fis 100 cinematica

25
Contenido Apunte de cinemática: Velocidad, espacio y aceleración. Movimiento rectilíneo uniforme. Movimiento uniformemente acelerado. Movimiento uniformemente retardado. Caída libre. Tiro vertical. Tiro parabólico. Tiro oblículo. Movimiento circular en el plano: horizontal, vertical, péndulo físico. Cinemática La cinemática se ocupa de la descripción del movimiento sin tener en cuenta sus causas. La velocidad (la tasa de variación de la posición) se define como la razón entre el espacio recorrido (desde la posición x 1 hasta la posición x 2 ) y el tiempo transcurrido. v = e/t (1) siendo: e: el espacio recorrido y t: el tiempo transcurrido. La ecuación (1) corresponde a un movimiento rectilíneo y uniforme, donde la velocidad permanece constante en toda la trayectoria. Aceleración Se define como aceleración a la variación de la velocidad con respecto al tiempo. La aceleración es la tasa de variación de la velocidad, el cambio de la velocidad dividido entre el tiempo en que se produce. Por tanto, la aceleración tiene magnitud, dirección y sentido, y se mide en m/s ², gráficamente se representa con un vector. a = v/t Movimiento rectilíneo uniforme (M.R.U.) Existen varios tipos especiales de movimiento fáciles de describir. En primer lugar, aquél en el que la velocidad es constante. En el caso más sencillo, la velocidad podría ser nula, y la posición no cambiaría en el intervalo de tiempo considerado. Si la velocidad es constante, la velocidad media (o promedio) es igual a la velocidad en cualquier instante determinado. Si el tiempo t se mide con un reloj que se pone en marcha con t = 0, la distancia e recorrida a velocidad constante v será igual al producto de la velocidad por el tiempo. En el movimiento rectilíneo uniforme la velocidad es constante y la aceleración es nula. v = e/t v = constante a = 0 Movimiento uniformemente variado (M.U.V.) Otro tipo especial de movimiento es aquél en el que se mantiene constante la aceleración. Como la velocidad varía, hay que definir la velocidad instantánea, que es la velocidad en un instante determinado. En el caso de una aceleración a constante, considerando una velocidad inicial nula (v = 0 en t = 0), la velocidad instantánea transcurrido el tiempo t será: v = a.t

Upload: jhohan-bustillos

Post on 24-Jul-2015

108 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FIS 100 Cinematica

ContenidoApunte de cinemática: Velocidad, espacio y aceleración. Movimiento rectilíneo uniforme. Movimiento uniformemente acelerado. Movimiento uniformemente retardado. Caída libre. Tiro vertical. Tiro parabólico. Tiro oblículo. Movimiento circular en el plano: horizontal, vertical, péndulo físico.

CinemáticaLa cinemática se ocupa de la descripción del movimiento sin tener en cuenta sus causas. La velocidad (la tasa de variación de la posición) se define como la razón entre el espacio recorrido (desde la posición x1 hasta la posición x2) y el tiempo transcurrido.

v = e/t (1)

siendo:

e: el espacio recorrido y

t: el tiempo transcurrido.

La ecuación (1) corresponde a un movimiento rectilíneo y uniforme, donde la velocidad permanece constante en toda la trayectoria.

Aceleración

Se define como aceleración a la variación de la velocidad con respecto al tiempo. La aceleración es la tasa de variación de la velocidad, el cambio de la velocidad dividido entre el tiempo en que se produce. Por tanto, la aceleración tiene magnitud, dirección y sentido, y se mide en m/s ², gráficamente se representa con un vector.

a = v/t

Movimiento rectilíneo uniforme (M.R.U.)Existen varios tipos especiales de movimiento fáciles de describir. En primer lugar, aquél en el que la velocidad es constante. En el caso más sencillo, la velocidad podría ser nula, y la posición no cambiaría en el intervalo de tiempo considerado. Si la velocidad es constante, la velocidad media (o promedio) es igual a la velocidad en cualquier instante determinado. Si el tiempo t se mide con un reloj que se pone en marcha con t = 0, la distancia e recorrida a velocidad constante v será igual al producto de la velocidad por el tiempo. En el movimiento rectilíneo uniforme la velocidad es constante y la aceleración es nula.

v = e/t

v = constante

a = 0

Movimiento uniformemente variado (M.U.V.)Otro tipo especial de movimiento es aquél en el que se mantiene constante la aceleración. Como la velocidad varía, hay que definir la velocidad instantánea, que es la velocidad en un instante determinado. En el caso de una aceleración a constante, considerando una velocidad inicial nula (v = 0 en t = 0), la velocidad instantánea transcurrido el tiempo t será:

v = a.t

La distancia recorrida durante ese tiempo será

e = ½.a.t ²

Esta ecuación muestra una característica importante: la distancia depende del cuadrado del tiempo (t ²). En el movimiento uniformemente variado la velocidad varia y la aceleración es distinta de cero y constante.

