICADORES

C

O

N

T

E

N

I

D

O

S

EJES TRANSVERSALES

La enseñanza como acción social La ética del educar La producción del saber pedagógico

Page 8: modulo del numero y operaciones

8

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

LEYENDA ICONOGRAFICA

En este momento los docentes analizan su práctica a través de situaciones o

pequeñas actividades que le permitan reflexionar.

En este momento los estudiantes van a ir construyendo los aprendizajes haciendo uso de los

contenidos presentados.

En este momento los esrtudiantes reflexionan en situaciones propuestas de tal forma que

puedan transformar su realidad.

Page 9: modulo del numero y operaciones

9

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

INDICE

Pág.

Presentación Enfoque y ruta metodológica Competencias, contenidos, ejes e indicadores Leyenda iconográfica

UNIDAD N° I: REALIDAD, POLÍTICA Y LINEAMIENTOS EDUCATIVOS 10

Sesión1.- Políticas educativas nacionales y regionales: resultados de

programas realizados

11

Sesión 2.- Enfoque y práctica curricular según el Diseño Curricular Nacional 22

Sesión 3.- Características del Proyecto Educativo Regional 38

Sesión 4.- Enfoques del área de matemática, competencias y capacidades 49

Sesión 5.- Desarrollo de capacidades utilizando recursos del contexto 50

UNIDAD N° II: PRACTICA EDUCATIVA DEL ÁREA DE MATEMÁTICA

CONCEPCIONES DE LA ENSEÑANZA APRENDIZAJE.

FUNDAMENTOS TEÓRICOS

63

Sesión 6.- Concepciones de la enseñanza y aprendizaje, fundamentos

teóricos

64

Sesión 7.- Método Heurístico y Método de Polya para resolver problemas del

contexto.

70

Sesión 8.- Estrategias para resolver problemas relacionados al entorno real

utilizando el sistema internacional de unidades, unidades de tiempo.

84

Sesión 9.- Estrategias para resolver problemas relacionados a temas locales y

reales utilizando propiedades de las razones, porcentaje y regla de tres.

91

UNIDAD N° III: TEORIA DE LOS CAMPOS CONCEPTUALES Y

RECURSOS DIDACTICOS

Sesión 10.- Teorías de los campos conceptuales de Vergnaud 106

Sesión 11.- Recursos didácticos para el aprendizaje de los sistemas

numéricos.

113

Sesión12.- Estrategias para desarrollar situaciones problemáticas de números

y operaciones por niveles de demanda cognitiva

130

Sesión 13.- Recursos didácticos propuestos por el MED y alternativos para la

enseñanza de la matemática

140

Sesión 14.- Simuladores virtuales para la solución de situaciones

problemáticas

147

Page 10: modulo del numero y operaciones

10

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Sesión 15. Elaboración y manipulación de materiales educativos para el área

de matemática utilizando recursos y elementos de la localidad

151

Sesión 16.- Principles and StandardsforSchoolMathematicsNCTM,

Competencias en el VI y VII ciclo de la EBR, Análisis, convergencias y

divergencias

162

Sesión 17.- PISA. Marco teórico. Análisis de resultados de las ultimas

evaluaciones (en función a los estándares que se propone)

168

BIBLIOGRAFÍA 174

Page 11: modulo del numero y operaciones

11

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Esta unidad consta de cinco sesiones de aprendizaje: Políticas educativas nacionales y

regionales, resultados de programas realizados, Enfoque y práctica curricular según el

Diseño Curricular Nacional, Características del Proyecto Educativo Regional, Enfoques del

área de matemática, competencias y capacidades y Desarrollo de capacidades utilizando

recursos del contexto

.

PRIMERA UNIDAD: REALIDAD, POLÍTICA Y LINEAMIENTOS EDUCATIVOS

REALIDAD,

POLÍTICA Y

LINEAMIENTOS

EDUCATIVOS

Política educativa nacional y regional. Resultados de programas

realizados

Características del Proyecto Educativo Regional.

Enfoque del área matemática: competencias y capacidades.

Desarrollo decapacidades utilizando recursos del contexto.

Enfoque y práctica curricular según el Diseño Curricular Nacional.

SESIÓN 1 POLÍTICAS EDUCATIVAS NACIONALES Y REGIONALES:

RESULTADOS DE PROGRAMAS REALIZADOS

INDICADORES DE LOGRO - Analiza las Políticas educativas nacionales, regionales y establece la relación entre

ellas, mediante un cuadro comparativo - Analiza los resultados de programas de especialización realizados por la

universidad.

Te invitamos a reflexionar sobre las

políticas educativas nacionales y

regionales

Qué opinas del PEN?

Qué opinas del proyecto educativo

regional?

¿Por qué crees que no tenemos un

proyecto curricular regional?

Page 12: modulo del numero y operaciones

12

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

POLÍTICAS NACIONALES

Como todos sabemos, el Perú creció económicamente de manera acelerada en los últimos años. Hay quienes piensan de que, a pesar de la crisis financiera internacional, sus perspectivas siguen siendo prometedoras, mientras otros vaticinan años difíciles. En cualquiera de los dos escenarios, no existen para el país alternativas de respuesta que puedan prescindir de la educación. Por ahora, el crecimiento no necesitó mucho de la educación, pues hubo un progreso de los indicadores económicos no acompañado de progresos en la calidad de la educación.

En realidad, se trató de un progreso poco ordenado y orgánico, que ha mantenido las grandes desigualdades en la calidad de los servicios que reciben sobre todo las comunidades rurales e indígenas, aunque también las grandes ciudades. Lo cierto es que un desarrollo extendido a todas las capas sociales, acompañado con progreso y bienestar, exige revisar la escasa prioridad que la sociedad y los gobiernos han venido dando a la educación.

Sea que se trate de remontar la crisis o de hacer sostenible un nuevo periodo de crecimiento económico, como lo demuestra la experiencia de varios países del mundo, se necesita una educación de calidad. Esto significa colocar la educación rural a la altura de la urbana y ambas a la altura de los países de vanguardia, reducir a cero la desnutrición crónica de los niños y desarrollar el talento humano desde la primera infancia, así como transferir a nuestros jóvenes las capacidades necesarias para actuar en las economías del conocimiento. Naturalmente, nada de eso es posible con una educación cuya participación en el PBI no llega a pasar del 3%, en tanto un país como México alcanza el 8.2%.

El Proyecto Educativo Nacional y las reformas pendientes

Pero la frágil situación de la educación peruana y su desfase respecto a los grandes desafíos nacionales es producto de una larga historia y ha llegado en la actualidad a límites insostenibles. A fines de los años 90 e inicios del siglo XXI, estaba claro que nuestra educación había perdido el paso respecto a los cambios que se venían produciendo en el mundo y en nuestro propio país. Los retos que se nos presentaban para superar la pobreza, alcanzar un desarrollo con progreso, justicia y bienestar para todos e integrarnos como país superando viejas divisiones, heridas y prejuicios, estaba claro, no se podían afrontar sin educación.

No obstante, la educación nacional arrastra tres herencias muy pesadas. La primera es la desigualdad, que nos ha acostumbrado a una educación de calidad para unos pocos y una educación sin calidad para muchos. La segunda es el atraso, pues a nuestros jóvenes se les sigue enseñando lo que quizás fue útil en el pasado pero ya no lo es en la época actual. La tercera es el abandono, pues la calidad de la educación ha sido siempre el pariente pobre del presupuesto público y no tuvo un lugar preferencial en la agenda política de los gobiernos.

El Proyecto Educativo Nacional surge, justamente, como respuesta a un clamor cada vez más unánime: contar en el país con políticas de Estado en educación que emprendan soluciones sostenibles a largo plazo al problema de una educación inequitativa, desfasada de las exigencias de la época, por añadidura ineficaz y relegada de las prioridades nacionales. Políticas que trasciendan ministros y gobiernos por tener pertinencia, viabilidad y aceptación general.

Page 13: modulo del numero y operaciones

13

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

En efecto, la fortaleza del PEN estuvo siempre en el consenso, pues se concibió desde el inicio no como un producto de gabinete, sino como expresión de un proceso de concertación con la ciudadanía, los maestros, la comunidad académica y diversas instituciones sociales en todas las regiones del país. Su segunda fortaleza fue su mirada de conjunto y su perspectiva de largo plazo. Por lo mismo, fue diseñado no como un conjunto de iniciativas y actividades coyunturales, aisladas y dispersas, dirigidas a mejorar uno u otro aspecto particular de la educación, sino como un proyecto de cambio a gran escala que necesitaba implementarse de manera articulada y coherente.

Estas dos características son las mismas que distinguirían el proceso de los Proyectos Educativos Regionales: sustento en consensos plurales muy amplios y visión transformadora de sus propios desafíos educativos. De hecho, la construcción del PEN se inicia en un momento de florecimiento de los Proyectos Educativos Regionales, los que en cumplimiento de la Ley General de Educación del 2003, surgen de procesos de construcción participativa que buscaban en cada región comprometer a la ciudadanía y al sector público con los cambios a emprender en su educación.

No obstante, la anhelada implementación articulada, coherente y efectiva del Proyecto Educativo Nacional y de los PER que fueron aprobándose, se tropezó con diversas barreras, haciéndose evidente las enormes limitaciones del Estado peruano para hacerse cargo de un proyecto de reforma estructural del sistema educativo, sin reformarse primero a sí mismo. Como producto de la experiencia de estos años, podemos decir hoy que su implementación depende en buena medida de nuestra capacidad para responder acertadamente estas cinco preguntas:

¿Cómo debe reestructurarse el sector para implementar los Proyectos, asegurar sus resultados y mejorar los aprendizajes en los diversos escenarios regionales?

¿Cómo aseguramos el financiamiento necesario y sostenido a cada iniciativa hasta obtener los resultados buscados?

¿Cómo garantizamos a los niños, en especial a los más pequeños y más pobres, todas las condiciones que les permitan un inicio auspicioso de su escolarización?

¿Cómo reformamos la profesión docente de un modo que abra paso a prácticas más efectivas de enseñanza en escuelas, a su vez, rediseñadas y fortalecidas?

¿Cómo dotarnos de instituciones de educación superior seriamente acreditadas que aporten el capital humano que la sostenibilidad de estas reformas requiere?

La primera y la segunda pregunta nos remiten a dos barreras, a veces insalvables aunque imprescindibles de vencer, para cualquier proceso serio de cambio en educación: la gestión y el presupuesto, ámbitos que requieren urgentes reformas estructurales, empezando por la institución educativa, pasando por los órganos descentralizados y terminando en el sistema nacional de gestión.

La tercera pregunta alude a una condición esencial para una escolarización exitosa: la atención y reducción de las desventajas sociales con las que llegan a la escuela los niños de las zonas más pobres del país, en particular las rurales, y que condicionan fuertemente su posterior rendimiento. La cuarta nos traslada al terreno de una reforma particularmente crítica: la de la profesión docente, es decir, de su rol y sus prácticas pedagógicas, de su formación y evaluación, hasta ahora desalineadas de las principales demandas de aprendizaje que se afronta la educación básica y de los cambios en el sistema de gestión de la educación.

La quinta, finalmente, nos remite a los procesos de acreditación de la calidad de la educación superior, una reforma largamente esperada y que hoy necesitamos impulsar, acompañar,

Page 14: modulo del numero y operaciones

14

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

consolidar, vigilar, para contar con instituciones que aporten al país los profesionales y el nuevo conocimiento que hagan posible un desarrollo nacional con equidad y justicia sostenible a largo plazo.

Objetivos de Dakar

Objetivo Estratégico de Dakar 1

Extender y mejorar la protección y educación integrales de la primera infancia, especialmente

para los niños más vulnerables y desfavorecidos.

Objetivo Estratégico de Dakar 2

Velar por que antes del año 2015 todos los niños, sobre todo las niñas y los niños que se

encuentran en situaciones difíciles, y los pertenecientes a minorías étnicas, tengan acceso a

una enseñanza primaria gratuita y obligatoria de buena calidad, y la terminen.

Objetivo Estratégico de Dakar 3

Velar porque sean atendidas las necesidades de aprendizaje de todos lo jóvenes y adultos

mediante el acceso equitativo a un aprendizaje adecuado y a programas de preparación para

la vida activa.

Objetivo Estratégico de Dakar 4

Aumentar el 50% de aquí al año 2015 el número de adultos alfabetizados, en particular

mujeres, yfacilitar a todos los adultos el acceso equitativo a la educación básica y a la

educación permanente.

Objetivo Estratégico de Dakar 5

Suprimir las disparidades entre géneros en la enseñanza primaria y secundaria de aquí al año

2005 y lograr antes del año 2015 la igualdad entre géneros en relación con la educación, en

particular garantizando a las niñas un acceso pleno y equitativo a una educación básica de

buena calidad, así como un buen rendimiento.

Objetivo Estratégico de Dakar 6

Mejorar todos los aspectos cualitativos de la educación, garantizando los parámetros más

elevados, para conseguir resultados de aprendizajes reconocidos y mesurables,

especialmente en lectura, escritura, aritmética y competencias prácticas esenciales.

Page 15: modulo del numero y operaciones

15

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

PROYECTO EDUCATIVO NACIONAL AL 2021

La educación que queremos para el Perú

Propuesta del Consejo Nacional de Educación

Noviembre de 2006

Este documento ha sido elaborado por el Consejo Nacional de

Educación, luego de un intenso proceso de diálogos y consultas con

la ciudadanía, en cumplimiento del mandato del artículo 81 de la Ley

General de Educación, tomando como base las políticas acordadas

en el Acuerdo de Gobernabilidad del Foro del Acuerdo Nacional, en

la Ley General de Educación 28044, en el plan de Educación Para Todos, entre otros.

OBJETIVO ESTRATÉGICO 1

OPORTUNIDADES Y RESULTADOS EDUCATIVOS DE IGUAL CALIDAD PARA TODOS

Políticas:

1. Asegurar el desarrollo óptimo de la infancia a través de la acción intersectorial

concertada del Estado en cada región.

2. Ampliar el acceso a la educación básica a los grupos hoy desatendidos.

3. Asegurar condiciones esenciales para el aprendizaje en los centros educativos que

atienden las provincias más pobres de la población nacional.

4. Prevenir el fracaso escolar en los grupos sociales más vulnerables.

OBJETIVO ESTRATÉGICO 2

ESTUDIANTES E INSTITUCIONES QUE LOGRAN APRENDIZAJES PERTINENTES Y DE

CALIDAD

Políticas:

5. Establecer un marco curricular nacional compartido, intercultural, inclusivo e integrador,

que permita tener currículos regionales.

6. Definir estándares nacionales de aprendizajes prioritarios y evaluarlos regularmente.

7. Transformar las prácticas pedagógicas en la educación básica.

8. Impulsar de manera sostenida los procesos de cambio institucional.

9. Articular la educación básica con la educación superior técnica o universitaria

OBJETIVO ESTRATÉGICO 3

MAESTROS BIEN PREPARADOS QUE EJERCEN PROFESIONALMENTE LA DOCENCIA

Políticas:

Page 16: modulo del numero y operaciones

16

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

10. Mejorar y reestructurar los sistemas de formación inicial y continua de los profesionales

de la educación.

11. Implementar una nueva Carrera Pública Magisterial.

OBJETIVO ESTRATÉGICO4

UNA GESTIÓN DESCENTRALIZADA, DEMOCRÁTICA, QUE LOGRA RESULTADOS Y ES

FINANCIADACON EQUIDAD

Políticas:

12. Cambiar el actual modelo de gestión pública de la educación basándola en

procedimientos democráticos y en el planeamiento, promoción, monitoreo y evaluación

de políticas estratégicas nacionales.

13. Reformar la gestión educativa regional y articularla con los ejes de desarrollo nacional y

regional con criterios de coordinación intersectorial.

14. Fortalecer las capacidades de las instituciones y redes educativas para asumir

responsabilidades de gestión de mayor grado y orientadas a conseguir más y mejores

resultados.

15. Fortalecer una participación social responsable y de calidad en la formulación, gestión y

vigilancia de las políticas y proyectos educativos.

16. Moralizar la gestión en todas las instancias del sistema educativo

17. Incrementar sostenidamente el presupuesto asegurando calidad educativa para todos,

asignando recursos con criterios de equidad, calidad y eficiencia.

18. Estimular y procurar el aumento de la contribución social al financiamiento de la

educación.

OBJETIVO ESTRATÉGICO 5

EDUCACIÓN SUPERIOR DE CALIDAD SE CONVIERTE EN FACTOR FAVORABLE PARA

ELDESARROLLO Y LA COMPETITIVIDAD NACIONAL

Políticas:

19. Renovar la estructura del sistema de la educación superior, tanto universitaria cuanto

técnico-profesional.

20. Consolidar y dar funcionamiento efectivo al Sistema Nacional de Acreditación y

Certificación de la Calidad de la Educación Superior.

21. Incrementar el financiamiento del sistema nacional de educación superior y enfocar los

recursos en las prioridades de dicho sistema.

22. Renovar la carrera docente en educación superior sobre la base de méritos académicos.

23. Articulación de la educación superior con la realidad económica y cultural.

Page 17: modulo del numero y operaciones

17

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

24. Educación superior ligada a la investigación y a la planificación.

25. Transformación de la calidad de la formación profesional.

OBJETIVO ESTRATÉGICO 6

UNA SOCIEDAD QUE EDUCA A SUS CIUDADANOS Y LOS COMPROMETE CON SU

COMUNIDAD

Políticas:

26. Municipios fomentan la identidad local y la cohesión social.

27. Participación y movilización social en torno a desafíos centrales

28. Familias asumen rol educador y colaboran con los aprendizajes y con prácticas de vida

en comunidad.

29. Fomento de la responsabilidad social de las empresas locales a favor de la educación.

30. Fomento de compromisos de líderes e instituciones con la educación.

31. Promoción de la función educativa, informativa y cultural de los medios de

comunicación.

32. Autorregulación de la prensa a favor de los derechos ciudadanos.

33. Observatorio ciudadano para mejorar la responsabilidad cívica de los medios.

PROYECTO EDUCATIVO REGIONAL DE LAMBAYEQUE

VISIÓN EDUCATIVA REGIONAL

Para lograr esta Visión se han formulado seis Objetivos de

Desarrollo Educativo, con susrespectivos resultados, políticas y

medidas, todo ello a partir del análisis de nuestra realidadregional,

nacional y mundial. Los objetivos planteados se refieren a los

temas de Calidad delos Aprendizajes, Equidad Educativa,

Interculturalidad, Desarrollo Magisterial, GestiónEducativa

Democrática y Descentralizada y Educación Superior Articulada al

Todas las personas en la región Lambayeque, desarrollan capacidades para enfrentar retos en un mundo diverso,

globalizado y cambiante, contribuyendo al desarrollo humano sostenible de la región y del país.

Participan de una educación integral, de calidad, innovadora con equidad e interculturalidad que se desarrolla en forma

descentralizada y democrática, en el marco de la ética y la participación comprometida con el Estado y la Sociedad Civil.

NUESTRA VISIÓN

Page 18: modulo del numero y operaciones

18

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

DesarrolloRegional.

OBJETIVO 1: CALIDAD DE LOS APRENDIZAJES

Lograr aprendizajes de calidad en los y las estudiantes de educación básica con la

participación de la familia y la comunidad en general para su desarrollo personal y social que

les permitan ser ciudadanos y ciudadanas promotores de cambio.

Políticas:

POLÍTICA 1: Implementación de una práctica pedagógica intercultural de calidad basada en

valores, en el buen trato y en la investigación, que garantice a los estudiantes

una educación trascendente para su vida personal y social.

POLÍTICA 2: Implementación de un Proyecto Curricular Intercultural Diversificado, formulado

concertadamente con un enfoque de desarrollo humano sostenible, que sirva

de soporte al proceso de descentralización en todos los niveles y modalidades.

POLÍTICA 3: Orientación de la gestión pedagógica, administrativa e institucional de las

instituciones educativas al logro de aprendizajes de calidad.

POLÍTICA 4: Implementación de mecanismos de monitoreo, evaluación e información

periódica de logros de aprendizajes para la toma de decisiones en todos los

niveles de gestión.

POLÍTICA 5: Promoción de la participación significativa de las familias en el proceso de

aprendizaje de sus hijos e hijas.

POLÍTICA 6: Movilización permanente de la sociedad lambayecana para su involucramiento

en la educación y el logro de aprendizajes de calidad.

OBJETIVO 2: EQUIDAD EDUCATIVA

Promover y garantizar la igualdad de oportunidades en la asignación de los recursos, acceso,

permanencia y calidad de los procesos y logros de aprendizajes.

Políticas:

POLÍTICA 7: Aseguramiento del acceso, permanencia y culminación exitosa de la educación

básica, en particular de las niñas y adolescentes de las poblaciones rurales y

urbanas periféricas.

POLÍTICA 8: Generalización del uso de la lengua materna y la incorporación progresiva de

una segunda lengua en los procesos de aprendizaje escolar de la población

quechua hablante.

Page 19: modulo del numero y operaciones

19

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

POLÍTICA 9: Atención prioritaria a la educación en las áreas rurales para mejorar la calidad

educativa y disminuir las brechas existentes de inequidad.

POLÍTICA 10: Promoción de una educación con enfoque de equidad de género que erradique

estereotipos y prácticas discriminatorias.

POLÍTICA 11: Atención oportuna de la primera infancia en nutrición, salud física y mental con

participación intersectorial, comunal, gobierno local y regional.

POLÍTICA 12: Implementación y aseguramiento de las instituciones educativas menos

favorecidas, especialmente de áreas rurales y urbano-periféricas, con

participación de gobiernos locales, de acuerdo a sus necesidades y contexto

con infraestructura y equipamiento de calidad.

POLÍTICA 13: Fomento a la inclusión de niños con necesidades educativas especiales al

sistema educativo y generación de condiciones que posibiliten y optimicen su

aprendizaje.

OBJETIVO 3: INTERCULTURALIDAD

Promover en la sociedad regional lambayecana el compromiso de valorar y respetar la

diversidad natural y cultural para desarrollar y afirmar la identidad personal, local, regional y

nacional a partir de relaciones equitativas e integradoras.

Políticas:

POLÍTICA 14: Mejoramiento institucional con orientación intercultural en la formulación,

ejecución y evaluación de los instrumentos de gestión en las instancias del

sistema educativo.

POLÍTICA 15: Promoción y desarrollo permanente de programas y proyectos interculturales

en las instituciones educativas y en la comunidad.

POLÍTICA16: Movilización social por un permanente diálogo intercultural que respete las

diferencias y que contribuya a la construcción de relaciones de equidad e

intercultural.

POLÍTICA 17: Promoción de canales de información y comunicación entre las instituciones

públicas, privadas y comunidad para el desarrollo de relaciones y actividades

interculturales que fortalezcan la identidad e integración lambayecana.

POLÍTICA18: Fomento de la investigación sobre diversidad natural y cultural que contribuya a

la formación de ciudadanías responsables e interculturales para el desarrollo

local y regional.

Page 20: modulo del numero y operaciones

20

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

OBJETIVO 4: DESARROLLO MAGISTERIAL

Contar con profesores idóneos en lo personal y profesional, que asumen sus

responsabilidades con los aprendizajes de los estudiantes y se constituyen en agentes de

cambio, con condiciones laborales dignas, revalorados socialmente y que contribuyen al

desarrollo regional y nacional.

Políticas:

POLÍTICA 19: Formación inicial docente basada en la ética, investigación, innovación y

conservación de los recursos naturales, para garantizarel desarrollo de una

cultura ecológica; así como de capacidades personales y profesionales de

calidad.

POLÍTICA 20: Mejoramiento de la gestión en las instituciones de formación docente para

lograr una formación inicial de calidad articulada al desarrollo local, regional y

nacional.

POLÍTICA 21: Generación de un sistema de regulación de la oferta de formación en servicio,

basada en indicadores de calidad concertados que aseguren pertinencia,

oportunidad y accesibilidad a las necesidades y posibilidades de los profesores.

POLÍTICA 22: Impulsar el desarrollo profesional del docente en el marco de la carrera pública

magisterial, que permita su revaloración involucrando a la sociedad civil,

gobiernos locales e instituciones públicas y

privadas organizadas.

OBJETIVO 5: GESTIÓN DEMOCRATICA Y

DESCENTRALIZADA

Garantizar que las diferentes instancias de gestión educativa

ejerzan sus funciones en forma autónoma, democrática y

descentralizada en beneficio de la sociedad.

Políticas:

POLÍTICA 23: Fortalecimiento de los espacios de participación social en las decisiones

educativas que incorpore los intereses de los diversos actores.

POLÍTICA 24: Funcionamiento efectivo de mecanismos de transparencia y de rendición de

cuentas, en todas las instancias de gestión educativa descentralizada y

gobiernos locales, con criterios de pertinencia a la diversidad social y cultural.

Page 21: modulo del numero y operaciones

21

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

POLÍTICA 25: Erradicación oportuna de casos de corrupción en el Sector educación de la

región.

POLÍTICA 26: Desarrollo de la autonomía en las diferentes instancias de gestión educativa

descentralizada del sistema educativo de la región.

POLÍTICA 27: Fortalecer la intersectorialidad y la participación de los gobiernos locales, en las

diversas instancias de gestión educativa descentralizada para contribuir al

desarrollo humano local y regional.

POLÍTICA 28: Optimización del desempeño de competencias transferidas en el marco del

proceso de descentralización.

POLÍTICA 29: Aseguramiento de los recursos financieros necesarios para el desarrollo de las

políticas educativas regionales, gestionados de manera eficaz, eficiente y

transparente.

OBJETIVO 6: EDUCACIÓN SUPERIOR ARTICULADA AL DESARROLLO REGIONAL

Asegurar la formación de profesionales competentes y honestos en el marco de la

investigación, innovación y la tecnología, comprometidos en el desarrollo Regional y Nacional,

en Instituciones acreditadas.

Políticas:

POLÍTICA 30: Asegurar la aplicación de un currículo intercultural articulado a la educación

básica, al desarrollo regional y a la conservación y manejo de los recursos

naturales.

POLÍTICA 31: Promoción de la investigación científica y aplicación de conocimientos en los

diferentes campos del saber orientados a mejorar la calidad de vida.

POLÍTICA 32: Promoción de proyectos de inversión acorde con las necesidades de la Región,

a través del Estado, colegios profesionales y otras organizaciones de la

Sociedad Civil.

POLÍTICA 33: Implementación de un programa de evaluación y acreditación de las

instituciones educativas de Educación Superior para optimizar la calidad de la

formación profesional.

POLÍTICA 34: Promoción permanente de la investigación científica e innovación tecnológica

que contribuya al desarrollo local y regional.

POLÍTICA 35: Optimización y mejoramiento del proceso de extensión y proyección social para

el desarrollo y crecimiento de la región.

Page 22: modulo del numero y operaciones

22

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

SESIÓN 2 ENFOQUE Y PRÁCTICA CURRICULAR SEGÚN EL

DISEÑO CURRICULAR NACIONAL

INDICADORES DE LOGRO

- Analiza el diseño curricular nacional, especialmente en el área de Matemática

Te invitamos a reflexionar sobre la enseñanza de la matemática en nuestras aulas:

1. ¿Cuál es tu opinión del cómic presentado? 2. ¿Cuáles son las inquietudes de la estudiante como Mafalda y sus compañeros? 3. ¿Cómo se viene desarrollando el proceso de enseñanza aprendizaje del área en el aula? 4. ¿De qué manera nuestros estudiantes manifiestan su interés por el estudio de la matemática? 5. ¿Qué estrategias resultan más adecuadas para el tipo de estudiante que tenemos?

Ahora a evaluar los avances de los objetivos

estratégicos y políticas del proyecto educativo

regional. Desde la perspectiva de la realidad de mi

localidad.

Elabora una propuesta de aplicación del PEN en tu

institución educativa enlazadas con las políticas

propuestas con el PER.

Observa, lee y comenta

Page 23: modulo del numero y operaciones

23

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

“…la sociedad cambió, se volvió mucho más compleja. Ser un ciudadano autónomo hoy

exige – entre muchas otras cuestiones- dominar conjuntos de relaciones, interpretar

sistemas de símbolos, plantear problemas y resolverlos, producir formas de representación

en función de la solución que se busca, justificar métodos elegidos…. ¿Entonces?

Entonces es necesario repensar la matemática escolar de manera tal que el diálogo entre

la escuela y la comunidad recobre su sentido principal: lograr que los jóvenes puedan

estudiar los productos de la cultura que mejor los prepararán para comprender la sociedad

en la que van a entrar.

(…) Hoy más que nunca importan los recorridos transitados para conocer. (…) el sentido

de un concepto está ligado a las prácticas que se pusieron en juego durante su elaboración

y esas prácticas son las que determinan la potencialidad del concepto para ser reutilizado”

(Sadovsky 1999:32).

1. FUNDAMENTOS Y ENFOQUE DEL ÁREA

En nuestra sociedad actual la matemática se presenta en diversas situaciones: en la

familia, la escuela, el trabajo, el ocio, entre otros.

Es decir, en nuestra vida diaria estamos siempre relacionados con aspectos sociales,

culturales y de la naturaleza, existiendo en esta relación aspectos matemáticos que

involucran un entendimiento y un desenvolvimiento adecuados que nos permiten entender

el mundo que nos rodea. Por ejemplo, podemos cuantificar el número de integrantes de la

familia, hacer un presupuesto familiar, desplazarnos de la casa a la escuela, estimar el

tiempo empleado para cuando nos transportamos, esperar la cosecha del año

considerando el tiempo y los fenómenos de la naturaleza, hacer los balances contables de

negocios en una microempresa, así como practicar juegos en los que podríamos hacer

cálculos probabilísticos.

ACTIVIDAD 2: Dialoguemos sobre el

ENFOQUE DEL AREA DE MATEMÁTICA en

el marco del DCN

Page 24: modulo del numero y operaciones

24

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Por otro lado, la matemática es un sistema

comunicativo-representativo en el que está

escrito el desarrollo de las demás ciencias;

gracias a ello ha habido un desarrollo

dinámico y combinado de la ciencia-

tecnología, que ha cambiado la vida del

ciudadano moderno. En las últimas décadas,

la matematización ha alcanzado diversas

disciplinas científicas (economía, química,

ciencias sociales, entre otras). Por ejemplo, en medicina se realizan estudios

epidemiológicos de tipo estadístico, también es necesario cuantificar el estado de un

paciente (temperatura, pulsaciones, etcétera) y seguir su evolución, mediante tablas y

gráficos, comparándola con los valores promedios en un sujeto sano.

Todo ciudadano está dotado para la matemática de forma natural, presentándose en la

educación de manera formal e informal. Su desarrollo es fruto de la vida misma de la

persona relacionada con diversos aspectos. Decimos que la persona redescubre y

construye sus conocimientos científicoscon la ayuda de la matemática, en el sentido de

que las disciplinas científicas usan como lenguaje y representación de lo factual los

códigos, procesos y conceptos de un cuerpo de conocimiento matemático El Diseño

Curricular Nacional plantea el desarrollo del pensamiento matemático como parte de todo

un pensamiento que busca ser integral y crítico, por lo que la formación del ciudadano

moderno, en el área, se orienta hacia el desarrollo y aplicación de estrategias en la

resolución de problemas en un mundo cultural, social, científico e intelectual.

Es por ello que los futuros ciudadanos tendrán seguridad al resolver situaciones

problemáticas, mostrando actitudes como la honestidad y transparencia al comunicar

procesos de solución y resultados; perseverancia para lograrlos; rigurosidad para

representar relaciones y plantear argumentos; iniciativa, capacidad de trabajo en equipo,

curiosidad por los nuevos avances, capacidad para afrontar diferentes problemas y

dificultades.

El conocimiento matemático hasta la actualidad es consecuencia de experiencias

numerosas y variadas en relación con la evolución cultural, histórica y científica, de modo

que se puede apreciar, asimismo el rol en el desarrollo de nuestra sociedad actual y

explorar qué relaciones existen entre la matemática y las disciplinas científicas. Debe

concebirse como parte del proceso, mediante el cual la persona en formación es iniciada

en su herencia cultural, de modo que cada generación transmite a las siguientes sus

pautas culturales básicas.

Page 25: modulo del numero y operaciones

25

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Por ello, se debe resaltar el rol que cumple la institución educativa en lavalorización de un

legado de conocimientos desarrollados en un contexto regional y local, permitiendo a partir

de ello un conocimiento que en momentos va a hacer contraste con lo vivido (ejemplo:

sistemas de medidas usadas en la región y sistemas de medidas de los que haceuso las

ciencias), expresar sus aplicaciones o utilidades en un contexto (ejemplo: qué rol cumple el

sistema numérico en las actividades de la región), propiciar el acercamiento a

razonamientos y argumentos matemáticos de un grupo cultural (ejemplo: un estudiante

quechua de Quispicanchis y un estudiante machiguenga del Bajo Urubamba tienen un

razonar diferente en la sucesión de tamaños).

Por lo expuesto, el enfoque del área se orienta a reconocer:

La perspectiva intercultural del área.

El desarrollo del pensamiento matemático, valorando a su vez

el papel formativo y social.

El área se orienta en una perspectiva intercultural, a través de

un proceso dinámico que permite construir relaciones más

equilibradas basadas en el respeto y el diálogo entre actores

de diversos universos sociales y culturales coexistenciales,

posibilitando en ellos reconocer y valorar las construcciones

matemáticas y formas de pensamiento matemático, así como

potenciar en el estudiante la racionalidad y los sentimientos que se expresan en la

interacción con su comunidad.

El desarrollo del pensamiento matemático es la búsqueda crítica y reflexiva de

conclusiones válidas orientadas a la resolución de problemas, que nos permite comprender

las relaciones que se dan en el mundo circundante y posibilita cuantificar y formalizar para

entenderlas mejor y poder comunicarlas. En consecuencia, esta forma de pensamiento se

traduce en el uso y manejo de capacidades, como razonar, demostrar, argumentar,

interpretar, identificar, relacionar, graficar, calcular, inferir, efectuar algoritmos y modelar,

entre otros, conocimientos matemáticos, permitiendo el avance del pensamiento

matemático, que es susceptible al aprendizaje.

Es importante dejar establecido que el pensamiento matemático se construye siguiendo

rigurosamente las etapas determinadas para su desarrollo en forma histórica, existiendo

una correspondencia biunívoca entre el pensamiento sensorial, que en matemática es de

tipo intuitivoconcreto; el pensamiento racional, que es gráfico-representativo, y el

pensamiento lógico, que es de naturaleza conceptual o simbólico

El siguiente esquema nos muestra ese proceso:

Page 26: modulo del numero y operaciones

26

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Para aprender nociones abstractas o generalizaciones teóricas de la matemática, es

necesario que en el cerebro humano se hayan configurado determinadas estructuras

mentales que hagan posible su asimilación, acomodación y conservación. Es

indispensable, en consecuencia, que el mediador del aprendizaje sea consciente de que,

para aprender una estructura matemática, el estudiante debe haber desarrollado una

determinada estructura mental que haga posible ese aprendizaje. De lo contrario, será

indispensable realizar las manipulaciones, clasificaciones, construcciones, análisis y

agrupaciones necesarios con material objetivo-concreto o con representaciones gráficas

para luego abordar las formalizaciones que caracterizan a la matemática. De nada sirve

obviar estos procesos. Existe la ventaja, sin embargo, de que el cerebro humano no tiene

una edad límite para crear sus estructuras mentales.

El valor formativo del área se sustenta en proporcionar, junto con el lenguaje, los pilares de

la formación de los estudiantes. Desarrolla el pensar, ordena las ideas lógicamente y

requiere de un desarrollo progresivo que permita apreciar el desarrollo alcanzado por cada

estudiante, quien deberá adquirir modos de pensamiento adecuado, hábitos de

persistencia, curiosidad y confianza ante situaciones no familiares que les serán útiles

fuera de la clase de matemática.

Por lo tanto, fomenta actitudes de orden, flexibilidad, persistencia, decisión, sensibilidad

frente a los problemas, aceptación de la responsabilidad por el proceso y el resultado,

objetividad, capacidad crítica y creativa. Asimismo se forman actitudes de humildad a la

COGNICIÓ

N

METACOGNICIÓN

DESARROLLO DEL PENSAMIENTO LÓGICO

ETAPA CONCEPTUAL O SIMBÓLICA

ETAPA CONCEPTUAL O SIMBÓLICA

DESARROLLO DEL PENSAMIENTO LÓGICO

DESARROLLO DEL PENSAMIENTO SENSORIAL

ETAPA INTUITIVO - CONCRETA

CAPACIDADES DE: Aprender a aprender Aprender a pensar Aprender a hacer Aprender a vivir Aprender a ser

Aprehender la realidad que nos rodea a través de nociones, conceptos, teorías, leyes, principios, símbolos, etcétera.

Aprehender la realidad que nos rodea a través de nociones, conceptos, teorías, leyes, principios, símbolos, etcétera.

Aprehender la realidad a través de sus diversas sensaciones, es decir, mediante la información que nos proporcionan los sentidos

Page 27: modulo del numero y operaciones

27

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

aceptación del error, serenidad reflexiva hacia el averiguar las causas de un problema,

constancia hacia la búsqueda del acierto. Todos estos aspectos contribuyen a la confianza

en sí mismo y afirmación de su personalidad.

El valor social del área aparece en todas las formas de expresión humana, permite

codificar y obtener información del medio social, natural y cultural para efectuar una

actuación posterior sobre dicho medio. El estudiante empieza a tener conciencia de los

múltiples problemas que diariamente vive su familia, tales como cuestiones laborales,

jornadas y valor del trabajo, sueldo, ingresos, gastos, compra-venta, declaración de renta,

etcétera. Igualmente, da la oportunidad para insertarse adecuadamente en la formación y

práctica de un futuro ámbito laboral y profesional.

Por ello el estudiante puede desenvolverse haciendo de la matemática.

Un instrumento intelectual

La matemática no solo es la herramienta mediante la cual se han estructurado y

llegado a desarrollar los conocimientos científicos, como la física, la química, las

ciencias de la naturaleza y la tecnología, sino que también es aplicable a otras

ciencias, como la economía y las ciencias sociales.

Las ciencias, en general, nacen de un conjunto de hechos observados. Estas

observaciones son cualitativas en primera instancia, pasan seguidamente a ser

medidas y proponen relaciones sistemáticas de condiciones por las que se obtienen

conclusiones cuantitativas que dan origen a las leyes científicas.

Una práctica en la vida diaria

La matemática tiene un uso tanto en la escuela como en las actividades de la vida

cotidiana. En el trabajo y en momentos recreativos el estudiante debe llegar a conocer

y dominar una serie de conceptos y estrategias para comprender la realidad en la que

está inmerso. Las capacidades que despliega el estudiante toman sentido cuando

están incluidas en las actividades que involucran visualización espacial,

representaciones cualitativas, cuantitativas y predictivas.

2. PROPÓSITO DEL ÁREA

Resolver problemas de la vida cotidiana. La matemática debe desarrollar en los

estudiantes la capacidad para plantear y resolver problemas, si queremos contar en el

futuro con ciudadanos productivos. El desarrollo de la capacidad de resolución de

problemas es la espina dorsal en la enseñanza de la matemática en el nivel secundario,

y obliga a que algo tan evidente sea enfatizado. Sin embargo, tan importante como la

capacidad de resolver problemas es la de saber plantearlos creativamente.

Aprender a razonar matemáticamente. El trabajo matemático debe permitir al estudiante

desarrollar su habilidad para elaborar y comprobar conjeturas, formular contraejemplos,

Page 28: modulo del numero y operaciones

28

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

seguir argumentos lógicos, juzgar la validez de un argumento, construir argumentos

sencillos y válidos, etcétera. La matemática es una fuente fecunda de raciocinio.

Utilizar la matemática como medio de comunicación. El lenguaje matemático permite

expresar ideas diversas, formular enunciados, leyes y principios, y realizar

generalizaciones; asimismo permite reflexionar y clarificar conceptos y relaciones entre

objetos, es decir, que el uso y manejo de signos, símbolos y términos para recibir y

emitir información matemática, sea lo que deba enfatizarse en el trabajo de aprender

matemática.

Aprender a valorar positivamente la matemática. Los estudiantes deben saber apreciar

el papel que cumple la matemática en el desarrollo científico y tecnológico,

experimentado en el mundo actual, y explorar sus conexiones con las otras áreas y

disciplinas del conocimiento. Deben aprender a apreciar, igualmente, el valor de la

matemática en el desarrollo de la capacidad de aprender a pensar, puesto que el

pensamiento matemático es, en particular, una de las formas más eficientes de hacerlo.

Adquirir confianza en las propias capacidades para hacer matemática. El aprendizaje de

la matemática debe permitir a los

estudiantes desarrollar las

capacidades de uso de todas sus

potencialidades, no solo para

aprender nuevas nociones,

conceptos y algoritmos, sino para

dar sentido y direccionalidad a sus

intervenciones en la solución de las

situaciones problemáticas que les

plantee la vida cotidiana en el

ambiente al que pertenecen.

3. ORGANIZACIÓN CURRICULAR DEL ÁREA

Todo el quehacer educativo en el área ha de centrarse en conseguir que los estudiantes

desarrollen niveles de competencias a través de los ciclos, como parte de la formación

integral con otras áreas, para garantizar en la evolución de una educación integradora.

El área de Matemática en el Diseño Curricular Nacional de la Educación Básica Regular está

organizada en competencias, capacidades, conocimientos y actitudes.

COMPETENCIAS

• Resolución de problemas en número, relaciones y funciones

• Resolución de problemas en geometría y medición • Resolución de problemas en estadística y probabilidad

Page 29: modulo del numero y operaciones

29

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

COMPETENCIAS

Las competencias describen los logros que los

estudiantes alcanzarán en cada uno de los dos

ciclos que comprende la Educación

Secundaria. El nivel de complejidad de las

competencias se incrementa de un ciclo a otro.

