ingeniería de procesos metalúrgicos y de materiales flujo...

9
Ingeniería de Procesos Metalúrgicos y de Materiales Flujo 1D de calor por conducción en estado no estacionario Ecuaciones nodales del método de diferencias finitas (explícito) Dr. Bernardo Hernández Morales Objetivo del modelo matemático Calcular la evolución del campo térmico al interior de una barra sólida de sección cuadrada o rectangular Alcance del modelo matemático Flujo de calor 1D a lo largo de la barra La barra está constituida por un solo material La sección transversal de la barra es constante No hay generación de calor al interior de la barra Las propiedades termofísicas son independientes de la temperatura Una frontera se considera de simetría y la otra de transporte de interfase Sistema El sistema bajo estudio es un sólido 3D tal como se muestra en la Figura 1. Figura 1. Vista en tres dimensiones del sistema bajo estudio. Si el gradiente térmico en la dirección x es mucho mayor que en las direcciones y y z, entonces el flujo de calor será fundamentalmente 1D (dirección x). El sistema se reduce al mostrado en la Figura 2. Figura 2. Sección longitudinal del sólido de la Figura 1. L x L y L z L x

Upload: others

Post on 03-Nov-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ingeniería de Procesos Metalúrgicos y de Materiales Flujo ...depa.fquim.unam.mx/amyd//archivero/DiferenciasFinitas2_21463.pdf · Phenomena in Materials Processing”), que incluyen

Ingeniería de Procesos Metalúrgicos y de Materiales

Flujo 1D de calor por conducción en estado no estacionario

Ecuaciones nodales del método de diferencias finitas (explícito)

Dr. Bernardo Hernández Morales

Objetivo del modelo matemático

Calcular la evolución del campo térmico al interior de una barra sólida de sección cuadrada o rectangular

Alcance del modelo matemático

Flujo de calor 1D a lo largo de la barra

La barra está constituida por un solo material

La sección transversal de la barra es constante

No hay generación de calor al interior de la barra

Las propiedades termofísicas son independientes de la temperatura

Una frontera se considera de simetría y la otra de transporte de interfase

Sistema

El sistema bajo estudio es un sólido 3D tal como se muestra en la Figura 1.

Figura 1. Vista en tres dimensiones del sistema bajo estudio.

Si el gradiente térmico en la dirección x es mucho mayor que en las direcciones y y z, entonces el flujo de calor será

fundamentalmente 1D (dirección x). El sistema se reduce al mostrado en la Figura 2.

Figura 2. Sección longitudinal del sólido de la Figura 1.

Lx

Ly

Lz

Lx

Page 2: Ingeniería de Procesos Metalúrgicos y de Materiales Flujo ...depa.fquim.unam.mx/amyd//archivero/DiferenciasFinitas2_21463.pdf · Phenomena in Materials Processing”), que incluyen

Malla

La malla típica de diferencias finitas para el problema de flujo 1D se muestra en la Figura 3. Las líneas punteadas

denotan los límites de los volúmenes de control virtuales.

Figura 3. Malla de diferencias finitas para el problema 1D.

Ecuaciones nodales (método explícito)

Las ecuaciones de diferencias finitas se generan a partir de balances en cada volumen de control.

Nodo central tipo

Para un nodo central tipo (nodo i), el balance se construye para la geometría y flechas de flujo (por conducción) de las

Figura 4 y 5.

Figura 4. Nodo central i.

Figura 5. Flechas de flujo de calor hacia el nodo i.

Δx

1 2 3 N-2N-1

N

i-1 i+1i

Δx Δx

Ai-1->1 Ai+1->i

i-1 i i+1

Flujo de calor que entra a i desde (i-1)

Flujo de calor que entra a i desde (i+1)

Page 3: Ingeniería de Procesos Metalúrgicos y de Materiales Flujo ...depa.fquim.unam.mx/amyd//archivero/DiferenciasFinitas2_21463.pdf · Phenomena in Materials Processing”), que incluyen

El balance de calor es:

∑ ∑

[ ] [ ] [ ] [

]

Donde

Es el área perpendicular al flujo de calor. Como la sección transversal de la barra es constante, entonces es constante.

El transporte de energía al interior de la barra ocurre por conducción. Entonces, utilizando la aproximación del método

explícito de diferencias finitas:

Y

La ecuación nodal queda entonces:

[

]

[

]

[

]

[

]

[ ]

Con

Además

[

]

Define al valor máximo de que puede utilizarse sin que la solución se desestabilice (criterio de estabilidad).

La ecuación nodal puede re-escribirse como

[ ]

[ ] [ ]

[ ]

[ ]

Por lo que

[ ]

Page 4: Ingeniería de Procesos Metalúrgicos y de Materiales Flujo ...depa.fquim.unam.mx/amyd//archivero/DiferenciasFinitas2_21463.pdf · Phenomena in Materials Processing”), que incluyen

Donde

NOTA: , , no denotan áreas.