a ≠ 0 = constante

v = variable

Page 2: FIS 100 Cinematica

1) Acelerado: a > 0

xf = xo + vo.t + ½.a.t ² (Ecuación de posición)

vf = vo + a.t (Ecuación de velocidad)

vf ² = vo ² + 2.a.Δx

2) Retardado: a < 0

xf = xo + vo.t - ½.a.t ² (Ecuación de posición)

vf = vo - a.t (Ecuación de velocidad)

vf ² = vo ² - 2.a.Δx

3) Caída libre: Un objeto pesado que cae libremente (sin influencia de la fricción del aire) cerca de la superficie de la Tierra experimenta una aceleración constante. En este caso, la aceleración es aproximadamente de 9,8 m/s ². Al final del primer segundo, una pelota habría caído 4,9 m y tendría una velocidad de 9,8 m/s. Al final del siguiente segundo, la pelota habría caído 19,6 m y tendría una velocidad de 19,6 m/s.

En la caída libre el movimiento acelerado donde la aceleración es la de la gravedad y carece de velocidad inicial.

a = g

vo = 0

yf = ½.g.t ² (Ecuación de posición)

vf = g.t (Ecuación de velocidad)

vf ² = 2.a.Δy

4) Tiro vertical: movimiento acelerado donde la aceleración es la de la gravedad y la dirección del movimiento, puede ser ascendente o descendente.

a = g

vo ≠ 0

yf = yo + vo.t - ½.g.t ² (Ecuación de posición)

vf = vo - g.t (Ecuación de velocidad)

vf ² = vo ² - 2.a.Δy

5) Tiro parabólico: Otro tipo de movimiento sencillo que se observa frecuentemente es el de una pelota que se lanza al aire formando un ángulo con la horizontal. Debido a la gravedad, la pelota experimenta una aceleración constante dirigida hacia abajo que primero reduce la velocidad vertical hacia arriba que tenía al principio y después aumenta su velocidad hacia abajo mientras cae hacia el suelo. Entretanto, la componente horizontal de la velocidad inicial permanece constante (si se prescinde de la resistencia del aire), lo que hace que la pelota se desplace a velocidad constante en dirección horizontal hasta que alcanza el suelo. Las componentes vertical y horizontal del movimiento son independientes, y se pueden analizar por separado. La trayectoria de la pelota resulta ser una parábola.

Es un movimiento cuya velocidad inicial tiene componentes en los ejes x e y, en el eje y se comporta como tiro vertical, mientras que en el eje x como M.R.U.

En eje x:

v = constante

a = 0

En eje y:

a = g

vo ≠ 0

6) Tiro oblicuo: movimiento cuya velocidad inicial tiene componente en los eje x e y, en el eje y se comporta como caída libre, mientras que en el eje x como M.R.U.

En eje x:

Page 3: FIS 100 Cinematica

v = constante

a = 0

En eje y:

a = g

vo = 0

Movimiento circular en el planoEl movimiento circular es otro tipo de movimiento sencillo. Si un objeto se mueve con celeridad constante pero la aceleración forma siempre un ángulo recto con su velocidad, se desplazará en un círculo. La aceleración está dirigida hacia el centro del círculo y se denomina aceleración normal o centrípeta. En el caso de un objeto que se desplaza a velocidad v en un círculo de radio r, la aceleración centrípeta es:

a = v ²/r.

En este movimiento, tanto la aceleración como la velocidad tienen componentes en x e y.

1) Horizontal:

s = R. θ s: arco de circunferencia recorrido

θ: ángulo desplazado

v = R.ω ω: velocidad angular

aT = R. α aT: aceleración tangencial

α : aceleración angular

aN = v ²/R aN: aceleración normal o centrípeta

aN = R. ω ²

Sí v = constante aT = 0

2) Vertical: este movimiento no es uniforme ya que la velocidad del cuerpo aumenta cuando desciende y disminuye cuando asciende. Para este modelo el cuerpo está sujeto por una cuerda, entonces, las fuerzas que actúan son el peso del cuerpo y la tensión de la cuerda, que componen una fuerza resultante.