Estos logros están expresados en desempeños

eficientes, actuaciones eficaces o en un saber

hacer idóneo. En el área de Matemática, las

competencias tienen su expresión en la

Resolución de problemas relacionados con:

Número, relaciones y funciones.

Geometría y medición.

Estadística y probabilidad.

Presentación de las competencias en el Diseño Curricular Nacional

COMPONENTES CICLO VI CICLO VII

NÚMERO,

RELACIONES Y

FUNCIONES

• Resuelve problemas con números reales y polinomios; argumenta y comunica los procesos de solución y resultados utilizando lenguaje matemático.

• Resuelve problemas de programación lineal y funciones; argumenta y comunica los procesos de solución y resulta-dos utilizando lenguaje matemático.

GEOMETRÍA Y

MEDICIÓN

• Resuelve problemas que relacionan figuras planas y sólidos geométricos; argumenta y comunica los procesos de solución y resultados utilizando lenguaje matemático.

• Resuelve problemas que requieren de razones trigonométricas, superficies de revolución y elementos de Geometría Analítica; argumenta y comunica los procesos de solución y resultados utilizando lenguaje matemático.

ESTADÍSTICA Y

PROBABILIDAD

• Resuelve problemas que requieren de las conexiones de datos estadísticos y probabilísticos; argumenta y comunica los procesos de solución y resultados utilizando lenguaje matemático.

• Resuelve problemas de traducción simple y compleja que requieren el cálculo de probabilidad condicional y recursividad; argumenta y comunica los procesos de solución y resultados utilizando lenguaje matemático.

RESOLUCIÓN DE

PROBLEMAS

NÚMERO RELACIONES Y

FUNCIONES

GEOMETRÍA Y MEDICIÓN

ESTADÍSTICA Y PROBABILIDAD

Page 30: modulo del numero y operaciones

30

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

capacidades

Las capacidades describen los aprendizajes que los estudiantes alcanzarán en cada

grado, en función de las competencias por ciclos propuestas para el área. Para el logro de

cada una de las competencias, es necesario el desarrollo de un conjunto de capacidades,

conocimientos y actitudes que están esta-blecidos en el interior de las competencias. Las

capacidades se desarrollan a través de los procesos transversales, que son:

® Razonamiento y demostración

Permite la expresión ordenada de ideas en la mente para llegar a una conclusión. Esto

implica varios supuestos:

El que el estudiante tenga ideas, conceptos y procedimientos establecidos y que se

constituyen gracias a la capacidad de abstracción.

Se asume un ordenamiento de ellas con un propósito, siendo el ideal resolver

situaciones problemáticas.

Esto implica construir y descubrir patrones, estructuras o regularidades, tanto en

situaciones del mundo real como en objetos simbólicos, y ser capaz de desarrollar el

aprecio por la justificación matemática en el estudio escolar.

El razonamiento y la demostración no son actividades especiales reservadas para

momentos determinados o temas específicos del currículo; constituyen una forma

continua y habitual en las discusiones en el aula para formular e investigar fenómenos,

conjeturas matemáticas, desarrollar ideas y evaluar argumentos, comprobar

demostraciones matemáticas, elegir y utilizar varios tipos de razonamiento y métodos de

demostración para que el estudiante pueda reconocer estos procesos fundamentales de

la matemática.

® Comunicación matemática

Permite expresar, compartir y aclarar las ideas, conceptos y categorías, los cuales

llegan a ser objeto de reflexión, perfeccionamiento, discusión, análisis, valoración,

acuerdos y conclusiones. El proceso de comunicación ayuda a dar significado y

permanencia a las ideas y difundirlas con

claridad, tanto de forma oral como por escrito.

Debido a que la matemática se expresa

mediante símbolos, la comunicación oral y

escrita de las ideas matemáticas es una parte

importante de la educación matemática que,

según se va avanzan-do en los grados de

escolaridad, aumenta en sus niveles de

complejidad.

Page 31: modulo del numero y operaciones

31

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

® Resolución de problemas

Es de suma importancia por su carácter integrador con los otros procesos mencionados,

ya que posibilita un perfil sistémico, de desarrollo y complejidad de diversas

capacidades.

Resolver un problema implica encontrar un camino que no se conoce, es decir,

desarrollar una estrategia para encontrar una solución. Para ello se requiere de

conocimientos previos y capacidades en un nivel de complejidad. Y es a través de la

resolución de problemas que muchas veces se construyen nuevos conocimientos

matemáticos y se desarrollan capacidades cada vez más complejas.

La resolución de problemas en matemática involucra un compromiso de los estudiantes

en formas de pensar, hábitos de perseverancia, confianza en situaciones no conocidas

proporcionándoles beneficios en la vida diaria, en el trabajo y en el campo científico e

intelectual.

Conocimientos

Estos responden a una organización pedagógica y de complejidad del conocimiento de

acuerdo con cada uno de los grados de la educación secundaria. Estos conocimientos son

el soporte teórico del área; asimismo son los "medios" que permiten desarrollar

capacidades.

Están ordenados en organizadores que representan un conjunto de conocimientos

seleccionados para ser enseñados y aprendidos por los estudiantes. Estos conocimientos

planteados en el área sintetizan los grandes desafíos de la educación matemática en

nuestra realidad peruana y en el mundo, tienen una íntima relación con los elementos de la

problemática contextual (los aprendizajes) y permiten que estos sean significativos para los

estudiantes.

® Número, relaciones y funciones

Con respecto a los números, se refiere a los conocimientos relativos a contar, ordenar y

representarlos, así como una forma de comprender los conjuntos numéricos y sus

estructuras. Esto incluye los conceptos y algoritmos de la aritmética elemental y las

características de las clases de números que intervienen en los inicios de la teoría de

números.

Los principios que rigen la resolución de ecuaciones en álgebra coinciden con las

propiedades estructurales de los conjuntos numéricos. En geometría y medida, los

atributos se describen con números. El análisis de datos conlleva a dar sentido a los

números.

Page 32: modulo del numero y operaciones

32

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

El organizador de conocimiento referido a las relaciones y funciones permite plantear

formas de representación de relaciones matemáticas y el análisis del cambio. Las

relaciones funcionales se expresan usando la notación simbólica, expresando

implícitamente conocimientos matemáticos complejos. En la actualidad, el trabajo en

muchas áreas se apoya en estos métodos e ideas del álgebra. Por ejemplo, las leyes de la

física, los modelos de población y los resultados estadísticos pueden expresarse en el

lenguaje simbólico algebraico. Para el estudio de los conocimientos algebraicos, relaciones

y funciones, es necesario comprender sus conceptos, las estructuras y principios que rigen

la manipulación de los símbolos y cómo pueden usarse para expresar ideas y ampliar su

comprensión de las situaciones.

® Geometría y medición

La geometría está referida al cuerpo de conocimientos espaciales que se expresan en

diversas formas, estructuras y relaciones. Brinda la oportunidad de vivir experiencias para

una adecuada percepción, imaginación, representación y simbolización del espacio,

mediante exploraciones, investigaciones y discusiones que les ayuden a familiarizarse con

la localización, proyección, traslación y transformación.

El conocimiento geométrico posibilita representar y resolver problemas en otros aspectos

de la matemática y en situaciones del mundo real; posibilitando la integración en el área

misma de matemática, así como en otras áreas curriculares.

La educación en geometría permite describir relaciones, razonar y demostrar a partir de las

nociones y creencias que tiene el estudiante para desarrollar y alcanzar un orden

simbólico, jerárquico, racional y lógico del conocimiento geométrico.

El organizador de medición se ha de tener presente al asignar un valor numérico a un

atributo de un fenómeno, por ejemplo, la altura de un poste, la cantidad de pesca realizada,

la capacidad aproximada de lluvia recolectada.

El estudio de la medida está presente en muchos aspectos de la vida diaria, en las

ciencias sociales, las ciencias naturales, el arte y la educación física.

Ejemplo

© Estadística y probabilidad

Es necesario recoger datos, organizarlos y representarlos en gráficos y diagramas que

resulten útiles. El cuerpo de conocimientos de estadística y probabilidad está relacionado

Page 33: modulo del numero y operaciones

33

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

con comprender algunos métodos que implican analizar los datos y algunas formas de

hacer inferencias y obtener conclusiones a partir de ellas. También se abordan los

conceptos y las aplicaciones básicas de la probabilidad.

El método de trabajo relacionado con este conocimiento ayuda a que los estudiantes

encuentren nuevas ideas y procedimientos. El análisis de datos y la estadística permiten

relacionar conocimientos y procedimientos de los otros organizadores del área (números,

relaciones y funciones, geometría y medida), así como con otras áreas del currículo y de la

vida cotidiana.

Al realizar análisis de datos y actividades de estadística, los estudiantes pueden también

aprender que las soluciones a algunos problemas dependen de las hipótesis que se

establezcan y del grado de incertidumbre de las mismas.

Ejemplo.

El gráfico representa las temperaturas máximas y mínimas

(en grados centígrados) registradas por día en una localidad

de Puno y en una semana del año.

¿Cuál fue la menor de las temperaturas máximas? ¿Y la

mayor de las temperaturas mínimas?

Actitudes

Las actitudes contribuyen y consolidan la formación integral de los estudiantes. Al estar

consideradas en el currículo, el proceso de enseñanza-aprendizaje relacionado con estas

deja de ser aleatorio y asistemático, y por el contrario es programado y planificado.

Las actitudes, al igual que los valores, constituyen las orientaciones del comportamiento hacia

el área de la Matemática, propiciando acciones hacia metas específicas en la dimensión

personal y del área hacia las cuales los estudiantes sientan un fuerte compromiso emocional.

El proceso de desarrollo y renovación de actitudes está relacionado con la evolución y el

cambio cognitivo, afectivo y comportamental a lo largo de toda la vida en función de las

vivencias que los estudiantes experimentan. En el sistema educativo es primordial reconocer

que este desarrollo de actitudes se da como resultado de la interacción de todos los agentes

educativos que están en torno al estudiante; los más resaltantes son la familia, los

compañeros, los docentes, las autoridades institucionales.

Relación del área con los propósitos de la EBR al 2021

Dias de la semana

- Máx

imas

- Mín

imas

Page 34: modulo del numero y operaciones

34

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Desarrollo de la identidad personal, social y cultural en el marco de una sociedad

intercultural y ética en el Perú

La educación matemática, al considerar la diversidad del pensamiento, de la forma de

aprender y la diversidad del entorno social y cultural, en el desarrollo de las capacidades y

el conocimiento del área, contribuye a generar una persona autónoma con identidad,

compromiso y conciencia social y cultural.

Dominio del castellano para promover la comunicación entre todos los peruanos

La acción educativa por sí misma es un acto comunicativo. Es en este espacio que la

educación matemática, a través de las estrategias de enseñanza y aprendizaje, se orienta,

en parte, a desarrollar el proceso de la comunicación matemática, de manera oral o

escrita.

Es en las estrategias planteadas en el área donde el estudiante tiene una interacción

social dinámica de experiencias que comparte con sus compañeros, propiciando el uso

adecuado de la lengua castellana.

® Preservar la lengua materna y promover su desarrollo y práctica

El desarrollo del pensamiento matemático en la persona, en primera instancia, involucra

reconocer la variedad de formas de representar el mundo que nos rodea. Para poder

reconocer esta representación, es importante valorar el aporte de la lengua materna en la

educación matemática; asimismo, manteniendo el uso de la lengua oral y escrita materna,

es posible fortalecer la significatividad del conocimiento y de desarrollo de capacidades en

la persona.

® Conocimiento del inglés como lengua internacional

Los mayores descubrimientos y aportes de la matemática se han dado en Europa y

Estados Unidos. Por ello, al reconocer en la historia el aporte de la matemática también

reconocemos el uso del inglés como una lengua de divulgación científica a nivel

internacional. El conocimiento matemático contribuye a que el inglés sea considerado

como lengua internacional, al reconocer que es una parte de la cultura científica y

tecnológica.

® Comprensión y valoración del medio geográfico, la historia, el presente y el futuro de

la humanidad mediante el desarrollo del pensamiento crítico

Page 35: modulo del numero y operaciones

35

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

La educación matemática en la contextualización y diversificación busca abordar aquellos

temas que son de interés para el estudiante; esto involucra reconocer aspectos

geográficos que en algunos casos tienen matices históricos, por lo que existe una

confrontación entre los espacios del pasado, presente y futuro. Es en este sentido que la

educación matemática no solo se restringe al conocimiento netamente matemático, sino

que también se proyecta en un espacio de reflexión y crítica de la persona, de su identidad

y de su contexto sociohistórico y cultural.

® Comprensión del medio natural y su diversidad, así como desarrollo de una

conciencia ambiental orientada a la gestión de riesgos y el uso racional de los

recursos naturales, en el marco de una moderna ciudadanía

La educación matemática no se circunscribe a un aula de cuatro paredes, sino que busca

ampliar y hacer uso del conocimiento a situaciones en las que la diversidad natural, social

y cultural sean espacios ricos en la exploración y la búsqueda del conocimiento. Este

proceso, en su complejidad, tiene matices de valores de respeto y conciencia ambiental,

así como el adecuado uso de recursos, lo que genera un ciudadano responsable con su

entorno.

• Desarrollo de la capacidad productiva, innovadora y emprendedora, como parte de la

construcción del proyecto de vida de todo ciudadano

La matemática contribuye a que el estudiante desarrolle una actitud proactiva y creadora

en la toma de decisiones, que le permita elaborar su proyecto de vida en un espacio en

donde los estudiantes sientan satisfacción por alcanzar retos, sean perseverantes, se

sientan personas seguras para emitir opiniones, sean autónomos, innovadores; y así

extender su capacidad productiva, innovadora y emprendedora a su desempeño en la

familia, en la localidad, en el ámbito social, económico, político y cultural.

• Desarrollo de la creatividad, innovación, apreciación y expresión a través de las artes,

las humanidades y las ciencias

El estudiante, a través de la matemática, expresa y aprecia las diferentes variables de las

artes, las ciencias y las humanidades, donde son elementos indispensables la

creatividad, la libertad, los afectos y los sentidos de trascendencia. Utilizando diversos

lenguajes, técnicas y recursos en contextos diferenciados, descubre sentimientos de

valoración y aprecio en la percepción del mundo real e imaginario; ya que la matemática

es un arte, es la expresión ordenada de nuestro pensamiento lógico con matices propios

Page 36: modulo del numero y operaciones

36

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

de cada persona, ante un problema una persona puede presentarlo con características

tan peculiares y diferentes respecto a otras personas.

® Desarrollo corporal y conservación de la salud física y mental

Al cuantificar y cualificar insumos necesarios para el bienestar físico, fisiológico y mental

de los estudiantes, se está contribuyendo a que este tome conciencia del valor de

desarrollar hábitos alimenticios y del cuidado del ambiente que posibiliten un adecuado

progreso y permanencia de estados físicos, fisiológicos y mentales acorde con su edad,

donde el estudiante conoce el funcionamiento de su organismo, las posibilidades de su

propio cuerpo, superando sus limitaciones.

© Dominio de las tecnologías de la información y comunicación

Las tecnologías de la información y comunicación son un instrumento que permite

interactuar con diferentes agentes sociales del país y el mundo para validar estrategias y

recursos de aprendizajes individuales y colectivos. En este sentido, la matemática

contribuye a desarrollar los procesos lógicos pertinentes.

Relación del área de Matemática con otras áreas

® Comunicación. La comunicación es concebida como un área que desarrolla la

expresión oral y escrita en la formulación y expresión de las ideas. La educación

matemática, a través de la resolución de problemas, requiere de la lectura comprensiva, en

el lenguaje del idioma materno, castellano o simbólico, según sea el caso; asimismo, la

descripción y explicación es resultado de hacer observaciones cualitativas, cuantitativas,

espaciales y predictivas de sucesos; con la intención de resolver situaciones

problemáticas, ayudando a formalizar el pensamiento como consecuencia de los procesos

realizados y de los razonamientos seguidos.

® Arte. La matemática se relaciona con la expresión musical, cultural y artística, porque el

cono-cimiento matemático es expresión universal del pensamiento humane En la música el

ritmo, el compás y las reglas de composición siguen un nivel de razonamiento, proporción

y expresión.

En la pintura, arquitectura, escultura y cerámica, la predominancia de los valores estéticos

requiere de conocimientos geométricos referidos a la proporción, la simetría, el modelo

bidimensional y tridimensional, la medida de longitudes, áreas y volúmenes, orientándose,

a la vez, a fomentar la sensibilidad, la creatividad, el pensamiento divergente, la autonomía

y el apasionamiento estético que son objetivos de esta materia.

Page 37: modulo del numero y operaciones

37

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

® Persona, Familia y Relaciones Humanas. Los procesos de resolución de problemas

contribuyen de forma especial a fomentar la autonomía e iniciativa personal, utilizando la

planificación de estrategias, la reflexión y el transmitir adecuadamente los retos y

contribuciones que implica formar en el estudiante procesos de toma de decisiones.

® Formación Ciudadana y Cívica. Está orientada a los acontecimientos relacionados con

la familia y grupos sociales como el realizar ahorros, inversiones, gastos, considerar el

valor del dinero, los precios, las medidas, tener en cuenta en los viajes, el costo, la

distancia y el tiempo. Requieren del análisis funcional y la estadística para resolver e

interpretar estas situaciones problemáticas.

® Historia, Geografía y Economía. La matemática se manifiesta como una expresión

cultural que facilita estructurar el espacio, el tiempo y los recursos. Asimismo, el uso de la

matemática permite resolver e interpretar problemas de economía (ahorro, inversión y

gasto), compras (valor del dinero, precios, pesos y medidas), viajes y ocio (distancias,

tiempo, divisas y precios).

El pensamiento matemático posibilita a la persona conocer, interpretar datos estadísticos,

describe la realidad social e histórica y, a partir de la reflexión, generar un conjunto de

acciones de mejoramiento o transformación de su contexto sociocultural y ecológico, en el

marco de procesos de desarrollo humano sostenible.

® Educación Religiosa. En la práctica de aprender y enseñar matemática se consolida la

formación de valores a través de las actitudes y respeto al prójimo, se despliegan procesos

inductivos, deductivos, cuantitativa y cualitativamente, integrando sensaciones y otorgando

significados a diversas situaciones problemáticas. Así como entender hechos bíblicos en la

línea de tiempo.

®Educación Física. El análisis funcional y estadístico es útil para estudiar, difundir datos

sobre hechos extraídos del entorno deportivo, describir fenómenos y problemas del

entorno físico-corporal organizados en coloquios, diálogos, entrevistas simuladas, debates

que exijan argumentación respecto a problemas deportivos. Se usan diagramas de barras,

histogramas, polígonos de frecuencias, diagramas de sectores para la representación e

interpretación de las características relevantes de una situación real expresadas en pautas

de comportamiento corporal, entrenamiento deportivo, regularidades e invariantes, y,

finalmente, hacer predicciones sobre la evolución, probabilidades y limitaciones del modelo

físico-corporal y deportivo planteado.

Page 38: modulo del numero y operaciones

38

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

®Educación para el Trabajo. Los estudiantes mostrarán más seguridad y confianza al

usar la tecnología, que les permitirá comprender la funcionalidad de sus productos, así

como la comercialización de los mismos, empleando sus conocimientos matemáticos para

su inserción en el mercado comercial y laboral.

® Ciencia, Tecnología y Ambiente. La realidad físico-natural-tecnológica tiene una

relación di-recta con la matemática en la medida en que permite el desarrollo de modelos

matemáticos, análisis funcional y el uso de datos estadísticos y probabilísticos que tratan

de dar una descripción, interpretación y predicción al comportamiento de fenómenos físico-

naturales-tecnológicos, relaciones causales espacio-temporales.

Por otro lado, a través del uso de las capacidades y conocimientos matemáticos se genera

un espacio para la toma de conciencia del uso adecuado de los recursos naturales, del

cuidado del medio ambiente y acciones preventivas de salud.

® Inglés. La matemática entra en relación con el inglés, debido a que ambos son espacios

de expresión de ideas que tienen que guardar un orden lógico y coherente, así como en la

medida en que se hacen recopilaciones históricas en matemática, se usan términos o

expresiones provenientes de la cultura de habla inglesa.

Describe cómo aplicarías los enfoques del área y como articularias las

diferentes áreas en tu programación anual, de unidad y sesiones de

aprendizaje. Para desarrollar capacidades matemáticas en tu labor

docente, de manera individual, y luego comparte con tus colegas.

INDICADORES DE LOGRO

- Analiza el proyecto educativo regional y establece la relación con los contenidos

del DCN

SESIÓN 3 CARACTERÍSTICAS DEL PROYECTO EDUCATIVO

REGIONAL

Page 39: modulo del numero y operaciones

39

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Te invitamos a reflexionar sobre la enseñanza de la matemática en nuestras aulas y que relación tiene

con los retos regionales:

1. ¿Cuál es tu opinión del proyecto educativo regional de Lambayeque? 2. ¿Cuáles son las inquietudes de los estudiantes en tu institución educativa?

EDUCACIÓN

Los indicadores de coberturade la educación de la regiónLambayeque son

relativamentepositivos, la cobertura de laeducación primaria es casiuniversal y a la

educaciónsecundaria accede más del80 por ciento de la población. Sin embargo, aún se

observan diferencias entre el área urbana y rural, en particularen la asistencia a inicial y

secundaria. Las áreas rurales con menor proporción de niños en el rango de edad de 3 a

17 años que asiste a primaria y secundaria se localizan en las provincias de Ferreñafe y

Lambayeque. El 92,8 por ciento de la población mayor de 15 años de la región tiene algún

niveleducativo (inicial, primaria, secundaria y superior); sin embargo, sólo el 67,3 por

cientotiene educación secundaria y superior, lo que es menor al promedio nacional.

¿Qué estamos haciendo los maestros para revertir esta situación?

¿Conocemos los lineamientos regionales para saris de este problema en educación?

RETOS Y PERSPECTIVAS DE LA EDUCACIÓN REGIONAL

La educación nos plantea una serie de retos a nivel regional que es necesario asumir

paraalcanzar el desarrollo. Uno de ellos es el relacionado a la pobreza (54% de la población y

19%en extrema pobreza) que genera desigualdades en el acceso a los servicios de salud,

educación, empleo digno y el no reconocimiento de los derechos humanos. Esta

situaciónafecta principalmente a los sectores más vulnerables como la niñez, juventud,

mujeres, personas con discapacidad, quechua hablantes, analfabetos, etc.

La globalización, como proceso social económico, científico y tecnológico, plantea una

seriede retos para la sociedad actual que tienen un correlato en el sistema educativo.

Esteproceso debe analizarse en su doble dimensión: como una oportunidad para crecer,

aprendery comunicarse, y como un factor que acentúa las diferencias y fomenta las

desigualdades conel peligro de perder identidad y compromiso solidario. Ello nos obliga a

reflexionar en loscontenidos y capacidades a desarrollar para que no se constituya en una

amenaza.

Page 40: modulo del numero y operaciones

40

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Asimismo, el actual proceso de descentralización y la reforma del Estado, con sus avances

ydificultades, nos colocan en un escenario diferente a las décadas pasadas. Representa

unaoportunidad para democratizar el país e institucionalizar la cultura del diálogo,

concertacióny participación ciudadana. Los procesos de elaboración de planes de desarrollo,

participaciónen el presupuesto participativo, acciones de transparencia, rendición de cuentas

y vigilancia, requieren de ciudadanos y ciudadanas que se sientan sujetos de derechos y que

cuenten concapacidades para intervenir en asuntos públicos, así como actitudes

democráticas y solidariasque les permita ser agentes de su propio desarrollo.

La apertura de nuevos espacios e instancias de participación, consulta y concertación para

latoma de decisiones, tales como los Consejos de Coordinación Regional y Local (CCR,

CCL), lasMesas de Concertación para la Lucha contra la Pobreza (MCPLCP), mesas

sectoriales y derendición de cuentas, las audiencias públicas y cabildos, y otros espacios de

diálogogenerados en el proceso de descentralización y democratización son los que desafían

almodelo de gestión centralista y lo llevan hacia un nuevo modelo basado en la

participaciónciudadana, revisando sus roles y desarrollando nuevas capacidades en todos los

actores delEstado y Sociedad Civil, especialmente sus capacidades críticas y de vigilancia.

Frente a estos retos, el Plan de Desarrollo Regional Concertado 2010 del Gobierno Regional

de Lambayeque (2003) considera como objetivos estratégicos los siguientes:

• Mejorar las condiciones de vida de la población regional con énfasis en los

sectoresvulnerables.

• Promover la competitividad en la región para lograr un desarrollo económicosostenido.

• Desarrollar la integración regional respetando la diversidad cultural.

• Fortalecer la democracia, la gestión pública y el liderazgo en el impulso deldesarrollo

humano.

• Proteger y conservar el medio ambiente.

• Desarrollar la ciencia y la tecnología regional.

El desarrollo socio económico de la región Lambayeque gira en torno a las actividades

productivas comerciales sostenibles cuya base es la agricultura, el turismo y sus recursos

hidrobiológicos. Por lo mismo, se considera que la educación es un instrumento clave en el

Desarrollo Humano Sostenible de los pueblos por lo que constituye un reto importante para el

Proyecto Educativo Regional tomar en cuenta los problemas y aspiraciones planteados en

elPlan de Desarrollo Regional Concertado (2003) para generar capital social que

permitadesplegar y desarrollar el potencial existente en la Región que asegure la igualdad de

oportunidades de todas las personas y el justo reconocimiento de los Derechos Humanos.

El Sistema Educativo debe responder a las demandas de la población alentando su

desarrollohumano, es necesario por ello dar pasos decisivos para brindar una educación que

Page 41: modulo del numero y operaciones

41

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

desarrolle ypotencie sus capacidades de tal manera que les permita lograr su realización

personal ysocial, respondiendo de esta manera a las exigencias del nuevo milenio.

SENTIDO Y ENFOQUE DEL PER LAMBAYEQUE

El Proyecto Educativo Regional (PER) surge como una iniciativa destinada a promover

unproceso social amplio de reflexión, discusión y concertación respecto de la educación que

seespera tener en la región y la generación de políticas educativas que respondan a

susprincipales problemas, demandas y desafíos.

El PER LAM, además de ser una herramienta de planificación y gestión educativa, apunta

adar un nuevo sentido a la educación, sobre la base de la participación social en la

definiciónde una visión educativa regional, objetivos, resultados, políticas y medidas que

legitimensocialmente las acciones educativas que se desarrollan en Lambayeque.

En este contexto el PER LAM debe responder a los siguientes desafíos:

• Reconocer que Lambayeque es una Región en la que se expresa una gran diversidad étnica,

cultural y regional, constituyendo un imperativo implementar políticas, medidas y acciones que

conduzcan a la identificación y valoración de la misma, apartir de la promoción del diálogo entre

los actores de la comunidad educativa, el fortalecimiento de relaciones equitativas, la recuperación

de valores, costumbres y lenguas nativas..

• Elaborar un Proyecto Curricular Regional Intercultural, que recoja los avances yexperiencias

innovadoras diversificadas que vienen desarrollándose en los diferentesámbitos regionales,

emprendidas desde la escuela, los organismos nogubernamentales, los gobiernos locales; todos

ellos orientados a construir la identidadregional para contribuir a la integración nacional.

• Establecer de manera precisa las capacidades y actitudes que deben desarrollar losdocentes para

llevar a cabo una buena práctica pedagógica, definiendo losestándares de desempeño para elevar

el profesionalismo de los docentes.

• Fortalecer la democracia y la participación ciudadana para que la educación regionalpueda asumir

efectivamente sus desafíos de Equidad y Calidad. Esto implicadesarrollar aprendizajes

significativos en la escuela y fortalecer el desarrollo personalde los actores para el ejercicio de una

ciudadanía acorde al desarrollo de la regiónLambayeque, principalmente las que se orientan a la

ética social.

• Constatar la demanda de la población Lambayecana por el cambio para una

efectivatransformación de nuestra educación, lo que debe concretarse en políticas articuladasy

consensuadas entre los organismos del Estado y la sociedad, que en definitiva es loque el

Proyecto Educativo Regional busca concretar.

• Renovar y descentralizar la gestión educativa haciendo que cada institución educativase

constituya en la base de la toma de decisiones, potenciando su autonomía con unagestión eficaz y

transparente, pero con participación de la sociedad en espacios dediálogo y vigilancia, de tal

manera que garantice aprendizajes de calidad a todos losestudiantes.

Page 42: modulo del numero y operaciones

42

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

• Asegurar que el servicio educativo (proceso de aprendizaje-enseñanza) que brindanlas

instituciones educativas sea pertinente, relevante y de elevada calidad contandocon moderna

infraestructura, equipamiento suficiente y con medios y materialeseducativos adecuados.

• Garantizar que niños, niñas, adolescentes, jóvenes y adultos cuenten con iguales oportunidades

de acceso a una educación de calidad, desarrollo personal y social, querevierta la situación

histórica de exclusión y discriminación por razones de raza, idioma, sexo, cultura, condición

económica y discapacidad de la que son objeto.

• Promover una educación con enfoque de género, que permita cambiar los patronesculturales para

que ubiquen a mujeres y hombres en igualdad de derechos y oportunidades y de esta manera

disminuir las brechas existentes de acceso ypermanencia en las escuelas de las zonas urbanas y

rurales. De igual manerapromover la inclusión al sistema educativo de niñas y adolescentes del

sector rural ypersonas con discapacidad. Asimismo velar por la calidad de la educación,

lapertinencia de los contenidos educativos a las distintas realidades y mayor inversiónen los

sectores de mayor pobreza y exclusión

NUESTRA PROPUESTA

Como región buscamos cambios fundamentales en la educación regional y

para ello generamos una propuesta de políticas educativas consensuada en la

que se encuentranincorporados los planteamientos, demandas, exigencias y

reivindicaciones de los diversossectores de la sociedad, desde una

perspectiva intercultural.

Requerimos de un Proyecto Educativo Regional que nos dé las pautas

generales que orientenla gestión del sistema educativo en la región a largo plazo. En este

sentido, concebimos al PER como el instrumento principal de planeamiento concertado,

constituido por un conjuntode políticas pensadas a implementar en el mediano y largo plazo y

que son el marcoestratégico para las decisiones que conducen el desarrollo de la educación.

Desde sudimensión social y aspiración al cambio, el PER expresa la voluntad colectiva

porque ha sidoconstruido con el esfuerzo conjunto y consensuado de los actores y

organizaciones sociales, civiles, educativas, gobiernos locales, fuerzas armadas y policiales,

instituciones públicas yprivadas de nuestra región.

Siendo entonces una oportunidad para repensar la orientación que se quiere dar a

laeducación en Lambayeque se consideran prioritarias las siguientes ideas fuerza que

inspiran laestrategia del cambio.

a) Una educación centrada en la persona

Postulamos que el desarrollo en la región Lambayeque tiene como centro de

preocupacióneducativa a la persona, ser único e irrepetible en toda su dimensión, desde el

inicio hastala culminación de su ciclo vital, susceptible de ir modificándose en las

interacciones consus semejantes, como parte de una comunidad, con identidad propia y

derecho a su plenarealización.

Page 43: modulo del numero y operaciones

43

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

En ese contexto la educación regional se liga igualmente a una concepción de

DesarrolloHumano Sostenible el cual se sustenta prioritariamente en el desarrollo de

capacidadesinternas de los diversos actores sociales y en el que se reconocen las

necesidadesfundamentales que sienten y expresan las personas, comprometiéndose a

atenderlas paraprocurar elevar su calidad de vida considerando el desarrollo de habilidades

paraestablecer relaciones interpersonales saludables, con respeto, empatía, confianza

yaceptación.

En el mismo propósito, se alienta una nueva concepción de la niñez asegurando que

searespetada en sus intereses, reconocida en su participación activa en la vida social,

afirmando su autonomía y amor propio.

b) Una educación acorde a la realidad de Lambayeque

Apostamos por una educación que responda a la realidad regional y local, que fortalezca

laidentidad lambayecana y que garantice su continua vigencia, pues el proceso

culturalproducido en la región tiene particularidades significativas. Es así que es

indispensable quenuestros niños, niñas, adolescentes, jóvenes y adultos reconozcan los

procesos detransculturación que Lambayeque afronta (y nuestro país en general), reflejado

en losprocesos migratorios de las regiones de Cajamarca, Piura, Amazonas y San Martín,

principalmente, y que como efecto de factores sociales políticos, geográficos se

hanestablecido como grandes grupos poblacionales. La interrelación de las múltiples

culturasha generado un complejo proceso de interculturalidad, lo que nos convierte en

ciudadanoscon características diversas. Es por ello que ahora esta realidad se presenta como

unaoportunidad para plasmar nuestras diferencias en un proceso de amplia participación

yconcertación.

El PER fortalece la identidad personal y social con un modelo educativo propio, que rompelos

esquemas tradicionalistas adoptados de otras realidades que se han mantenido

porgeneraciones y que de alguna manera han aumentado las brechas de inequidad,

limitandola participación crítica y creativa de la población.

c) Una educación de calidad para todos

Otra idea fuerza del PER Lambayeque es avanzar hacia el logro de una educación decalidad

que establezca objetivos socialmente relevantes, que demuestre eficacia en ellogro de sus

objetivos y que sean alcanzados por el mayor número de estudiantes, por loque se trata de

una educación que posibilite ayudar diferencialmente a los alumnos deacuerdo a sus

requerimientos individuales y su entorno social.

Una educación de calidad orientada a mejorar los procesos de aprendizaje en las aulas,

priorizando recursos, asegurando un currículo intercultural diversificado con accesouniversal

al conocimiento y las habilidades necesarias para participar en la sociedad.

Page 44: modulo del numero y operaciones

44

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Calidad en un sentido práctico, que permita a los estudiantes ir aprendiendo a

encontrarsoluciones, resolver problemas cotidianos y tomar decisiones a lo largo de su vida.

Suponeestablecer un ambiente y relación socio emocional y afectivo que permita a los

profesoresguiar a los estudiantes en su desarrollo humano.

d) Una educación como derecho

El derecho de todas las personas a la educación se encuentra establecido en la

DeclaraciónUniversal de los Derechos Humanos, en la Convención de los Derechos del Niño

y otrostratados, pactos y declaraciones internacionales. Este derecho se considera

fundamentalpuesto que permite el completo ejercicio y disfrute de todos los demás derechos

humanos,a la vida, a la salud, a tener un trabajo digno, a expresar sus ideas con libertad;

sinembargo la falta de educación cierra las posibilidades de que éstos y otros derechos

secumplan.

La Región Lambayeque se suscribe a estos acuerdos, apostando por el acceso a

unaeducación de calidad de todos los pobladores de nuestra región. Sin embargo,

nuestravisión va más allá de la promoción de la cobertura educativa. Buscamos que todos los

niñosy niñas puedan acceder al sistema educativo, permanecer en él y obtener

buenosresultados de aprendizaje. La recuperación del aspecto socio afectivo de niños y niñas

enel currículo, será el primer paso para que se desarrolle como sujeto de derechos y

sujetoactivo de aprendizaje, centro de una educación de calidad.

También asumimos que los procesos de gestión educativa son herramientas que

permitenadministrar de la manera más eficiente los procesos educativos que tienen lugar en

laescuela, haciendo que la gestión esté centrada fundamentalmente en lo pedagógico,

estoes, en el desarrollo de los aprendizajes de los estudiantes.

Además, la escuela tiene un rol social muy importante, pues busca convertirse en

unainstitución que revierta la situación de discriminación y exclusión de la que son

objetomuchos pobladores, principalmente de zonas rurales y pobres, buscando detener

lareproducción de la pobreza, al desarrollar en ellos competencias que los preparen

paraintegrarse con éxito al mundo laboral y productivo con todas las exigencias y desafíos

queplantea. Esto ayudará a eliminar las brechas que se generan constantemente entre el

ámbito rural y urbano. Finalmente, apostamos por la calidad educativa en cuanto a contenido,

por una educaciónque quiere lograr la construcción de ciudadanos activos, que ejerzan sus

derechos y losdefiendan, que disfruten de una mejor calidad de vida como producto de su

educación, dignificándolos en su calidad de seres humanos.

EVALUAMOS LOS AVANCES DEL PER EN LAMBAYEQUE

Page 45: modulo del numero y operaciones

45

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

GUIA PARA EVALUAR LOS AVANCES DEL PER L AMBAYEQUE

OBJETIVOS RESULTADOS ESPERADOS POLÍTICAS

EN BASE A TU EXPERIENCIA Y CONOCIMIENTODE TU REALIDAD DE TU I.E., RED O LOCALIDAD, ¿EN CUANTO

CREES QUE HEMOS AVANZADO EL LOGRO ESPEADO DE CADA POLÍTICA PROPUESTA EN LOS OBJETIVOS

ESTRATÉGICOS

EN BASE AL LOGRO SEÑALADO, EL NIVEL DE EECTIVIDAD CREES QUE FUE…

0% al 25% 28% al 50% 51% al 75 % 76% al 100% Optimo Bueno Malo Deficiente

CA

LID

AD

DE

LO

S A

PR

EN

DIZ

AJE

S

RESULTADO 1 En la región Lambayeque los y las estudiantes logran aprendizajes de calidad que le permiten desarrollarse plenamente como personas y aportar a la integración regional y al desarrollo de su espacio local, regional y nacional.

POLÍTICA 1: Implementación de una práctica pedagógica intercultural de calidad basada en valores, en el buen trato y en la investigación, que garantice a los estudiantes una educación trascendente para su vida personal y social.

POLÍTICA 2: Implementación de un Proyecto Curricular Intercultural Diversificado, formuladoconcertadamente con un enfoque de desarrollo humano sostenible, que sirva de soporte alproceso de descentralización en todos los niveles y modalidades.

POLÍTICA 3: Orientación de la gestión pedagógica, administrativa e institucional de lasinstituciones educativas al logro de aprendizajes de calidad

POLÍTICA 4: Implementación de

mecanismos de monitoreo, evaluación e informaciónperiódica de logros de aprendizajes para la toma de decisiones en todos los niveles degestión.

RESULTADO 2 Instituciones educativas, familia y comunidad asumen sus roles con responsabilidad, coordinan y unen esfuerzos para el logro de aprendizajes de calidad.

POLÍTICA 5: Promoción de la participación significativa de las familias en el proceso deaprendizaje de sus hijos e hijas.

POLÍTICA 6: Movilización permanente de la sociedad lambayecana para su involucramiento enla educación y el logro de aprendizajes de calidad.

EQ

UID

AD

ED

UC

AT

IVA

RESULTADO 3. En la región Lambayeque disminuye significativamente las brechas de inequidad en el acceso, permanencia y culminación exitosa.

POLÍTICA 7: Aseguramiento del acceso, permanencia y culminación exitosa de la educaciónbásica, en particular de las niñas y adolescentes de las poblaciones rurales y urbanoperiféricas.

POLÍTICA 8: Generalización del uso de la lengua materna y la incorporación progresiva de unasegunda lengua en los procesos de aprendizaje escolar de la población quechua hablante.

Page 46: modulo del numero y operaciones

46

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

EQ

UID

AD

ED

UC

AT

IVA

RESULTADO 4.La comunidad educativa practica y promueve relaciones equitativas aportando a la construcción de una sociedad justa y sin discriminación

POLÍTICA 9: Atención prioritaria a la educación en las áreas rurales para mejorar la calidadeducativa y disminuir las brechas existentes de inequidad.

POLÍTICA 10: Promoción de una educación con enfoque de equidad de género que erradiqueestereotipos y prácticas discriminatorias.

RESULTADO 5. El gobierno regional garantiza condiciones que favorecen la educabilidad de los sectores menos favorecidos.

POLÍTICA 11: Atención oportuna de la primera infancia en nutrición, salud física y mental conparticipación intersectorial, comunal, gobierno local y regional.

POLÍTICA 12: Implementación y aseguramiento de las instituciones educativas menosfavorecidas, especialmente de áreas rurales y urbano-periféricas, con participación degobiernos locales, de acuerdo a sus necesidades y contexto con infraestructura yequipamiento de calidad.

POLÍTICA 13: Fomento a la inclusión de niños con necesidades educativas especiales alsistema educativo y generación de condiciones que posibiliten y optimicen su aprendizaje.

INT

ER

CU

LT

UR

ALID

AD

RESULTADO 6. Instancias de gestión educativa descentralizada desarrollan sus funciones desde la perspectiva intercultural para afirmar la identidad personal, local, regional y nacional.

POLÍTICA 14: Mejoramiento institucional con orientación intercultural en la formulación, ejecución y evaluación de los instrumentos de gestión en las instancias del sistema educativo.

POLÍTICA 15: Promoción y desarrollo permanente de programas y proyectos interculturales enlas instituciones educativas y en la comunidad.

RESULTADO 7. Instituciones públicas y privadas desarrollan y promueven relaciones interculturales para fortalecer la identidad e integración lambayecana

POLÍTICA16: Movilización social por un permanente diálogo intercultural que respete lasdiferencias y que contribuya a la construcción de relaciones de equidad intracultural e intercultural.

POLÍTICA 17: Promoción de canales de información y comunicación entre las institucionespúblicas, privadas y comunidad para el desarrollo de relaciones y actividades interculturalesque fortalezcan la identidad e integración lambayecana.

POLÍTICA18: Fomento de la investigación

Page 47: modulo del numero y operaciones

47

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

sobre diversidad natural y cultural que contribuyaa la formación de ciudadanías responsables e interculturales para el desarrollo local yregional.

DE

SA

RR

OLL

O M

AG

IST

ER

IAL

RESULTADO 8. La formación inicial docente en la región Lambayeque se desarrolla en instituciones acreditadas, con liderazgo y comprometidas con los procesos de desarrollo local, regional y nacional

POLÍTICA 19: Formación inicial docente basada en la ética, investigación, innovación yconservación de los recursos naturales, para garantizar el desarrollo de una cultura ecológica; así como de capacidades personales y profesionales de calidad.