En términos físicos:

es la capacidad térmica asociada con el volumen de control (W °C-1)

es la conductancia térmica entre el nodo i-1 y el nodo i (W °C-1)

Nodo en la frontera en x = 0

Para un nodo en la frontera ubicada en x = 0 (nodo 1), el balance se construye para la geometría y flechas de flujo (por

conducción) de las Figura 6 y 7.

Figura 6. Nodo en la frontera x = 0 (nodo 1).

Figura 7. Flechas de flujo de calor hacia el nodo 1.

21

Δx

A2->1

1 2

Flujo de calor que entra a 1 desde 2

Page 5: Ingeniería de Procesos Metalúrgicos y de Materiales Flujo ...depa.fquim.unam.mx/amyd//archivero/DiferenciasFinitas2_21463.pdf · Phenomena in Materials Processing”), que incluyen

El balance de calor es:

∑ ∑

[ ] [ ] [ ] [

]

El transporte de energía al interior de la barra ocurre por conducción. Entonces, utilizando la aproximación del método

explícito de diferencias finitas:

Y

La ecuación nodal queda entonces:

[ ]

[ ] [ ]

[ ]

Por lo que

[ ]

Define al valor máximo de que puede utilizarse sin que la solución se desestabilice (criterio de estabilidad).

Donde

Con

NOTA: no denota área.

Page 6: Ingeniería de Procesos Metalúrgicos y de Materiales Flujo ...depa.fquim.unam.mx/amyd//archivero/DiferenciasFinitas2_21463.pdf · Phenomena in Materials Processing”), que incluyen

Nodo en la frontera en x = L

Para un nodo en la frontera ubicada en x = L (nodo N), el balance se construye para la geometría y flechas de flujo (por

conducción) de las Figura 8 y 9.

Figura 8. Nodo en la frontera x = L (nodo N).

Figura 9. Flechas de flujo de calor hacia el nodo N.

El balance de calor es:

∑ ∑

El transporte de energía al interior de la barra ocurre por conducción mientras que en la frontera el transporte ocurre

por el mecanismo de intercara. Entonces, utilizando la aproximación del método explícito de diferencias finitas:

[

]

Y

La ecuación nodal queda entonces:

N-1 N

Δx

AN-1->N A->N

N-1 N

Flujo de calor que entra a N desde (N-1)

Flujo de calor que entra a N desde ()

Page 7: Ingeniería de Procesos Metalúrgicos y de Materiales Flujo ...depa.fquim.unam.mx/amyd//archivero/DiferenciasFinitas2_21463.pdf · Phenomena in Materials Processing”), que incluyen

[ ]

[ ] [ ]

[ ]

[ ]

Por lo que

[ ]

Define al valor máximo de que puede utilizarse sin que la solución se desestabilice (criterio de estabilidad).

Donde

Con

NOTA: , no denotan áreas.

Page 8: Ingeniería de Procesos Metalúrgicos y de Materiales Flujo ...depa.fquim.unam.mx/amyd//archivero/DiferenciasFinitas2_21463.pdf · Phenomena in Materials Processing”), que incluyen

Solución analítica

La formulación matemática del problema planteado se construye a partir de la ecuación general de conducción:

Para el problema específico, la ecuación gobernante se simplifica a:

O bien

[

]

con

C.I. (Distribución inicial de temperatura uniforme)

C.F.1 (simetría)

C.F.2 (intercara)

[ ]

El problema matemático puede resolverse analíticamente aplicando el método de separación de variables:

Si en la condición de frontera en (C.F.2) se trabaja con , la solución es (M. Necati Özişik. “Heat

Conduction”.) :

Esta solución se ha evaluado y se representa en las gráficas de Heisler (ver, p. ej., D.R. Poirier y G.H. Geiger. “Transport

Phenomena in Materials Processing”), que incluyen al caso más general de: .

En las gráficas de Heisler:

Page 9: Ingeniería de Procesos Metalúrgicos y de Materiales Flujo ...depa.fquim.unam.mx/amyd//archivero/DiferenciasFinitas2_21463.pdf · Phenomena in Materials Processing”), que incluyen

Ejemplo numérico

Considera una barra de sección rectangular, de 1.5 ft × 5 in × 7 in, fabricada con un material que tiene las propiedades

termofísicas siguientes:

- - -

Las dos fronteras están expuestas a un medio a 77 °F, de tal forma que el coeficiente de transferencia de calor entre la

superficie del sólido y el medio es de 100 Btu h-1 ft-2 °F-1.

Para aprovechar la simetría del sistema, sólo se considerará la mitad de la barra (en la dirección de flujo de calor).

El sistema se discretizará utilizando 5 nodos (espaciados uniformemente).

Aplica el método de diferencias finitas (explícito) para calcular la respuesta térmica en cada una de las posiciones

nodales.

Calcula, también, las historias de rapidez de enfriamiento en cada posición nodal así como la densidad de flujo de calor y

el flujo de calor a través de cada una de las fronteras.

Compara los resultados numéricos con los que se obtienen utilizando la solución analítica.