FT = m.g.sen θ

FN = T - m.g.cos θ

T = m.(v ²/R + g.cos θ)

Siendo en el punto más bajo

T = m.(v ²/R + g)

Siendo en el punto más alto

T = m.(v ²/R - g)

En el punto mas alto la velocidad es crítica, por debajo de ésta la cuerda deja de estar tensa.

vc ² = R.g

3) Péndulo físico:

FT = m.g.sen θ

FN = T - m.g.cos θ

Amplitud:

Page 4: FIS 100 Cinematica

s = R. θ

La velocidad es variable, anulándose en cada extremo del arco de circunferencia (amplitud).

T = m.g.cos θ

En el punto más bajo:

θ = 0

FT = 0

FN = T - P

El período τ es el tiempo en que se efectúa una oscilación completa.

τ = 2.π.√R/g

La frecuencia f es la relación entre el número de revoluciones y el tiempo de observación.

f = 1/ τ

Autor: Ricardo Santiago Netto.

Movimiento rectilíneo uniformemente acelerado

 

Ya vimos que el movimiento rectilíneo puede expresarse o presentarse como

Movimiento rectilíneo uniforme,

o como

Movimiento rectilíneo uniformemente acelerado.

Este último puede, a su vez, presentarse como de caída libre o de subida o tiro vertical .

El movimiento rectilíneo uniformemente aceleradoes un tipo de movimiento frecuente en la naturaleza. Una bola que rueda por un plano inclinado o una piedra que cae en el vacío desde lo alto de un edificio son cuerpos que se mueven ganando velocidad con el tiempo de un modo aproximadamente uniforme; es decir, con una aceleración constante.

Este es el significado del movimiento uniformemente acelerado, el cual “en tiempos iguales, adquiere iguales incrementos de rapidez”.

En este tipo de movimiento sobre la partícula u objeto actúa una fuerza que puede ser externa o interna.

En este movimiento la velocidad es variable, nunca permanece constante; lo que si es constante es la aceleración.

Entenderemos como aceleración la variación de la velocidad con respecto al tiempo. Pudiendo ser este cambio en la magnitud (rapidez), en la dirección o en ambos.

Las variables que entran en juego (con sus respectivas unidades de medida) al estudiar este tipo de movimiento son:

Velocidad inicial           Vo (m/s)

Velocidad final              Vf  (m/s)

Aceleración                     a  (m/s2)

Tiempo                             t   (s)

Distancia                         d  (m)

 

Para efectuar  cálculos que permitan resolver problemas usaremos las siguientes fórmulas:

Un móvil puede ser acelerado.

Page 5: FIS 100 Cinematica

Consejos o datos para resolver problemas:

La primera condición será obtener los valores numéricos de tres de las cinco variables. Definir la ecuación que refleje esas tres variables. Despejar y resolver numéricamente la variable desconocida.

Tener cuidado con que en algunas ocasiones un dato puede venir disfrazado; por ejemplo:

"un móvil que parte del reposo.....", significa que su velocidad inicial es Vo = 0 ; "en una prueba de frenado...", significa que su velocidad final es Vf = 0.

Veamos un problema como ejemplo

En dirección hacia el sur, un tren viaja inicialmente a 16m/s; si recibe una aceleración constante de 2 m/s2. ¿Qué tan lejos llegará al cabo de 20 s.? ¿Cuál será su velocidad final en el mismo tiempo?

Veamos los datos que tenemos:

Conocemos tres de las cinco variables, entonces, apliquemos  las  fórmulas:

Averigüemos primero la distancia que recorrerá durante los 20 segundos:

Conozcamos ahora la velocidad final del tren, transcurridos los 20 segundos:

Respuestas:

Page 6: FIS 100 Cinematica

Si nuestro tren, que viaja a 16 m/s, es acelerado a 2 m/s recorrerá 720 metros durante 20 segundos y alcanzará una velocidad de 56 m/s.

 

Movimiento rectilíneo uniformemente retardado

En los movimientos uniformemente decelerados o retardados la velocidad disminuye con el tiempo a ritmo constante. Están, pues, dotados de una aceleración que aunque negativa es constante. De ahí que todas las fórmulas usadas para los movimientos uniformemente acelerados sirvan para describir los movimientos uniformemente retardados, considerando sólo que su signo es negativo.

Por lo tanto, para efectuar cálculos que permitan resolver problemas que involucren aceleración negativa o deceleración, usaremos las siguientes fórmulas:

Movimiento de caída libre

 

El movimiento de los cuerpos en caída libre (por la acción de su propio peso) es una forma de rectilíneo uniformemente acelerado.

La distancia recorrida (d) se mide sobre la vertical y corresponde, por tanto, a una altura que se representa por la letra h.