POLÍTICA 20: Mejoramiento de la gestión en las instituciones de formación docente paralograr una formación inicial de calidad articulada al desarrollo local, regional y nacional.

RESULTADO 9. Todos los profesores participan en procesos sistémicos de formación personal y profesional de calidad, contribuyendo al desempeño eficiente de sus funciones pedagógicas y agentes de cambio social.

POLÍTICA 21: Generación de un sistema de regulación de la oferta de formación en servicio, basada en indicadores de calidad concertados que aseguren pertinencia, oportunidad yaccesibilidad a las necesidades y posibilidades de los profesores.

RESULTADO 10. Los profesores en Lambayeque son profesionales realizados y reconocidos por su liderazgo y aporte al desarrollo social.

POLÍTICA 22: Impulsar el desarrollo profesional del docente en el marco de la carrerapública magisterial, que permita su revaloración involucrando a la sociedad civil, gobiernoslocales e instituciones públicas y privadas organizadas.

GE

ST

IÓN

DE

MO

CR

AT

ICA

Y D

ES

CE

NT

RA

LIZ

AD

A

RESULTADO 11. Estado y Sociedad Civil asumen y comparten responsabilidades, de maneraconcertada, en beneficio de los intereses y necesidades educativas de lapoblación, para contribuir a mejorar su calidad de vida.

POLÍTICA 23: Fortalecimiento de los espacios de participación social en las decisioneseducativas que incorpore los intereses de los diversos actores.

POLÍTICA 24: Funcionamiento efectivo de mecanismos de transparencia y de rendición decuentas, en todas las instancias de gestión educativa descentralizada y gobiernos locales, concriterios de pertinencia a la diversidad social y cultural.

POLÍTICA 25: Erradicación oportuna de casos de corrupción en el Sector educación de laregión.

RESULTADO 12. Las instancias de gestión educativa descentralizada ofrecen servicio educativo de manera óptima, mediante la acción intersectorial.

POLÍTICA 26: Desarrollo de la autonomía en las diferentes instancias de gestión educativadescentralizada del sistema educativo de la región.

POLÍTICA 27: Fortalecer la

Page 48: modulo del numero y operaciones

48

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

intersectorialidad y la participación de los gobiernos locales, enlas diversas instancias de gestión educativa descentralizada para contribuir al desarrollohumano local y regional.

POLÍTICA 28: Optimización del desempeño de competencias transferidas en el marco delproceso de descentralización.

POLÍTICA 29: Aseguramiento de los recursos financieros necesarios para el desarrollo de laspolíticas educativas regionales, gestionados de manera eficaz, eficiente y transparente.

ED

UC

AC

IÓN

SU

PE

RIO

R A

RT

ICU

LA

DA

AL D

ES

AR

RO

LLO

RE

GIO

NA

L

RESULTADO 13. Profesionales lambayecanos idóneos y competitivos, sonpromotores principales del desarrollo regional y nacional.

POLÍTICA 30: Asegurar la aplicación de un currículo intercultural articulado a la educaciónbásica, al desarrollo regional y a la conservación y manejo de los recursos naturales.

POLÍTICA 31: Promoción de la investigación científica y aplicación de conocimientos en losdiferentes campos del saber orientados a mejorar la calidad de vida.

POLÍTICA 32: Promoción de proyectos de inversión acorde con las necesidades de la Región, através del Estado, colegios profesionales y otras organizaciones de la Sociedad Civil.

RESULTADO 14. Instituciones de Educación Superior desarrollan procesos de evaluación, acreditación y certificación para asegurar una formación profesional decalidad.

POLÍTICA 33: Implementación de un programa de evaluación y acreditación de lasinstituciones educativas de Educación Superior para optimizar la calidad de la formaciónprofesional.

RESULTADO 15. Docentes de Educación Superior desarrollan innovación, investigacióncientífica y tecnológica que promuevan la extensión y proyección socialpara contribuir al desarrollo de la región.

POLÍTICA 34: Promoción permanente de la investigación científica e innovación tecnológicaque contribuya al desarrollo local y regional.

POLÍTICA 35: Optimización y mejoramiento del proceso de extensión y proyección social parael desarrollo y crecimiento de la región.

Después de analizar el PER, realiza 3 propuestas para mejorar nuestros resultados en el PER a nivel educativo.

PRPUESTA SOSTENIBILIDAD

Page 49: modulo del numero y operaciones

49

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Te invitamos a reflexionar sobre las definiciones de competencia y capacidad:

1. ¿Cuál es tu opinión del concepto de capacidad? 2. ¿Cuál es tu definición de competencia? 3. ¿Qué es una competencia educativa?

Los niños son sensibles al mundo de las matemáticas.

Tanto en lo quevan creando como en lo que van

haciendo tienen en cuenta el sentido depropiedad, su afán por las colecciones, su gusto por

repetir, por observar,ordenar. En su mundo, practica sin saberlo, la matemática. Lo importante

esinsistir en que la iniciación matemática es una construcción mental vivida yexperimentada

paso a paso. Por ello, debe ser fuertemente motivadora yestar conectada con la realidad que

se vive.

De ninguna manera es motivador para el niño hacer planas de númerosante la creencia que

así los está “aprendiendo”.

Para desarrollar capacidades lógico matemáticas es necesario que:

En la planificación de las acciones debemos establecer la distanciaentre los saberes

previos de los niños y el contenido que se pretendeenseñar a fin de seleccionar los

contenidos y la metodología másadecuada (zona de desarrollo próximo). Si en los

saberes previos delos niños encontramos conceptos erróneos, habrá que elegir

laestrategia más adecuada para que ellos mismos descubran el error ytomen

conciencia de ello para poder realizar el cambio conceptual.

Tener una actitud reflexiva que nos lleve a preguntarnos ¿Qué nuevoconocimiento

debo incorporar a la planificación? ¿Cuál es el momentomás propicio para tratarlo?

¿Qué formas de abordar el tema son lasmás pertinentes?

Desarrollar en las niñas y los niños además del pensamiento lógico lareflexión, la

argumentación de sus ideas, la capacidad de dar y escucharrazones sobre cada

opinión entre otras.

INDICADORES DE LOGRO

- Define lo que es competencia y capacidad, partiendo del enfoque del área

SESIÓN 4 ENFOQUES DEL ÁREA: COMPETENCIAS Y

CAPACIDADES

Page 50: modulo del numero y operaciones

50

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Por otro lado, existen una serie de actividadesque desarrollan capacidadeslógico matemáticas.

1.- COMPETENCIAS EDUCATIVAS

1.1. Concepto de “competencia” en el lenguaje coloquial y en los campos de la

lingüística, psicología y del trabajo

La utilización del término de competencia ha sido y sigue siendo habitual en el lenguaje

coloquial. Por ejemplo, se dice de un profesor, médico… que es competente (lo hace bien), o

se habla de las competencias (funciones, atribuciones) que tienen las Autonomías, el director,

el juez…, o se hace referencia a la competencia (disputa) entre las empresas por ganar el

mercado.

En el ámbito lingüístico Saussure distingue “lengua” y “habla”. Chomsky retoma esta

distinción para diferenciar la “competencia” lingüística (competence) de la “actuación o

desempeño” lingüístico (performance). La distinción de los lingüistas entre competencia y

actuación/desempeño es retomada por los psicólogos y la aplican al ámbito del desarrollo

cognitivo.

En el ámbito del mundo laboral y de las ciencias empresariales adoptaron en un principio el

concepto de “cualificación”, pero últimamente lo están sustituyendo por el de “competencia”.

El cambio no es gratuito, sino que traduce un cambio de pensamiento que va desde el

enfoque instrumentalista que prima la cualificación, a un enfoque más relativista que entiende

la competencia como acción dentro de un contexto. La “cualificación” se ha entendido como el

saber y el saber hacer evaluables que una persona debe adquirir y disponer para hacer

determinado trabajo. Están definidas a priori las cualidades a observar en un individuo (listado

pormenorizado de cualidades) para que sea oficialmente cualificado para hacer determinada

tarea. Esta cualificación se obtiene a través del proceso de formación y aprendizaje,

frecuentemente descontextualizado y alejado de la situación de trabajo real. La “competencia”

se entiende como la capacidad que posee un individuo para gestionar su potencial en una

situación. La referencia a la acción del sujeto en situación y al contexto son cuestiones

relevantes desde esta perspectiva.

1.2. Justificación de la introducción del término “competencia” y“competencias

básicas” en el ámbito educativo.

Tras el cambio terminológico y el uso del término “competencia” se plantea un enfoque

evolucionado del currículo académico en el que se ha primado la transmisión y el aprendizaje

de los saberes declarativos y procedimentales que se han ido incorporando al desarrollo de

las diferentes ciencias. Por la propia finalidad tradicional de la escuela, los sistemas

Page 51: modulo del numero y operaciones

51

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

educativos tienden a dar prioridad a la adquisición de hechos y conceptos como formas

básicas de aprendizaje. El planteamiento de un currículo por competencias va más allá del

currículo tradicional y académico, ya que partiendo de la lógica del “saber” desemboca en la

lógica del “saber hacer”. Desde este enfoque, lo importante no es sólo que el alumno sepa,

por ejemplo, sumar, restar, multiplicar y dividir, sino que sepa además usar y aplicar esos

conocimientos en situaciones y contextos reales. Es cierto que para “saber hacer” se precisa

“saber”, pero el “saber” deja de ser suficiente y se conecta intencionalmente con su uso. De

esta forma se puede reducir la brecha entre la teoría y la práctica, entre el conocimiento y la

acción.

El término de “competencias básicas” añade un matiz importante al de“competencia”. Se trata

de que los alumnos que terminan la Educación Básica nosólo sean competentes, sino que

adquieran las competencias que se consideranbásicas, es decir, esenciales e imprescindibles

para toda la vida. Esa perspectiva queda un nuevo sentido a la Educación Básica trata de

encontrar una respuestaadecuada al conjunto de problemas que generan los cambios que se

producen ennuestra sociedad. Como consecuencia de los cambios en la sociedad, la

situación yel contexto educativo han cambiado

1.3. Diferentes enfoques teóricos

Enfoque Definición Epistemología Metodología Curricular

Conductual

Enfatiza en asumir las competencias como: comportamientos clave de las personas para la competitividad de las organizaciones.

Empírico-analítica Neo-positivista

Entrevistas -Observación y registro de conducta Análisis de casos

Funcionalista

Enfatiza en asumir las competencias como: conjuntos de atributos que deben tener las personas para cumplir con los propósitos de los procesos laborales-profesionales, enmarcados en funciones definidas

Funcionalismo Método del análisis funcional

Constructivista

Enfatiza en asumir las competencias como: habilidades, conocimientos y destrezas para resolver dificultades en los procesos laborales-profesionales, desde el marco organizacional.

Constructivismo ETED (Empleo Tipo Estudiado en su Dinámica)

Complejo

Enfatiza en asumir las competencias como: procesos complejos de desempeño ante actividades y problemas con idoneidad y ética, buscando la realización personal, la calidad de vida y el desarrollo social y económico sostenible y en equilibro con el ambiente.

Pensamiento complejo

Análisis de procesos Investigación acción

Page 52: modulo del numero y operaciones

52

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Marco cognitivo

El enfoque conductistacognitivo postula que los saberes, objeto del aprendizaje, son en el

contexto escolar exteriores al sujeto que aprende. Se asume el carácter objetivo del

conocimiento, independiente y anterior al observador que lo describe y a los alumnos que

tratan de aprenderlo. El conocimiento que concierne a la escuela no se puede construir, en

sentido estricto, puesto que preexiste a los alumnos y se genera por otras instituciones

sociales. En todo caso se puede comunicar, transferir y enseñar. Desde esta perspectiva de

la teoría del conocimiento, será alumno competente el que reproduzca fielmente los saberes

preestablecidos desde fuera en los objetivos operativos, tanto de carácter declarativo como

procedimental.

A comienzos de la década de los años 60 se introduce el concepto decompetencia en los

Estados Unidos de América, formulando los programas deestudio desde el enfoque

conductista, de tal manera que las competencias seprecisan en términos de objetivos

operativos que se caracterizan por definircomportamientos observables y medibles.

Más tarde en la década de los 70 se formulan las competencias desde un enfoque cognitivo.

Ya no se habla de comportamientos, sino de taxonomías que detallan habilidades,

conocimientos, capacidades, saberes procedimentales…

Progresivamente el enfoque cognitivo se va ampliando incluyendo, además de las

capacidades cognitivas, las afectivas, las conativas, las prácticas y las exploratorias.

No obstante lo anterior, el llamado “enfoque cognitivo” mantiene, en loesencial, sus rasgos

epistemológicos característicos:

1) Otorga un papel básico al aprendizaje intelectual y se centra en la cogniciónen tanto que

acto de conocimiento vinculado a la capacidad de recibir, recordar, comprender, organizar

y hacer uso de la información recibida porel sujeto.

2) Conecta con la tradición ilustrada y liberal que, sin ignorar otras finalidadesde la escuela,

asigna a la institución escolar la misión primordial de instruira todos los ciudadanos a

través de la educación general; es decir, depromover en el alumno el conocimiento

establecido de un modo progresivo, ordenado y sistemático.

3) Se adscribe al llamado “racionalismo crítico” que acepta como elementoclave de validez de

las construcciones del pensamiento humano sucoordinación con la experiencia.

4) En la confrontación ya clásica entre las dos tradiciones epistemológicasconsolidadas la

“anglosajona” y la “continental” se alinea con la primera yrefuerza su consideración de la

evidencia empírica.

Marco socioconstructivista e interactivo. El constructivismo postula que el conocimiento no

es el resultado de unarecepción pasiva de objetos exteriores, sino fruto de la actividad del

Page 53: modulo del numero y operaciones

53

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

sujeto. Elsujeto construye sus conocimientos contrastando y adaptando sus

conocimientosprevios con los nuevos.

El socioconstructivismo, plantea que se precisa la intervención conjunta e indisociable de tres

dimensiones para aprender en el contexto escolar:

1) Dimensión social (S). Se trata de los aspectos relacionados con la organización delas

interacciones sociales con los demás alumnos y con el docente y de lasactividades de

enseñanza que se realizan bajo el control del docente.

2) Dimensión constructivista (C). Se trata de los aspectos relacionados con laorganización del

aprendizaje, situando al alumno en condiciones para queconstruya sus conocimientos a

partir de lo que conoce, estableciendo unarelación dialéctica entre los antiguos y nuevos

conocimientos.

3) Dimensión interactiva (I). Se trata de los aspectos relacionados con laorganización del

saber escolar objeto de aprendizaje, adaptando las situacionesde interacción con el medio

físico y social, de acuerdo con las características delobjeto de aprendizaje. Dicho de otra

manera, lo que determina el aprendizaje noson los contenidos disciplinares, sino las

situaciones en las el alumno utiliza lossaberes para resolver la tarea.

Complementariedad entre los distintos enfoques

No se trata de crear dualismos entre los dos enfoques, sino que ambospueden ser

complementarios. Para resolver situaciones complejas se precisadisponer previamente de

saberes: saberhacer y saberser. Las metodologías que seinspiran en la corriente conductista

y cognitiva de la pedagogía por objetivos, porejemplo, pueden ser válidos para aprender los

saberes y sabereshacer que seprecisan para ser competente. Sobre la base de esos

conocimientos o recursos setrata de aplicarlos de forma conjunta e integrada para resolver

una situaciónauténtica.

1.4.- Caracterización del concepto de competencia

Si en algo hay unanimidad en el discurso en torno a las competencias es en la afirmación de

que se trata de un concepto polisémico sobre el que no hayunanimidad. No es nada difícil

elaborar un largo listado de definiciones diferentes de competencia formuladas por distintas

instancias, instituciones y autores.

Volveríamos a encontrarnos con la misma problemática de los enfoques teóricos ydentro de

cada enfoque teórico con sensibilidades y matices diferentes. Sinembargo dentro de esa

diversidad se pueden reconocer algunos elementosnucleares comunes:

a) Carácter integrador. En la mayoría de las definiciones se entiende que las competencias

incluyen diversos elementos de forma integrada. La identificación de los elementos

concretos que conforman la competencia varía de una definición a otra, pero básicamente

coinciden con lo que en nuestra cultura pedagógica identificamos como conceptos,

Page 54: modulo del numero y operaciones

54

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

procedimientos y actitudes. Es decir, que para ser competente en algo se precisa hacer

uso de forma conjunta y coordinada de conocimientos o saberes teóricos conceptuales, de

procedimientos, reglas o pautas para actuar, así como de destrezas y habilidades y de

actitudes o disposiciones motivacionales, que permiten llevar a cabo una tarea. Esta forma

integrada de entender los contenidos del proceso de enseñanza - aprendizaje supone un

avance con respecto a la comprensión que se ha hecho de los contenidos conceptuales,

procedimentales y actitudinales.

b) Transferibles y multifuncionales. Esta característica se aplica más a lascompetencias

generales que a las específicas. Son transferibles puesto que sonaplicables en múltiples

situaciones y contextos tanto académicos como familiares, lúdicos, laborales, sociales y

personales. Son multifuncionales puesto que puedenser utilizadas para conseguir varios

objetivos, para resolver diferentes tipos deproblemas y para acometer diferentes tipos de

trabajos. Deben proveer unarespuesta adecuada a los requisitos de situaciones o trabajos

específicos y son, paratodos, un prerrequisito para un adecuado desempeño de su vida

personal, laboraly subsiguientes aprendizajes. Tienen, en otras palabras, valor predictivo

en cuantoal comportamiento de cada individuo.

c) Carácter dinámico e ilimitado. Por otra parte, el grado de perfectibilidad de

lascompetencias no tiene límites, ya que se trata de un continuo en el que cadapersona de

manera dinámica de acuerdo con sus circunstancias va respondiendocon niveles o grados

de suficiencia variables (perfectibilidad mayor o menor) a lolargo de toda su vida. Se

entiende que una persona es competente para algocuando es capaz de resolver los

problemas propios de ese ámbito de actuación.

Será tanto más competente cuanto mejor resuelva el problema o la tarea encuestión.

d) Evaluables. Las competencias presuponen capacidades, pero esascapacidades

disponibles se manifiestan por medio de las acciones o tareas querealiza una persona en

una situación o contexto determinado. Las capacidades noson evaluables, por el contrario

el desempeño de las competencias sí sonverificables y evaluables. Esta forma de entender

las capacidades y lascompetencias permite relacionarlas y diferenciarlas: una persona sin

capacidadesdisponibles no puede ser competente, pero se demuestra que se tienen

capacidadesen la medida que se traducen en acciones competentes. Y a su vez el logro

decompetencias va desarrollando capacidades. La característica de ser evaluable seaplica

sobre todo a las competencias específicas. La evaluación de las competenciasgenerales o

transversales es posible en su desempeño, es decir, se tendrán másindicadores del logro

de una competencia transversal en la medida que se aplica endistintas situaciones y

contextos.

Las competencias son actuaciones integrales para identificar, interpretar, argumentar y

resolver problemas con idoneidad y compromiso ético, movilizando los diferentes saberes: ser, hacer y conocer

(Tobón, 2010).

Page 55: modulo del numero y operaciones

55

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Concepto de competencias desde el enfoque socioformativo

El área de Matemática en el Diseño Curricular Nacional de la Educación Básica Regular. Las

competencias describen los logros que los estudiantesalcanzarán en cada uno de los dos

ciclos que comprende la Educación Secundaria. El nivel de complejidad de las

competenciasse incrementa de un ciclo a otro. Estos logros estánexpresados en desempeños

eficientes, actuaciones eficaces oen un saber hacer idóneo. En el área de Matemática, las

competenciastienen su expresión en la Resolución de problemasrelacionados con:Número,

relaciones y funciones, Geometría y medición y Estadística y probabilidad.

Las capacidades describen los aprendizajes que los estudiantes alcanzarán en cada grado,

en funciónde las competencias por ciclos propuestas para el área. Para el logro de cada una

de las competencias,es necesario el desarrollo de un conjunto de capacidades, conocimientos

y actitudes que están establecidosen el interior de las competencias. Las capacidades se

desarrollan a través de los procesos transversales, que son: Razonamiento y demostración,

Comunicación matemática y Resolución de problemas.

Describe porque desarrollarías competencias y capacidades matemáticas en tu labor

docente, de manera individual, y luego comparte con tus colegas.

…………………………………………………………………………………………………………

…………………………………………………………………………………………………………

…………………………………………………………………………………………………………

COMPETENCIAS

SON ACTUACIONES INTEGRALES

Para identificar, Analizar y resolver problemas del contexto

En distintos escenarios, integrando: El saber ser (actitudes y valores) El saber conocer (conceptos y teorías) El saber hacer (habilidades

procedimentales y técnicas)

Page 56: modulo del numero y operaciones

56

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Recordando mis aprendizajes en secundaria

Haz un breve resumen acerca de tus experiencias en el aprendizaje de la Matemática. ¿Qué es un modelo? ¿Para qué sirven los modelos? ¿Qué diferencia existe entre un problema y un ejercicio?

La Matemática forma parte esencial de la cultura humana, pues es uno de los mayores logros

culturales e intelectuales de la humanidad; por este hecho tenemos la obligación de

transmitirla de generación en generación, ya que constituye una posibilidad para el desarrollo

de las capacidades fundamentales y no un obstáculo en la vida de las personas.

Es suficiente observar en nuestro entorno que todo profesional hace uso de sus capacidades

matemáticas. Hoy en día no es posible concebir la acción de un comerciante, de un vendedor,

de un trabajador cualquiera de la construcción, con mayor razón de un ingeniero, de un

arquitecto, de un médico, de un economista, de un químico, de un físico, de un biólogo,

sociólogo, estadístico o cualquier profesional que no haga uso de la Matemática y de sus

capacidades matemáticas. Por ello es importante que la Matemática forme parte de nuestra

vida, aprenderla nos permitirá el dominio de algunos aspectos de la realidad.

Por lo planteado líneas arriba, nunca ha sido mayor la necesidad de entender y de ser capaz

de usar la Matemática en la vida diaria y en el trabajo, por lo que es imprescindible el

desarrollo de las capacidades matemáticas.

INDICADORES DE LOGRO

- Desarrolla capacidades utilizando recursos del contexto

SESIÓN 5 DESARROLLO DE CAPACIDADES UTILIZANDO

RECURSOS DEL CONTEXTO

Page 57: modulo del numero y operaciones

57

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

La Matemática dirigida a los estudiantes presenta dos facetas claramentediferenciadas. En

primer lugar, está la “enseñanza de la Matemática”, quemuestra cómo es que debe

presentarse los conocimientos al estudiante, esdecir, la serie de procedimientos pedagógicos

que facilitan la asimilaciónde la teoría matemática. Y, en segundo lugar, tenemos el

“aprendizajede la Matemática”, el cual se centra en la pregunta “¿cómo se aprende?”,

interesándose en los mecanismos de asimilación y construcción delconocimiento matemático

en la mente de los estudiantes. Precisamente, estaes la faceta en la que ahora nos vamos a

centrar.

1. Consideraciones para el aprendizaje de la Matemática

Dado que sólo un trabajo planificado puede rendir frutos positivos, es conveniente

enumerar ahora algunos lineamientos que deben de ser unaconstante en la labor

educativa de los docentes:

El conocimiento matemático no se da de modo inmediato en los estudiantes. Esto

quiere decir que es todo un proceso cuyo avance es progresivo, por etapas, y según

las particularidades de cada estudiante.

Además, se trata de un proceso que nunca concluye, pues la asimilación de

contenidos se prolonga más allá del tiempo que el estudiante pase en las aulas. Para

ello, se debe tener en cuenta que la Matemática funciona de acuerdo con el principio

Page 58: modulo del numero y operaciones

58

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

cognitivo según el cual todo conocimiento nuevo debe de ser conectado con los

conocimientos ya adquiridos.

El aspecto manipulativo debe de ocupar un lugar destacado en el trabajo de

aprendizaje. De esta manera, el estudiante desarrolla su capacidad de abstracción,

pues el aprendizaje que parte de lo concreto y loperceptible se asimila con mayor

facilidad en los esquemas mentales de los estudiantes.

Se debe de alentar el trabajo cooperativo y las acciones solidarias, pues de esta

manera se promueve también el debate, la discusión y el intercambio de

conocimientos. Sin duda, los estudiantes fortalecen su capacidad argumentativa.

Los intercambios de ideas y conocimientos no deben de limitarse a la institución

educativa, sino que deben de extenderse al entorno familiar y social. Así, los

estudiantes deben de estar en condiciones de participar en diálogos tanto con sus

padres, como con sus maestros, vecinos, parientes, etc.

Debe tenerse en cuenta que los estudiantes no son entes pasivos que simplemente

“esperan” que los conocimientos entren a su conciencia. Por el contrario, deben de ser

vistos como individuos con grandes potencialidades, las cuales, a su vez, tienen que

desarrollar basándose en su interés por

aumentar el caudal de sus conocimientos.

En relación con lo anterior, está también el

fomento de la creatividad en los estudiantes, de

modo que las actividades mecánicas,

repetitivas y rutinarias deben de ser dejadas de

lado, y se debe incentivar a que formulen

conjeturas y recorran caminos inexplorados, al

final de los cuales, puede aparecer un

conocimiento valioso e inédito.

2. ¿Por qué aprender Matemática en la Educación Secundaria?

La Matemática tiene su origen en la necesidad de resolver problemas yejecutar actividades

que faciliten la existencia individual y colectiva de losseres humanos. Partiendo de

situaciones concretas y cotidianas se llega aabstracciones que posteriormente se ordenan,

dando origen a las teoríasmatemáticas, la ciencia y la tecnología.

En el caso de la enseñanza de la Matemática en la Educación Secundaria, éstasiempre ha

estado orientada hacia la finalidad práctica de proporcionar a losestudiantes las

herramientas operativas básicas que les permitan enfrentarsea los retos que se les vayan

presentando en su sociedad.

Page 59: modulo del numero y operaciones

59

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

En un mundo que está en constante transformación, la educación matemáticaen la

secundaria también ha buscado dotar al estudiante de la capacidad deadaptarse a las

nuevas situaciones, especialmente a aquellas que se presentanen el ámbito laboral. Por

esto, ahora más que nunca, la Matemática debede tener una vocación inclusiva de manera

tal que la mayor cantidad deestudiantes resulte beneficiada. Para ello, los docentes deben

estar preparadospara acercarse al estudiantado de manera tal que una ciencia tan

importante nosea vista como una traba, pesada e inútil, sino, por el contrario, una

aliadapara el camino hacia el éxito y el desarrollo humano.

Los avances tecnológicos se han extendido de tal manera en todos los ámbitosde la vida

diaria, que es casi imposible que alguien pueda mantenerse ajenoa ellos. La Matemática

puede ayudarnos a manejarnos con seguridad antela tecnología. Nos enseña, además, a

realizar planificaciones, interpretarestadísticas, administrar nuestros ingresos y consolidar

nuestros proyectoscomerciales.

3. Capacidades matemáticas.

Se ha tomado en cuenta tres capacidades matemáticas, propuestas en elDiseño Curricular

de Educación Secundaria, las cuales describiremos acontinuación.

Resolución de problemas

Cuando se lleva a cabo la resolución de problemas, debemos de tener encuenta que

“resolver” no significa simplemente

realizar un proceso de modomecánico

para llegar a una solución. Pues, en el

camino hacia la respuesta,el estudiante

participa activamente, ya sea realizando

conexiones conconocimientos

previamente adquiridos (lo cual puede

hacer que se llegue ala solución de una

manera más rápida), o arriesgando

nuevas propuestas, esdecir, dando

entrada libre a la creatividad.

Los estudiantes deben de ser constantemente retados con problemas que, yendo de lo

simple a lo complejo, les permitan aumentar su capacidad deraciocinio matemático.

Este aspecto de la resolución de problemas es fundamental en el aprendizajede la

Matemática, por lo cual debe buscarse problemas cuya proximidad conel entorno del

estudiante lo motiven a comprometerse con su resolución.

Los problemas idóneos serán aquellos que integren temas variados ymatemáticas

significativas.

RESOLUCIÓN DE

PROBLEMAS

RAZONAMIENTO

Y

DEMOSTRACIÓN

COMUNICACIÓN

MATEMÁTICA

Page 60: modulo del numero y operaciones

60

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

A través del aprendizaje de la Matemática se debe capacitar a todos losestudiantes para:

Obtener nuevos conocimientos mediante la resolución de

problemas diseñados según se acaba de describir.

Resolver problemas que surjan tanto de la Matemática como de

otroscontextos.

Aplicar y adaptar las estrategias pertinentes para la resolución

deproblemas.

Hacer un control del proceso de resolución de problemas

matemáticos,propiciando la reflexión sobre el mismo.

Los estudiantes se plantean constantemente problemas, a veces de maneraespontánea,

en su diario acontecer, de modo que es labor de los docentesestimular en ellos la

disposición a resolverlos. Por ello, deben crear en clase unclima que fácilmente los motive

a investigar, asumir riesgos y proponer salidas, así como a participar en un intercambio de

ideas. El docente se convierte así en un apoyo que indudablemente fortalecerá la

confianza del estudiante.

Razonamiento y demostración

El razonamiento juega un papel de primer orden en el entendimiento de laMatemática. Los

estudiantes deben de tener claro que ésta posee un sentidoque hay que reconstruir

mediante el desarrollo de ideas, la justificación deresultados y el uso de conjeturas, entre

otras actividades. Teniendo en cuentaque ningún estudiante llega a la escuela sin algún

conocimiento, pues noexiste individuo carente de nociones básicas de Matemática, los

docentesbuscarán estimular el natural desarrollo hacia la resolución de problemasmás

complejos.

Entonces, los estudiantes también tienen que estar capacitados para:

Comprender que el razonamiento y los pasos para realizar una demostración son de

gran importancia en la resolución de problemas matemáticos.

Arriesgarse a proponer y desarrollar conjeturas, mostrando solidez en elproceso

argumentativo.

Discriminar la validez de argumentos y demostraciones matemáticas.

Escoger, entre varias posibilidades, el método de demostración más adecuado para un

problema en particular.

Los docentes explicarán a los estudiantes que toda afirmación matemáticadebe llevarnos a

preguntar sobre su origen y validez. Es decir, no se trata de“aceptar” sin discusión lo

propuesto, sino de ir hasta sus raíces para verificarsu validez, cuando sea pertinente.

Page 61: modulo del numero y operaciones

61

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Se debe acostumbrar al alumnado a cuestionar los conocimientos recibidosde manera tal

que adquieran seguridad al momento de conducirse en suspropias investigaciones. Debe

quedar de lado la errada idea de que algoes válido sólo porque una persona importante lo

dijo. Por el contrario, elúnico criterio que debe de tenerse en cuenta al momento de

respaldar unaafirmación matemática es el razonamiento, es decir, el

encadenamientoconsistente de demostraciones.

Como se ve, se trata de fomentar una actitud de búsqueda constante denuevos

conocimientos, pues esto no se consigue si se avanza sobre basesinconsistentes o

caminos demasiado recorridos. La Matemática implica eldescubrimiento, la novedad, lo

inesperado y lo original.

El estudiante debe ser constantemente estimulado con preguntas y debede ser llevado

siempre a la formulación de conjeturas que, como hemosseñalado, robustecerán su

capacidad de raciocinio.

Indudablemente, algo que también debe de acompañar al estudiante esta preocupación

por mejorar su expresión, es decir, el interés por sercomprendidos claramente cuando

exteriorizan libremente su pensamiento.

Esto forma parte del proceso de aprendizaje, que concebimos como unentramado de

conexiones con diversos aspectos del conocimiento.

En la medida en que nos referimos a la importancia de la claridad expresiva, también

debemos señalar que los trabajos en grupo tienen capital importanciaen el aprendizaje

matemático. Ellos favorecen el desarrollo social de losestudiantes y enseñándoles que los

valores como la tolerancia, el respeto yla capacidad de escuchar, son importantes también

para la adquisición denuevos conocimientos.

Comunicación matemática

Debe de acostumbrarse al alumnado a la escritura. El encuentro que tendrán con la

palabra será constante (en la lectura de los planteamientos de los problemas, de los

cuadros estadísticos, de las diversas gráficas, etc.). Por ello será preciso que se

familiaricen con ella. Si queremos poner por escrito nuestras ideas, primero debemos de

realizar una labor de ordenamiento en nuestra mente de manera tal que éstas lleguen al

papel de una forma coherente.

Dicho proceso permite que los matemáticos revisen

detenidamente sus ideasy demostraciones.

Así, el desarrollo de la capacidad verbal aumentará la

comprensión de losconceptos matemáticos. No olvidemos que

el pensamiento abstracto tambiénrecurre a la palabra como instrumento de análisis. Por

Un mate de risa - ¿Hasta qué parte puedes

entrar en un bosque?

- Hasta la mitad, porque después comienzas a salir.

Page 62: modulo del numero y operaciones

62

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

eso es importanteconocer exactamente el vocabulario matemático que corresponde utilizar

encada ocasión.

En los debates e intercambios de ideas, este aspecto de la comunicación matemáticacobra

notoriedad, pues en ellos los estudiantes tienen innumerables oportunidades de formular

preguntas, refutar argumentos y exteriorizar sus inquietudes. Tal y como lo establecen los

estándares curriculares, no bastacon que ellos presenten las soluciones a los problemas,

sino que deben de estarcapacitados para mostrar a su docente y a sus compañeros y

compañeras el camino que han seguido para llegar a ellas. Y, además, es muy valioso que

los estudiantes sean conscientes de los obstáculos y limitaciones con las que tropezaron

en dicho camino, pues así podrán elaborar estrategias adecuadas para superarlos con

facilidad en situaciones futuras.

Además, tal como lo hemos señalado en los anteriores apartados, se debeincentivar

constantemente a que los estudiantes apliquen o relacionen losconocimientos adquiridos

con la realidad que los circunda. El aspectocomunicativo, como es de suponerse, facilita

esta intención.

Por ello, y de acuerdo con lo que acabamos de exponer, en el aprendizaje dela Matemática

los estudiantes deben de estar capacitados para:

Valorar la precisión y utilidad de la notación matemática, así como laimportancia que tiene

en el desarrollo de las ideas relacionadas con laresolución de problemas matemáticos.

Expresar ideas matemáticas de manera oral y escrita.

Entender claramente los enunciados verbales que aparecen en losproblemas

matemáticos.

Formular definiciones matemáticas y compartir con sus compañeros ycompañeras las

generalizaciones que han obtenido como fruto de susinvestigaciones.

Describe cómo aplicarías las capacidades matemáticas en tu labor docente, de manera

individual, y luego comparte con tus colegas.

……………………………………………………………………………………………………………

……………………………………………………………………………………………………………

…………………………………………………………………………………………………………

Page 63: modulo del numero y operaciones

63

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Esta unidad consta de cuatro sesiones de aprendizaje: Concepciones de la enseñanza y

aprendizaje, fundamentos teóricos,Método Heurístico y Método de Polya para resolver

problemas del contexto. Estrategias para resolver problemas relacionados al entorno real

utilizando el sistema internacional de unidades, unidades de tiempo Estrategias para resolver

problemas relacionados a temas locales y reales utilizando propiedades de las razones,

porcentaje y regla de tres.

SEGUNDA UNIDAD: PRACTICA EDUCATIVA DEL ÁREA DE MATEMÁTICA CONCEPCIONES DE

LA ENSEÑANZA APRENDIZAJE. FUNDAMENTOS TEÓRICOS

PRÁCTICA

EDUCATIVA DEL

ÁREA DE

MATEMÁTICA

CONCEPCIONES DE

LA ENSEÑANZA Y

APRENDIZAJE,

FUNDAMENTOS

TEÓRICOS

Concepciones de la enseñanza y aprendizaje, fundamentos

teóricos

Estrategias para resolver problemas relacionados al entorno

real utilizando el sistema internacional de unidades,

unidades de tiempo

Estrategias para resolver problemas relacionados a temas

locales y reales utilizando propiedades de las razones,

porcentaje y regla de tres.

.

Método Heurístico y Método de Polya para resolver

problemas del contexto

Page 64: modulo del numero y operaciones

64

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Recordando mis aprendizajes en secundaria

Haz un breve resumen acerca de tus experiencias en el aprendizaje de la Matemática. ¿Qué es un modelo? ¿Para qué sirven los modelos? ¿Qué diferencia existe entre un problema y un ejercicio?

Mediante tres desafíos analicemos nuestra práctica mediante las interrogantes ejes:

Desafíos Interrogantes - eje 1. Organizar los conocimientos producidos durante la práctica

- ¿Cómo organizamos los conocimientos producidos durante la práctica?

2. Contrastar el saber previo con el saber aprendido durante la práctica

- ¿Qué sabíamos antes de comenzar la práctica? - ¿Cuáles son los conocimientos (teoría/s) disponibles? - ¿Qué sucedió durante la práctica con el conocimiento previo y disponible?

3. Producir aprendizaje para orientar la nueva práctica

-¿Qué necesitamos aprender para enfrentar nuevas prácticas?

1. Teoría Conductista

El conductismo parte de una concepción empirista del conocimiento, su mecanismo central

del aprendizaje es el asociacionismo, se basa en los estudios del aprendizaje mediante

condicionamiento (la secuencia básica es la de estímulo-respuesta) y considera

INDICADORES DE LOGRO

- Analiza las diferentes concepciones de la enseñanza y aprendizaje. - Explica los fundamentos teóricos

SESIÓN 6

Page 65: modulo del numero y operaciones

65

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

innecesario el estudio de los procesos mentales superiores para la comprensión de la

conducta humana.

El conductismo se preocupa por usar el método científico (en sentido restrictivo) y

considera que sólo se debe hablar de los aprendizajes observables y medibles

objetivamente (Marqués y Sancho, 1987).Para el conductismo el aprendizaje es un cambio

relativamente permanentemente de la conducta que se logra mediante la práctica y con la

interacción recíproca de los individuos y su ambiente, lo cual se logra a través de los

programas de adiestramiento y los tutoriales pues son diseñados en términos de una

práctica guiada y presentan un feedback que contribuye a reforzar destrezas específicas.

2. Teoría Cognitivista

El cognitivismo, presenta una gran variedad de formas y a continuación enumeramos

algunas de ellas, las citadas frecuentemente, para el desarrollo de esta corriente

psicológica.

a) En el aprendizaje por descubrimiento, lo que va a ser aprendido no se da en su forma

final, sino que debe ser reconstruido por el alumno al seguir o no un modelo, antes de

ser aprendido e incorporado significativamente en su estructura cognitiva.

En el aprendizaje por descubrimiento se trata de «descubrir» una regla, concepto o

asociación que se ha enseñado (un fin).

b) Aprendizaje como procesamiento de información. Para Gagné (1979), “el

aprendizaje es un cambio en las disposiciones o capacidades humanas, que persiste

durante cierto tiempo y que no es atribuible solamente a los procesos de crecimiento”.

El procesamiento de información defiende la interacción de las variables del sujeto y las

variables de la situación ambiental en la que está inmerso, ya no es un sujeto pasivo y

receptivo (conductismo), ahora se transforma en un procesador activo de la información.

En este enfoque se concibe al ser humano como procesador de información basándose

en la aceptación de la analogía entre la mente humana y el funcionamiento de las

computadoras. Para ello indaga cómo se codifica la información, transforma, almacena,

recupera y se transmite al exterior.

Los principios de la teoría de Gagné se basan en el modelo de procesamiento de

información. El modelo señala que un acto de aprendizaje consta de fases: se inicia con

la estimulación de los receptores, posee fases de elaboración interna y finaliza con

retroalimentación que acompaña a la ejecución del sujeto, esta estimulación externa

(condiciones externas) apoyan los procesos internos y favorecen el aprendizaje.

c) Aprendizaje como actividad. El aprendizaje activo implica interacción con el medio y

las personas que rodean al niño, puede hacerse en forma individual o en grupo y

supone cooperación y/o colaboración. Estas interacciones provocan en el niño

Page 66: modulo del numero y operaciones

66

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

experiencias que modifican su comportamiento presente y futuro, porque las

disposiciones conductuales y el ambiente no son entidades separadas, lo que ocurre es

que cada una de ellas determina la actuación del ambiente (Bandura, 1982).

d) Aprendizaje significativo. Para Ausubel, es el aprendizaje en donde el alumno

relaciona lo que ya sabe con los nuevos conocimientos, lo cual involucra la modificación

y evolución de la nueva información así como de la estructura cognoscitiva envuelta en

el aprendizaje y según Serrano (1990), aprender significativamente “consiste en la

comprensión, elaboración, asimilación e integración a uno mismo de lo que se aprende”.

El aprendizaje significativo combina aspectos cognoscitivos con afectivos y así

personaliza el aprendizaje.

Ausubel y otros (1997) señalan tres tipos de aprendizajes, que pueden darse en forma

significativa, éstos son:

1. Aprendizaje de Representaciones:

Es el aprendizaje más elemental, que se da cuando el niño adquiere el vocabulario.

Consiste en la atribución de significados a determinados símbolos al igualarlos con

sus referentes (objetos, por ejemplo). El niño primero aprende palabras que

representan objetos reales con significado para él aunque no los identifica como

categorías.

2. Aprendizaje de Conceptos:

Los conceptos se definen como objetos, eventos, situaciones o propiedades que se

designan mediante algún símbolo o signos (Ausubel y otros, 1997). El niño, a partir

de experiencias concretas, comprende que la palabra "pelota" pueden usarla otras

personas refiriéndose a objetos similares.

Los conceptos son adquiridos a través del proceso de formación (las características

del concepto se adquieren a través de la experiencia directa, por ejemplo, el niño

aprenda el concepto de "pelota" a través de varios encuentros con su pelota y las de

otros niños) y de asimilación (se produce a medida que el niño usa las

combinaciones disponibles en su estructura cognitiva, por ejemplo, el niño podrá

distinguir distintos colores, tamaños y texturas y reconocer que se trata de una

"pelota").

3. Aprendizaje de Proposiciones:

Exige captar el significado de las ideas expresadas en forma de proposiciones, las

cuales se obtienen cuando el alumno forma frases que contienen dos o más

conceptos, este nuevo concepto es asimilado al integrarlo en su estructura cognitiva

con los conocimientos previos. Dicha asimilación puede hacerse por: diferenciación

progresiva (cuando el concepto nuevo se subordina a conceptos más inclusores ya

Page 67: modulo del numero y operaciones

67

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

conocidos por el alumno), por reconciliación integradora (cuando el concepto nuevo

es de mayor grado de inclusión que los conceptos que el alumno ya conocía) y por

combinación (cuando el concepto nuevo tiene la misma jerarquía que los conocidos).

3. Teoría Constructivista

Para Piaget y sus discípulos el aprendizaje es una construcción del sujeto a medida que

organiza la información que proviene del medio cuando interacciona con él, que tiene su

origen en la acción conducida con base en una organización mental previa, la cual está

constituida por estructuras y las estructuras por esquemas debidamente relacionados. La

estructura cognitiva determina la capacidad mental de la persona, quien activamente

participa en su proceso de aprendizaje mientras que el docente trata de crear un contexto

favorable para el aprendizaje.

La idea fundamental de los trabajos de Piaget son los esquemas mentales, que

básicamente se refieren a la construcción de una organización intelectual que guía la

conducta del individuo. Todos los esquemas surgen de la asimilación recíproca de las

estructuras y la acomodación a la realidad exterior.

4. Teoría Sociocultural

En la corriente sociocultural distinguimos a Lev Vygotsky (1896-1934), quien es

considerado el precursor del constructivismo social. A partir de él, se han desarrollado

diversas concepciones sociales sobre el aprendizaje que amplían o modifican algunos de

sus postulados, pero la esencia de él aún permanece.

El constructivismo es una teoría del aprendizaje que se basa en el supuesto de que los

seres humanos construyen su propia concepción de la realidad y del mundo en que viven,

la corriente sociocultural sienta sus postulados en la convicción del rol preponderante que

la interacción social tiene en el desarrollo cognitivo.

La actividad del sujeto que aprende supone una práctica social mediada, al utilizar

herramientas y signos para aprender. De este modo el sujeto que aprende por un lado

transforma la cultura y por otro la interioriza. La interiorización o internalización la define

De Pablos (1998) como: “la incorporación al plano individual, intrapsicológico, de lo que

previamente ha pertenecido al ámbito de nuestras interacciones con los demás”.

5. Enfoques de la Enseñanza

Al revisar las teorías procedentes de las diversas escuelas psicológicas, nos encontramos

con muchas diferencias entre ellas, para el enfoque técnico seguimos al neoconductismo

de Tolman y Skinner, donde el estudiante es activo en relación con los arreglos

contingencial es del profesor–programador y la actividad está condicionada por las

características prefijadas por el programa de estudios.

Page 68: modulo del numero y operaciones

68

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

En el enfoque heurístico destacan Piaget, Bruner y Stenhouse, para quienes es

importante el desarrollo de habilidades de aprendizaje, la actuación del docente como

propiciador de ambientes para la organización de esquemas y aprendizajes significativos y

el alumno como activo procesador de información.

Mientras que en el enfoque socio crítico son importantes los trabajos de Vigotsky, Luria,

Leontiev, Galperin y Elkonin, quienes se plantean la problemática de los vínculos entre los

procesos psicológicos y los socioculturales, en este enfoque el docente es un promotor de

zonas de desarrollo próximo con dominio de la tarea, maneja mediadores y es sensible a

los avances progresivos de los alumnos, quienes toman conciencia y ejecutan las tareas

con un desarrollo integral.

Desde la concepción de Piaget para la enseñanza y el aprendizaje, debe considerarse

que en las distintas etapas de desarrollo del niño, varían sus estrategias y operaciones

cognoscitivas, razón por la cual, el docente debe estar alerta para hacerles las exigencias

adecuadas, organizar situaciones de aprendizaje acordes a su desarrollo y así lograr su

participación (cognitiva) activa, como persona con afectos y vivencias particulares.

Para Bruner (1974), una manera de enseñar que provoque transferencia en el niño

cuando utiliza el material que ha aprendido, debe considerar seis factores:

La actitud del niño debe llevarlo a trascender los datos y usar la cabeza para resolver un

problema.

Los materiales nuevos aprendidos deben ajustarse al marco de referencia de manera

que se adueñe de ellos y use tal información de modo compatible con lo que ya sabe.

El niño activa su propia capacidad de resolver problemas.

El niño práctica las aptitudes relacionadas con el empleo de la información y la solución

de problemas.

Los niños no consiguen explicar cómo hacen algunas cosas pero al volver sobre su

propia conducta tienen la oportunidad de reflexionar sobre ello.

La capacidad de manipular la información, para emplearla en la solución de problemas.

Según Bruner, la enseñanza puede facilitar el proceso de descubrimiento de los niños

por sí mismos, sin que ello signifique encontrar verdades totalmente nuevas. Y para ello

la enseñanza debe propiciar un ambiente lleno de situaciones que el niño pueda

abordar, que favorezcan su autonomía y que lo estimulen a aprender haciendo; debe

tomar en cuenta el orden eficaz de los materiales y que el alumno aprenda a través de

su actividad, que aprenda descubriendo y resolviendo problemas (Serrano, 1990).

6. Enfoque Contextual del Aprendizaje-Enseñanza

El aprendizaje contextual es un concepto que incorpora mucha de la investigación más

reciente de la ciencia cognoscitiva.

Page 69: modulo del numero y operaciones

69

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

También es una reacción a las teorías esencialmente conductistas que han dominado la

educación por muchas décadas. El enfoque contextual reconoce que el aprendizaje es

un proceso complejo y multifacético que va más allá de las metodologías prácticas,

basadas en la relación estímulo respuesta.

Según la teoría del aprendizaje contextual, el

aprendizaje tiene lugar sólo cuando el estudiante

procesa información y conocimiento nuevos de tal

manera que les da sentido en su marco de

referencia (su propio mundo interno de memoria,

experiencia y respuesta). Este enfoque de

aprendizaje y enseñanza supone que la mente

busca, de forma natural, el significado en el

contexto o sea, en el ámbito donde la persona se

encuentra y que lo hace así buscando relaciones

que tengan sentido y parezcan ser útiles.

En función de eso, la teoría del aprendizaje contextual enfoca los múltiples aspectos de

cualquier ambiente de aprendizaje. Un ambiente de aprendizaje puede ser un aula, un

laboratorio, un lugar de trabajo o un campo sembrado. El aprendizaje contextual alienta a

los educadores a escoger y/o diseñar ambientes de aprendizaje que incorporen muchas

formas diferentes de experienciassociales, culturales, físicas y psicológicastrabajando en la

búsqueda de los resultados de aprendizaje deseados.

En dichos ambientes, los estudiantes descubren relaciones significativas entre ideas

abstractas y aplicaciones prácticas en el contexto del mundo real y dichos conceptos son

internalizados a través del proceso de descubrir, reforzar e interrelacionar.

Reflexionemos la importancia de seguir un proceso en la resolución de problemas:

……………………………………………………………………………………………………………

¿Existe una teoría única y mejor, y es una más eficiente que otra?

¿Cómo aplicas una de las teorías en la construcción de los

aprendizajes de tus estudiantes?

¿Cómo puede un docente realizar la selección adecuada de

contenidos y estrategias que se correspondan una teoría?

¿Cuál teoría resulta más efectiva para contribuir con el dominio de

tareas específicas por parte de estudiantes particulares?

Page 70: modulo del numero y operaciones

70

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Recordando mi práctica docente

¿Qué estrategias utilizan mis estudiantes para resolver problemas?

¿Qué importancia tiene el método heurístico en la resolución de problemas?

¿Aplico el método de Polya para resolver problemas con mis estudiantes?

Durante los últimos años los docentes de matemática hemos pasado por diversas"Modas

Pedagógicas" que han marcado una tendencia en la forma de enseñar estaciencia.En un

primer momento hubo una centralización exclusiva en torno a loscontenidos, se trataba de

reducir la distancia entre el saber de la disciplina y el saberenseñado.Las desilusiones no

tardaron en hacerse sentir; las Matemáticas no se habíanconvertido en fáciles de aprender;

ciertos objetos de enseñanza introducidos, maladaptados, soportaban transformaciones no

previstas por los autores de las reformas;las múltiples innovaciones realizadas en el campo

educativo no permitieron que laenseñanza de la matemática se constituya en un cuerpo de

conocimiento fiable.

Es desde esta toma de conciencia que nació de algún modo la Didáctica de laMatemática

(Francia, años 60). La producción en este campo es ya muy vasta y sólida.

Sin embargo en un siglo en que los cambios y los avances tecnológicos se hansucedido de

manera vertiginosa, la educación no había mostrado un cambio estructuralimportante; incluso

los programas, salvo detalles, han conservado la esencia de loscontenidos.

Hoy en día no podemos centrar el aprendizaje en torno a contenidos que en unfuturo no muy

lejano le serán obsoletos, debemos lograr que el alumno adquiera ciertascapacidades que le

permitan construir por sí solo el conocimiento, debemos darleherramientas que le permitan

adaptarse al medio.

INDICADORES DE LOGRO

- Aplica el método heurístico y el método de Polya en la solución de problemas

SESIÓN 7 MÉTODO HEURÍSTICO Y MÉTODO DE POLYA PARA

RESOLVER PROBLEMAS DEL CONTEXTO.

Page 71: modulo del numero y operaciones

71

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Somos conscientes de que la educación necesitaba un cambio, un cambioprofundo, ya no es

una tendencia que marca determinada corriente pedagógica sino unverdadero cambio

estructural, una nueva visión de abordar la enseñanza, nuevasmetodologías de trabajo,

nuevas herramientas.

A todos nos resulta difícil afrontar el cambio, no es fácil desarraigar tradiciones nisubstraerse

a la gran responsabilidad que significa realizar cambios en la educación;sin embargo esta

responsabilidad no debe ahogar la acción.

La propuesta no es fácil pero creemos que el desafío valdrá la pena¿Cuál es la Matemática

que se debe enseñar? ¿Cuál es la Matemática que le puede ser útil a profesionales

nomatemáticos? ¿Cuál es la Matemática que puede servir a un ciudadano en este

nuevomilenio?

Algunas de las respuestas a estos interrogantes que generalmente nos hacemoslos docentes

de matemática se encuentran en el libro “Didáctica de matemáticas”Cecilia Parra e Irma Saiz

(compiladoras) en el capítulo “Matemática para nomatemáticos” por Luis Santaló.“La misión

de los educadores es preparar a las nuevas generaciones para elmundo en que tendrán que

vivir. Es decir impartirles las enseñanzas necesarias paraque adquieran las destrezas y

habilidades que van a necesitar para desempeñarse concomodidad y eficiencia en el seno de

la sociedad con que se encontrarán al terminar elperíodo escolar.

Por esto, como el mundo actual es rápidamente cambiante, también la escueladebe estar en

continuo estado de alerta para adaptar su enseñanza, tanto encontenidos como en

metodología, a la evolución de estos cambios, que afectan tanto alas condiciones materiales

de vida como al espíritu con que los individuos se vanadaptando a ellas. En caso contrario, si

la escuela se descuida y sigue estática, o conmovimiento lento en comparación con la

velocidad exterior, se origina un desfase odivorcio entre la escuela y la realidad ambiental que

hace que los alumnos se sientanpoco atraídos por las actividades del aula y busquen adquirir

por otros medios losconocimientos que consideran necesarios para comprender, a su

manera, el mundo dela calle que perciben directamente o a través de los medios de

comunicación”.

“A los profesores de Matemática nos corresponde seleccionar entre toda lamatemática

existente, la clásica y la moderna, aquella que pueda ser útil a loseducandos en cada uno de

los distintos niveles de la educación”.

“La elección de la Matemática para quienes van a ser matemáticos profesionaleses

relativamente fácil, pues basta mostrar las grandes líneas generales y enseñar aaprender,

dejando que cada educando vaya seleccionando según sus gustos y suvocación la

Matemática que más le interese, pues tiene toda la vida para ircompletando la formación

recibida en la escuela.

Page 72: modulo del numero y operaciones

72

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

El problema radica en la selección de la matemática para la educación de quienesno tienen

interés particular por ella y sólo la aceptan como una necesidad que lesayude a desempeñar

mejor sus ocupaciones y a entender mejor su sostén básico”.

Hasta hace unos años la matemática de la enseñanza obligatoria, consistía ensaber operar

con números enteros y racionales, con mucha práctica de los decimales, ydespués iniciar e

insistir en la proporcionalidad en sus diversos aspectos de la regla detres, porcentajes,

semejanza de figuras planas, escalas e interpretación de mapas ygráficos, sistema métrico

decimal, definiciones y propiedades simples de las figurasgeométricas más usuales.

Actualmente vista la complejidad creciente de la sociedad,se considera que tales

conocimientos resultan insuficientes, más aun considerando quese ha extendido la

obligatoriedad.

“Hay que decidir sobre los contenidos y también sobre la metodología másconveniente.

Además de los contenidos tradicionales, ya mencionados, es mucho loque se puede y debe

añadir, suprimiendo en compensación muchas cosas que porcostumbre han seguido

formando parte de los programas pero que han devenidoinútiles el día de hoy.”

“Los conceptos fundamentales deben abordarse desde distintos enfoques,indicando el

camino para sus posibles extensiones y aplicaciones que el alumno tendráque buscar en el

futuro por su propia cuenta, cuando las necesite. Puesto que elaprendizaje va a ser

permanente, es importante enseñar a aprender, cosa que elalumno tendrá que hacer por sí

solo cuando termine la escuela.Hay cosas que actualmente figuran en los programas y que en

sus ideasgenerales, deben seguir dándose, pero en forma muy simplificada. Por ejemplo,

esimportante instruir cuanto antes en las manipulaciones simples del cálculo literal y en

lainterpretación y manipuleo de fórmulas, pero basta limitarse a expresiones simples deuso

común, sin necesidad de aburrir con fatigosos cálculos con monomios, polinomiosy

expresiones algebraicas complicadas.”

Hay muchos temas que hasta hace un tiempo se consideraban pertenecientes aniveles

superiores de la enseñanza y seguramente no serán de fácil inclusión pero estees

Page 73: modulo del numero y operaciones

73

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

precisamente el desafío que tenemos que enfrentar los educadores.

La resolución de problemas es la actividad más complicada e importante que seplantea en

Matemáticas. Los contenidos del área cobran sentido desde el momentoen que es necesario

aplicarlos para poder resolver una situación problemática.

Cuando se trabajan en el aula de forma sistemática, dando opción al alumno a querazone y

explique cuál es su forma de afrontar y avanzar en el desarrollo de la actividad,salen a la luz

las dificultades que el propio proceso de resolución de problemasconlleva. Dichas dificultades

están relacionadas en algunos casos con la falta de asimilaciónde contenidos propios de los

diferentes bloques del área; en otras ocasionesse basan en la comprensión lectora, en el uso

del lenguaje o en el desconocimientode conceptos propios de otras disciplinas que intervienen

en la situación planteada.

No obstante, suponen una importante fuente de información para dar a conocer losaspectos

que se debieran retomar e incorporarlos nuevamente al proceso de enseñanzaaprendizaje.

Un problema es una situación que un individuo o grupo quiere o necesita resolver ypara la

cual no dispone, en principio, de un camino rápido y directo que le lleve a lasolución;

consecuentemente eso produce un bloqueo. Conlleva siempre un grado dedificultad

apreciable, es un reto que debe ser adecuado al nivel de formación de la personao personas

que se enfrentan a él. Si la dificultad es muy elevada en comparacióncon su formación

matemática, desistirán rápidamente al tomar consciencia de la frustraciónque la actividad les

produce. Por el contrario, si es demasiado fácil y su resoluciónno presenta especial dificultad

ya que desde el principio ven claramente cuál debe serel proceso a seguir para llegar al

resultado final, esta actividad no será un problema paraellos sino un simple ejercicio. De este

modo podemos decir que la actividad que paraalumnos de ciertas edades puede concebirse

como un problema, para otros no pasa deser un mero ejercicio. Los ejercicios no implican una

actividad intensa de pensamiento para su resolución. Alrealizarlos, el alumno se da cuenta

muy pronto de que no le exigen grandes esfuerzos.

Generalmente tienen una sola solución, son actividades de entrenamiento, de

aplicaciónmecánica de contenidos o algoritmos aprendidos o memorizados. Le sirven al

profesor paracomprobar que los alumnos han automatizado los conocimientos que él

pretendía enseñarlesy, a su vez, al alumno para consolidar dichas adquisiciones.

Hacer ejercicios en serie puede provocar aburrimiento, ya que generalmente son repetitivosy

pueden resultar poco interesantes. Sin embargo, en algunas ocasiones sirven paramotivar a

los alumnos, pues de esa manera toman conciencia de los conocimientos que

vanadquiriendo. Son un tipo de actividades muy abundantes en los libros de texto. Como

profesores/as no debemos abusar de su realización, sino seleccionar cuidadosamente

aquellosque nos resultan más útiles para evaluar el grado de comprensión de los conceptos y

Page 74: modulo del numero y operaciones

74

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

laadquisición de algoritmos matemáticos por parte de los alumnos. Por contraposición, los

problemas no se resuelven con la aplicación de una regla o recetaconocida a priori. Exigen al

resolutor sumergirse en su interior para navegar entre losconocimientos matemáticos que

posee y rescatar de entre ellos los que pueden serle útilespara aplicar en el proceso de

resolución. Puede servirse de experiencias anteriores quehagan referencia a situaciones

parecidas, para rememorar cuál fue el camino o vía seguidaen caso de poder volver a

utilizarlos en esta nueva situación.

Los problemas pueden tener una o varias soluciones y en muchos casos existen

diferentesmaneras de llegar a ella(s). Cuando un alumno o un grupo se implica en esta

actividad, se vuelca en ella, muestra entusiasmo y desarrolla su creatividad personal. Es

frecuente manifestar cierto nivel de satisfacción al descubrir el camino que le conduceal

resultado final como fruto de la investigación llevada a cabo. El tiempo que se dedicaa la

resolución de un problema es bastante mayor que el que lleva la realización deun ejercicio.

El cuadro que viene a continuación recojamos de una manera más gráfica y comparada

lasprincipales diferencias que existen entre estos dos tipos de actividades:

CARACTERISTICAS DE LOS EJERCICIOS CARACTERISTICAS DE LOS PROBLEMAS

1. HEURÍSTICA

Ciencia que estudia los procesos de decisión respecto a un campo de conocimiento

concreto, como son las estrategias cognitivas. Su contrapartida formal en computación es

el algoritmo.

La palabra heurística proviene de la palabra griega heuriskein que significa descubrir,

encontrar. Por heurística entendemos una estrategia, método, criterio o truco usado para

hacer más sencilla la solución de problemas difíciles. El conocimiento heurístico es un tipo

especial de conocimiento usado por los humanos para resolver problemas complejos. En

este caso el adjetivo heurístico significa medio para descubrir.

Debido a la existencia de algunos problemas importantes con un gran interés práctico

difíciles de resolver, comienzan a surgir algoritmos capaces de ofrecer posibles soluciones

que aunque no consiguen el resultado óptimo, sí que se acercan en un tiempo de cálculo

razonable. Estos algoritmos están basados en el conocimiento heurístico y por lo tanto

reciben el nombre de algoritmos heurísticos.

Page 75: modulo del numero y operaciones

75

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Por lo general, los algoritmos heurísticos encuentran buenas soluciones, aunque a veces

no hay pruebas de que la solución pueda hallarse en un tiempo razonablemente corto o

incluso de que no pueda ser errónea. Frecuentemente pueden encontrarse casos

particulares del problema en los que la heurística obtendrá resultados muy malos o que

tarde demasiado en encontrar una solución.

Un método heurístico es un conjunto de pasos que deben realizarse para identificar en el

menor tiempo posible una solución de alta calidad para un determinado problema.

Al principio esta forma de resolver problemas no fue bien vista en los círculos académicos,

debido fundamentalmente a su escaso rigor matemático. Sin embargo, gracias a su interés

práctico para solucionar problemas reales fue abriendo poco a poco las puertas de los

métodos heurísticos, sobre todo a partir de los años 60. Actualmente las versiones

matemáticas de métodos heurísticos están creciendo en su rango de aplicaciones, así

como en su variedad de enfoques.

Nuevas técnicas heurísticas son utilizadas a diario por científicos de computación,

investigadores operativos y profesionales, para resolver problemas que antes eran

demasiado complejos o grandes para las anteriores generaciones de este tipo de

algoritmos.

2. MÉTODOHEURÍSTICO.

Como se aplica:

Como disciplina científica, la heurística es aplicable a cualquier ciencia e incluye la

elaboración de medios auxiliares, principios, reglas, estrategias y programas que faciliten la

búsqueda de vías de solución a problemas; o sea, para resolver tareas de cualquier tipo

para las que no se cuente con un procedimiento algorítmico de solución. Según Horst

Müler: Los Procedimientos Heurísticos son formas de trabajo y de pensamiento que

apoyan la realización consciente de actividades mentales exigentes. Los Procedimientos

Heurísticos como Método científico pueden dividirse en principios, reglas y estrategias.

Principios Heurísticos: constituyen sugerencias para encontrar (directamente) la idea de

solución; posibilita determinar, por tanto, a la vez, los medios y la vía de solución. Dentro

de estos principios se destacan la analogía y la reducción.

Reglas Heurísticas: actúan como impulsos generales dentro del proceso de búsqueda y

ayudan a encontrar, especialmente, los medios para resolver los problemas. Las Reglas

Heurísticas que más se emplean son:

* Separar lo dado de lo buscado.

* Representar magnitudes dadas y buscadas con variables.

* Determinar si se tienen fórmulas adecuadas.

* Utilizar números (estructuras más simples) en lugar de datos.

Page 76: modulo del numero y operaciones

76

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

* Reformular el problema.

Estrategias Heurísticas: se comportan como recursos organizativos del proceso de

resolución, que contribuyen especialmente a determinar la vía de solución del problema

abordado. Existen dos estrategias:

El trabajo hacia adelante: se parte de lo dado para realizar las reflexiones que han de

conducir a la solución del problema.

El trabajo hacia atrás: se examina primeramente lo que se busca y, apoyándose de los

conocimientos que se tienen, se analizan posibles resultados intermedios de lo que se

puede deducir lo buscado, hasta llegar a los dados.

Se denomina heurística a la capacidad de un sistema para realizar de forma inmediata

innovaciones positivas para sus fines. La capacidad heurística es un rasgo característico

de los humanos, desde cuyo punto de vista puede describirse como el arte y la ciencia del

descubrimiento y de la invención o de resolver problemas mediante la creatividad y el

pensamiento lateral o pensamiento divergente.

La palabra heurística procede del término griego εuρίσκειν, que significa «hallar, inventar»

(etimología que comparte con eureka). La palabra heurística aparece en más de una

categoría gramatical. Cuando se usa como sustantivo, identifica el arte o la ciencia del

descubrimiento, una disciplina susceptible de ser investigada formalmente. Cuando

aparece como adjetivo, se refiere a cosas más concretas, como estrategias heurísticas,

reglas heurísticas o silogismos y conclusiones heurísticas. Claro está que estos dos usos

están íntimamente relacionados ya que la heurística usualmente propone estrategias

heurísticas que guían el descubrimiento.

La popularización del concepto se debe al matemático George Polya, con su libro Cómo

resolverlo (Howtosolveit). Habiendo estudiado tantas pruebas matemáticas desde su

juventud, quería saber cómo los matemáticos llegan a ellas. El libro contiene la clase de

recetas heurísticas que trataba de enseñar a sus alumnos de matemáticas. Cuatro

ejemplos extraídos de él ilustran el concepto mejor que ninguna definición:

Si no consigues entender un problema, dibuja un esquema.

Si no encuentras la solución, haz como si ya la tuvieras y mira qué puedes deducir de

ella (razonando a la inversa).

Si el problema es abstracto, prueba a examinar un ejemplo concreto.

Intenta abordar primero un problema más general (es la “paradoja del inventor”: el

propósito más ambicioso es el que tiene más posibilidades de éxito).

Page 77: modulo del numero y operaciones

77

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

GEORGE POLYA: ESTRATEGIAS PARA LA SOLUCIÓN DE PROBLEMAS

George Polya nació en Hungría en 1887. Obtuvo su doctorado en la Universidad de Budapest

y en su disertación para obtener el grado abordó temas de probabilidad. Fue maestro en el

Instituto Tecnológico Federal en Zurich, Suiza. En 1940 llegó a la Universidad de Brown en

EE.UU. y pasó a la Universidad de Stanford en 1942. En sus estudios, estuvo interesado en el

proceso del descubrimiento, o cómo es que se derivan los resultados matemáticos. Advirtió

que para entender una teoría, se debe conocer cómo fue descubierta. Por ello, su enseñanza

enfatizaba en el proceso de descubrimiento aún más que simplemente desarrollar ejercicios

apropiados. Para involucrar a sus estudiantes en la solución de problemas, generalizó su

método en los siguientes cuatro pasos:

1. Entender el problema.

2. Configurar un plan

3. Ejecutar el plan

4. Mirar hacia atrás

Las aportaciones de Polya incluyen más de 250 documentos matemáticos y tres libros que

promueven un acercamiento al conocimiento y desarrollo de estrategias en la solución de

problemas. Su famoso libro Cómo Plantear y Resolver Problemas que se ha traducido a 15

idiomas, introduce su método de cuatro pasos junto con la heurística y estrategias específicas

útiles en la solución de problemas. Otros trabajos importantes de Polya son Descubrimiento

Matemático, Volúmenes I y II, y Matemáticas y Razonamiento Plausible, Volúmenes I y II.

Polya, que murió en 1985 a la edad de 97 años, enriqueció a las matemáticas con un

importante legado en la enseñanza de estrategias para resolver problemas.

El Método de Cuatro Pasos de Polya.

Este método está enfocado a la solución de problemas matemáticos, por ello nos parece

importante señalar alguna distinción entre "ejercicio" y "problema". Para resolver un ejercicio,

uno aplica un procedimiento rutinario que lo lleva a la respuesta. Para resolver un problema,

uno hace una pausa, reflexiona y hasta puede ser que ejecute pasos originales que no había

ensayado antes para dar la respuesta. Esta característica de dar una especie de paso

creativo en la solución, no importa que tan pequeño sea, es lo que distingue un problema de

un ejercicio. Sin embargo, es prudente aclarar que esta distinción no es absoluta; depende en

gran medida del estadio mental de la persona que se enfrenta a ofrecer una solución: Para un

niño pequeño puede ser un problema encontrar cuánto es 3 + 2 o bien, para niños de los

primeros grados de primaria responder a la pregunta ¿Cómo repartes 96 lápices entre 16

niños de modo que a cada uno le toque la misma cantidad? le plantea un problema, mientras

que a uno de nosotros esta pregunta sólo sugiere un ejercicio rutinario: "dividir ".

Page 78: modulo del numero y operaciones

78

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Hacer ejercicios es muy valioso en el aprendizaje de las matemáticas: Nos ayuda a aprender

conceptos, propiedades y procedimientos, los cuales podremos aplicar cuando nos

enfrentemos a la tarea de resolver problemas. Como apuntamos anteriormente, la más

grande contribución de Polya en la enseñanza de las matemáticas es su Método de Cuatro

Pasos para resolver problemas. A continuación presentamos un breve resumen de cada uno

de ellos.

Paso 1: Entender el Problema.

¿Entiendes todo lo que dice?

¿Puedes replantear el problema en tus propias palabras?

¿Distingues cuáles son los datos?

¿Sabes a qué quieres llegar?

¿Hay suficiente información?

¿Hay información extraña?

¿Es este problema similar a algún otro que hayas resuelto antes?

Paso 2: Configurar un Plan.

¿Puedes usar alguna de las siguientes estrategias? (Una estrategia se define como un

artificio ingenioso que conduce a un final).

Ensayo y Error (Conjeturar y probar la conjetura).

Usar una variable.

Buscar un Patrón

Hacer una lista.

Resolver un problema similar más simple.

Hacer una figura.

Hacer un diagrama

Usar razonamiento directo.

Usar razonamiento indirecto.

Usar las propiedades de los Números.

Resolver un problema equivalente.

Trabajar hacia atrás.

Usar casos

Resolver una ecuación

Buscar una fórmula.

Usar un modelo.

Usar análisis dimensional.

Identificar sub-metas.

Page 79: modulo del numero y operaciones

79

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Usar coordenadas.

Usar simetría.

Paso 3: Ejecutar el Plan.

Implementar la o las estrategias que escogiste hasta solucionar completamente el

problema o hasta que la misma acción te sugiera tomar un nuevo curso.

Concédete un tiempo razonable para resolver el problema. Si no tienes éxito solicita

una sugerencia o haz el problema a un lado por un momento (¡puede que "se te

prenda el foco" cuando menos lo esperes!).

No tengas miedo de volver a empezar. Suele suceder que un comienzo fresco o una

nueva estrategia conducen al éxito.

Paso 4: Mirar hacia atrás.

¿Es tu solución correcta? ¿Tu respuesta satisface lo establecido en el problema?

¿Adviertes una solución más sencilla?

¿Puedes ver cómo extender tu solución a un caso general?

Comúnmente los problemas se enuncian en palabras, ya sea oralmente o en forma escrita.

Así, para resolver un problema, uno traslada las palabras a una forma equivalente del

problema en la que usa símbolos matemáticos, resuelve esta forma equivalente y luego

interpreta la respuesta. Este proceso lo podemos representar como sigue, algunas

sugerencias hechas por quienes tienen éxito en resolver problemas.

Además del Método de Cuatro Pasos de Polya nos parece oportuno presentar en este

apartado una lista de sugerencias hechas por estudiantes exitosos en la solución de

problemas:

1. Acepta el reto de resolver el problema.

2. Reescribe el problema en tus propias palabras.

3. Tómate tiempo para explorar, reflexionar, pensar...

4. Habla contigo mismo. Hazte cuantas preguntas creas necesarias.

5. Si es apropiado, trata el problema con números simples.

6. Muchos problemas requieren de un período de incubación. Si te sientes frustrado, no

dudes en tomarte un descanso -el subconsciente se hará cargo-. Después inténtalo de

nuevo.

7. Analiza el problema desde varios ángulos.

8. Revisa tu lista de estrategias para ver si una (o más) te pueden ayudar a empezar

9. Muchos problemas se pueden de resolver de distintas formas: solo se necesita

encontrar una para tener éxito.

10. No tenga miedo de hacer cambios en las estrategias.

Page 80: modulo del numero y operaciones

80

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

11. La experiencia en la solución de problemas es valiosísima. Trabaje con montones de

ellos, su confianza crecerá.

12. Si no estás progresando mucho, no vaciles en volver al principio y asegurarte de que

realmente entendiste el problema.

Este proceso de revisión es a veces necesario hacerlo dos o tres veces ya que la

comprensión del problema aumenta a medida que se avanza en el trabajo de solución.

13. Siempre, siempre mira hacia atrás: Trata de establecer con precisión cuál fue el paso

clave en tu solución.

14. Ten cuidado en dejar tu solución escrita con suficiente claridad de tal modo puedas

entenderla si la lees 10 a años después.

15. Ayudar a que otros desarrollen habilidades en la solución de problemas es una gran

ayuda para uno mismo: No les des soluciones; en su lugar provéelos con sugerencias

significativas.

16. ¡Disfrútalo! Resolver un problema es una experiencia significativa.

Existen varias estrategias para resolver problemas. Cada vez que te enfrentes a uno de

ellos, debes preguntarte: “¿hay otra manera de hacerlo?” Si tu respuesta es afirmativa,

procede en la forma que has pensado; comprobarás que muchas veces utilizamos una

combinación de dos o más estrategias para resolver un problema.

Algunas de estas estrategias se describen a continuación:

De atrás hacia adelante

Esta estrategia también se conoce como comenzar por el final. Es útil cuando tienes que

comenzar por la conclusión del problema y trabajar hacia delante.

Ejemplo: 01

El museo de sitio de Sipán, atrajo a muchas personas. El primer

día acudieron 80 personas menos que el segundo. El segundo

día fueron 250 personas menos que el tercero. En éste

acudieron 50 personas más que el cuarto. Alcuarto día fueron

500 personas. ¿Cuántaspersonasvisitaron el museo el primer

día?

Solución:

Comprender el Problema

Se desea determinar el número de personas que fueron a visitar el museo el primer día.

Se sabe que ese día fueron 80 espectadores menos que el segundo, cuando fueron 250

menos que el tercero. Durante éste acudieron 50 personas más que el cuarto día, en el

que se presentaron 500 personas.

Page 81: modulo del numero y operaciones

81

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Desarrollar un Plan

Este problema se resuelve trabajando de atrás hacia adelante. Como se conoce la

cantidad que fue el cuarto día, se calcula cuantos fueron el tercero, el segundo y por

último el primer día.

Llevar a cabo el Plan

Si se sabe que el cuarto día fueron 500 personas y el tercero 50 más, cabe concluir que

ese día hubo 550 asistentes. Con este dato y el hecho de que el segundo día fueron 250

personas menos que el tercero, se obtiene que la asistencia del segundo día fue de 300

personas. Para determinar la cantidad que acudió el primer día, solo queda restar 80 a la

cantidad del segundo día. Esto da 220 personas.

Este procedimiento también se pudo organizar haciendo uso de la estrategia elaboración

de una tabla:

DÍA VISITANTES

CUARTO 500

TERCERO 500 + 50 = 550

SEGUNDO 550 – 250 = 300

PRIMERO 300 – 80 = 220

Comprobar:

Se puede revisar invirtiendo el proceso de adelante hacia atrás: si el primer día fueron 220

personas, el segundo día fueron 80 más, o sea 300. El tercer día acudieron 250 más que

el segundo; es decir 550. El cuarto día fueron 50 menos que el tercero. Lo cual coincide

con el hecho de que el cuarto día acudieron 500 personas.

Tanteo y error

Esta estrategia te ayuda cuando no conoces otra. En esencia, consiste en realizar varios

intentos para llegar a la solución.

Ejemplo: 02

Escribe símbolos de suma y resta entre números compuestos de los dígitos

3 5 9 1 0 5 3

De modo que obtengas 257 como resultado. Los dígitos no se pueden repetir y se tienen

que presentar en el mismo orden que aparecen.

Solución:

Comprender el problema:

Se establece que los números son compuestos solo hay que usar los símbolos de suma y

resta, utilizar los dígitos una vez y seguir el orden en que aparecen. 3,5,9,1,0,5y3.

Además, el resultado tiene que ser 257.

Desarrollar un Plan

Page 82: modulo del numero y operaciones

82

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

El plan que conviene utilizar es tantear colocando los símbolos de suma y resta en

posiciones diferentes. Como el resultado tiene tres dígitos, 257, cabe suponer que al

menos una cifra tiene tres dígitos y está entre 100 y 300.

Llevar a cabo el Plan

A partir de 359 se pueden agrupar los números en esta forma:

359 + 10 – 53 = 316; entonces, esta combinación no funciona.

Luego, se intenta con 105, ya que 910 está muy lejos, y resulta;

35 + 9 + 105 – 3 = 146; este ejercicio tampoco da 257.

Por último, se prueba una combinación con 359 y 105:

359 – 105 + 3 = 257; ¡es el arreglo correcto!

Comprobar:

Obviamente se puede ver que las condiciones del problema se cumplen.

Elaboración de una tabla:

Con esta estrategia puedes llevar la cuenta de los números, datos y combinaciones de

números en forma organizada. Una tabla es un arreglo rectangular de la información,

acomodada en filas y columnas.

Ejemplo 03

Los estudiantes de una clase de CTA llevaron 300 hojas para estudiar sus características

y propiedades curativas. La clase analizó 10 hojas el primer día, el segundo estudió 15, el

tercero 20 hojas y así sucesivamente. ¿Alrededor de cuántos días tardarán en estudiar

todas las hojas?

Comprender el problema:

En este caso se dice que la clase estudió 10 hojas el primer día, 15 el segundo, 20 el

tercero y así sucesivamente. Además, la cantidad total de hojas que tienen que estudiar

es 300. Se desea saber cuántos días más o menos tardarán en estudiar todas las hojas.

Desarrollar un Plan

Se observa que la cantidad de hojas por estudiar aumenta cinco cada día. Esto define un

patrón. Una vez descubierto, se pueden organizar los datos en una tabla con tres

columnas. La primera se refiere al día que estudiaron las hojas, la segunda a la cantidad

de hojas que analizaron ese día y la tercera representa la cantidad de hojas acumuladas.

De esta manera se continúa el patrón hasta llegar a la solución.

Llevar a cabo el Plan

En este paso se prepara la tabla mencionada:

Page 83: modulo del numero y operaciones

83

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

DÍA HOJAS ESTUDIADAS TOTAL DE HOJAS

ESTUDIADAS

1 1O 10

2 15 25

3 20 45

4 25 70

5 30 100

6 35 135

7 40 175

8 45 220

9 50 270

10 30 300

Comprobar

Revisa si la respuesta tiene sentido. Observa que el patrón continúa hasta el noveno día y

cambia en el décimo porque solo quedan 30 hojas por estudiar.

En conclusión, el grupo demorará aproximadamente unos diez días en estudiar las 300

hojas.

1. La edad de un padre y la de su hijo suman 47 años. Si dentro de 14 años el

padre tendrá el duplo de la edad del hijo, ¿cuál es la edad del padre?

2. Un autobús escolar con capacidad para 36 personas, en su primera parada

recoge un estudiante, en el segundo recoge dos, en la tercera recoge tres y así

sucesivamente. Sin ningún estudiante se baja del autobús, después de que parada se

llenará el autobús?

3. Un cubo de madera que mide 10 cm por lado se pinta de rojo. El cubo pintado se corta

en cubos pequeños de 2 cm por lado. ¿Cuántos cubos de 2 cm por lado no tienen

pintada ninguna cara?

4. Un libro se abre al azar. El producto de los números de las dos páginas donde se abrió

el libro 3192. ¿Cuáles son los números de las páginas en que se abrió el libro?

5. Para celebrar el inicio de las clases, los alumnos de sexto año deciden organizar una

fiesta en la casa de María. Su hermano observa que al abrir la puerta por primera vez

llega un invitado, la segunda vez llegan tres invitados, al abrir por tercera ocasión la

puerta entran cinco invitados, y así sucesivamente. ¿Cuántos invitados abran entrado

en la novena vez que se abre la puerta? ¿Cuántas veces se ha abierto la puerta

cuando han entrado 23 invitados?

ACTIVIDAD: Resuelvo problemas aplicando el método de Polya

Page 84: modulo del numero y operaciones

84

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Recordando mi práctica docente

¿Qué estrategias utilizan mis estudiantes para resolver problemas aplicando el

sistema internacional de medidas?

Reflexionemos la importancia de seguir un proceso en la resolución de problemas:

CARTA DE UN NIÑO CON PROBLEMAS DE APRENDIZAJE A SU PROFESOR/A...

Sé que no soy un niño fácil, que me distraigo con frecuencia y que no obedezco. Sé que a

veces interrumpo las clases e incluso hago que los otros niños no aprendan. Sé que hago tu

trabajo más difícil de lo que habitualmente es. Me duele pero sé que no soy lo que a los

demás les gustaría que yo fuera. Pero todo eso es por fuera, porque por dentro soy un niño

como los otros con una inteligencia maravillosa y un gran corazón, sólo que cubierto con una

camisa de tristeza Y un abrigo de indiferencia para disimular.

INDICADORES DE LOGRO

- Aplica el sistema internacional para resolver problemas contextualizados

SESIÓN 8

ESTRATEGIAS PARA RESOLVER PROBLEMAS

RELACIONADOS AL ENTORNO REAL UTILIZANDO EL

SISTEMA INTERNACIONAL DE UNIDADES, UNIDADES DE

TIEMPO.

¿Cómo se resuelven los problemas matemáticos en la

escuela?

¿Cómo profesores nos damos cuenta de la claridad de las

lagunas que tienen los estudiantes?

¿Cómo se debe afrontar la resolución de problemas?

Page 85: modulo del numero y operaciones

85

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Precisamente con ese gran corazón es que puedo decirte: GRACIAS.

Gracias por ser paciente y aguantar mi inconstancia. Gracias por protegerme: a veces de los

adultos que no me soportan, a veces de los otros niños y gracias por protegerme a ellos de

mí. Creo que en ocasiones sin querer les hago mal.

Gracias por recogerme cuando los demás me desechan, por no reírte cuando los demás se

burlan de mí, por entenderme cuando no sé expresarme.

Gracias por creer en mí. aún cuando nadie cree. Por estar segura de que yo saldré adelante

aún cuando todo el mundo apuesta por mi fracaso.

Gracias por no darte por vencida, aún cuando a veces te sientes cansada. Gracias por

aceptar el reto que significa el manejar un niño como yo. Gracias por ser ingeniosa y

recursiva; por inventarte mil cosas para que yo logre mis objetivos.

Gracias por ser muda cuando me merezco una crítica, gracias por ser sorda cuando otros te

hablan de mí. Gracias por gritar mis logros, sabiendo que costaron un poco más de esfuerzo

que para los otros.

Gracias en fin por todo.

Sin ti, sin tu esfuerzo no saldré adelante, tu eres mi gran aliad@, nunca me faltes.

Un abrazo

Cómo resolver problemas

En algún punto de sus estudios, casi todos los estudiantes de matemática sienten que, pese

a entender los conceptos, simplemente no pueden resolver los problemas. ¿Cómo

aprendemos a resolver problemas? Tenemos estrategias para resolver problemas que

sugieren técnicas para plantear y resolver problemas de forma eficiente y correcta. Después

de cada Estrategia para resolver problemas hay uno o más Ejemplos resueltos que muestran

esas técnicas en acción. No obstante, sea cual sea el tipo de problema, hay ciertos pasos

básicos que se deben seguir siempre.

Estrategia para resolver problemas

IDENTIFICAR los conceptos relevantes: Primero, decida qué ideas de las unidades son

relevantes para el problema. Aunque este paso no implica hacer cálculos, a veces es la

parte más difícil.

Nunca lo omita; si desde el principio se escoge el enfoque equivocado, el problema se

dificultará innecesariamente, e incluso podría llevar a una respuesta errónea.

Page 86: modulo del numero y operaciones

86

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

A estas alturas también se debe identificar la incógnita del problema: la cantidad cuyo valor

se desea encontrar. Podría ser la rapidez con que un proyectil choca contra el suelo, la

intensidad del sonido producido por una sirena o la fuerza de un campo magnético

generado por un electroimán. (En ocasiones, la meta será hallar una expresión matemática

para la incógnita, no un valor numérico. Otras veces, el problema tendrá más de una

incógnita.)

Esta variable es la meta del proceso de la resolución de problemas; asegúrese de no

perderla de vista durante los cálculos.

PLANTEAR el problema: Si resulta apropiado, dibuje la situación descrita en el problema.

Con base en los conceptos que escogió en el paso de Identificar, seleccione las

ecuaciones que usará para resolver el problema y decida cómo las usará.

EJECUTAR la solución: En este paso, se “hacen las cuentas”. Antes de meterse en los

cálculos, haga una lista de las cantidades conocidas y desconocidas, e indique cuál o

cuáles son las variables meta. Después, despeje las incógnitas de las ecuaciones.

EVALUAR la respuesta: La meta de la resolución de problemas no es sólo obtener un

número o una fórmula; es entender mejor. Ello implica examinar la respuesta para ver qué

nos dice. En particular, pregúntese: “¿Es lógica esta respuesta?” Si la incógnita era el radio

de la Tierra y la respuesta es 6.38 cm (¡o un número negativo!), hubo algún error en el

proceso de resolución de problemas. Revise su trabajo y modifique la solución según sea

necesario.

Conversiones de unidades

Estrategia para resolver problemas

IDENTIFICAR los conceptos pertinentes: La conversión de unidades es importante, pero

también lo es saber cuándo se requiere. En general, lo mejor es usar las unidades SI

fundamentales (longitudes en metros, masas en kilogramos y tiempo en segundos) dentro

de un problema. Si la respuesta se debe dar en otras unidades

(kilogramos, gramos u horas, por ejemplo), espere hasta el final

para efectuar la conversión.

PLANTEAR el problema y EJECUTAR la solución: Las unidades

se multiplican y dividen igual que los símbolos algebraicos

ordinarios. Esto facilita la conversión de una cantidad de un

conjunto de unidades a otro. La idea clave es que podemos expresar la misma cantidad

física en dos unidades distintas y formar una igualdad.

Page 87: modulo del numero y operaciones

87

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Por ejemplo, al decir 1 min = 60 s, no implicamos que el número 1 es igual al número 60,

sino que 1 min representa el mismo intervalo de tiempo que 60 s. Por ello, el cociente (1

min)/ (60 s)es igual a 1, lo mismo que su recíproco (60 s)/(1 min). Podemos multiplicar una

cantidad por cualquiera de estos factores, sin alterar el significado físico de la cantidad.

Para averiguar cuántos segundos hay en 3 min, escribimos.

EVALUAR la respuesta: Si convertimos las unidades correctamente las unidades no

deseadas se eliminarán, como en el ejemplo. Si hubiéramos multiplicado 3 min por (1 min)/(60

s), el resultado habría sido una forma un tanto rara de medir el tiempo. Para asegurarse de

convertir bien las unidades, debe incluirlas en todas las etapas del cálculo.

Por último, verifique si la respuesta es lógica. ¿El resultado3 min = 180 s es razonable? Sí; el

segundo es más pequeño que el minuto, por lo que habrá más segundos que minutos en el

mismo intervalo de tiempo.

El maestro, al pretender enseñar al estudiante la resolución de problemas, debe reflexionar

sobre los propósitos que persigue: ¿Quiere que el estudiante aprenda y recuerde fórmulas

(algoritmos) y la manera de aplicarlos?, o ¿quiere que el alumno desarrolle habilidades para

aplicar adecuadamente lo que conoce?, o más aún ¿quiere que el alumno resuelva el

problema sin importar de qué manera lo haga?, ya que los propósitos definidos influirán sobre

las demandas que se le hagan al alumno y los procesos que éste ponga en juego, y recordar

que el proceso de solución de problemas va más allá de la sola aplicación de algoritmos o

fórmulas.

Análisis de un problema

Para ilustrar el quehacer del maestro ante los intentos de un alumno por resolver un problema

abordaré el análisis de un caso real ocurrido en un taller sobre desarrollo cognitivo. El

problema establece saber en qué hora del día se hallan

dos personas, cuando a la pregunta de una de ellas de

¿Qué hora es?”, la otra responde con el siguiente

problema:

“Si sumas una cuarta parte del tiempo transcurrido desde la

medianoche de ayer a la mitad del tiempo que falta para la

medianoche de hoy, sabrás qué horas es”.

Enfrentado con este enunciado el alumno requiere manejar

Page 88: modulo del numero y operaciones

88

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

suficientemente el lenguaje para saber el sentido de los términos “medianoche de ayer” de

modo que no confunda el lapso de tiempo que implica, así mismo, requiere saber que la

media noche se contabiliza como las cero horas y la medianoche marca el inicio de un nuevo

conteo de horas, y que el día tiene en total 24 horas. Sin estos elementos de la base de

conocimiento el alumno no podrá resolver adecuadamente el problema.

Algunos errores comunes cometidos por los alumnos ante este problema, y que requieren de

orientación del maestro mediante cuestionamiento de sus decisiones, son: considerar el lapso

de tiempo a emplear como de doce horas, confundir la extracción de una cuarta parte del

tiempo transcurrido como equivalente a la cuarta parte del día o de una hora y considerar el

tiempo que falta para la medianoche siguiente, con base en un esquema de la carátula del

reloj, como el trayecto de las manecillas hacia el número doce.

Al tratar de resolver este problema algunos alumnos procedieron mediante dibujarla carátula

de un reloj y tomar como la cuarta parte solicitada los primeros 15minutos (trayecto de las

doce a las tres) para luego considerar la mitad del tiempo faltante para la medianoche como

12/2 = 6, y sumando, finalmente, 3 + 6 para concluir que la respuesta es 9 (véase diagrama).

El papel del profesor será, sin asumir nunca que la respuesta es errónea ni decirlo así,

cuestionar al alumno sobre las consecuencias de su respuesta o razonamiento y sobre datos

que no ha considerado al resolver el problema, por ejemplo:

a) Cómo puedes saber si son las nueve de la noche o de la mañana.

b) Al dar una vuelta al reloj estás considerando doce horas solamente y no 24 que tiene el

día.

c) Al sacar como cuarta parte 15 minutos estás solo considerando una hora y no un día (o al

obtener las tres como la cuarta parte estás considerando solamente doce horas de un día).

d) Cuál es la cuarta parte de un día.

Estos cuestionamientos enfocan la atención del alumno hacia la lectura nuevamente de lo que

el problema establece y la revisión del conocimiento y experiencia que está utilizando, la idea

que los anima no es ahorrarle camino de reflexión al alumno sino hacerle dudar de su

razonamiento y buscar criterios para que pueda demostrarse a sí mismo que éste es correcto,

ya que eso es lo que debemos entender por pensar críticamente.

Por otro lado, dado que el problema solicita del alumno saber qué es una cuarta parte y una

mitad, y cómo obtenerlas, algunos alumnos concluyen que se trata de un problema

matemático y buscan algoritmos que aplicar (generalmente “regla de tres” o ecuaciones

algebraicas de primer grado con una incógnita). Otros alumnos “descubren” una tautología

(razonamiento circular) en el planteamiento del problema, ya que para obtener la hora deben

sacar la cuarta parte de la hora que buscan, es decir, requieren saber de antemano la hora

Page 89: modulo del numero y operaciones

89

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

para poder buscarla; y concluyen que se trata de un problema capcioso o sin solución. Estos

últimos alumnos no llegan a comprender que el planteamiento, en apariencia circular,

contiene el criterio para saber si la respuesta encontrada es correcta.

En este caso algunos alumnos trataron de poner en símbolos matemáticos el planteamiento

del problema, razonando del siguiente modo:

“Un día tiene 24 horas, por lo que la hora buscada (igual a x) más lo que falta para la

medianoche (igual a 24 horas menos x) dará el día completo (igual a 24 horas):

x + (24 – x) = 24”

Tratando luego de resolver esa igualdad pero llegando a la tautología de que 24 =24, ya que

las x se eliminan por ser de signos contrarios.

En este caso el papel del profesor es hacerle notar al alumno que en ningún momento está

considerando las operaciones de obtener una cuarta parte y la mitad de ciertas cantidades

que el problema pide, y que no necesariamente su razonamiento va por mal camino.

Luego de estas indicaciones, algunos alumnos buscaron “traducir” uno a uno el planteamiento

del problema a símbolos matemáticos, iniciando por formular el problema así:

¼ de la hora actual (que desconozco) más ½ del número de horas que faltan para que sea

medianoche (igual a 24 horas menos la hora que desconozco) será igual a la hora buscada

(que será la misma que desconozco).

Y “traduciéndolo” a:¼ x + ½ (24 – x) = x

Aquí la ecuación incorpora las cantidades planteadas en el problema y refleja la “circularidad”

respecto a la hora buscada como incógnita y como dato a despejar.

El resto es aplicación del algoritmo para resolver estas ecuaciones, por lo que vemos una

combinación de heurística para definir la igualdad más algoritmo para resolverla una vez

definida.

En otros casos al tratar de incluir la hora como incógnita algunos alumnos definieron dos

variables (x, y) complicando la ecuación: ¼ x + ½ (24 – x) = y.

Este problema (y una gran mayoría) no necesariamente se resuelve mediante conocimientos

escolares, sino que se puede proceder a partir del enunciado mediante tanteos guiados por la

meta. Esta vía puede resultar muy compleja ya que hay que considerar todas las

posibilidades de la igualdad que expresa el enunciado, pero con las hojas de cálculo

computarizadas actuales el problema se reduce a poner en una columna las horas y en la

siguiente la relación definida por la hora) + la mitad de 24 horas – la hora que es. El método

por tanteo guiado por la meta requiere de esta clase de criterios y, además, es un método

hipotético deductivo de “qué tal si…” o de “si…, entonces…”, ya que se necesita “suponer”

una solución y probarla contra el criterio.

Así, podemos suponer que son las 8 o las 3 o la una… y ver que pasa con el criterio, esto es:

Page 90: modulo del numero y operaciones

90

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Si son las 8 la cuarta parte de 8 es 2 (8 / 4 = 2),

más la mitad de 24 menos 8 (24 – 8 = 16 entre 2 = 8),

entonces serán las 10 (2 + 8 = 10)

Pero si son las 8 no pueden ser las 10, por lo tanto: No son las 8.

Y procediendo de esta forma se probarían las otras horas, una tras otra:

Hora Resultado Hora Resultado

1 11.75 13 8.75

2 11.50 14 8.50

3 11.25 15 8.25

4 11.00 16 8.00

5 10.75 17 7.75

6 10.50 18 7.50

7 10.25 19 7.25

8 10.00 20 7.00

9 9.75 21 6.75

10 9.50 22 6.50

11 9.25 23 6.25

12 9.00 24 6.00

En esta tabla vemos que hay dos casos en que el valor de las

dos columnas se aproxima (ya que buscamos que la hora

supuesta coincida con el resultado), si son las 9 o las 10, pero al

no obtener el valor exacto pensamos que la hora no es exacta

sino que tiene una determinada cantidad de minutos. Este

resultado se hace evidente mediante una gráfica.

Conociendo el procedimiento lo que hacemos ahora es buscar dentro del rango 9-10 los valores para los decimales:

Hora Resultado

9.0 9.75

9.1 9.73

9.2 9.70

9.3 9.68

9.4 9.65

9.5 9.63

9.6 9.60

9.7 9.58

9.8 9.55

9.9 9.53

10.0 9.50

Y obtenemos que los valores que coinciden son 9.6 para ambos casos, que corresponde a la

hora buscada (el mismo resultado se obtiene de despejar la incógnita algebraicamente). Sin

embargo hemos estado trabajando con valores numéricos y no con valores horarios, es decir

¿a qué equivale que sean las 9.6? La respuesta es: a 9 más 6 décimas de hora igual a las

9:36.

La solución de problemas no se queda en el mero ejercicio de resolver el problema, pero la

riqueza que encierra dependerá de la creatividad del docente y de su conocimiento sobre sus

propios procesos y los de sus alumnos.

Page 91: modulo del numero y operaciones

91

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

El punto de vista que considera la comprensión en términos de competencia resalta que

hablar de competencia es hablar de uso competente en situaciones reales, con lo cual pone al

contexto en primer plano de la reflexión. A su vez, aunque en menor medida, el punto de vista

que considera la comprensión en términos de procesos mentales también da importancia al

contexto

La importancia que tiene contextualizar el conocimiento matemático es hoy en día

ampliamente asumida, ya que se considera que el ((contexto)) puede ser la clave para

relacionar lo que los psicólogos han aprendido sobre el modo en que los humanos razonan,

INDICADORES DE LOGRO

- Diseña estrategias para resolver problemas aplicando propiedades de razones y porcentajes

SESIÓN 9

Recordando mi práctica docente

¿Qué estrategias utilizan mis estudiantes para resolver problemas del contexto?

¿Qué importante es aplicar estrategias para resolver situaciones problemáticas de mi

entorno?

ESTRATEGIAS PARA RESOLVER PROBLEMAS

RELACIONADOS A TEMAS LOCALES Y REALES

UTILIZANDO PROPIEDADES DE LAS RAZONES,

PORCENTAJE Y REGLA DE TRES.

Reflexionemos la importancia de seguir un proceso en la resolución de

problemas:

¿Cómo influye en el desarrollo de capacidades el uso de problemas

contextualizados?

¿Cómo puede un docente realizar la selección adecuada de problemas

contextualizados.

Describe cómo aplicarías los enfoques del área y como articularias las

diferentes áreas en tu programación anual, de unidad y sesiones de

aprendizaje. Para desarrollar capacidades matemáticas en tu labor docente,

de manera individual, y luego comparte con tus colegas.

Page 92: modulo del numero y operaciones

92

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

sienten, recuerdan, imaginan y deciden con lo que, por su parte, han aprendido los

antropólogos sobre la manera en que el significado es construido, aprendido, activado y

transformado. En palabras del antropólogo Geertz, este intento de relación.

Supone el abandono de la idea de que el cerebro del Homo sapiens es capaz de funcionar

autónomamente, que puede operar con efectividad, o que puede operar sin más, como un

sistema conducido endógenamente y que funciona con independencia del contexto.

Para las situaciones extra matemáticas que contextualizan un objeto matemático se han

propuesto diferentes nombres y clasificaciones. Problemas contextualizados son sólo algunos

de los diferentes nombres que se da a las tareas escolares que simulan situaciones del

mundo real.

1. DESARROLLO COGNITIVO Y PROGRESIÓN EN EL APRENDIZAJE

El razonamiento proporcional se considera como uno de los componentes importante del

pensamiento formal adquirido en la adolescencia. Las nociones de comparación y covariación

están en la base subyacente al razonamiento proporcional, siendo a su vez los soportes

conceptuales de la razón y la proporción. El desarrollo deficiente de estas estructuras

conceptuales en los primeros niveles de la adolescencia obstaculiza la comprensión y el

pensamiento cuantitativo en una variedad de disciplina que van desde el álgebra, la

geometría y algunos aspectos de la biología, la física y la química.

Diversas investigaciones han mostrado, sin embargo, que la adquisición de las destrezas de

razonamiento proporcional es insatisfactoria en la población en general. Estas destrezas se

desarrollan más lentamente de lo que se había supuesto; incluso hay evidencias de que una

gran parte de las personas nunca las adquieren en absoluto. Estas cuestiones no se enseñan

bien en las escuelas, que con frecuencia sólo estimulan la manipulación de símbolos y

fórmulas carentes de significado

1.1. Desarrollo del razonamiento proporcional

El esquema de proporción es considerado por Piaget como un componentes básico del

razonamiento formal, que será necesario, entre otros, para adquirir conceptos como el de

probabilidad y correlación. Sin embargo, esto no quiere decir que los niños no tengan una

percepción progresiva de las proporciones. El desarrollo de esta idea, también sigue las

etapas típicas de la teoría de Piaget, quien estudió cómo los niños la usan cuando tienen que

estimar la probabilidad de un suceso.

Una tarea típica es la siguiente:

Tarea 1. En la caja A se han metido 2 fichas azules y 1 ficha roja. En la caja B se han metido

3 fichas azules y 1 ficha roja. (Mira el dibujo)

Page 93: modulo del numero y operaciones

93

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

A

B

Con los ojos vendados tienes que sacar una ficha roja para ganar un premio (primero

movemos bien la caja para que las fichas se mezclen). ¿Cuál caja elegirías para hacer la

extracción? Señala la respuesta correcta:

(A) La caja A da mayores posibilidades de obtener una ficha roja

(B) La caja B da mayores posibilidades de obtener una ficha roja

(C) Las dos cajas dan la misma posibilidad

(D) No lo se

La comparación de probabilidades implica una comparación de

fracciones, pero se añade la dificultad de que también se requieren las ideas de azar, casos

favorables y posibles. Los autores que han trabajado el tema sugieren que una tarea de

comparación de probabilidades es siempre más difícil que otra tarea de comparación de

fracciones en un contexto determinista.

Un ejemplo típico de tarea proporcional en contexto determinista es la siguiente:

Tarea 2. Mi madre ha preparado dos jarras de limonada. En la jarra A ha mezclado dos vasos

de agua y un vaso de zumo de limón. En la jarra B ha mezclado tres vasos de agua y uno de

zumo de limón. ¿En cuál de las dos jarras el sabor a limón es más intenso?

En estas tareas hay cuatro datos, dos pares de datos para cada una de las jarras o cajas que

queremos comparar:

a = número de vasos de limón en la Jarra A en la tarea 2 (o número de casos favorables en la

urna A en la tarea 1).

b = número de vasos de agua en la Jarra A en la tarea 2 (o número de casos desfavorables

en la urna A en la tarea 1).

c = número de vasos de limón en la Jarra B en la tarea 2 (o número de casos favorables en la

urna B en la tarea 1).

d = número de vasos de agua en la Jarra B en la tarea 2 (o número de casos desfavorables

en la urna B en la tarea 1).

Ejercicios:

1. ¿Crees que puedes variar la dificultad de la tarea 1 para los niños, cambiando el número

de bolas rojas y azules en cada caja? Pon un ejemplo de forma que la tarea sea más difícil.

2. ¿En qué se parecen las tareas 1 y 2? ¿En qué se diferencian? ¿Puedes cambiar el

número de vasos de agua y limón en las jarras para que la tarea resulte más fácil o más

difícil a los niños?

¿Qué tipos de razonamientos seguirán los estudiantes para resolver la tarea?

Page 94: modulo del numero y operaciones

94

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

La dificultad de estas tareas depende de los valores relativos de estos cuatro datos

2. LA PROPORCIONALIDAD COMO OBJETO DE ENSEÑANZA DEL DOCENTE

Tal como se compara dos magnitudes, resultando una razón, también se puede

comparar dos razones, de donde resulta una proporción. D'Alambert

¿Qué es una proporción?

En una proporción intervienen dos razones. Si ambas razones arrojan un mismo valor

entonces esa igualdad se llama proporción. Es decir, una proporción es una igualdad entre

dos razones.

¿Cómo se escriben y leen las proporciones?

Consideremos las razones 12 m : 4 m y 15 m : 5 m. Ambas son iguales a 3. Entonces en este

caso podemos escribir la proporción

o también 12:4=15:5

La proporción anterior se lee " 12m es a 4m como 15m es a 5m”. En general, si las razones a

: b y c : d forman una proporción se expresa diciendo que " a es a b como c es a d ".

Cabe recordar al respecto que a veces los profesores de matemática presentan discordancias

entre su registro escrito y su expresión oral. En el fondo el alumno estaría recibiendo

mensajes contradictorios que podrían confundirlo, obstaculizando su aprendizaje de las

proporciones.

Observemos que en una proporción las magnitudes que se comparan en cada razón pueden

ser de una misma naturaleza -en el ejemplo anterior la magnitud es longitud- o pueden

provenir de dos dominios diferentes, tal como en el siguiente caso, en el que se comparan

magnitudes de longitud y de tiempo

He aquí otra fuente de dificultades para el aprendizaje de las proporciones. Es esperable que

el pasar de una trabajo con magnitudes de un mismo dominio a otro con magnitudes de dos

dominios, provoque un conflicto cognitivo en el alumno, particularmente si se omiten en forma

prematura las unidades que dan sentido a las razones comparadas.

2.1. Magnitudes proporcionales

Consideremos el siguiente problema

Ana y Julia estuvieron corriendo igual de rápidas alrededor de una pista. Ana empezó

primero. Cuando ella llevaba corridas 9 vueltas, Julia había recorrido 3 vueltas. Cuando Julia

completó 15 vueltas, ¿cuántas vueltas había recorrido Ana?

Cramer, Post y Currier (1993) indican, en relación con este problema, que 32 de 33

profesores de educación primaria en prácticas, en una clase de métodos matemáticos,

resolvieron este problema mediante una proporción

Page 95: modulo del numero y operaciones

95

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

9/3 = x/15; 3x = 135; x=45

Mientras estos estudiantes utilizaban el algoritmo tradicional para resolver la proporción (regla

de tres), no se daban cuenta de que este problema particular no representa una situación

proporcional. El algoritmo usado no era una estrategia apropiada para el problema.

En cambio, en un segundo problema

3 dólares USA han sido cambiados por 2 libras británicas. ¿Cuántas libras equivaldrán a 21

dólares USA? que expresa una situación de proporcionalidad, todos los estudiantes lo

resolvieron correctamente usando el tradicional algoritmo de proporcionalidad. Pero ninguno

explicó por qué este problema reflejaba una situación de proporcionalidad mientras que el

anterior no.

Superficialmente, los dos problemas son similares; cada uno contiene tres elementos de

información con un número desconocido. La diferencia profunda entre las dos tareas da luz

sobre lo que es especial en situaciones de proporcionalidad.

En el problema de correr vueltas, la relación entre el número de vueltas que Ana corrió y el

número de vueltas que Julia corrió puede ser expresada mediante adición o substracción:

vueltas de Ana = vueltas de Julia + 6

vueltas de Julia = vueltas de Ana – 6

En el problema de dinero, la relación entre dólares USA y libras británicas puede ser

expresada mediante multiplicación:

libras británicas = 2/3 x dólares USA

dólares USA = 3/2 x libras británicas

El componente crítico de las situaciones de proporcionalidad es la relación multiplicativa que

existe entre las cantidades que representan la situación. El problema de correr vueltas no es

una situación de proporcionalidad, mientras que el problema de intercambio de dinero sí lo es.

Dos magnitudes son (directamente) proporcionales cuando los valores de una magnitud

son iguales a los de la otra magnitud, multiplicados por un mismo número k. A ese número k

se le llama constante de proporcionalidad.

Por ejemplo, si un deportista recorre 10 Km. cada hora.

Tiempo transcurrido Espacio recorrido

1 10

2 20

3 30

Page 96: modulo del numero y operaciones

96

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Los valores del Espacio recorrido son iguales a los del Tiempo transcurrido, multiplicados por

10, que es la constante de proporcionalidad.

Espacio = 10*Tiempo

Desde un punto de vista algebraico, la proporcionalidad aparece ligada a la función afín. En

lugar de valores de magnitud, se consideran variables, conjuntos de números abstractos (el

conjunto de los números reales). La función afín relaciona la variable dependiente y con la

variable independiente x, mediante la expresión:

y = k*x

La gráfica de una función afín es una línea recta que pasa por el origen de coordenadas:

Existen variadas situaciones de la vida cotidiana donde son aplicables las relaciones de

proporcionalidad.

Un contexto familiar es el de recetas de cocina. La relación existente entre el número de

personas para las que se va a cocinar y el peso de los alimentos que aparecen en la receta.

Así, en el problema:

Vamos a hacer una tarta de chocolate para 4 personas. Necesitamos:

- 200 gramos harina,

- 10 gramos de levadura,

- 0.2 litros de leche,

- 0.2 litros de nata,

- 200 gramos de chocolate y

- 0.1 litro de aceite.

Si vienen más personas, la tarta debe ser más grande. Completar la tabla:

Ingredientes 4 personas 5 personas 6 personas 7 personas

200 g harina 200 300

Page 97: modulo del numero y operaciones

97

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

10 g levadura 10 15

0.2 l leche 0,2 0,3

0.2 l nata 0,2 0,3

200 g chocolate 200 300

0.1 l aceite 0,1 0,15

También es familiar el contexto de las relaciones entre objetos y precio. Por ejemplo:

Pedro ha pagado 20 euros por 2 entradas para un partido del Córdoba C.F.

¿Cuánto le cobrarán por 7 entradas para todos sus amigos?

Nº de entradas Precio

2 20

1 10

7 70

También es habitual el contexto de las relaciones entre existente número de objetos y peso.

Nº monedas Peso

7 35 g

1 5 g

20 100 g

Un contexto de proporcionalidad importante es el relativo a las figuras semejantes. Por

ejemplo, las figuras que resultan o reducir de ampliar mediante fotocopias o fotografías:

4 cm

15 cm 5 cm

16 cm

Page 98: modulo del numero y operaciones

98

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Un subcontexto particularmente interesante es el de relaciones de semejanza existente en

planos y mapas. En este contexto, la relación de proporcionalidad entre las longitudes de las

figuras en el plano o mapa y sus longitudes en la realidad viene expresada por la escala, que

es una forma específica de indicar la constante de proporcionalidad. Por ejemplo, al decir que

la escala es 1:10000, estamos diciendo que la constante de proporcionalidad es 10000, de

manera que 1 centímetro de longitud en el plano o mapa representa 10000 centímetros en la

realidad, es decir 100 metros.

El tipo de relación de proporcionalidad hasta ahora considerada se llama directa. También se

puede considerar la relación de proporcionalidad inversa.

Dos magnitudes son inversamente proporcionales cuando los valores de una magnitud son

directamente proporcionales a los inversos de otra magnitud.

y = k . 1/x

O, también,

y = k / x

E, incluso,

x . y = k

Es el caso, por ejemplo de las relaciones entre las longitudes de los lados de rectángulos de

igual área.

Supongamos que el área es 36, número que coincidirá con el producto de las longitudes de

los lados. Los lados serán, por ejemplo

Base Altura

2 18

3 12

4 9

6 6

Las propiedades de la relación de proporcionalidad inversa se pueden obtener con facilidad,

después de estudiar las propiedades de la relación de proporcionalidad directa.

En lo que sigue nos vamos a limitar a la proporcionalidad directa. Tampoco consideraremos la

proporcionalidad múltiple o compuesta, que puede reducirse al estudio de la proporcionalidad

directa e inversa.

2.2 Problemas de proporcionalidad. Aplicaciones de la proporcionalidad en la vida

cotidiana

De acuerdo con Baxter y Junker (2001), pueden considerarse básicamente dos tipos

básicamente diferentes de problemas de proporcionalidad (directa): problemas de valor

desconocido y problemas de comparación cuantitativa.

Page 99: modulo del numero y operaciones

99

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

En los problemas de valor desconocido, se conocen tres valores numéricos y se trata de

calcular un cuarto valor desconocido (Elisa y Raquel conducen igual de rápido por una

carretera. Elisa tardo 6 minutos en recorrer 4 Km. ¿Cuántos tardará Raquel en recorrer 6

Km.?). En los problemas de comparación, se dan dos razones y se pide su comparación

(Raquel recorre con su coche cuatro Km. en seis minutos, a velocidad constante. Elisa corre

nueve Km. en once minutos. ¿Quién va más deprisa?

Vergnaud (1983) ha usado un modelo basado en el concepto de espacio de medida que

ayuda a clarificar la naturaleza de la relación multiplicativa que existe en los problemas de

valor desconocido.

Un espacio de medida puede ser entendido en términos de magnitudes físicas tales como

longitud, peso o dinero. Una proporción puede ser vista como la relación existente entre las

cantidades correspondientes de dos espacios de medidas. La notación de Vergnaud es la

siguiente:

M1 M2

a B

c d

M1 y M2 representan dos espacios de medida genéricos y a, b y c son las cantidades que

forman las razones en una proporción. Por ejemplo, recordemos la situación de intercambio

de dinero del apartado 1: si 3 dólares USA son cambiados por 2 libras británicas, entonces

con esta razón 21 dólares USA deben ser cambiados por 14 libras británicas.

Trasladando a la notación del espacio de medidas,

Dólares Libras

3 2

21 14

Vergnaud ha identificado cuatro subclases de los problemas de valor desconocido:

multiplicación, división (1), división (2), y caso general de regla de tres.

El esquema siguiente ilustra la estructura de la multiplicación

M1 M2

1 a

b x

Page 100: modulo del numero y operaciones

100

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Ejemplo: Pedro tiene 15 soles para gastar y le gustaría comprar coches de miniatura. Cada

coche cuesta 3 soles ¿Cuántos coches puede comprar?

El esquema siguiente ilustra la estructura del caso general de la regla de tres

M1 M2

a x

b c

Ejemplo:

El consumo de mi coche es de 7,5 litros a los 100 Km. ¿Cuánta gasolina usaré para un viaje

de vacaciones de 6580 Km?

2.3. Propiedades de la relación de proporcionalidad

Consideremos la tabla de valores de uno de los ejemplos anteriores:

Tiempo transcurrido Espacio recorrido

1 10

2 20

3 30

Pueden comprobarse en ella las siguientes propiedades de las relaciones de

proporcionalidad:

- La constante de proporcionalidad es el valor de la variable dependiente correspondiente al

valor 1 de la variable independiente.

- Si los valores de la variable independiente se duplican, triplican, cuadriplican, etc., los

correspondientes valores de la variable dependiente también se duplican, triplican,

cuadriplican, etc.

- Si los valores de la variable independiente se reducen a la mitad, tercera parte, cuarta parte,

etc., los correspondientes valores de la variable dependiente también se reducen a la mitad,

tercera parte, cuarta parte, etc.

- La razón constituida por dos valores de una variable es igual a la razón constituida por los

dos valores correspondientes de la otra variable :

Ésta última propiedad expresa el significado tradicional de la proporcionalidad. Una

proporción es la igualdad de dos razones (una razón es un cociente indicado). En una

tradición que se remonta a la matemática de Euclides, en la Grecia antigua, los valores

correspondientes a dos magnitudes proporcionales dan lugar a proporciones, siendo iguales

Page 101: modulo del numero y operaciones

101

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

las correspondientes razones. Dos magnitudes son proporcionales si sus correspondientes

valores aparecen como proporciones.

Estas propiedades se pueden demostrar matemáticamente. Si partimos de la relación

y = k. x

- La primera propiedad se demuestra sin más que hacer x = 1

- Tomemos dos pares de valores (x1, y1) y (x2, y2) de la función. Se tendrá

y2 = k. x2 ; y1 = k. x1

Si x2 es doble que x1:

x2 = 2. x1

De donde resultará

y2 = k . x2 = k . (2 . x1) = 2 . (k . x1) = 2 . y1

Análogamente si x2 es triple, o cuádruplo, etc., que x1.

- Si x2 es la mitad, o la tercera parte, o la cuarta parte, etc., de x1, la demostración es similar a

la anterior

- Para la demostración de la cuarta propiedad, partamos de que

y2 = k . x2 ; y1 = k . x1

Se tendrá

k = y2/ x2 ; k = y1/ x1

Y, en definitiva

y2/ x2 = y1/ x1

2.4. Estrategias de cálculo usadas por los estudiantes en los problemas de

proporcionalidad

Cramer y Post (1993) y Cramer, Post, y Currier, S. (1993), especifican cuatro tipos de

estrategias correctas usadas por los estudiantes en problemas de proporcionalidad: razón

unidad, factor de cambio, fracción, y producto cruzado.

Para ejemplificar estas estrategias, consideremos el siguiente ejemplo:

Ana y Cati han comprado cada una la misma clase de chicle en la misma tienda. Ana

compró dos piezas de chicle por seis céntimos. Si Cati compró ocho piezas de chicle, cuánto

pagó.

Razón unidad. Es una estrategia de “¿Cuántos por uno?”. Esta estrategia implica (a) calcular

el precio de una pieza de chicle y entonces (b) calcular el precio de las ocho piezas,

multiplicando el precio unidad por las ocho piezas compradas, para generar la respuesta

deseada. Para este problema, cada pieza cuesta tres céntimos, de manera que las ocho

piezas costarán 24 céntimos, pues 8 piezas x 3 céntimos/pieza = 24 céntimos.

Factor de cambio. Es una estrategia de “¿Cuántas veces? Esta estrategia implica (a)

comparar el número de piezas de chicle que cada persona compró (b) determinar el factor de

Page 102: modulo del numero y operaciones

102

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

cambio el cual indica cuántas veces una persona compró más piezas de chicle que otra y (c)

multiplicar el factor veces por el precio que la persona pagó. Para este problema, Cati compró

cuatro veces más chicle que Ana, de forma que Cati debe pagar cuatro veces más, o sea 4 x

6 = 24 céntimo.

Fracción (Nosotros proponemos llamar a esta estrategia “equivalencia de fracciones”). Esta

estrategia implica considerar las razones como fracciones y tratar una proporción como una

equivalencia de fracciones. La tarea es hallar una fracción equivalente a una dada. La razón

con valor dado se multiplica por una fracción de la forma n/n igual a uno, de manera que la

razón producto tenga un término igual a la respuesta deseada. Para este problema, la

proporción es 2/6 = 8/x. Se busca una razón (fracción) que tiene un numerador de ocho

piezas y es equivalente a 2 piezas/6 céntimos. La fracción (razón) 2 piezas/6 céntimos se

multiplica así por 4/4 para producir 8 piezas/24 céntimos. La respuesta deseada es entonces

24 céntimos, puesto que el numerador es ocho piezas.

Producto cruzado (Regla de tres). Esta estrategia implica la formulación de una proporción

determinada por la igualdad de dos razones de piezas/céntimos. Se calculan los productos

cruzados y se calcula la incógnita en la ecuación resultante. En otras palabras, si d/e = f/x,

entonces d.x = e.f, ó también, x = e.f/d, o si d/e = x/f, entonces x = df/e. Para este problema, la

proporción puede ser expresada como 2 piezas/6 céntimos = 8 piezas/x céntimos. Por tanto x

= 8 piezas . 6 céntimos / 2 piezas = 24 céntimos.

Numerosos estudios han mostrado que los niños y muchos adultos tienen una gran

dificultad con conceptos básicos de fracción, razón y proporción Algunos estudios (Noelting,

1980; Karplus y col., 1983) indican que muchos niños usan un defectuoso razonamiento

cualitativo, a la vez incorrecto e inapropiado. Algunos niños usan comparaciones aditivas

cuando se requieren comparaciones multiplicativas (Hart, 1981). Muchos niños no ven

relaciones de causa y efecto entre componentes de ecuaciones como a/b = c/d.

Como consecuencia de su estudio sobre las estrategias de razonamiento proporcional

utilizadas por los estudiantes, Heller, Post y Behr, M. (199?). han añadido tres tipos de

estrategias poco operativas o incorrectas que también los estudiantes usan en los problemas

de proporcionalidad: clase de equivalencia, generación de razones y aditiva.

Clase de equivalencia. Esta estrategia implica determinar la razón dada como una fracción.

El estudiante genera entonces una clase de fracciones equivalentes hasta que la deseada

fracción es identificada. Para este problema, la razón dada es 2 piezas/6 céntimos. “Mi clase

de fracciones equivalentes es 2/6 = 4/12 = 6/8= 8/24. La razón deseada es entonces 8

piezas/24 céntimos, que corresponde a la fracción 8/24. La respuesta es por tanto 24.

Generación de razones. Esta estrategia implica (a) empezar con la razón dada en el

problema y generar razones equivalentes hasta que la razón deseada es generada. Una

Page 103: modulo del numero y operaciones

103

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

manera de generar razones equivalentes es doblando los componentes de la razón previa.

Para este problema, la razón dada es dos piezas por seis céntimos. De esta razón resulta (a)

cuatro piezas por veinte céntimos y (b) ocho piezas por veinticuatro céntimos. Por tanto la

respuesta es 24 céntimos, puesto que Cati compró ocho piezas de chicle.

Aditiva. Esta inadecuada estrategia se orienta a determinar la cantidad que hay añadir a los

valores de una razón dada para originar una razón semejante. En el problema en cuestión,

como en relación a las piezas hay que sumar 6 para pasar del valor 2 de Ana al valor 8 de

Cati, se considera que, para calcular el precio que pagó Cati, hay que sumar 6 a los 6

céntimos que pagó Ana. Así Cati pagó 12 céntimos.

2.5. Esquemas de razonamiento proporcional

Las estrategias, señaladas en el apartado anterior, que usan los estudiantes en los

problemas de proporcionalidad sirven para estudiar los esquemas de razonamiento

proporcional de los estudiantes.

Por esquemas de razonamiento entendemos modelos mentales, que incluyen conceptos

y relaciones entre conceptos, por una parte, y estrategias de resolución de problemas, por

otra, que los individuos aplican en situaciones de resolución de problemas. Los esquemas de

razonamiento son el resultado de experiencias pasadas y sirven para afrontar experiencias

nuevas. Cuando un individuo intenta resolver un problema nuevo, busca un esquema de

razonamiento que pueda ser apropiado a la situación planteada. Es decir, busca conceptos

que le ayuden a interpretar la nueva situación y estrategias que le ayuden a resolver el

problema.

Hart (1981) explicita cuatro esquemas de razonamiento proporcional. La

fundamentación de esos esquemas de razonamiento apuntados por Hart (1981) responde a

criterios estadísticos. Las estrategias de resolución de problemas de proporcionalidad

empleadas por una amplísima muestra de estudiantes ingleses entre 12 y 16 años fueron

clasificadas mediante criterios estadísticos, dando lugar así a tipos específicos de

razonamientos, a esquemas de razonamiento proporcional.

Nosotros entendemos que ese criterio no es del todo correcto, pues dos problemas

pueden tener índices de dificultad similares no sólo porque impliquen esquemas de

razonamientos similares, sino por razones diversas (dificultad del enunciado, número y

complejidad de las operaciones que implican, familiaridad con el contexto, ...).

Haciendo un estudio detallado del test de Hart (1981), y apoyándonos en su propuesta,

nosotros planteamos también cuatro esquemas de proporcionalidad, basados en los

conceptos y estrategias que comportan:

Page 104: modulo del numero y operaciones

104

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Esquemas aditivos. Se apoyan en la familiaridad con la estructura aditiva del conjunto de

los números naturales. Las razones se interpretan como relaciones entre números

naturales. Se considera que para conseguir una razón semejante, se deben sumar un

mismo número natural a los dos miembros de una razón dada. Es decir, se usan

estrategias aditivas de razonamiento proporcional.

Esquemas multiplicativos. Se apoyan en la familiaridad con la estructura multiplicativa

del conjunto de los números naturales. Las razones se interpretan como relaciones entre

números naturales. Para buscar una razón semejante a una dada se acude a multiplicar o

dividir por un mismo número natural los dos miembros de la razón dada. Es decir, se

acude a estrategias de generación de razones, factor de cambio o de razón unidad.

Esquemas racionales informales. Se apoyan en un conocimiento informal de los

números racionales. Las razones se interpretan como relaciones entre números

racionales. Como estrategias se utilizan la de razón unidad, operando con números

racionales, o las de igualdad de fracciones y producto cruzado, utilizadas de forma

mecánica, sin una comprensión profunda de su sentido.

Esquemas racionales formales. Se apoyan en un conocimiento formal de los números

racionales. Las razones se interpretan como números racionales. Se utilizan,

comprendiendo bien su significado, estrategias tales como las de igualdad de fracciones y

producto cruzado. Las estrategias aparecen fundamentadas en las propiedades de la

igualdad de fracciones.

2.6. Recursos didácticos para la enseñanza de la proporcionalidad.

Con las regletas Cuisanaire, los bloques multibase o el geoplano se puede iniciar el

estudio de la proporcionalidad, reconstruyendo una figura dada a una escala predeterminada.

Un buen recurso para enseñar la proporcionalidad lo constituyen las representaciones a

escala de objetos de la realidad. Por ejemplo, el dibujo a escala de objetos presentados como

muestra. O la construcción de maquetas de objetos sencillos presentados como muestra.

También el manejo de planos y mapas, jugando con los cambios de escala.

Las relaciones de proporcionalidad geométrica son un elemento natural de aproximación

al estudio aritmético de la proporcionalidad. Por ejemplo, el estudio de las relaciones

numéricas entre triángulos de la misma forma. Entre la longitud y el radio en la circunferencia

(ejemplificada mediante la relación entre las vueltas que da una rueda de bicicleta para

recorrer una distancia y el radio de la rueda). Entre ángulo central y arco correspondiente.

.

Desde tu contexto plantea 5 problemas utilizando razones, proporciones y

regla de tres; proponiendo estrategias que te han servido para mejorar el

logro de la capacidad de resolución de problemas

Page 105: modulo del numero y operaciones

105

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Esta unidad consta de ocho sesiones de aprendizaje distribuidas en los conocimientos:

Teorías de los campos conceptuales de Vergnaud, Aprendizaje significativo, resolución de

problemas y representaciones mentales, Recursos didácticos para el aprendizaje de los

sistemas numéricos, Recursos didácticos propuestos por el MED y alternativos para la

enseñanza de la matemática y Elaboración y manipulación de materiales educativos para el

área de matemática utilizando recursos y elementos de la localidad. Todos ellos se enfocan

en los marcos conceptuales para la resolución de problemas a partir de los recursos

didácticos creados a partir de elementos de su entorno y propuestos por el MED.

TERCERA UNIDAD: TEORIA DE LOS CAMPOS CONCEPTUALES Y RECURSOS DIDACTICOS

TEORIA DE LOS

CAMPOS

CONCEPTUALES Y

RECURSOS

DIDACTICOS

Teorías de los campos conceptuales de Vergnaud.

Recursos didácticos propuestos por el MED y alternativos

para la enseñanza de la matemática

Simuladores virtuales para la solución de situaciones

problemáticas

Recursos didácticos para el aprendizaje de los sistemas

numéricos

Elaboración y manipulación de materiales educativos para el

área de matemática utilizando recursos y elementos de la

localidad.

Estrategias para desarrollar situaciones problemáticas de

números y operaciones por niveles de demanda cognitiva

Principles and Standards for School Mathematics NCTM,

Competencias en el VI y VII ciclo de la EBR, Análisis,

convergencias y divergencias

PISA. Marco teórico. Análisis de resultados de las últimas

evaluaciones (en función a los estándares que se propone)

Page 106: modulo del numero y operaciones

106

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Recordando mi práctica docente

1- ¿Qué principios teóricos del aprendizaje utilizo en el desarrollo de mi práctica docente? 2- ¿Cuál es la visión general que poseo acerca de la teoría acerca de la teoría conceptual? 3- ¿Cuánto tiempo se necesita para que el alumno logre el dominio de un campo conceptual? 4- ¿Con cuales campos conceptuales trabajó? Solo en matemática? 5- ¿Cuáles son los argumentos que llevan al autor al concepto de campo conceptual? 6- ¿Qué relación encuentras entre concepciones previas de los alumnos y teoremas en acción

o conceptos en acción?

De acuerdo con la teoría del Aprendizaje Significativo

de Ausubel, quien aprende relaciona la información

nueva con los conocimientos que ya posee. De este modo, el aprendizaje significativo se

produce cuando el estudiante puede relacionar la información que recibe con un concepto

relevante que ya posee. Por otra parte, el aprendizaje se logra solo si el alumno se interesa

por aprender lo que se le está proponiendo.

El aprendizaje significativo implica que quien aprende guarda la información en la memoria de

largo plazo y puede traerla a la memoria de trabajo en el momento que lo requiera. Esto le

facilita la adquisición de nuevos conocimientos relacionados con los anteriormente adquiridos

de manera significativa. Por otra parte, quien aprende debe jugar un papel activo, en la

adquisición de los conocimientos, para que ellos se produzcan de manera significativa.

(Maldonado)

Rodríguez (2004), establece una coincidencia entre la teoría del aprendizaje significativo y la

teoría de los campos conceptuales puesto que ambas consideran que la significatividad del

aprendizaje es un proceso progresivo que requiere tiempo. Ambas hacen patente la

necesidad de realizar el análisis conceptual del contenido objeto de estudio. Se trata de

teorías psicológicas (una del aprendizaje y otra de la conceptualización de lo real) cuyos

INDICADORES DE LOGRO

Analiza la teoría de campos conceptuales de Vergnaud

SESIÓN 10 TEORÍAS DE LOS CAMPOS CONCEPTUALES DE

VERGNAUD.

Page 107: modulo del numero y operaciones

107

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

objetos de análisis, conceptos-clave, procedimientos de validación y ampliación son distintos,

pero que tienen muchos aspectos en común. Concluye que la teoría de

los campos conceptuales aporta un nuevo abordaje del aprendizaje

significativo, sobre todo en lo que se refiere a los conceptos.

Ante lo expuesto anteriormente ¿Qué ideas básicas tienes acerca de la

teoría del aprendizaje significativo y la teoría del procesamiento de la

información? ¿Cómo está organizado el conocimiento para Vergnaud? ¿Durante mis

procesos de enseñanza aplique la teoría de los campos conceptuales? ¿Qué son campos

conceptuales?

LA TEORÍA DE LOS CAMPOS CONCEPTUALES DE VERGNAUD

Una situación es una combinación de tareas y problemas, y a través de la acción y dominio

progresivo de las situaciones, una persona adquiere los campos conceptuales que modelan

su conocimiento (Vergnaud, 1990). El sentido que se le atribuye a una situación es el

resultado de la interacción entre ésta y la representación que la persona hace de la misma. El

vínculo entre el desempeño y la representación, está descrito por el concepto de esquema

introducido por Piaget (Vergnaud, 1990; 1996). Uno de los elementos principales que

determina la organización de un esquema, son los invariantes operatorios (o conocimientos –

en-acción) que constituyen la base conceptual implícita o explícita, de la cual se obtiene

información relevante para inferir reglas de acción apropiadas según el propósito por

alcanzar. Se distinguen dos tipos de invariantes operatorios: los conceptos-en-acción y

teoremas-en-acción. Al mismo tiempo, es necesario operatorios: los conceptos-en-acción y

teoremas-en-acción. Al mismo tiempo, es necesario recordar que la actividad humana está

mediatizada por la interacción social y por el uso de signos e instrumentos (Vygotsky, 1995).

En este sentido, el lenguaje es la herramienta que permite apartarse de referentes concretos

y por ello, facilita el desarrollo de los procesos mentales superiores que dependen de la

descontextualización; por tanto, el aprendizaje de conceptos científicos se facilita a través del

proceso de mediación semiótica (Riviere, 1994). Con el propósito de otorgar sentido y

coherencia al contenido se presentan y describen a continuación las principales

características de la teoría de campos conceptuales.

La teoría de campos conceptuales ha sido desarrollada por Gérard Vergnaud, quién al igual

que Piaget, considera al conocimiento esencialmente como un proceso de adaptación. Para

este autor el problema central de la cognición es la conceptualización, y a partir de esta

premisa desarrolla una teoría psicológica, que postula que el conocimiento se encuentra

Page 108: modulo del numero y operaciones

108

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

organizado en campos conceptuales, de los cuales las personas se apropian a lo largo del

tiempo. Un campo conceptual se define como “… un conjunto informal y heterogéneo de

problemas, situaciones, conceptos, relaciones, estructuras, contenidos y operaciones de

pensamiento, conectadas entre sí y entrelazadas durante el proceso de adquisición…”

(Vergnaud, 1982, p.40). El objetivo de esta teoría es proporcionar una estructura para la

investigación sobre actividades cognitivas complejas, en especial el aprendizaje del

conocimiento científico, “... se trata de una teoría psicológica del conocimiento o de la

conceptualización de lo real que permite estudiar las filiaciones y rupturas entre

conocimientos desde el punto de vista de su contenido conceptual...” (Vergnaud, 1993).

Los presupuestos fundamentales de esta teoría son:

i) un concepto no se adquiere dentro de un solo tipo de situaciones;

ii) una situación no se analiza con un solo concepto;

iii) la construcción y apropiación de todas las propiedades de un concepto es un proceso lento

que se realiza a lo largo de mucho tiempo.

Esta teoría es compleja y permite abordar desde una perspectiva única el desarrollo de

situaciones progresivamente dominadas, de los conceptos y propiedades necesarias para

operar eficientemente en las situaciones, con las expresiones lingüísticas y símbolos que

pueden representar eficazmente los conceptos y operaciones por parte de los estudiantes, en

acuerdo con sus niveles cognitivos.

En consecuencia, la teoría de los campos conceptuales permite analizar la relación entre los

conceptos científicos en su dimensión de conocimientos explícitos y los invariantes

operatorios implícitos del comportamiento de las personas en determinadas situaciones, así

como profundizar en el análisis de las relaciones entre los significados y significantes de un

concepto o de un campo conceptual (Vergnaud, 1993). Para una mejor comprensión de esta

teoría se describen a continuación en forma sucinta los conceptos centrales de la misma.

1. SITUACIÓN Y ESQUEMA

Una situación es entendida como una tarea cognitiva. Por tanto, toda situación es compleja,

es una combinación de tareas y problemas, de modo que los procesos y las respuestas

cognitivas de una persona, por ejemplo un estudiante, están determinadas por las situaciones

que enfrenta. Luego, a través de su acción y dominio progresivo de las situaciones es como

una persona adquiere los campos conceptuales que modelan su conocimiento (Vergnaud,

1990).

Desde el punto de vista cognitivo, el sentido que una persona atribuye a una situación es el

resultado de la interacción entre la situación y la representación que la persona hace de la

Page 109: modulo del numero y operaciones

109

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

misma. Según Vergnaud, el vínculo entre el comportamiento y la representación está descrito

por el concepto de esquema introducido por Piaget, el cual, define como “...una organización

invariante del comportamiento para una clase de situaciones determinada...” Vergnaud (1994,

p.393). La organización de un esquema se basa en cuatro clases de elementos principales: 1)

Objetivos y anticipaciones; 2) Reglas de acción; 3) Invariantes operatorios y 4) Posibilidades

de inferencia (Vergnaud, 1996).

Por objetivos y anticipaciones, se entiende que un esquema se dirige siempre a una clase de

situaciones, en las que una persona puede descubrir un posible propósito de su actividad, sus

objetivos, o bien esperar ciertos efectos o fenómenos. Las reglas de acción son la parte

generadora de un esquema, y permiten generar la continuación de las acciones de

transformación de lo real, de la recogida de información y del control de los resultados de la

acción. Son reglas del tipo si, ..., entonces, que permiten a una persona garantizar el éxito de

su actividad en un contexto que puede estar en permanente cambio.

Los invariantes operatorios constituyen la base conceptual implícita o explícita, que permiten

a una persona obtener la información pertinente, e inferir a partir de esta información y del

propósito por alcanzar, las reglas de acción más apropiadas. Se distinguen dos categorías

principales de invariantes operatorios: los conceptos-en-acción y teoremas-en-acción que se

explican más adelante.

Las posibilidades de inferencia son los razonamientos o posibilidades de inferencia, que

contiene necesariamente un esquema para anticiparse a una situación concreta, es decir, un

esquema es un instrumento de adaptación de la actividad y del comportamiento a los valores

tomados por los diferentes parámetros en una situación particular.

2. CONCEPTO-EN-ACCIÓN Y TEOREMA-EN-ACCIÓN

El interés central del concepto de esquema es establecer el vínculo teórico entre el

comportamiento y la representación. Los invariantes operatorios son los elementos que

establecen esta articulación esencial, ya que la percepción, la búsqueda y selección de la

información quedan determinadas completamente por los conceptos-en-acción disponibles en

la estructura cognitiva de una persona (objetos, atributos, relaciones, condiciones,

circunstancias, etc.) y por los teoremas-en-acción subyacentes en su comportamiento. Para

Vergnaud, “…un teorema-en-acción es una proposición considerada como verdadera sobre

lo real, y un concepto-en-acción es una categoría de pensamiento considerada como

pertinente” (Vergnaud, 1996, p.202). Con estos conceptos, Vergnaud se está refiriendo a un

conocimiento implícito de los conceptos, que aunque formen parte de la estructura cognitiva,

no lo serán del todo hasta que la persona sea capaz de explicitarlos. A este conocimiento,

Page 110: modulo del numero y operaciones

110

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Vergnaud llama también en forma sucinta, conocimiento –en-acción, ya que es el

conocimiento que permite la adaptación y capacidades de las personas para enfrentar

nuevas situaciones.

3. CONCEPTOS

Respecto de los conceptos, la teoría de campos conceptuales considera que los conceptos no

deben ser definidos sólo por su estructura, sino que se requiere considerar las propiedades, y

las situaciones en las cuales los conceptos son usados, como también, las representaciones

simbólicas que una persona utiliza para pensar, escribir o hablar acerca de un concepto. De

este modo, los conceptos están constituidos por elementos que se relacionan. Estos

elementos corresponden a un conjunto de situaciones, invariantes operatorios y sus

propiedades expresadas por medio de diferentes representaciones simbólicas.

Estas consideraciones, llevan a definir un concepto como un conjunto de situaciones que dan

sentido al concepto, son el referente de un concepto; más un conjunto de invariantes

operatorios en que se basa la operacionalidad de los esquemas, que constituyen el

significado del concepto, más un conjunto de representaciones simbólicas de diferentes

formas de lenguaje que representan simbólicamente a un concepto, o sea, representan a los

invariantes operatorios y sus propiedades, las situaciones y los procedimientos de

enfrentamiento con éstas. Las representaciones simbólicas son el significante de un

concepto, (Vergnaud, 1993; 1998).

En términos psicológicos, las situaciones corresponden a la realidad, y los invariantes

operatorios y las representaciones simbólicas a su representación, considerados ambos

como dos aspectos del pensamiento, el significado y su significante respectivamente. Así,

desde la perspectiva de la teoría de campos conceptuales de Vergnaud (1998), un concepto

va adquiriendo sentido para una persona, y en particular para un estudiante, a través de su

interacción con situaciones y problemas, ya que solo de esta manera un estudiante asimilará

las propiedades que formarán sus conceptos-en-acción y teoremas-en-acción, o en forma

resumida, sus conocimientos-en-acción, que en la medida que sean expresados en forma

explícita mediante sus significantes (representaciones simbólicas), esos invariantes o

conocimientos-en-acción pasan a conformar el concepto de una persona y de un estudiante.

En este punto, se hace necesario incorporar la visión que plantea Vergnaud (1998) en torno a

la enseñanza, la interacción entre los esquemas y sus componentes y la situación, se realiza

a través de diversos actos de mediación, entendida ésta en el sentido que la plantea

Vygotsky. Este autor plantea que el desarrollo cognitivo se da a instancias de la mediación

social, lo cual supone un aprendizaje colectivo mediado por alguien más competente y de la

Page 111: modulo del numero y operaciones

111

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

mediación semiótica, preferentemente a través del lenguaje y los símbolos que permiten la

internalización de lo aprendido.

Este proceso se explica a través de la Ley de la doble función, referidas a los procesos

interpsicológicos (mediación social) mediante los cuales se aprende junto a otros y los

procesos intrapsicológicos a través de los cuales el estudiante internaliza lo aprendido

colectivamente por medio del lenguaje y los símbolos (Riviere citando a Vygotsky, 1994).

De este modo, el profesor tiene un papel de mediador, ayudando a los estudiantes a

desarrollar sus esquemas y representaciones, utilizando el lenguaje y los símbolos de las

disciplinas para explicar, preguntar, seleccionar información, proponer objetivos, reglas y

expectativas. Esto permitiría que al presentar situaciones con tareas y problemas de

complejidad creciente, los estudiantes desarrollen nuevos esquemas a partir de nuevos

invariantes operatorios, lo cual posibilitará la asimilación y aprendizaje de nuevos significados

y la aprehensión de nuevos conceptos.

La organización cognitiva de los individuos para interpretar la realidad e interiorizarla está

provista de esquemas. Se trata de estructuras flexibles que confieren funcionalidad al

desenvolvimiento cognitivo. Son los esquemas los responsables de la posibilidad de

adaptación frente a las situaciones con las que se enfrenta un sujeto.

"La mayor parte de la actividad cognitiva está hecha de esquemas". (Vergnaud, 1998, p. 172).

"Los esquemas forman parte de todos los registros posibles de la conducta, incluidas

competencias bien diferentes como los gestos, las actividades intelectuales, la afectividad, las

conductas lingüísticas". (Vergnaud 1996, p. 202).

Vergnaud sostiene que es posible reconocer cuatro ingredientes que componen los

esquemas: reglas del tipo "si ... entonces", son las verdaderas generadoras de los esquemas

núcleo conceptual implícito o explícito de los esquemas.

Finalidades y anticipaciones: "un esquema está siempre dirigido a situaciones en las cuales

el sujeto puede descubrir una posible finalidad de su actividad, o ciertos efectos o ciertos

fenómenos que ella envuelve". (Vergnaud, 1996, p. 201)

Reglas de acción, búsqueda de la información y control: son reglas del tipo "si ...

entonces", son las verdaderas generadoras de los esquemas, las que ponen en marcha la

secuencia de acciones.

Invariantes operacionales: son los conocimientos que están contenidos en los esquemas.

Constituyen el núcleo conceptual implícito o explícito de los esquemas. Contienen la

información que permite inferir las reglas de acción y el objetivo a alcanzar. "Se trata de un

conocimiento que está en la mente, que es implícito, pero que no será del todo un concepto si

el sujeto no es capaz de explicitarlo y desde ese lugar, la posibilidad de analizar la

Page 112: modulo del numero y operaciones

112

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

explicitación permitirá construir progresivamente objetos más explicativos". (Vergnaud, 1998,

p. 173)

Hay dos grandes clases de invariantes, los teoremas-en-acto y los conceptos-en-acto. Los

teoremas-en-acto son proposiciones tenidas como verdaderas sobre el real. Los conceptos-

en-acto, por su parte, son los predicados, las categorías llamadas a ser relevantes para la

situación que se presenta. Hay una relación dialéctica entre ambos: los conceptos son parte

de los teoremas en acción, pero estos últimos son quienes les dan su contenido a los

primeros.

Posibilidades de inferencia: son las posibilidades de hacer anticipaciones en función de los

invariantes que dispone el sujeto y de las informaciones con que cuenta

Finalidades y anticipaciones

•Dirigido a descubrir una posible finalidad

de su actividad.

Reglas de acción, búsqueda de la información y

control

•Reglas del tipo "si ... entonces", son las

verdaderas generadoras de los

esquemas

Invariantes operacionales

•Núcleo conceptual implícito o explícito

de los esquemas.

Posibilidades de inferencia

•Anticipaciones en función de los

invariantes

IMPORTANCIA DE GENERAR NUEVOS CONCEPTOS, EMPLEANDO LA

TEORÍA DE VERGNAUD:

¿Cómo aplicarías la teoría de Vergnaud, para generar aprendizajes

significativos?

¿Desde tu función de docente, como ayudara la teoría de Vergnaud a

cambiar tu rol en el proceso de enseñanza?

Page 113: modulo del numero y operaciones

113

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

En las aulas se constata cada día que pese a los recursos didácticos que se utilizan, "las

agrupaciones y la escritura numérica son un enigma para los niños y las niñas" (Lerner y

Sadovsky, 1994). Éstos parecen tener muchas dificultades para comprender que las

operaciones numéricas que realizan están basadas en nuestro sistema de numeración, en el

cual hay que diferenciar los valores propios de las cifras y el de la posición que ocupan en el

número.

La mayoría de las veces el estudiante no comprende lo que está haciendo, porque los

algoritmos y la simbología matemática se han introducido desde una perspectiva adulta.

La sociedad, el mundo está lleno de números; los niños y las niñas los ven y se interesan por

ellos. Hemos de saber aprovechar los recursos que están presentes donde vivimos.

En todos los niveles y en todos los aspectos, la matemática debe tener una serie de

características que ayuden a comprender las cosas, cuestión básica en la sociedad en la que

nos ha tocado vivir.

Los problemas matemáticos no son nada más que juegos que, convenientemente escogidos y

dosificados, pueden ser muy útiles en el desarrollo del pensamiento matemático

Conseguir que los alumnos se interesen por lo que se hace en la clase de matemáticas, hasta

el punto de que intenten continuar fuera de hora o que sigan por su cuenta en la casa, es, a

INDICADORES DE LOGRO

Diseña recursos didácticos para el aprendizaje de los sistemas numéricos

SESIÓN11

Recordando mi práctica docente

¿Utilizo recursos didácticos en mis sesiones de aprendizaje?

¿Los resultados serán los mismos?

¿Cuánto mejoraran mis resultados?

RECURSOS DIDÁCTICOS PARA EL APRENDIZAJE DE

LOS SISTEMAS NUMÉRICOS.

Page 114: modulo del numero y operaciones

114

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

buen seguro, una experiencia agradable para cualquier profesor interesado en su trabajo.

Ciertamente, la situación descrita no es frecuente en un aula normal de una institución

educativa normal, como tampoco es fácil encontrar un planteamiento didáctico

mayoritariamente orientado a cubrir las necesidades de formación integral del individuo o una

concepción de la Educación Matemática que vaya mucho más allá de la mera instrucción en

técnicas y destrezas, del aprendizaje memorístico y machacón de fórmulas, tablas,

procedimientos y definiciones vacías de significado. Sin embargo, no son situaciones y

aspectos utópicos si nos adentramos en el mundo de los recursos y materiales didácticos

específicos para el Área de Matemáticas; de hecho, nosotros hemos sido testigos directos de

tales situaciones y estamos convencidos de que se pueden volver a reproducir en condiciones

normales sin demasiado esfuerzo. Nos estamos refiriendo, en definitiva, a que enseñar y

aprender matemáticas mediante recursos y materiales didácticos no tradicionales, es decir,

materiales y recursos distintos de la tiza, la pizarra y el libro de texto, entre otros, son,

realmente, nuevas formas de enseñar y aprender matemáticas. Pero no es nuestra intención

presentar aquí estas nuevas formas como una alternativa global a lo que hoy en día es

habitual en las aulas, como si de una cuestión pendular se tratara. Antes bien,

pensamos que este punto de vista debe ser un complemento imprescindible

de otros aspectos que ya se encuentran en la actualidad bien cubiertos y

tratados por el sistema educativo.

ORIGENES DE ALGUNOS SISTEMAS NUMERICOS

En los inicios de la historia escrita las personas se percataron de que dos flechas y dos frutas

tenían algo en común, una cantidad llamada dos, la percepción de esta cantidad estaba

relacionada con el proceso de contar, esto es asocio una cantidad con un conjunto de objetos

o sea una relación uno a uno y esto le sirvió a los hombres para dejar un registro de las

cantidades para lo cual inventaron lo primeros numerales que reflejaban el proceso de conteo

y con esto surgieron los primeros sistemas de numeración.

Los sistemas de de numeración usaron algunos de los siguientes principios.

Principio Aditivo.- Se suman los valores de los símbolos que lo forman.

¿Qué son recursos didácticos? ¿Qué recursos puedo emplear para enseñar

sistemas de numeración? ¿Para qué me ayudaran los recursos didácticos?

¿Aprenderá significativamente mi estudiante si utilizamos recursos didácticos?

Page 115: modulo del numero y operaciones

115

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Principio Sustractivo.- Se restan los valores de los símbolos que lo forman.

Principio Multiplicativo.- Un símbolo colocado arriba o sobre un numeral lo multiplica

por cierta cantidad.

SISTEMAS DE NUMERACION NO POSICIONALES

Los sistemas no posiciónales son aquellos en donde el valor de los números no esta

determinado por el lugar en el que se escriben. Los números solo tienen un valor absoluto.

Algunos sistemas numéricos antiguos no posiciónales, son el egipcio y el romano.

SISTEMAS DE NUMERACION EGIPCIO

El sistema de numeración de los egipcios era decimal (base 10).

Utilizó el principio aditivo.

Sus símbolos sólo tenían valor absoluto (eran jeroglíficos).

Cada símbolo podía repetirse hasta nueve veces.

La posición de sus símbolos no importaba

Ejemplos:

EL SISTEMA DE NUMERACION GRIEGO

El primer sistema de numeración griego se desarrolló hacia el 600 A.C. Era un sistema de

base decimal que usaba los símbolos de la figura siguiente para representar esas cantidades.

Se utilizaban tantas de ellas como fuera necesario según el principio de las numeraciones

aditivas.

Para representar la unidad y los

números hasta el 4 se usaban

trazos verticales. Para el 5, 10 y

100 las letras correspondientes a

Page 116: modulo del numero y operaciones

116

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

la inicial de la palabra cinco (pente), diez (deka) y mil (khiloi). Por este motivo se llama a este

sistema acrofónico

Los símbolos de 50, 500 y 5000 se obtienen añadiendo el signo de 10, 100 y 1000 al de 5,

usando un principio multiplicativo. Progresivamente este sistema ático fue reemplazado por el

jónico, que empleaba las 24 letras del alfabeto griego junto con algunos otros símbolos

según la tabla siguiente

De esta forma los números parecen palabras,

ya que están compuestos por letras, y a su vez

las palabras tienen un valor numérico, basta

sumar las cifras que corresponden a las letras que

las componen. Esta circunstancia hizo aparecer

una nueva suerte de disciplina mágica que

estudiaba la relación entre los números y las

palabras. En algunas sociedades como la judía y

la árabe, que utilizaban un sistema similar, el

estudio de esta relación ha tenido una gran

importancia y ha constituido una disciplina aparte:

la kábala, que persigue fines místicos y

adivinatorios.

SISTEMAS DE NUMERACIÓN ROMANO

En su sistema de numeración se emplean 7 símbolos:

Hacían agrupamientos de 10 en 10 (sistema decimal).

Solamente los símbolos l, X, C, M; se repetían 3 veces.

Podemos observar que: l sólo se resta de V y X; X sólo se resta de L y C; C sólo resta

de D y M.

Una barra horizontal sobre un símbolo significa que el valor del símbolo se

multiplica por 1000.

Ejemplos:

l V X L C D M

1 5 10 50 100 500 1000

Page 117: modulo del numero y operaciones

117

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Principio aditivo XXXlll = 33; Principio sustractivo lX = 9;

Principio multiplicativo Vl = 6000

Si un símbolo tiene dos rayas encima, se multiplica por 1000 X 1000 = 1000000

Ejemplos: V = 5000000)1000000)(5( ; XLl = 41000000)1000000)(41(

.SISTEMAS DE NUMERACION POSICIONALES

Los sistemas posiciónales son aquellos que representan en valor de los números de acuerdo

al lugar que ocupan en la escritura, los números tienen además de un valor absoluto, un valor

relativo.

En un sistema posicional, el valor de cada símbolo depende de la posición que ocupa.

Algunos sistemas numéricos antiguos posiciónales, son el egipcio y el romano.

SISTEMA DE NUMERACION MAYA

Los mayas fueron la primera civilización que empleo el principio de posición, e inventaron un

símbolo para el números cero. Su sistema de numeración tomo como base el numero 20,

es decir, un sistema vigesimal, los símbolos que empleaban eran tres el punto, la raya y

el caracol. Para representar los números del 1 al 19 aplicaron el principio aditivo.

Del número 20 en adelante aplicaron el principio posicional con una escritura vertical

ascendente, el valor de cada símbolo se le debe multiplicar por etc,20,20,20,20 3210 según el

lugar que ocupe.

Valores

Posicionales

8000203

400202

20201

1200

Page 118: modulo del numero y operaciones

118

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Ejemplo

2203X =1200

1202X = 40

0201X = 1

______

1241

EL SISTEMA DE NUMERACION BABILONICO

La escritura en Babilonia se hacia en pequeñas tablas con ayuda de un estilete o punzón que

producía símbolos en forma de cuña, llamados escritura cuneiforme. El símbolo que

representaba el uno era la cuña sencilla, se ponían tantos hasta llegar al diez que tenia su

propio símbolo.

El símbolo que representaba diez era la misma cuña, pero rotada 90° en la dirección en que

giran las manecillas del reloj, estos símbolos se repetían hasta 9 veces y sus valores se

suman como en el sistema egipcio (principio aditivo).

Para escribir varios cientos, usaban el principio multiplicativo

Ejemplo:

Page 119: modulo del numero y operaciones

119

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Los babilonios sabían que la esfera terrestre giraba alrededor del sol y que el año constaba

de 360 días. Lo cual los conduce dividir el círculo en 360 partes y, de esta manera surge el

actual sistema de medidas basados en grados. Establecieron la división del tiempo en años,

meses, días, horas, minutos y segundos.

SISTEMA DECIMAL

Es de base diez y posicional, ya que agrupa de diez en diez, es por ello que 10 unidades

forman una decena, 10 decenas forman una centena, 10 centenas forman una unidad de

millar y así sucesivamente.

Ejemplo

La cantidad 280501, de acuerdo con la posición de sus dígitos, tiene una unidad, cero

decenas,

cinco centenas, cero unidades de millar, ocho decenas de millar y dos centenas de millar.

Su representación en forma desarrollada verticalmente es la siguiente:

Valor del dígito de acuerdo a su posición:

2 8 0 5 0 1 1 x 1 = 1 1 unidad

0 x 10 = 00 0 decenas

5 x 100 = 500 5 centenas

0 x 1000 = 0000 0 unidades de millar

8 x 10000 = 80000 8 decenas de millar

2 x 100000 = 200000 2 centenas de millar

280501

Su representación en forma desarrollada horizontalmente es la siguiente:

280501 = 2 x 100000 + 8 x 10000 + 0 x 1000 + 5 x 100 + 0 x 10 + 1

La representación anterior se puede simplificar empleando exponentes para escribir los

múltiplos de 10.

Para las unidades, tenemos: 1 = 1

Para las decenas: 10 = 101

Para las centenas: 100 = 10 x 10 = 102

Para las U. de millar: 1000 = 10 x 10 x 10 = 103

Para las D. de millar: 10000 = 10 x 10 x 10 x 10 = 104

Para las C. de millar: 100000 = 10 x 10 x 10 x 10 x 10 = 105

Page 120: modulo del numero y operaciones

120

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Así se tiene que la cantidad, 280501 representada en múltiplos de diez o potencias de diez,

queda de la forma siguiente:

2 x 105 + 8 x 104 + 0 x 103 + 5 x 102 + 0 x 101 + 1 x 1

OPERACIONES CON NÚMEROS NATURALES A TRAVÉS DE ALGORITMOS

A) Valor posicional de los números.

Ejemplo

* Tres dígitos iguales representados en distintas formas tienen distinto valor numérico. Tal es

el caso del número 3 que se puede representar en las siguientes formas: 333 , 333, 333 ,

33/3 y 33

3,

La primera representación indica un valor numérico de trescientos treinta y tres (333).

La segunda indica que el treinta y tres se debe multiplicar tres veces, ya que el exponente

es tres, de acuerdo con esto el valor numérico de 333 = (33)(33)(33) = 35937 .

La tercera indica que el tres se debe multiplicar treinta y tres veces, ya que éste es el valor

del exponente; de esta forma resulta el valor numérico de 333 = 5.559060567x1015 .

La cuarta indica que el tres tiene como exponente la unidad (1) ya que 3/3 es igual a uno,

y de acuerdo con esto el valor numérico es 33/3 = 31 = 3 .

La última representación indica que el treinta y tres lo vamos a dividir entre el tres

resultando un valor numérico de

De lo anterior se concluye que el valor numérico menor es 33/3 y el mayor es 333.

De acuerdo con el valor numérico de las representaciones anteriores, se pueden ordenar las

cantidades de tres números iguales de menor a mayor, quedando de la forma:

33/3 , 33

3, 333 , 333 , 333.

Page 121: modulo del numero y operaciones

121

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

B) Método de Gauss. Para sumas de series de números.

Ejemplo

* Sumar los primeros 20 números naturales pares por medio del método de Gauss.

La serie, es:

2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20 + 22 + 24 + 26 + 28 + 30 + 32 + 34 + 36 + 38 + 40 =

Se realiza la suma de cada par formado con los extremos de la serie: el primero con el último,

el segundo con el penúltimo, el tercero con el antepenúltimo, etc.

2 + 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20 + 22 + 24 + 26 + 28 + 30 + 32 + 34 + 36 + 38 + 40 42

42

42 42

42 42

42 42

42

42

La suma de cada par de extremos da 42 , y como la serie se compone de 20 elementos,

entonces se realizan 10 sumas; por lo tanto la suma de los primeros 20 números naturales

pares, es el resultado del producto de la suma de los extremos por el número de sumas

realizadas:

42 x 10 = 420

C) Multiplicación por duplicación egipcia. Ejemplo * Obtener el resultado de la multiplicación 16 x 12, por medio del método de duplicación egipcia.

Se coloca la unidad (1) y se empieza a duplicar sucesivamente, hasta llegar a un número menor o igual al factor menor de la multiplicación, que en este caso es 12.

1 2 4 8

Posteriormente se marcan las cantidades que sumadas den como resultado el valor del factor menor (12).

1 2

4

8 12

Page 122: modulo del numero y operaciones

122

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

El siguiente paso es duplicar el factor mayor de la multiplicación (16), de manera correspondiente a la duplicación de la unidad y se marcan las cantidades que son correspondientes a las que fueron marcadas en la duplicación de dicha unidad.

1 16 2 32

4 64

8 128 12

Por último se suman las cantidades que se marcaron en la duplicación del factor mayor, y esa suma es el resultado de la multiplicación.

64 + 128 = 192

TALLER DE TALENTO MATEMÁTICO

1. INTRODUCCIÓN

Nuestro sistema decimal viene de antiguo y nunca nos hemos percatado de darle la

importancia que tiene. ¿Por qué está compuesto de 10 símbolos diferentes?, ¿Quién

inventó esos símbolos?,¿Por qué precisamente esos símbolos y no otros? Son algunas de

las cuestiones que a lo mejor nos han venido en algún momento a la cabeza y a las que

vamos a intentar dar respuesta.

2. SISTEMA DE NUMERACION DECIMAL

Todos conocemos que nuestro sistema de numeración decimal está compuesto por diez

símbolos diferentes, 0,1, 2, …..,8 y 9 y que dependiendo de en qué posición los ponemos

valen una cosa u otra y reciben un nombre u otro. Es decir:

1 2 3 5 1. unidades de millar

2. centenas

3. decenas

5. unidades

Utilizamos por tanto un sistema de numeración posicional, es decir, cada número tiene un

valor diferente dependiendo de su posición. Así, el número anterior es completamente

diferente a

2 3 5 1 2. unidades de millar

3. centenas

5. decenas

1. unidades

Page 123: modulo del numero y operaciones

123

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

aunque los números utilizados sean los mismos.

Sin embargo esto que para nosotros es tan usual y común no siempre fue así. Desde

tiempos remotos el asignar una grafía, es decir, un símbolo, a algo tangible ha sido una

preocupación. De hecho cada una de las grandes civilizaciones que dominaron el mundo,

babilonios, griegos, romanos o árabes, creaba su propio sistema de numeración y en

algunos casos incluso dos.

Babilonios: Disponían de un sistema llamado pseudoposicional con dos símbolos uno para

el 10 y otro para el 1. Colocados en cualquier lugar valían lo mismo, siempre que hablaran

de números por debajo de 60. Para estos separaban los símbolos por un espacio.

Griegos: Contaban con dos sistemas de numeración. Uno llamado Ático donde usaban la

primera letra del alfabeto para designar la cifra en cuestión y otro de nombre Jónico donde

usaban 27 símbolos divididos en tres grupos de 9 para designar los números del 1 al 9, del

10 al 90 y del 100 al 900.

Romanos: Sin duda es el más conocido y no hablaremos más de él. Todo el mundo

conoce sus cifras y sus reglas.

Mayas: Sin relación alguna, es evidente, con el mundo occidental disponían de un sistema

de numeración donde eran capaces de escribir hasta el 20 sólo con dos símbolos: un

punto y una raya.

Sin duda nos han llegado hasta nuestros días sistemas de numeración llamémosles

extraños, como por ejemplo la forma de contar los huevos (¿Por qué contamos de 12 en

12?), pero que no prosperaron como lo hizo el sistema de numeración decimal, el que

usamos, que viene de la civilización india inventores de nuestra grafía actual, aunque

fueron los árabes los que lo introdujeron en occidente.

Pero, ¿por qué tenemos que usar diez símbolos para escribir cualquier número y no por

ejemplo 2 o 3?. ¿Tiene alguna ventaja utilizar 2 símbolos en lugar de 10 aparte de ahorrar

tinta y no tener problemas a la hora de escribir el 8?. Sin duda si nos centramos en esta

clase no, pero si pensamos en el mundo de la informática, ese dominado actualmente por

Bill Gates, sí. Pensemos que lo que realmente usa un ordenador son cosas guardadas en

unos chips que valen mucho dinero a la hora de comprarlos nuevos. Conviene por tanto,

ahorrar espacio a la hora de almacenar datos y para ello que mejor que usar 2 símbolos en

lugar de 10, si es que lo conseguimos. Intentémoslo por tanto, el mundo nos lo agradecerá.

Examinemos lo que usamos hasta ahora y traduzcámoslo a nuestro invento:

43210 8·10 5·10 4·10 3·10 9·10

8·10000 5·10004·100 3·10 9 85439

Page 124: modulo del numero y operaciones

124

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Cualquier número lo podemos descomponer como suma de potencias de 10 multiplicado

por un coeficiente que resulta ser el número que luego ponemos. De la misma forma

podemos descomponer, por ejemplo, el número 19, 23 o 50 como:

19 = 1 + 2 + 16 23 = 1 + 2 + 4 + 16 50 = 2 + 16 + 32

y ¿alguien nota algo de particular en esta manera de descomponer estos números?

3. SISTEMA DE NUMERACIÓN BINARIO

Escribámoslos de otra manera

19 = 1 + 2 + 0 + 0 + 16 + 0 23 = 1 + 2 + 4 + 0 + 16 + 0 50 = 0 + 2 + 0 + 0 + 16 + 32

Ahora quizá suenen más: Efectivamente son potencias de 2; la primera columna

corresponde a la potencia 20, la segunda corresponde a la potencia 21, la tercera 22, 23 la

cuarta y la quinta y sexta 24 y 25, respectivamente. Así, y para ir comenzando, podemos

escribir cualquier número y ponerlo como potencias de dos. O no?

23 = 1·20 + 1·21 + 1·22 + 0·23 + 1·24

23 = 1·1 + 1·2 + 1·4 + 0·8 + 1·16 Y al igual que hemos escrito antes: 85439 = 9 + 3·10 + 4 ·100 + 5·1000 + 8·10000 9·100 + 3·101 + 4·102 + 5·103 + 8·104

23 = 1·1 + 1·2 + 1·4 + 0·8 + 1·16 1·20 + 1·21 + 1·22 + 0·23 + 1·24

23 = 10111 Parece interesante. Probemos con otro número: 19 = 1· 1 + 1 · 2 + 0 · 4 + 0 · 8 + 1· 16 1·20 + 1 · 21 + 0 · 22 + 0 · 23 + 1· 24

A nadie se le escapa que estamos ante un sistema de numeración nuevo, escrito sólo con

dos símbolos y que con el que además, a priori, cualquiera de las operaciones y reglas

hasta ahora existentes funcionan perfectamente. Y digo a priori, porque todavía no hemos

probado nada y ni tan siquiera sabemos que pinta tienen que tener las sumas o restas que

tengamos que hacer. Pero sólo hace falta pensar y recordar un poco cuando operábamos

con esas insufribles sumas y restas con grados, minutos y segundos o con horas, minutos

Page 125: modulo del numero y operaciones

125

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

y segundos. ¿Qué ocurría cuando en una de las columnas que estábamos operando salía

un número por encima de 60?, efectivamente, restábamos 60 y pasamos una unidad más

a la izquierda. Pues esto mismo vamos a tener que hacer ahora, no en vano no olvidemos,

que los números por encima de 1 están prohibidos. ¿2? ¿Qué es eso?.

SUMAS

Pongamos un ejemplo: 1 0 1 1 0 1 = 45 + 1 0 1 1 = 11 ____________________ 1 0 2 1 1 2 = ¿? 1 0 2 1 2 0 = ¿? 1 1 0 2 0 0 = ¿? 1 1 1 0 0 0 = 56 RESTAS Podemos hacer la operación contraria con la resta, es decir, igual que cuando restábamos horas, minutos y segundos: 1 0 1 1 0 1 = 45 - 1 0 1 1 = 11 ____________________ 1 0 1 0 2 1 - 1 0 1 1 ____________________ 1 0 0 0 1 0 = 34 Otro ejemplo: 1 1 0 0 1 = 25 - 1 1 0 1 1 = 27 ____________________ 0 0 0 -1 0 = -2 Seguro que hay otras formas de hacerlo, pero te dejo a ti que las averigües. Ejercicio: Transforma a binario los siguientes números: 23, 39, 87, 99, 102, 124 Ejercicio: Opera los siguientes números transformándolos primero a

binario, y comprobando el resultado: 234 – 104; 68 + 49; 39 – 20; 126 + 100; 23 · 4; 36 · 10; 60 · 15

Page 126: modulo del numero y operaciones

126

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

PRODUCTOS Quizá no haría falta explicarlo o poner un ejemplo, pues sólo con la propia observación de lo que se ha hecho ya bastaría. En cualquier caso, ahí va: Ejemplo: 1 0 0 1 1 0 = 38 x 1 1 0 1 = x 13 ____________________

1 0 0 1 1 0 114 0 0 0 0 0 0 38 1 0 0 1 1 0 1 0 0 1 1 0 __________________________ 1 1 0 2 2 1 1 1 0 1 1 1 1 0 1 1 1 0 = 494 No hace falta que yo haga más; los puedes hacer tú: Ejercicio: Realiza las siguientes multiplicaciones de números, transformándolos

previamente a sistema binario: 345 · 23; 298 · 45; 500 · 26

Dejaremos la división para mejor ocasión, ya que tampoco ha contar todo hoy, porque si no otro día no tendremos nada que decir.

4. JUGANDO CON LOS SISTEMAS DE NUMERACIÓN

Ha llegado ahora la parte lúdica de la lección. Vamos a realizar juegos matemáticos para que

cuando venga a visitarnos el tío de América o el amigo plasta del pueblo que “controla mucho

de todo”, podamos proponerle juegos sin miedo a perder. Y si además, apostamos y nos

ganamos unos euros, pues mucho mejor.

Propongo un juego chino milenario llamado NIM que seguro que alguno de vosotros ha

jugado alguna vez, el cual podéis encontrar en multitud de páginas del oráculo del siglo XXI,

Internet. Se trata de un juego uno contra uno, en el que en un tablero se colocan

aleatoriamente fichas en filas. Los jugadores retiran de la fila que elijan, el número de fichas

que elijan, de forma que ganará el jugador que elimine la última ficha del tablero. El número

de filas que coloquemos y el número de fichas por fila es independiente, y esta es una de las

grandezas del juego.

Supongamos por tanto que tenemos el siguiente tablero:

Page 127: modulo del numero y operaciones

127

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

x x x x x x x x x x x x x x x x x x

Los jugadores retirarán, ya se ha dicho la cantidad de fichas que quieran de la fila que

quieran, pero sólo de una fila. ¿Quién gana?. Unos pasos después el tablero que podría

quedar sería el siguiente:

x x x x x x x x x

Y unos pasos más y podemos vernos abocados a la siguiente fase:

x x x x

Ahora quizá se vea más claro quién va a ganar. Es evidente que el jugador que empezó a

jugar en primer lugar. Supongamos que retira todas las fichas de la primera fila, quedando

para el otro jugador dos filas de una ficha cada una con lo cual seguro que gana. Pero ¿Es

esta la única posibilidad de que gane el jugador, llamémosle A?, ¿Se debe llegar a esta

posición después de diferentes movimientos para saber quién va a ganar la partida? Y

además ¿Va a ganar siempre el jugador que empiece en primera opción?

Tengamos en cuenta que, de lo que estamos hablando, es de un juego con lo que se llama

posición ganadora. Es decir, una posición a partir de la cuál siempre que se llegue a ella, el

jugador que posea el turno ganará la partida. Esto es lo que ocurre en el ajedrez. Es fácil

darse cuenta de que llegando a la posición de jaque mate, el jugador que le toca turno gana,

por tanto, sólo hay que saber qué posición había antes del jaque mate para saber que con un

movimiento tendremos la partida ganada. Esto llevado hasta el inicio de la partida puede dar

al traste con un deporte como este. Pero es que las cosas no son tan sencillas ya que en este

juego el número de posibilidades diferentes de mover una ficha que tiene un jugador es tan

grande que es prácticamente imposible estudiar todas las variantes.

Pero volvamos al juego y a las preguntas que de él nos hemos hecho. Un juego no sería tal si

tuvieras que empezar para poder ganar, puesto que tu truco enseguida se vería descubierto.

Por tanto, en el NIM no hay que empezar a jugar para poder ganar. Si además tuviéramos

que llegar a una posición determinada para poder ganar, el juego perdería la gracia en cuanto

un movimiento del contrario trastocara nuestros planes. Por tanto, en el NIM tampoco hace

falta llegar a una posición final. Entonces ¿en qué consiste?.

Page 128: modulo del numero y operaciones

128

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Fijémonos en que, cómo sólo está permitido eliminar fichas de una fila, si consigo dejar al

contrario dos filas con una ficha en cada una de ellas, habré ganado seguro, puesto que él

sólo podrá quitar una ficha de la fila que quiera, dejándome a mí la última ficha. Por tanto, esa

es la única posición a la que debemos llegar. Para ello, si en lugar de mirar filas observamos

columnas nos daremos cuenta de que tenemos un par de fichas en una única columna. Y si

ampliamos nuestro pensamiento a cuatro fichas en filas diferentes, tendremos de nuevo por la

misma razón una posición ganadora. ¿Qué tienen en común 4 y 2? ¿Quizá que son pares, o

quizá que son potencias de dos? En efecto, la solución es la segunda. De no ser así, no

llevaríamos hablando 7 hojas sobre números binarios y potencias de dos.

Así que para ganar unos cuantos euros jugando al NIM, sólo tenemos que recolocar

mentalmente las fichas de cada fila en columnas donde cada una de ellas sea una potencia

de dos y dejar al contrario siempre un número par de elementos en cada columna. Dificultad:

transcribir mentalmente todas las filas de fichas a potencia de dos. Truco: no insistáis

demasiado en que el contrario ponga muchas fichas por fila.

Para aclarar todo esto veamos un ejemplo:

Paso Inicial: Tablero Nº fichas 23 22 21 20

x x x x x x x 7 fichas 0 1 1 1 x x x x 4 fichas 1 0 0 x x x x x 5 fichas 0 1 0 1

x x 2 fichas 0 0 1 0 Paso 2:

x x x x 4 fichas 0 1 0 0 x x 2 fichas 0 0 1 0 x x 2 fichas 0 0 1 0

x 1 ficha 1 Paso 3:

x x 2 fichas 0 0 1 0 x 1 ficha 0 0 0 1

x 1 ficha 0 0 0 1 0 fichas 0 0 0 0

La columna de 21 tiene un solo elemento, por lo tanto si me toca jugar a mí, deberé eliminar

ese elemento para dejarle a él un número par de elementos en la columna correspondiente a

20. De esta forma he ganado seguro.

Page 129: modulo del numero y operaciones

129

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Si mi contrario no conoce el truco, gano seguro, independientemente de quién empiece y de

cuantas fichas halla, porque siempre puedo quitar lo que yo quiera para poder dejar un

número par de elementos en todas las columnas. Incluso si me equivoco, raro sería que a lo

largo de la partida no lo pueda solucionar eliminando lo que a mí me interese. Buscaremos

para ello la fila que tenga más fichas y seleccionamos el número de fichas que me hacen falta

para todas las columnas sean pares. Entonces eliminamos el resto. Imaginemos que tengo un

elemento en la columna 21 y que el resto de las columnas sean pares. Elegiré la fila que tenga

más elementos y eliminaré todos los elementos menos dos, consiguiendo así que todas las

columnas sean pares.

Sólo se requiere práctica para transformar cualquier número en binario, siento decir que para

eso no hay truco.

Con números en binario existen multitud de aplicaciones, que en ocasiones pueden llegar a

parecer mágicas. Si no por ejemplo, piensa en un número del 1 al 9. Súmale 2, multiplícalo

por 5, réstale 6 y multiplícalo por 4. ¿Qué número de dos cifras te ha salido? ¿Acaba en 8?

¿Y cuál es la primera cifra? ¿Te atreves a averiguar cómo lo he hecho? Te lo dejo como

ejercicio. La “magia” es lo que tiene, nunca revela sus secretos.

Después de esta amigable charla saca tus propias conclusiones. Creo que los números son

esos entes extraños que nos acompañan desde nuestra infancia y por tanto merecen toda

nuestra consideración. No en vano, de algún modo estamos en sus manos, NO?

RECURSOS DIDÁCTICOS PARA EL APRENDIZAJE DE LOS

SISTEMAS NUMÉRICOS

Los recursos didácticos, permiten generar aprendizajes

significativos, describe brevemente ¿como los empleaste?

En tu desempeño profesional, que características deben de

tener los recursos didácticos para seleccionar adecuadamente?

Elabora una lista de recursos didácticos para los sistemas

numéricos y descríbelos como los utilizarías en tus sesiones de

aprendizaje y su estrategia de empleo.

Page 130: modulo del numero y operaciones

130

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Durante nuestras jornadas en el aula podemos observar una gran diversidad de

estudiantes, cada uno ellos representan un mundo donde aprende a su ritmo; para

poder ayudar a elevar el nivel desarrollo de ellos, ¿Qué son estrategias de

aprendizaje? ¿Qué entiendes por demanda cognitiva? ¿Qué estrategias vienes

empleando en tu aula? ¿Considerar que nuestros estudiantes mejorar sus aprendizajes

si cambiamos nuestras estrategias?

ESTRATEGIAS DE RESOLUCIÓN DE PROBLEMAS: DESCRIPCIÓN Y EJEMPLOS

Las estrategias nos permiten transformar el problema en una situación más sencilla y que

sepamos resolver.

A la hora de resolver problemas, es conveniente y necesario conocer las posibles estrategias

o herramientas heurísticas que existen. Estas son:

1.- ANALOGÍA O SEMEJANZA

2.- SIMPLIFICAR, PARTICULARIZAR

INDICADORES DE LOGRO

- Diseña estrategias para desarrollar situaciones problemáticas

SESIÓN12

Recordando mi práctica docente

¿Las estrategias que uso son las adecuadas para resolver situaciones problemáticas con mis

estudiantes?

ESTRATEGIAS PARA DESARROLLAR SITUACIONES

PROBLEMÁTICAS DE NÚMEROS Y OPERACIONES

POR NIVELES DE DEMANDA COGNITIVA

Page 131: modulo del numero y operaciones

131

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

3.- ORGANIZACIÓN, CODIFICACIÓN

-Técnicas asociadas: esquema, notación, lenguaje, figura, diagrama, gráfico.

4.- ENSAYO Y ERROR

5.-TRABAJAR MARCHA ATRÁS O CONSIDERAR EL PROBLEMA RESUELTO

6.- EXPERIMENTACIÓN: sacar pautas, regularidades y leyes.

7.- MODIFICAR EL PROBLEMA

-Descomponer en problemas más pequeños.

-Proponer subproblemas, submetas.

-Utilizar menor número de variables, datos, etc.

8.- CONJETURAR

- Empezar por casos sencillos

- Intentar llevar adelante las conjeturas.

9.- HAZ RECUENTO

-Realiza un conteo parcial

-Practica los recuentos exhaustivos.

10.- EXPLORACIÓN

-Sacar partido a la simetría.

-Analizar los casos límite.

A continuación vamos a describir de forma detenida alguna de estas estrategias, además un

problema que ejemplifique dicha estrategia.

Posteriormente, al final de cada una, se dará una lista de problemas para trabajar y así

conseguir una buena práctica en la aplicación de la estrategia.

Se debe tener en cuenta que muy pocos problemas se resuelven utilizando una única

estrategia, en general se necesitará la utilización de varias.

1.- ANALOGÍA O SEMEJANZA

Consiste en la búsqueda de semejanzas (parecidos, relaciones, similitudes) en el “archivo” de

la experiencia, con casos, problemas, juegos etc. que ya se hayan resuelto.

A veces, ante la situación que nos ocupa, nos podemos preguntar:

- ¿A qué nos recuerda?

Page 132: modulo del numero y operaciones

132

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

- ¿Es como aquella otra?

Es muy bueno, a fin de encontrar un buen asidero que nos proporcione confianza, buscar

situaciones semejantes a la propuesta. Al hacerlo, probablemente, surgirán procedimientos de

ataque de dichas situaciones semejantes, que nos proporcionarán estrategias válidas para la

que nos ocupa.

Esta búsqueda será más fácil cuanta más experiencia tengamos en la resolución de

problemas.

Esta estrategia suele ir asociada a la particularización y la generalización.

Ejemplo. Calcular el área lateral del tronco de cono que aparece en la figura

Solución:

El área lateral corresponde al siguiente desarrollo

Se parece a ....¡ Un trapecio ¡ ( Estamos utilizando la analogía ) .

El área del trapecio es igual a :

h= lado generatriz del tronco de cono

h H R r 2 2( ) luego Area

R rH R r

2 2

22 2

¿Será cierto?

Problemas para trabajar:

1.-Muchos ceros. ¿En cuántos ceros termina el número100! =100x99x98x....x4x3x2x1?

Nota: como el resultado de 100! es un numero muy grande, intenta primero resolver el

problema análogo para 10!= 10x9x8x7x6x5x4x3x2x1

2.-Cuadrados Mágicos

Page 133: modulo del numero y operaciones

133

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

2 7 6

9 5 1

4 3 8

Este cuadrado relleno de números (9 primeros números) se llama CUADRADO MÁGICO.

Su disposición es notable. La suma de los números en una misma fila, columna o diagonal es

la misma.

2+7+6 = 15 (suma de los números de la 1ª fila)

9+5+1 = 15 (suma de los números de la 2ª fila)

2+5+8 = 15 (suma de los números de una diagonal)

6+1+8 = 15 (suma de los números de la 3ª columna)

Al número 15 se le llama característica del cuadrado mágico.

Se pide: construir cuadrados mágicos de característica 24, 375 y –120 (considera cuadrados

3x3).

3.-Sumar quince. Nueve fichas numeradas del 1 al 9, se ponen sobre la mesa. Juegan dos

jugadores. Cada uno coge una ficha por turno. Gana el primero que sume 15. Intenta elaborar

dos estrategias que puedan conducir a la victoria: una para usarla si eres tú el primero en

comenzar y otra si te toca en segundo lugar.

Nota.- Analogía: cuadrado mágico 3x3 .

4.-Caja de zapatos. Para una caja de zapatos (paralelepípedo) de medidas a, b y c;

encuentra la expresión de su diagonal en función de las medidas anteriores.

Nota.- Analogía: plano-espacio

5.-Uso de cartas. Con todos los ases, sotas, caballos y reyes de una baraja (16 cartas)

construye un cuadrado 4x4 de forma que:

1.- En cada fila, columna y diagonal sólo haya una carta de cada figura

2.- En cada fila, columna y diagonal sólo haya una carta de cada palo.

Page 134: modulo del numero y operaciones

134

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Soluciones:

1.- 24

3.- No hay estrategia ganadora, si se juega bien no hay vencedor

4.-222 cbaD

5.-

Ao Rb Sc Ce

Se Cc Ab Ro

Cb So Re Ac

Rc Ae Co Sb

Esta es una solución, pero hay 71 más.

Nota: A=As; R=Rey; S=Sota; C=Caballo; o=Oros; b=Bastos; c=Copas y e=Espadas

2.- SIMPLIFICAR, PARTICULARIZAR

Consiste en pasar de la consideración de un conjunto de objetos dado a considerar un

conjunto más pequeño (o incluso un solo objeto) contenido en el conjunto dado.

Particularizar significa simplificar el problema haciéndolo más concreto y específico, hasta

que sea posible hacer algún progreso.

A veces te encuentras con un problema que resulta difícil por su tamaño, por tener

demasiados elementos que lo hacen enrevesado y oscuro. En este caso se puede empezar

construyendo un problema semejante más sencillo, tratar de resolverlo y luego proceder a

complicarlo hasta llegar al propuesto inicialmente.

Otras veces el problema visto en su conjunto resulta inabordable, entonces para empezar se

puede abordar una parte de él que parezca más simple.

Es una de las mejores estrategias para los principiantes, pues sirve para adquirir confianza y,

en otros casos, proporciona ayuda en los atascos y bloqueos y nos permite entrar en materia

manipulando los datos.

Se utiliza en la técnica de demostración lógica denominada “contraejemplo”: basta encontrar

una sola excepción para refutar de forma irrevocable lo que pretende ser una regla o una

afirmación de carácter general.

Page 135: modulo del numero y operaciones

135

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

La particularización puede hacerse al azar para entender el significado del problema o de

forma sistemática para preparar el terreno hacia la generalización

Acude a ésta estrategia cuando no poseas ninguna idea que te haga prosperar, ya que en

múltiples ocasiones te permitirá lograr un avance.

Puede ir relacionada con otras estrategias como: la generalización, la modificación del

problema, la experimentación.

Veamos un ejemplo

16 jugadores de tenis participan en un sorteo para emparejarse entre sí en la primera ronda.

¿De cuántas maneras se pueden hacer los emparejamientos?

Solución:

Como el número de jugadores es elevado, comenzamos con dos jugadores; claramente hay

una sola forma. Si el número de jugadores es 3, tenemos 3 emparejamientos. Si los jugadores

son 4, tenemos los siguientes 6 grupos: (1,2); (1,3); (1,4); (2,3); (2,4) y (3,4). Si los jugadores

son 6, aparecen 15 grupos (compruébalo)

¿Serías capaz de encontrar una ley y deducir cuántos emparejamientos hay con 16

jugadores?

Otra forma de resolver el problema es visualizar las diversas situaciones en diagramas y acar

conclusiones

1 2 1 2 3 4

1 NO SÍ 1 NO SÍ SÍ SÍ

2 NO NO 2 NO NO SÍ SÍ

3 NO NO NO SÍ

4 NO NO NO NO

2 jugadores; un emparejamiento 4 jugadores; 6 emparejamientos

Problemas para trabajar

1.- Cuadrados.Alguien dijo una vez que el tablero de ajedrez contiene 204 cuadrados

¿Estará en lo cierto?

2.-Uno de números. ¿Puede terminar el cuadrado de un número entero por tres cifras

idénticas distintas de cero?

Page 136: modulo del numero y operaciones

136

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

3.-Castillo de cartas. Este es un castillo de cartas de tres pisos. Se necesitan 15 cartas.

-¿Cuántas cartas se necesitarán para un castillo similar de 10

pisos de altura?

- El record mundial está en 61 pisos. ¿Cuántas cartas necesitarías

para batir ese record y hacer un castillo de 62 pisos de altura?.

4.- La rosa mística. Este diagrama se ha realizado uniendo entre

sí con líneas rectas los 18 puntos del círculo. Cada

punto está unido a todos los demás. ¿Cuántas líneas

rectas hay en total?

5.- Capicúas. A los números como 12321, que se leen lo mismo

de derecha a izquierda que de izquierda a derecha, se les llama

capicúas. Tengo un amigo que asegura que todos los números capicúas de 4 cifras son

divisibles por 11 ¿Es cierto?

6.- Rectángulos. ¿Cuántos rectángulos de lados paralelos a los lados del tablero hay en un

tablero de ajedrez?

7.-Soluciones. ¿Qué relación hay entre las soluciones de las ecuaciones ax2 + bx + c = 0 y

cx2 + bx +a = 0?

Soluciones:

1.-Sí

2.-Sí, por ejemplo el 1444

3.-155; 5797

4.-153

5.-Sí

6.-Nº de rectángulos no cuadrados: 1092; Nº total de rectángulos: 1296

7.-Son inversas

3.- ORGANIZACIÓN, CODIFICACIÓN

La organización, en general, consiste en adoptar un enfoque sistemático del problema. Suele

ser de gran ayuda enfocar el problema en términos de tres componentes fundamentales:

antecedentes (origen y datos), el objetivo y las operaciones que pueden realizarse en el

ámbito del problema.

Las técnicas asociadas a la organización pasan por realizar: símbolos apropiados, croquis,

gráficos, figuras, diagramas y esquemas. Estos símbolos o dibujos no se reservan al uso

Page 137: modulo del numero y operaciones

137

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

exclusivo de la Geometría; pueden ayudar en todo tipo de problemas, ya que las figuras

trazadas sobre el papel son fáciles de hacer, de conocer y de recordar.

Las figuras que te fabriques del problema deben incorporar, de alguna forma sencilla, los

datos relevantes y suprimir los superfluos que pueden conducir a confusión. De ésta forma

pueden quedar resaltadas visualmente las relaciones entre los aspectos más importantes del

problema, y de ahí muy a menudo se desprenden luces que clarifican sustancialmente la

situación.

Una buena organización suele ir asociada con la elección de una notación o código que

organice la búsqueda de posibles caminos hacia la solución.

Las diferentes notaciones y códigos nos conducen a utilizar un determinado lenguaje.- Los

lenguajes que resultan útiles en la resolución de problemas son: el lenguajede la Lógica, el

de las Matemáticas (geométrico, algebraico, analítico, probabilístico etc.), el analógico

(modelos, manipulaciones etc.) y el imaginativo o pictórico (figuras, esquemas, diagramas

etc.).

Una buena organización es un buen punto de arranque y a veces allí se encuentra la clave

del éxito. Veámoslo en el siguiente ejemplo:

Hay varias formas de sumar 10, mediante números impares y con cuatro sumandos; tenemos:

10 =1+1+1+7; 10 = 1+1+3+5; 10 = 1+3+3+3; tenemos tres formas (los cambios de orden en

los números no cuentan como nuevas soluciones)

Para obtener 20 con 8 sumandos impares ¿Cuántas formas hay?

Desde luego hay que organizarse un poco y ser sistemático: 20= 1+1+1+1+1+1+1+13;

20=1+1+1+1+1+1+7+7; 20 = 1+1+1+1+1+1+3+11; así llegamos hasta 11 combinaciones

posibles ¿Te atreves?

Codificación. Ejemplo. Tenemos 3 cajas iguales y 5 guantes de la mano izquierda, todos

ellos iguales ¿De cuántas maneras se pueden distribuir en las tres cajas?

Después de jugar un poco con el problema se puede llegar a definir un código que nos

organice la búsqueda. Así si los guantes los representamos por A y las cajas por B, la

secuencia BAA BA BAA nos indica que en la 1ª caja hay dos guantes, en la 2ª un guante y

en la 3ª dos guantes. Quizás este código nos resulte más fácil de manejar y así resolver el

problema.

Problemas para trabajar

1.- Artel de segadores. Una cuadrilla de segadores debía segar dos prados, uno de doble

superficie que el otro. Durante medio día trabajó todo el personal en el prado grande; después

de la comida, la mitad de la gente quedó en el prado grande y la otra mitad trabajó en el

Page 138: modulo del numero y operaciones

138

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

pequeño. Durante esa tarde se terminaron los dos campos, a excepción de un reducido sector

del prado pequeño, cuya siega ocupó el día siguiente completo a un solo segador. ¿Cuántos

segadores componían la cuadrilla?.

2.-Haciendo footing. Pepe y Pablo hacen footing de A a B. Pepe corre la mitad de la

distancia y anda la otra mitad, Pablo corre la mitad del tiempo y anda la otra mitad.

Los dos corren a la misma velocidad y los dos andan a la misma velocidad. ¿Quién llega

antes?

3.- El monje en la montaña. Un monje decide subir desde su ermita a la montaña para pasar

allí la noche orando. Sale de su ermita a las 9 de la mañana y después de caminar todo el día

llega a la cumbre. Allí pasa la noche y a la mañana siguiente, a las 9 de la mañana, emprende

el camino a su ermita por el mismo sendero. Al ir bajando se pregunta: ¿habrá algún punto

del camino en el que hoy esté a la misma hora que estuve ayer?

4.- Problema. Aquí aparece el plano de un solar.

Un gato quiere llegar a la posición de

salida.

¿Cuántos caminos diferentes tiene?. Se supone

que no puede pasar dos veces por el mismo sitio.

Soluciones:

1.- 8

2.- Pablo

3.-Sí

4.-8

4.-ENSAYO Y ERROR

Consiste en realizar los siguientes pasos:

1.-Elegir un valor (resultado, operación o propiedad) posible.

2.-Llevar a cabo con éste valor las condiciones indicadas por el problema.

3.-Probar si hemos alcanzado el objetivo buscado.

Veamos un ejemplo.-Calcular un número que, al elevarlo al cuadrado y sumarle el número

buscado, nos dé 132

Solución:

1.-Elegimos un valor: el 10

2.-Llevamos a cabo con este valor las condiciones del problema: 102+10 =110

Page 139: modulo del numero y operaciones

139

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

3.-Probamos si hemos logrado el objetivo: 110 es menor de 132

Volvemos a empezar con otro número:14; 142+14 =210 ; 210 es mayor de 132 luego será

11, 12 ó 13.

Esta estrategia puede ser puesta en práctica de formas diferentes, estas son:

1.- Ensayo y error fortuito: realizado sin pautas o al azar.

2.- Ensayo y error sistemático: los valores no se eligen a la ventura, sino de manera

ordenada, de forma que eliminemos las posibles repeticiones de ensayo agotando las

soluciones posibles hasta encontrar lo que buscamos.

3.- Ensayo y error dirigido: en él contrastamos cada respuesta para ver si estamos más

cerca o más lejos del objetivo buscado.

Ejemplo.- Judit y Teodoro fueron de visita a la granja de su abuelo. Durante su estanciavieron

un corral con cerdos y gallinas. Teodoro dijo haber contado 18 animales en total. Judit afirma

haber contado un total de 50 patas ¿Cuántos cerdos había? (sin utilizar ecuaciones).

Solución:

1.- Ensayo y error fortuito. Damos valores al azar.

Cerdos Gallinas Patas

14 4 64

12 6 60

10 8

Etc.

2.- De forma sistemática. Se van dando valores de forma sistemática 1,2,3, etc.

Cerdos Gallinas Patas

1 17 38

2 16 40

3 15

Etc.

3.-De forma dirigida

Cerdos Gallinas Patas

10 8 56(nos hemos pasado) sobran cerdos

9 9 54 “ “ “ “

8 10 52 “ “ “ “

7 11 50 es la solución

Page 140: modulo del numero y operaciones

140

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Hola, soy Carla, docente de secundaria, enseño Matemática y quiero compartir con ustedes algo que me ocurrió hace un tiempo y que podría ocurrirle a cualquiera de ustedes.

Hola, soy Carla, docente de secundaria, enseño Matemática y quiero compartir con ustedes algo que me ocurrió hace un tiempo y que podría ocurrirle a cualquiera de ustedes.

INDICADORES DE LOGRO

- Utiliza los recursos didácticos propuestos por el MED en su práctica docente

SESIÓN13

Recordando mi práctica docente

Carla es docente de secundaria como tú, trabaja en una institución educativa y cada día busca mejorar como persona y como profesional. Quiere informarse, aprender y entender mejor todo lo relacionado al proceso educativo. En este caso, tiene un interés particular por todo lo vinculado al uso de los recursos educativos en secundaria. Descubre junto a ella la importancia, funciones y posibilidades que estos nos brindan en todas las áreas educativas.

RECURSOS DIDÁCTICOS PROPUESTOS POR EL MED

Y ALTERNATIVOS PARA LA ENSEÑANZA DE LA

MATEMÁTICA

Después de revisar algunas estrategias para la resolución de problemas,

responde a las preguntas ¿El trabajo que realizabas en aula era adecuado para

trabajar con los estudiantes? ¿Cuánto te ayudara a replantear tus estrategias

de aprendizaje? ¿Crees que la falta de nuevas estrategias permite que nuestros

estudiantes no logren los aprendizajes?

Elabora una lista de estrategias, para desarrollar problemas de números y

operaciones

Page 141: modulo del numero y operaciones

141

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Un día estaba trabajando con mis estudiantes de cuarto de secundaria de la sección “A” el

tema “polígonos”, identificando las características; hice una sesión de aprendizaje expositiva y

pedí a mis estudiantes que den su opinión. Pregunté lo que entendieron de la exposición y

noté que fueron pocos los que participaron. Algunos conversaban sin prestar atención.

Terminé la sesión de aprendizaje muy desmotivada y pensé en qué es lo que falló. Le conté a

un colega lo sucedido, él me aconsejó que revise bien la secuencia sugerida en el manual del

docente y los textos de grado, según el área que estaba trabajando. Además, me contó que

muchos de los recursos educativos que tiene la institución educativa son sugeridos como

recursos educativos en los mismos manuales del docente y textos de grado, los cuales

poseen una secuencia que facilita el desarrollo de capacidades.

Asombrada y medio avergonzada le dije que no había tenido tiempo para revisar la secuencia

y que, además, no sabía que existían otros recursos educativos. Le pedí a mi colega que me

ayudara a identificar, según el manual y texto de grado, cuál es la secuencia a seguir y qué

recursos educativos podrían ser útiles para mi siguiente sesión de aprendizaje.

Cuando me tocó desarrollar la sesión con la sección “B” de cuarto de secundaria, llevé

conmigo una serie de recursos que me permitió motivar e involucrar a mis estudiantes en las

actividades que desarrollamos. Esta vez empecé recogiendo los saberes de los estudiantes,

pasé un video y les propuse revisar el texto de grado y realizar las actividades sugeridas.

Acabé la sesión de aprendizaje y mis estudiantes aún querían indagar más acerca del tema,

esta vez se mostraron interesados y motivados.

Recogiendo saberes previos

Luego de leer el caso, reflexiona sobre las siguientes preguntas: • ¿Qué crees que falló en la primera sesión de aprendizaje de Carla? • ¿Por qué sus estudiantes se mostraron desmotivados? • ¿Crees que al seguir la secuencia planteada por el manual del docente, que Educación Secundaria ha distribuido, se favorece el desarrollo de capacidades? ¿Por qué? • ¿Por qué crees que en la segunda sesión de aprendizaje, a diferencia de la primera, Carla logró motivar a sus estudiantes, manteniendo su atención y logrando que participen?

Page 142: modulo del numero y operaciones

142

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Un recurso didáctico es cualquier material que se ha elaborado con la intención de facilitar al

docente su función y a su vez la del estudiante. No olvidemos que los recursos didácticos

deben utilizarse en un contexto educativo.

Es todo aquel medio material (proyector, libro, texto, video…) o conceptual (ejemplo,

simulación…) que se utiliza como apoyatura en la enseñanza, normalmente presencial, con la

finalidad de facilitar o estimular el aprendizaje.

A continuación lo resumiremos en seis funciones:

Los recursos didácticos proporcionan información al estudiante.

Son una guía para los aprendizajes, ya que nos ayudan a organizar la información que

queremos transmitir. De esta manera ofrecemos nuevos conocimientos al estudiante.

Nos ayudan a ejercitar las habilidades y también a desarrollarlas.

Los recursos didácticos despiertan la motivación, la impulsan y crean un interés hacia

el contenido del mismo.

Evaluación. Los recursos didácticos nos permiten evaluar los conocimientos de los

alumnos en cada momento, ya que normalmente suelen contener una serie de

cuestiones sobre las que queremos que el alumno reflexione.

Nos proporcionan un entorno para la expresión del alumno. Como por ejemplo,

rellenar una ficha mediante una conversación en la que alumno y docente interactúan.

.

- Es un instrumento - Inciden en la transmisión educativa - Se conciben en relación con el aprendizaje - Afectan a la comunicación educativa Categorías/clasificaciones - Materiales y conceptuales. - Orales, escritos, audiovisuales

¿Qué Funciones desarrollan los recursos didácticos?

Características:

¿Qué es un recurso didáctico?

Page 143: modulo del numero y operaciones

143

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Como docentes, los recursos educativos nos permiten: • Tener como referente el manual del docente y el texto de grado al momento de programar. • Tener y conocer una propuesta de una secuencia al momento de programar. • Seleccionar mejor y con mayor precisión los contenidos a trabajar. • Orientar el diseño de las actividades de aprendizaje. • Proponer ejercicios complementarios a los realizados en el aula. • Orientar el proceso de la evaluación del aprendizaje. • Generar actitudes para la investigación-acción.

Los recursos educativos permiten a los estudiantes: • Despertar el interés por el aprendizaje. • Activar los procesos cognitivos, afectivos y sociales. • La información que brindan está relacionada con hechos y situaciones reales que son parte de la vida cotidiana. • Fijar los aprendizajes. • Estimular la imaginación y la capacidad de abstracción. • Ahorrar tiempo. • Estimular la participación activa y el trabajo en equipo. • Desarrollar la curiosidad y el emprendimiento.

Page 144: modulo del numero y operaciones

144

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Sabías que… Los materiales distribuidos por Secundaria propician el aprendizaje autónomo porque: Desarrollan autonomía, el sentido crítico, creativo, la capacidad para la resolución de problemas y la toma de decisiones; mediante un proceso reflexivo y continuo.

Las funciones de los recursos educativos

Es importante tener en cuenta que el uso de recursos educativostiene diferentes funciones

que, de una u otra manera, favorecenlos procesos de aprendizaje y enseñanza.

Las funciones de los recursos educativos se relacionan con etapasdel proceso de

aprendizaje.

Hoy en día, los recursos educativos se eligen y usan en función a lasnecesidades e intereses

de los estudiantes, ya que son ellos quienesmanipularán dicho material, en relación a las

capacidades que sebusca desarrollar. Es así que los estudiantes se convierten en

protagonistasy constructores de un aprendizaje más autónomo.

¿Cómo utilizar los recursos educativospara recuperar aprendizajes previos?

Todas las personas poseen algún tipo de experiencias, conocimientoso convicciones.

Considerar estos aprendizajes previos es elpunto de

partida para generar nuevos aprendizajes. Se

aprendemejor aquello que está relacionado con la propia

experiencia. Esasí que ciertos recursos educativos

posibilitan la recuperación yaprovechamiento de dichos

aprendizajes.

Es importante recordar que si consideramos que la labor

educativadebe centrarse en el rol protagónico de los

estudiantes, el rol deldocente será el de un mediador que

selecciona adecuada y oportunamentelos recursos a utilizar.

¿Cómo utilizar los recursos educativospara la construcción de aprendizajes?

El aprendizaje significativo implica que los estudiantes organicenla información sobre un

tema, teniendo en cuenta sus motivacionesy necesidades. Esto a la vez requiere de una

selección adecuaday pertinente de materiales que los ayuden a establecer relaciones

y conexiones entre aprendizajes previos y los nuevos. Losrecursos educativos juegan un rol

muy importante, ya que cuandoel material es seleccionado adecuadamente, sirve para

facilitar elestablecimiento de dichas conexiones y procesos que posibilitarán el aprendizaje

significativo.

¿Cómo utilizar los recursos educativospara promover el trabajo cooperativo?

Los seres humanos somos seres sociales por naturaleza.

Uno de los fines primordiales de la labor educativa es favorecer procesos de socialización

entre los estudiantes; procesos que enriquezcan sus vidas y los llenen de experiencias para

poder desenvolverse mejor en la sociedad, afrontando retos y desafíos a lo largo de la vida,

promoviendo una cultura de tolerancia y comprensión, de respeto a uno mismo y al otro.

Page 145: modulo del numero y operaciones

145

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Como docentes sabemos lo importante que esenseñar a trabajar en equipo; por tanto,

debemosaprovechar las posibilidades que nos brindanlos recursos educativos con los que

contamos ennuestra institución educativa.

En un primer momento, antes de la socialización, hay un espacioen el que el estudiante debe

realizar un trabajo individual. Es eneste lapso, que rescatamos la importancia del texto de

grado, yaque los temas propuestos siguen una secuencia y se presentan demanera clara

tanto para el docente como para los estudiantes. Luegode este primer momento de trabajo

individual y solo así, seráposible pasar a la segunda etapa que vendría a ser el socializar

lotrabajado, ya sea en grupos o en parejas. Esto vendría a ser lo quellamamos el trabajo

cooperativo, el cual tiene como característicabásica el aporte individual para el logro de una

meta común.

Tipos de recursos educativos

A continuación te presentamos los tipos de recursos educativos:

A. Materiales impresos y manuscritos: en este grupo encontramos libros, folletos,

revistas, periódicos, fascículos, atlas, mapas, planos, cartas, libros de actas y

documentos de archivo histórico, entre otros.

B. Materiales audiovisuales e informáticos: videos, CD, DVD, recursos

electrónicos, casetes grabados, diapositivas, transparencias, láminas, fotografías,

pinturas, disquetes y otros.

C. Material manipulativo: globos terráqueos, tableros interactivos, módulos didácticos,

módulos de laboratorio, juegos, colchonetas, pelotas, raquetas, instrumentos

musicales. Incluye piezas artesanales, reliquias, tejidos, minerales, etcétera.

D. Equipos: proyectos multimedia, retroproyector, televisor, videograbadora, DVD,

ecran, pizarra eléctrica, fotocopiadora.

Ejemplo:para el área de Matemática, si sabemos que eltema que trataremos (algunas teorías

o fórmulas que debenconocer nuestros estudiantes) es ya de por sí un pocotedioso,

recurramos a recursos como el equipo multimedia,proyectores y otros que agilizarán la

exposición. Se puedenintercalar los recursos, también podemos entregar a los

estudiantes,antes de la clase, una copia con algunos ejemplosnovedosos que se crearán para

que el tema se entienda mejor.

Page 146: modulo del numero y operaciones

146

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Organización de los recursos educativos producidos por Educación Secundaria

De los recursos entregados por MED a tu institución educativa

elabora una sesión de aprendizaje empleando dicho recurso y las

estrategias que emplearas para el logro de tu aprendizaje

esperado.

Page 147: modulo del numero y operaciones

147

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

LOS SIMULADORES VIRTUALES

Las simulaciones son estrategias que permiten promover en los estudiantes el desarrollo de modelos mentales sobre situaciones complejas y también realizar un uso activo de estrategias de resolución de problemas.

INDICADORES DE LOGRO

- Diseña sesiones de aprendizaje utilizando recursos TICs.

SESIÓN14

Recordando mi práctica docente

¿Qué propondrías para la generación de nuevos entornos de trabajo en matemática?

¿A través del mismo entorno como conectaríamos la enseñanza de la matemática con la realidad actual?

¿Qué promueven los simuladores digitales?

SIMULADORES VIRTUALES PARA LA SOLUCIÓN DE

SITUACIONES PROBLEMÁTICAS

¿Qué son simuladores virtuales?

En tu programación curricular integraste las TIC.

Tu institución educativa cuenta con Aula de innovaciones Pedagógicas,

¿cuantas veces las empleaste para desarrollar tus actividades de

aprendizaje? ¿Qué estrategia empleaste durante su empleo?

Page 148: modulo del numero y operaciones

148

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

LOS MANIPULADORES VIRTUALES

Los Manipuladores Virtuales son los objetos visuales que ayudan a ilustrar las relaciones matemáticas y sus aplicaciones. Estos manipuladores permiten a los estudiantes para examinar visualmente, explorar y desarrollar conceptos. Manipuladores Virtuales, que se definen como representaciones digitales de la realidad

posibilitadas por los computadores, y que el estudiante puede también manipular con el

mismo objetivo de los primeros.

¿Para qué sirve?

La facilidad de manipulación de los objetos en el ordenador brinda a los niños un

aprendizaje basado en la experiencia y la intuición.

Ayudan a los estudiantes a construir, fortalecer y conectar varias representaciones de

ideas matemáticas al tiempo que aumentan la variedad de problemas sobre los que

pueden pensar y resolver.

Ofrecen a los estudiantes objetos para reflexionar y hablar. Les suministran un lenguaje

adicional para comunicar ideas matemáticas sobre sus percepciones visuales, táctiles y

espaciales.

Ofrecen a los estudiantes para pasar del nivel concreto al abstracto e incrementar su

capacidad para adquirir habilidades y conceptos al ofrecer una representación física,

tangible, móvil, armable y desarmable, que permite visualizar conceptos matemáticos de

manera concreta

Beneficios Matemáticos

Hacer conscientes ideas y procesos matemáticos en los estudiantes.

Permitir a los estudiantes razonar mientras manipulan en el computador gráficas o figuras

dinámicas y las expresiones matemáticas relacionadas con éstas.

Explorar, gracias a la flexibilidad de los manipulables, las figuras geométricas de maneras

que no son posibles con figuras físicas (cambios en forma o tamaño, cambios generales

o particulares, etc.).

Facilitar la exploración rápida de los cambios en las expresiones matemáticas con el

simple movimiento del ratón, en contraposición de lo que sucede cuando se utiliza lápiz y

papel.

Visualizar los efectos que tiene en una expresión matemática, modificar otra. Por

ejemplo, cambiar el valor de un parámetro de una ecuación y ver cómo la gráfica

resultante cambia de forma.

Acelerar la exposición a un gran número de problemas y ofrecer retroalimentación

inmediata.

Page 149: modulo del numero y operaciones

149

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Relacionar con facilidad símbolos matemáticos, ya sea con datos del mundo real o con

simulaciones de fenómenos corrientes, lo que le da significado a las matemáticas.

Obtener retroalimentación inmediata cuando los estudiantes generan expresiones

matemáticas incorrectas.

Realizar procesos de composición y descomposición de formas (realizar unidades

compuestas, descomponer un hexágono en otras formas cómo triángulos, etc.).

Conectar el aprendizaje Geométrico/Espacial al aprendizaje numérico, relacionando

dinámicamente ideas y procesos numéricos con las ideas de los estudiantes sobre

formas y espacio.

Permitir que se detenga la aplicación en cualquier momento del proceso si se requiere

tiempo para pensar sobre éste. Además, puede repetirse si se desea ver nuevamente

parte de esta o ensayar otras respuestas.

Para aprender y comprender las matemáticas, en todos los niveles, el estudiante necesita

involucrarse. Como se dice, la matemática no es un deporte para espectadores. Actualmente

muchas de las estrategias de enseñanza omiten involucrar activamente a los estudiantes.

Una manera de aliviar este problema es a través del uso de manipuladores, esto es, objetos

físicos que ayudan a los estudiantes a visualizar relaciones y aplicaciones. Ahora, gracias a

las computadoras, podemos lograr estos mismos objetivos a través de ambientes educativos

virtuales.

Hacen falta buenos manipuladores virtuales matemáticos y herramientas educativas

interactivas para el nivel educativo básico y medio. En Utah StateUniversity desarrolla

herramientas y editores matemáticos en Java que enriquecen la enseñanza matemática

interactiva. El uso de Java como lenguaje de programación permite que nuestras

herramientas sean accesibles a través de la Web y en diversas plataformas.

Esta biblioteca puede ser utilizada libremente por profesores que desean enriquecer sus

clases de matemáticas. Los materiales también sirven para entrenar futuros profesores. La

biblioteca es extendida y refinada constantemente a través de eNLVM, que es un proyecto

que busca desarrollar unidades interactivas para la enseñanza de las matemáticas.

BIBLIOTECA NACIONAL DE MANIPULADORES VIRTUALES DE LA UTAH STATE

UNIVERSITY (http://nlvm.usu.edu/es/nav/vlibrary.html)

Page 150: modulo del numero y operaciones

150

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Es una biblioteca digital que contiene applets en Java para enseñar matemáticas (para

enseñanza básica y media). Los contenidos se clasifican por áreas de aprendizaje (números y

operaciones, álgebra, geometría o medidas, análisis de datos, probabilidad) y por niveles

educativos.

En Perú Ministerio de Educación a través de su portal educativo PERU EDUCA, proporciona

una cantidad de recursos que ayudan al desarrollo de sesiones de aprendizaje mediante el

empleo de las aulas de Innovaciones Pedagógicas.

La Portal Educativo Perú Educa

(http://www.perueduca.edu.pe/web/visitante/inicio) selecciona

un recurso para elaborar una sesión de aprendizaje, de acuerdo

al grado que enseñas.

Page 151: modulo del numero y operaciones

151

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

REGLETAS DE CUISENAIRE

Este material crea do por el belga George Cuisenaire es un material de ayuda didáctica,

destinado básicamente a que los niños y niñas comprendan la noción de número, realicen

INDICADORES DE LOGRO

- Elabora materiales educativos para el área

- Utiliza recursos locales para la elaboración de materiales educativos

SESIÓN15

Recordando mi práctica docente

¿Elaboro materiales educativos en mi práctica pedagógica?

¿Utilizo los recursos de mi comunidad?

ELABORACIÓN Y MANIPULACIÓN DE MATERIALES

EDUCATIVOS PARA EL ÁREA DE MATEMÁTICA

UTILIZANDO RECURSOS Y ELEMENTOS DE LA

LOCALIDAD

En nuestro continuo convivir con nuestros estudiantes,

que materiales has logrado elaborar de manera que las

sesiones se vuelvan activas, con que recursos

elaboraste dichos materiales, los recursos son de la

localidad, elaboraste alguna guía que permita a otros

docentes utilizarlos.

Page 152: modulo del numero y operaciones

152

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

composición y descomposición de los números e iniciarles en las actividades de cálculo. El

material consta de un conjunto de regletas de diez tamaños y colores diferentes. La longitud

de las mismas va de 1 a 10 cm.

CONFORMACIÓN

La regleta blanca, con 1 cm. de longitud, representa al número 1.

La regleta roja, con 2 cm. representa al número 2.

La regleta verde claro, con 3 cm. representa al número 3.

La regleta rosa, con 4 cm. representa al número 4.

La regleta amarilla, con 5 cm. representa al número 5.

La regleta verde oscuro, con 6 cm. representa al número 6.

La regleta negra, con 7 cm. representa al número 7.

La regleta marrón, con 8 cm. representa al número 8.

La regleta azul, con 9 cm. representa al número 9.

La regleta naranja, con 10 cm. representa al número 10.

Algunos Objetivos a conseguir

Page 153: modulo del numero y operaciones

153

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

1. Establecer equivalencias.

2. Formar la serie de numeración de 1 a 10.

3. Comprobar la relación de inclusión de la serie numérica.

4. implementar las relaciones de orden “mayor que”, “menor que”, igual a, de los

números basándose en la comparación de longitudes.

5. Realizar seriaciones.

6. Introducir la composición y descomposición de números.

7. Iniciar las operaciones suma y resta.

8. Comprobar empíricamente las propiedades conmutativa y asociativa de la suma.

9. Iniciar los conceptos sobre propiedades de los números.

EMPLEANDO LAS REGLETAS

Amigo docente, puede iniciar al niño en las relaciones de orden con las longitudes de cada

una de estas regletas. Es de anotar que este concepto para longitud es apropiado en cuanto

la relación de medir en una unidad dada es lo preciso, en este momento puede realizar la

medida con la blanca. Al mismo tiempo se dará cuenta de la equivalencia entre dos

longitudes.

Ordena las regletas desde la blanca hasta…

La seriación interviene en el niño de tal forma que la lógica es fundamental, esto lo obliga a

realizar comparaciones entre cada una de las regletas a partir de la menor hacia la mayor.

Se puede estudiar la propiedad conmutativa sumando la regleta de color amarillo mas la

regleta de color azul, cuya longitud es la misma al sumar las regletas de color azul y la de

color amarillo.

El apartado anterior se puede llevar en otro sentido a la permutación (realizar cambios).

Page 154: modulo del numero y operaciones

154

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

De igual forma la aplicación de la propiedad transitiva donde el estudiante explica que si: la

regleta blanca es menor que la amarilla y la amarilla es menor que la azul, entonces, la

regleta blanca es menor que la regleta azul.

EL CUBO DE SOMA

El Cubo Soma, formado por los seis tetracubos, con él se puede realizar una gran colección

de figuras, desde formas geométricas, hasta figuras de animales, muebles, arquitectónicas.

El Cubo Soma lo inventó PietHein, un poeta, matemático Danés en 1936. No fue un puzle

demasiado popular hasta 1969 cuando Parker Bros lo empaquetó como “La respuesta 3D al

Tangram”.

CONFORMACIÓN

Formado por 7 piezas de diferente forma que permiten una variedad enorme en cuanto a

formación de figuras en volumen, con ellas se forma un cubo como figura principal.

Objetivos a conseguir:

1. Establecer equivalencias entre volúmenes.

2. Calcular áreas laterales.

3. Realizar diferentes clases de cuerpos

4. Realizar ubicaciones espaciales

EMPLEANDO EL CUBO DE SOMA

Page 155: modulo del numero y operaciones

155

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Con las piezas del cubo Soma se pueden crear cuerpos con diseños geométricos más o

menos interesantes o incluso diseños figurativos. Hay recopilaciones con miles de estas

figuras.

Las siete figuras del cubo de Soma se pueden identificar con un número o con una letra:

Figuras tomadas de: http://www.aulamatematica.com/cubosoma/

En la página http://www.fam-bundgaard.dk/SOMA/FIGURES/FIGURES.HTM se encuentran

una serie de figuras, con las cuales se puede colocar retos a los estudiantes para realizarlas

y se le indica que halle, el área de la base de cada figura y otras preguntas que se refieran a

este tipo de cuerpos.

Page 156: modulo del numero y operaciones

156

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

EL TANGRAM

El tangram es un rompecabezas formado por un

conjunto de piezas que se obtienen al fraccionar

una figura “plana” y que pueden acoplarse de

diferentes maneras para construir distintas figuras

geométricas.

CONFORMACIÓN

1 cuadrado

5 triángulos (rectángulos isósceles):

2 triángulos "grandes" (los catetos miden el doble de la medida del lado del cuadrado).

1 triángulo "mediano" (la hipotenusa mide el doble de la medida del lado del

cuadrado).

2 triángulos "pequeños"(los catetos son congruentes a los lados del cuadrado).

1 paralelogramo.

Al unirlos, forman un cuadrado.

Objetivos a conseguir:

1. Establecer equivalencias entre áreas.

2. Calcular áreas.

3. Realizar diferentes clases de figuras.

4. Realizar cubrimientos.

5. Calcular y obtener fracciones

EMPLEANDO EL TANGRAM

Con las piezas del TANGRAM se pueden crear cuerpos con diseños geométricos más o

menos interesantes o incluso diseños figurativos. Hay recopilaciones con miles de estas

figuras.

Las figuras anteriores se tomaron de:

http://images.google.com.co/imgres?imgurl=http://www.cete-

sonora.gob.mx/recursos/educativos/ref_math/descartes_2008/Esp/taller_de_matemati

cas/rompecabezas.

También existen otras figuras como las siguientes:

Page 157: modulo del numero y operaciones

157

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Las figuras anteriores se tomaron de:

http://www1.istockphoto.com/file_thumbview_approve/3816019/2/istockphoto_3816019

-tangram-people-set-009.jpg

Las figuras anteriores sirven como retos para que los niños y niñas las construyan, con

ellas se trabaja el concepto de escala y a partir de ellas elaborar cuentos.

EL GEOPLANO

Consiste en un tablero cuadrado generalmente

cuadriculado y en cada vértice se coloca un clavo

de forma que se colocan bandas de caucho entre

ellos para introducir conceptos geométricos

generalmente.

Objetivos a conseguir:

1. Establecer equivalencias entre áreas.

2. Calcular áreas.

3. Realizar diferentes clases de polígonos.

4. Realizar recubrimientos.

5. Calcular y obtener fracciones.

6. Realizar simetrías.

7. Realizar semejanzas y congruencias

EMPLEANDO EL GEOPLANO

El geoplano es una herramienta que permite observar las diferentes relaciones de los

polígonos y figuras planas, además, le admite realizar mostraciones de diversos teoremas. Le

permite en forma clara y precisa calcular el área de diferentes figuras geométricas, debido a

su forma cuadriculada. La multivalencia del material ayuda a la ubicación de puntos en el

plano cartesiano, también permite conceptualizar sobre elementos topológicos como interior,

frontera, exterior.

Page 158: modulo del numero y operaciones

158

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

CUBOS MULTIBASE

Los bloques multibase están compuestos por una determinada cantidad de cubos unitarios

(pequeños), barras, placas y bloques (cubos grandes). Se utilizan para comprender la

estructura del sistema de numeración decimal y sus operaciones básicas.

CONFORMACIÓN

Constan de 128 piezas

1 cubo unidad de mil

10 placas de centena

10 barras de decena

1 cubo base 2

2 placas de 4 unidades c/u

4 barras de 2 unidades c/u

100 cubitos de unidades

Objetivos a conseguir:

1. Representación de números en sistema decimal

2. Observar el cambio de valor posicional (unidades, decenas, centenas etc.)

3. Realizar sumas y restas

4. Representar los números naturales

5. Establecer equivalencias y representación de números decimales.

EMPLEANDO CUBOS MULTIBASE

Se utilizan para representar números naturales, establecer equivalencias y representar

números decimales.

Inicialmente, se utilizan los cubos que representan las unidades (cubos pequeños), números

de un dígito hasta llegar al 9, se adiciona una unidad y se cambian los 10 cubos por una

barra. Luego, se procede a realizar representaciones con cubos y barras hasta el número 99.

Se adiciona un cubo para realizar el cambio del número 99 al 100, el cual se representa

mediante una placa. El número 99 se representa utilizando 9 cubos y 9 barras y, el número

100, se puede representar inicialmente con 9 barras y 10 cubos, para luego introducir el

cambio de los 10 cubos por una barra, y así establecer la equivalencia entre 10 barras y 1

placa. Finalmente, introduzca el número mil. Hágalo con las placas hasta obtener 10 y realice

el cambio por un cubo que represente el número mil y establezca las equivalencias

correspondientes entre las 10 placas y el cubo.yioi

Los bloques multibase permiten resolver y representar las cuatro operaciones fundamentales:

suma, resta, multiplicación y división. Se pueden resolver operaciones con números naturales

y decimales.

Page 159: modulo del numero y operaciones

159

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Los decimales se trabajan cambiando la unidad de base. Es decir, si en las operaciones

básicas normales la unidad básica era el cubo pequeño, ahora se puede considerar la placa

como la unidad, entonces las barras representan los décimos y los cubos los centésimos.

Si se desea trabajar con milésimos se debe variar la unidad básica. Entonces, el bloque

representa la unidad, las placas los décimos, las barras los centésimos y los cubos los

milésimos.

LOS MULTICUBOS

Es un conjunto formado por 125 cubos, de arista o lado igual a 2.5 cts. Los multicubos

permiten el desarrollo del pensamiento matemático. En cuanto a

lo espacial y métrico son muy útiles para la comprensión de:

perímetro, área lateral, espacio tridimensional, el concepto de

volumen y su conservación.

Objetivos a conseguir:

Iniciar al estudiante en los conceptos intuitivos de: punto,

recta, vértice, arista, cara, plano.

Calcular áreas laterales de cuerpos

Calcular el volumen de un cuerpo

Construir las vistas de un cuerpo desde diferentes posiciones

Construir prismas

Iniciar al estudiante en el concepto de potencia

EMPLEANDO LOS MULTICUBOS

Este material permite obtener relaciones espaciales entre

diferentes sólidos, realizar seriaciones, obtener vistas

laterales de un cuerpo. Por ejemplo se le pide al estudiante

que observe las siguientes imágenes correspondientes a

escaleras construidas con 1, 2,3 escalones y se le indica

que realice la secuencia para el escalón 6. Además se le

pregunta cuántos cubos utilizó, cual es el volumen, etc. Este tipo de trabajo enriquece los

pensamientos espacial, numérico y métrico.

LOS BLOQUES LÓGICOS

Los bloques lógicos constan de cuarenta y ocho piezas sólidas.

Cada pieza se define por cuatro variables: color, forma, tamaño y

grosor. Este material permite establecer un entorno de

aprendizaje lógico-matemático, ya que posibilita la enseñanza

Page 160: modulo del numero y operaciones

160

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

lógica.

Objetivos a conseguir:

1. Asignar los valores de verdad a proposiciones.

2. Construir las tablas de verdad

3. Construir proposiciones simples y compuestas

4. Pronosticar y verificar proposiciones con sentido lógico

5. Iniciar al estudiante en la teoría de conjuntos

6. Aplicar la unión e intersección de conjuntos

EMPLEANDO LOS BLOQUES LÓGICOS

Este material es propicio para iniciar a los niños y niñas en el razonamiento lógico, al igual

que le permite negar proposiciones y construir las tablas de verdad.

LA TORTA FRACCIONARIA

Este material consiste en 12 círculos iguales, con un radio

aproximado de 7.5 cts. El primer círculo es compacto, el que

sigue está dividido en dos medios, el siguiente en tres tercios

y así sucesivamente hasta el último que está dividido en doce

doceavo.

Objetivos a conseguir:

1. Identificar la unidad (círculo compacto)

2. Realizar construcciones de fracciones de las partes al todo

3. Realizar sumas y restas de fracciones

4. Hallar fracciones equivalentes

EMPLEANDO LAS TORTAS FRACCIONARIAS

Son propicias para trabajar los diferentes tipos de fracciones: homogéneas, heterogéneas,

propias, la relación de equivalencia entre fracciones.

EL TRIÁNGULO DE PASCAL

El Triángulo de Pascal está formado por N cubos, con caras de diferentes colores, favorecen

el desarrollo de pensamiento variacional, aleatorio y numérico. Cada cubo está marcado con

un número entero.

Page 161: modulo del numero y operaciones

161

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Objetivos a conseguir:

1. Obtener los números naturales.

2. Asignar probabilidades en distribuciones

binomiales.

3. Obtener los números primos, pares,

triangulares, cuadrados, hexagonales.

4. Obtener diferentes series y sucesiones como la de Fibonacci.

5. Obtener fractales.

EMPLEANDO EL TRIÁNGULO DE PASCAL

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

Recordemos en primer lugar el procedimiento seguido para construir el triángulo aritmético o

de Pascal.

Numeramos las filas del triángulo comenzando por 0, es decir fila 0, fila 1, fila 2, etc.

La fila "5" contiene 5 + 1 elementos, es decir, 6 elementos, el primero y el último de los cuales

toman el valor 1, mientras que los demás elementos se obtienen sumando los dos elementos

de la fila anterior entre los que se encuentra situado.

Page 162: modulo del numero y operaciones

162

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

En este triángulo se pueden ubicar los números naturales 1, 2, 3, 4,…, los múltiplos de 2, los

impares, etc., simplemente se realizan las ubicaciones y se colorean.

¿Cuáles son los estándares para la enseñanza de la Matemática?

Las competencias Matemáticas, elaboraste una análisis, convergencia y

divergencia en relación a tu desarrollo profesional y desempeño en el aula.

INDICADORES DE LOGRO

- Analiza Standards for School Mathematics NCTM,

SESIÓN16

Recordando mi práctica docente

¿Cómo sabes que lo que enseñas es de calidad? ¿Qué es un estándar?

PRINCIPLES AND STANDARDS FOR SCHOOL

MATHEMATICS NCTM, COMPETENCIAS EN EL VI Y VII

CICLO DE LA EBR, ANÁLISIS, CONVERGENCIAS Y

DIVERGENCIAS

De los materiales construidos con recursos de tu localidad, selecciona

uno de ellos y elabora una sesión de aprendizaje donde se muestren

las estrategias que empleaste para mejorar los procesos de

aprendizaje de tus estudiantes

Page 163: modulo del numero y operaciones

163

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

ESTÁNDARES PARA LA ENSEÑANZA DE LAS MATEMÁTICAS

Al reflexionar sobre qué caracteriza a un buen profesor de matemáticas o sobrecómo conducir

una clase de matemáticas, es útil

analizar algunos documentospreparados

sobre esta problemática por

asociaciones de profesores. Una de

estasasociaciones, de gran prestigio,

que incluye también investigadores en

educación matemática es el National

Council of Teachers of Mathematics

(N.C.T.M).

Dicha asociación elaboró en 1991 un documento titulado Estándares profesionalespara la

enseñanza de las matemáticas (N.C.T.M. 1991) con el fin de que fuese unareferencia para

orientar la labor de los profesores de matemáticas en la década de los 90.A continuación

sintetizamos dicho documento.

Supuestos de los estándares

3. El fin de la enseñanza de las matemáticas es ayudar a los estudiantes a

desarrollarsu capacidad matemática:

El currículo matemático propuesto en los "Estándares" trata de fomentar elrazonamiento

matemático, la comunicación, la resolución de problemas y elestablecimiento de

conexiones entre las distintas partes de las matemáticas y lasrestantes disciplinas. Para

ello se sugiere que:

Los profesores deben ayudar a cada estudiante para que desarrolle su comprensión

conceptual y procedimental de cada núcleo conceptual matemático: números,

operaciones, geometría, medición, estadística, probabilidad, funciones y álgebra y los

relacione entre sí.

Deben tratar de que todos los estudiantes formulen y resuelvan una amplia variedad de

problemas, hagan conjeturas, den argumentos, validen soluciones, y evalúen si las

afirmaciones matemáticas son o no plausibles.

Page 164: modulo del numero y operaciones

164

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Deben estimular la disposición de los estudiantes para usar e interesarse por las

matemáticas, para apreciar su belleza y utilidad, y comprender a los que se quedan

atascados o despistados.

Deben ayudar a los estudiantes a reconocer que en el trabajo matemático llegamos a

veces a callejones sin salida y animarles a perseverar cuando se enfrentan con

problemas intrincados, así como a desarrollar auto confianza e interés.

4. Lo que los estudiantes aprenden está fundamentalmente conectado con el

cómo lo aprenden

Las oportunidades de los estudiantes para aprender matemáticas dependen del entorno y

del tipo de tareas y discurso en que participan. Lo que los estudiantes aprenden -sobre

conceptos y procedimientos

particulares así como su capacidad

de razonamiento - depende de

cómo se implican en la actividad en

clase de matemáticas.

Su actitud hacia las matemáticas

también queda marcada por tales

experiencias. Por consiguiente,

hemos de cuidar no sólo el

currículo, sino también la

metodología de enseñanza si queremos desarrollar la capacidad matemática de los

estudiantes.

5. Todos los estudiantes pueden aprender a pensar matemáticamente

Cada estudiante puede -y debe- aprender a razonar y resolver problemas,

hacerconexiones a través de una rica red de tópicos y experiencias, y a comunicar

ideasmatemáticas. Aunque los objetivos tales como hacer conjeturas, argumentar sobre

lasmatemáticas usando la evidencia matemática, formular y resolver problemas

parezcancomplejos, no están destinados sólo a los chicos "brillantes" o

"capacesmatemáticamente".

6. La enseñanza es una práctica compleja y por tanto no reducible a recetas o

prescripciones

La enseñanza de las matemáticas se apoya en el conocimiento de varios dominios:

- conocimiento general de las matemáticas,

- de cómo los estudiantes aprenden matemáticas en general,

- del contexto de la clase, la escuela y la sociedad,

- la enseñanza es específica del contexto.

Page 165: modulo del numero y operaciones

165

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Ejemplo

El conocimiento teórico general sobre el desarrollo del adolescente, puede sóloparcialmente

informar una decisión sobre estudiantes particulares aprendiendo un conceptomatemático

particular en un contexto dado.

Los profesores combinan el conocimiento procedente de estos dominios diferentespara

decidir cómo responder a la pregunta de un estudiante, cómo representar una

ideamatemática particular, hasta cuándo proseguir con la discusión de un problema, o

quétarea usar para introducir a los estudiantes en un tópico nuevo. Estas decisionesdependen

de una variedad de factores antes los cuales el profesor debe encontrar unequilibrio

La buena enseñanza depende de una serie de consideraciones y demanda que los

profesores razonen de un modo profesional dentro de contextos particulares de trabajo.

Los estándares para la enseñanza de las matemáticas están diseñados como una ayuda en

tales razonamientos y decisiones resaltando aspectos cruciales para la creación del tipo de

prácticas de enseñanza que apoyan los objetivos de aprendizaje. Se agrupan en cuatro

categorías: tareas, discurso del profesor y de los estudiantes, entorno y análisis

a) Tareas: Las tareas en que se implican los estudiantes - proyectos, problemas,

construcciones, aplicaciones, ejercicios, etc. - y los materiales con los que trabajan

enmarcan y centran sus oportunidades para

aprender las matemáticas en la escuela.

Dichas tareas:

Proporcionan el estímulo para que los

estudiantes piensen sobre conceptos y

procedimientos particulares, sus

conexiones con otras ideas matemáticas, y

sus aplicaciones a contextos del mundo

real.

Pueden ayudar a los estudiantes a desarrollar destrezas en el contexto de su utilidad.

Expresan lo que son las matemáticas y lo que implica la actividad matemática. Pueden

dar una visión de las matemáticas como un dominio de indagación valioso y atrayente.

Requieren que los estudiantes razonen y comuniquen matemáticamente y promueven

su capacidad para resolver problemas y para hacer conexiones.

¿Por qué enseñar bien las matemáticas es un compromiso complejo, que no se puedereducir a un conjunto de recetas?

Page 166: modulo del numero y operaciones

166

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Una responsabilidad central del profesor consiste en seleccionar y desarrollar

tareasvaliosas y materiales que creen oportunidades para que los estudiantes desarrollen

sucomprensión matemática, competencias, intereses y disposiciones.

.

b) Discurso: El discurso de una clase - los modos de

representar, pensar, hablar, ponerse de acuerdo o en

desacuerdo- es central para que los estudiantes

comprendan que las matemáticas como un dominio de

investigación humana con modos característicos de

conocimiento.

El discurso incluye el modo en que las ideas son intercambiadas y lo que implicanlas

ideas: Es conformado por las tareas en las que los estudiantes se comprometen y

lanaturaleza del entorno de aprendizaje; también influye sobre las mismas.

c) Entorno: El profesor de matemáticas es

responsable de crear un entorno intelectual en que

la norma consista en un serio compromiso hacia el

pensamiento matemático, para que el entorno de la

clase sea el fundamento de lo que los alumnos

aprenden. Más que un entorno físico, con bancos,

cuadernos y posters, el entorno de la clase forma un

En un grupo de estudiantes, el profesor quiere trabajar las diferentes unidades de medida de longitud. Compara los dos tipos de tarea siguientes, desde el punto de vista de las oportunidades que proporcionan para aprender matemáticas. a. Realizar ejercicios de transformación y cálculo con diferentes unidades de medida, por ejemplo, pasando de metros a centímetros o sumando medidas expresadas en diferentes unidades y transformándolas a una unidad común. b. Se da a los alumnos reglas de 30 cm. de longitud y se les pide medir el perímetro de la clase. Los alumnos pueden usar si desean técnicas auxiliares, por ejemplo, contar el número de pasos que hay que dar alrededor de la clase, contar el número de baldosas cuadradas completas a lo largo del perímetro, midiendo los trozos de baldosas no completas, usar un carrete de hilo como ayuda, etc. El profesor no da indicaciones sobre cómo trabajar, aunque proporciona los recursos necesarios. Finalizada la tarea se produce una comparación de estrategias y soluciones.

Da una lista de todos los tipos de actividades en un aula de matemáticas que puedanconsiderarse como parte del discurso. ¿Quién habla?, ¿Sobre qué?, ¿De qué manera? ¿Quéescriben las personas, qué registran y por qué? ¿Qué cuestiones son importantes? ¿Cómose intercambian las ideas? ¿Qué ideas y modos de pensamiento son valorados? ¿Quiéndetermina cuándo finalizar una discusión?

Page 167: modulo del numero y operaciones

167

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

currículo oculto con mensajes sobre lo que cuenta en el aprendizaje y la actividad

matemática: ¿Pulcritud?, ¿Velocidad?, ¿Precisión? ¿Escuchar bien? ¿Ser capaz de

justificar una solución? ¿Trabajar independientemente? Si deseamos que los estudiantes

aprendan a hacer conjeturas, experimenten con aproximaciones alternativas para

resolver problemas, y construir y responder a los argumentos de los demás, entonces la

creación de un entorno que estimule este tipo de actividades es esencial.

d) Análisis: Los profesores deben ser responsables de analizar su práctica docente, para

intentar comprender tanto como sea posible los efectos de la clase de matemáticas sobre

cada estudiante. El profesor debe llevar un registro sobre su clase usando una variedad

de estrategias y centrando la atención sobre

una amplia matriz de dimensiones de la

competencia matemática, como se indica en

los Estándares de Currículo y Evaluación de

las Matemáticas Escolares. Lo que los

profesores aprenden de esto debería ser una

fuente primaria de información para la

planificación y mejora de la instrucción tanto a

corto como a largo plazo. Algunas posibles

preguntas son:

a) ¿Uso buenas tareas, es adecuado el discurso y el entorno de trabajo para estimular el

desarrollo de la capacidad y el conocimiento matemático de los estudiantes?

b) ¿Qué parecen comprender bien los estudiantes, y qué sólo parcialmente?

c) ¿Qué conexiones parece que están haciendo?

d) ¿Qué disposición matemática parecen que están desarrollando?

e) ¿Cómo trabaja el grupo conjuntamente como una comunidad de aprendizaje dando

sentido a las matemáticas?

Teniendo en cuenta los

estándares para la enseñanza

de la Matemática, elabora una

sesión de aprendizaje.

Page 168: modulo del numero y operaciones

168

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

PISA

PISA evalúa a estudiantes de 15 años,

independientemente de la modalidad, gradoo ciclo que

estén cursando, en capacidades relacionadas con la

comprensión lectora, matemática y ciencia. PISA evalúa

los resultados que obtienen los sistemas educativosal

INDICADORES DE LOGRO

- Analiza los resultados de las últimas evaluaciones PISA

SESIÓN17

Recordando mi práctica docente

¿Qué es la Evaluación Pisa?

¿Cuál es el objetivo principal de Pisa?

¿Pisa evalúa más allá de lo que enseña en el currículo escolar?

¿Quién coordina Pisa a nivel internacional?

¿Qué países participan?

¿Cada cuánto tiempo evalúa Pisa?

¿Cuántas veces ha evaluado Pisa?

PISA. MARCO TEÓRICO. ANÁLISIS DE RESULTADOS

DE LAS ÚLTIMAS EVALUACIONES

¿Qué es PISA?

En tu institución educativa, se aplicó la evaluación PISA a tus

estudiantes?

¿Conoces los resultados de la evaluación PISA de tus estudiantes?

¿En que te ayuda los resultados de la evaluación PISA?

Page 169: modulo del numero y operaciones

169

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

adecuar los aprendizajes a las necesidades del mundo moderno.

¿Qué es la evaluación PISA?

El Programa para la Evaluación Internacional de Estudiantes (PISA, por sus siglas en inglés

Programmefor International StudentAssessment) tiene por objeto evaluar hasta qué punto los

estudiantes próximos aconcluir su educación obligatoria han adquirido algunos de los

conocimientos y habilidades necesariospara la participación plena en la sociedad del saber.

La evaluación mira hacia adelante, se centra másen la capacidad de los jóvenes de utilizar

sus conocimientos y sus habilidades para hacer frente a losdesafíos de la vida real, que en

saber hasta qué punto dominan un programa escolar concreto. Además,provee información

sobre el contexto personal, familiar y escolar de los estudiantes. Esta orientación refleja un

cambio en los objetivos y propósitos de los programas, que cada vez se ocupan más de lo

quepueden hacer los alumnos con lo que aprenden en la escuela, en vez de limitarse a ver si

son capaces dereproducir lo que han aprendido. Es importante destacar que PISA ha sido

concebido como unaherramienta para ofrecer información abundante y detallada que permita

a los países participantesadoptar las decisiones y políticas públicas necesarias para mejorar

los niveles educativos.

¿Cuál es el objetivo principal de PISA?

Conocer el nivel de habilidades necesarias que han adquirido los estudiantes para

participarplenamente en la sociedad moderna, centrándose en dominios claves como

Comprensión lectora, Matemática y Ciencias. Mide si los estudiantes tienen la capacidad de

reproducir lo que han aprendido,de transferir sus conocimientos y aplicarlos en nuevos

contextos académicos y no académicos, deidentificar si son capaces de analizar, razonar y

comunicar sus ideas efectivamente, y si tienen lacapacidad de seguir aprendiendo durante

toda la vida. Para PISA, esos dominios están definidos como competencia (literacy) lectora,

matemática o científica.

¿PISA evalúa más allá de lo que se

enseña en el currículo escolar?

En efecto, PISA se centra en medir la

capacidad de los jóvenes para usar su

conocimiento y sus destrezaspara afrontar

los retos de la vida real en las sociedades

modernas; más que determinar lo que

sedomina de un currículo escolar. Bajo esta perspectiva de competencias, PISA se

interesa en el repertoriode conocimientos y habilidades adquirido tanto en las

Page 170: modulo del numero y operaciones

170

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

escuelas como fuera de ellas y en el potencialpara reflexionar y usar este repertorio

en situaciones o escenarios diversos.

¿Quién coordina PISA a nivel internacional?

La OCDE es la instancia que lidera la organización e implementación de PISA. Para cada

aplicación dePISA, la OCDE contrata por concurso a un conjunto de instituciones

especializadas en evaluación paraque coordinen el diseño y la implementación del proyecto.

¿Qué países participan?

Participan todos los países miembros de

la OCDE, así comovarios países

asociados que lo solicitenson miembros

de la OCDE solicitanparticipación en cada

ciclo evaluativo

¿Cada cuánto tiempo evalúa PISA?

PISA tiene una periodicidad de tres años,

y si bien en cada ciclo evalúa las tres

áreas (Comprensión lectora, Matemática

y Ciencias), solo una deestas áreas es la que profundiza.

¿Cuántas veces ha evaluado PISA?

Hasta el momento, se han realizado cuatro evaluacionesPISA: 2000, 2003, 2006 y 2009.

En cada una de estas evaluaciones de PISA se profundizóen un área concreta el 2000:

Comprensión lectora, en el 2003 Matemática en el 2006: Ciencias, y en el 2009

Comprensión lectora

Esto quiere decir que la mayor cantidad de preguntas en la prueba son del área que se

profundiza.OCDE está preparando PISA 2012.

¿Todos los estudiantes participan en la prueba PISA?

No. Los estudiantes son seleccionados a partir de una muestra aleatoria de escuelas

públicas y privadas.

Son elegidos en función de su edad (entre 15 años y tres meses y 16 años y dos meses

al principio de laevaluación) y no del grado escolar en el que se encuentran.

Page 171: modulo del numero y operaciones

171

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

Países participantes

PISA 2000 PISA 2003 PISA 2006 PISA 2009

43 países Argentina Brasil Chile México* Perú

41 países Brasil México Uruguay

57 países Argentina Brasil Chile México Colombia Uruguay

65 países Argentina Brasil Chile* México * Perú Colombia Panamá Uruguay

*Países miembros de la OCDE

PISA EN EL PERÚ

La participación de nuestro país en PISA

2009 permitirá conocer en qué medida ha

variado elpuntaje y la proporción de

estudiantes ubicados en cada uno de los

niveles de desempeño de laescala de

comprensión lectora, entre los casi ocho

años que median entre las dos aplicaciones

de laevaluación PISA en nuestro país (2001

y 2009). Así mismo permitirá evidenciar los

resultadosobtenidos por los estudiantes

peruanos en las tres competencias

evaluadas en comparación conaquellos

logrados por los estudiantes del resto de países participantes, especialmente con

aquellospaíses similares al nuestro. PISA también proveerá información sobre los factores

escolares yextraescolares que están asociados al desempeño de los estudiantes. Esta

información, sumada aotras, proporcionará un insumo fundamental para la toma de

decisiones de política educativa.

En Perú ¿quién coordina PISA?

La Unidad de Medición de la Calidad Educativa (UMC) del Ministerio de Educación es la

entidadresponsable de coordinar la aplicación de la evaluación PISA. La UMC es la instancia

técnica delMinisterio de Educación, responsable de desarrollar el Sistema Nacional de

Evaluación del rendimientoestudiantil y de brindar información relevante a las instancias de

decisión de política educativa, a lacomunidad educativa y a la sociedad en general sobre

estos resultados.

Países

latinoamericanos

Page 172: modulo del numero y operaciones

172

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

La UMC coordinó la participación del Perú en los ciclos 2000+ y 2009 de PISA. Actualmente,

nuestro país ha confirmado su participación en el ciclo 2012 (cuyo énfasis será la

competencia matemática), y se encuentra preparando dicha participación.

Niveles de desempeño

Nivel de desempeño

Puntaje mínimo

% de estudiantes peruanos en este nivel

¿Qué pueden hacer los estudiantes en este nivel?

6 669 0,1% de estudiantes peruanos

Conceptualizan, generalizan y utilizan información basada en sus investigaciones y modelos de situaciones problemáticas complejas. Pueden relacionar diferentes fuentes de información y representación entre sí y pasar de una a otra con flexibilidad. Estos estudiantes poseen un pensamiento y razonamiento matemático avanzado. Aplican su entendimiento y comprensión, así como su dominio de las operaciones y relaciones matemáticas simbólicas y formales y desarrollan nuevos enfoques y estrategias para abordar situaciones nuevas. Los estudiantes pertenecientes a este nivel formulan y comunican con exactitud sus acciones y reflexiones relativas a sus descubrimientos, interpretaciones, argumentos y su adecuación a las situaciones originales.

5 607 0,5% de estudiantes peruanos

Desarrollan modelos y trabajan con ellos en situaciones complejas, identificando los condicionantes y especificando los supuestos. Seleccionan, comparan y evalúan estrategias adecuadas de solución de problemas para abordar problemas complejos relativos a estos modelos. Los estudiantes de este nivel trabajan estratégicamente utilizando habilidades de pensamiento y razonamiento bien desarrolladas, así como representaciones adecuadamente relacionadas, caracterizaciones simbólicas y formales, e intuiciones relativas a estas situaciones. Reflexionan sobre sus acciones y formulan y comunican sus interpretaciones y razonamientos.

4 545 2,1% de estudiantes peruanos

Trabajan con eficacia con modelos explícitos en situaciones complejas y concretas que pueden implicar condicionantes o exigir la formulación de supuestos. Seleccionan e integran diferentes representaciones, incluyendo las simbólicas, asociándolas directamente a situaciones del mundo real. Los estudiantes de este nivel utilizan habilidades bien desarrolladas y razonan con flexibilidad y con cierta perspicacia en estos contextos. Elaboran y comunican explicaciones y argumentos basados en sus interpretaciones, argumentos y acciones.

3 482 6,8% de estudiantes peruanos

Ejecutan procedimientos claramente descritos, incluyendo aquellos que requieren decisiones secuenciales. Seleccionan y aplican estrategias de solución de problemas sencillos. Los estudiantes de este nivel interpretan y utilizan representaciones basadas en diferentes fuentes de información y razonan directamente a partir de ellas. Son también capaces de elaborar breves escritos exponiendo sus interpretaciones, resultados y razonamientos.

2 420 16,9% de estudiantes peruanos

Interpretan y reconocen situaciones en contextos que sólo requieren una inferencia directa. Extraen información relevante de una sola fuente y usan un único modelo de representación. Los estudiantes de este nivel utilizan algoritmos, fórmulas, procedimientos o convenciones elementales. Son capaces de efectuar razonamientos directos e interpretaciones literales de los resultados.

1 358 25,9% de estudiantes peruanos

Responden a preguntas relacionadas con contextos cotidianos, en los que está presente toda la información necesaria y las preguntas están claramente definidas. Son capaces de identificar la información y llevan a cabo procedimientos rutinarios siguiendo instrucciones directas en situaciones explícitas. Realizan acciones obvias que se deducen inmediatamente de los estímulos presentados.

PISA 2009: Puntaje promedio en Matemática

Page 173: modulo del numero y operaciones

173

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

1. ¿Analiza los resultados de la evaluación Pisa 2009 en matemática y qué harías desde tu aula para revertir este resultado? 2. ¿Cuál serían las posibles causas de los resultados de la evaluación

Pisa 2009?

3. Analiza los indicadores de logros y responde desde tu práctica

docente ¿En qué nivel se ubican tus estudiantes?

4. ¿Qué estás haciendo para revertir estos resultados?

Page 174: modulo del numero y operaciones

174

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

BIBLIOGRAFÍA

1. ANDRADE, R. (2001). Construyendo paradigmas. Diario Frontera.

2. Baroody, A. J. (1988). El pensamiento matemático de los niños. Madrid: Visor/MEC. 3. Brousseau, G. (1988). Utilidad e interés de la didáctica para un profesor. Suma, 4: 5-12 y

Suma 5: 5-12 (segunda parte). 4. BOLAÑOS, F. (2001). El pensamiento complejo y los retos de la educación. Perú:

5. REDUC. (1998). Currículo y Didáctica 2da. Parte. Programa de Complementación

Académica. UPCH,

6. DÍAZ, F. y HERNÁNDEZ, G. (1998)Estrategias docentes para un aprendizaje

significativo. Ed.

7. Flores, P. (2001). Aprendizaje y evaluación. En E. Castro (Ed.), Didáctica de la matemática en la Educación Primaria (pp. 41-59). Madrid: Síntesis.

8. Font, V (1994). Motivación y dificultades de aprendizaje en matemáticas. Suma, 17: 10-16

9. MINISTERIO DE EDUCACIÓN. (2005) Diseño Curricular Nacional de Educación Básica

Regular. DINEIP- DINESST. Lima: Ministerio de Educación.

10. • GIMENO, J. (1985). El Currículum: una reflexión sobre la práctica. Madrid:Ediciones

Morata.

11. HUERTA, M. (2002). Enseñar a aprender significativamente. San Marcos.

12. Instituto Internacional para el Pensamiento Complejo. (2006). ¿Qué es el pensamiento

complejo y la complejidad? http:/www.complejidad.org.iipc.htm- Setiembre.

13. Bateson. G.(2009): un pensamiento (complejo) para pensar lacomplejidad. Un intento de

lectura/escritura terapéutica.

14. MAGEDNZO, A.(1996). Currículo, Educación para la Democracia en la

modernidad.Bogotá y Santiago de Chile: Instituto para el desarrollo dela democracia-

PIIE.

15. MORIN, E. (1999). Los siete saberes necesarios a la educación del futuro.UNESCO.

16. MOTOS,T. (2008). Profesor Titular de Didáctica y Organización Escolar, Universidad

de Valencia, e-mail: [email protected]

17. QUINECHE, D. (2000). Currículo por Competencias. Perú.

18. • ROMÁN, M. (1994), Curriculum y Programación. Diseños Curriculares de aula. Editorial

EOS.

19. TORRES, J. (2009). Globalización e interdisciplinariedad: el currículum

integrado.Ediciones Morata.

20. WOOLFOLK, A. (2009). Psicología Educativa. Prentice Hall

21. ZABALA, A. (1999). Enfoque Globalizador y Pensamiento Complejo. Ed. Grao.1997 La

práctica educativa. Cómo enseñar. Ed. Grao.

22. ZABALZA, M.(2004). Diseño y Desarrollo Curricular. Cuarta Edición. España:Nancea,

S.A. Reediciones.

23. OCDE/INECSE/MEC (2004): Aprender para el Mundo de Mañana. PISA 2003, Resumen

de Resultados. OECD, The definition and selection of key competencies. Executive

Summary. (http://www.pisa.oecd.org/dataoecd/47/61/35070367.pdf).

24. Pérez, Á. I. (2007). La naturaleza de las competencias básicas y sus aplicaciones

pedagógicas. Cuadernos de Educación, nº 1. Santander, Consejería de Educación del

Gobierno de Cantabria.

25. Pérez, R. (2008). “Curso Competencia Matemática”. CIEFP de Santander.

Page 175: modulo del numero y operaciones

175

PROGRAMA DE ESPECIALIZACIÓN EN MATEMÁTICA DIRIGIDO A DOCENTES DE INSTITUCIONAES EDUCATIVAS DEL NIVEL DE EDUCACIÓN SECUNDARIA DE EDUCACIÓN

BÁSICA REGULAR

26. PISA (2006). Marco de la evaluación. Conocimientos y habilidades en Ciencias,

Matemáticas y Lectura.

27. Proyecto ATLÁNTIDA, (2006). Bases para una estrategia de asesoramiento al desarrollo

de un currículo basado en competencias. Universidad de Las Palmas de Gran Canaria.

28. Roig, A. y Linares, S., (2004). Dimensiones de la Competencia Matemática al finalizar la

E.S.O.Caracterización y Análisis. Departamento Innovación y Formación Didáctica,

Universidad de Alicante.

29. Sociedad Andaluza de Educación Matemática THALES, (2000). Principios y Estándares

de Calidad para la Educación Matemática. NCTM.

30. “Competencias y uso social de las matemáticas”. UNO, Revista Didáctica de las

Matemáticas, nº 46 (Junio 2006).

31. Grupo de Trabajo de Competencias Básicas Consejería de Educación de Cantabria.

(2007). Las competiciones básicas y el currículo: orientaciones generales. Cuadernos de

Educación nº 2. Santander, Consejería de Educación del Gobierno de Cantabria.

32. Skemp, R. (1980). Psicología del aprendizaje de las matemáticas. Madrid: Morata. 33. www.pisa.oecd.org/ La educación peruana en el contexto de PISA. 34. www.gruposantillana.com.pe/novedades/fasciculo.pdf Fundación Santillana 35. http://www2.minedu.gob.pe/umc/index2.php?v_codigo=80&v_plantilla=2PISA 2001 en Perú.

36. http://www.educared.edu.pe/Multimedia_PruebasPisa.asp. Conferencia: Las pruebas PISA: ¿Por qué y para qué?. Realizado en Auditorio de Fundación Telefónica. Fecha: 20 de mayo de 2009. Ponente: Andreas Schleicher, Jefe de la División de Indicadores y Análisis de la Organización para la Cooperación y Desarrollo Económico (OCDE)