En el vacío el movimiento de caída es de aceleración constante, siendo dicha aceleración la misma para todos los cuerpos, independientemente de cuales sean su forma y su peso.

La presencia de aire frena ese movimiento de caída y la aceleración pasa a depender entonces de la forma del cuerpo. No obstante, para cuerpos aproximadamente esféricos, la influencia del medio sobre el movimiento puede despreciarse y tratarse, en una primera aproximación, como si fuera de caída libre.

La aceleración en los movimientos de caída libre, conocida como aceleración de la gravedad, se representa por la letra g y toma un valor aproximado de 9,81 m/s2 (algunos usan solo el valor 9,8 o redondean en 10).

 

Si el movimiento considerado es de descenso o de caída, el valor de g resulta positivo como corresponde a una auténtica aceleración. Si, por el contrario, es de ascenso en vertical el valor de g se considera negativo, pues se trata, en tal caso, de un movimiento decelerado.

 

Para resolver problemas con movimiento de caída libre utilizamos las siguientes fórmulas:

 

Torre de experimentación para caída libre de cierta

cantidad de átomos, en Bremen, Alemania.

Page 7: FIS 100 Cinematica

Algunos datos o consejos para resolver problemas de caída libre:

 

Recuerda que cuando se informa que “Un objeto se deja caer” la velocidad inicial será siempre igual a cero  (v0 = 0).

En cambio, cuando se informa que “un objeto se lanza” la velocidad inicial será siempre diferente a cero (vo ≠ 0).

 

Desarrollemos un problema para ejercitarnos

Desde la parte alta de este moderno edificio se deja caer una pelota, si tarda 3 segundos en llegar al piso ¿cuál es la altura del edificio? ¿Con qué velocidad impacta contra el piso?

 

Veamos los datos de que disponemos:

 

Para conocer la velocidad final (vf), apliquemos la fórmula

Ahora, para conocer la altura (h) del edificio, aplicamos la fórmula:

Gota de agua en caída libre.

Desde lo alto dejamos caer una pelota.

Page 8: FIS 100 Cinematica

Respuestas:

La pelota se deja caer desde una altura de 44,15 metros e impacta en el suelo con una velocidad de 29,43 metros por segundo.

 

Movimiento de subida o de tiro verticalAl igual que la caída libre, este es un movimiento uniformemente acelerado.

Tal como la caída libre, es un movimiento sujeto a la aceleración de la gravedad (g), sólo que ahora la aceleración se opone al movimiento inicial del objeto.

A diferencia de la caída libre, que opera solo de bajada, el tiro vertical comprende subida y bajada de los cuerpos u objetos y posee las siguientes características:

- La velocidad inicial siempre es diferente a cero.

- Mientras el objeto sube, el signo de su velocidad (V) es positivo.

- Su velocidad es cero cuando el objeto  alcanza su altura máxima.

- Cuando comienza a descender, su velocidad será negativa.

- Si el objeto tarda, por ejemplo, 2 s en alcanzar su altura máxima, tardará 2 s en regresar a la posición original, por lo tanto el tiempo que permaneció en el aire el objeto es 4 s.

- Para la misma posición del lanzamiento la velocidad de subida es igual a la velocidad de bajada.

Para resolver problemas con movimiento de subida o tiro vertical  utilizamos las siguientes fórmulas:

 

Ver: PSU: Física; Pregunta 10_2005(2)

Page 9: FIS 100 Cinematica

Para ejercitarnos, resolvamos lo siguiente:

Se lanza verticalmente hacia arriba una pelota con una velocidad inicial de 30 m/s, calcular:

a) Tiempo que tarda en alcanzar su altura máxima.

b) Altura máxima.

c) Posición y velocidad de la pelota a los 2 s de haberse lanzado.

d) Velocidad y posición de la pelota a los 5 s de haber sido lanzada.

e) Tiempo que la pelota estuvo en el aire desde que se lanza hasta que retorna a tierra.

Veamos los datos que tenemos:

Para conocer el tiempo que demora la pelota en llegar a velocidad cero (altura máxima) utilizamos la fórmula

Page 10: FIS 100 Cinematica

La pelota llega a la altura máxima a los 3,06 segundos y como el tiempo de bajada es igual al de subida, este se multiplica por dos para conocer el tiempo total que permanece en el aire (6,12 segundos).

Ahora vamos a calcular la altura máxima, la que alcanza cuando su velocidad final llega a cero:

Aplicamos la fórmula

La altura máxima que alcanza la pelota hasta detenerse en el aire es de 45,87 metros (desde allí empieza a caer).

Ahora vamos a calcular la velocidad que tuvo cuando habían transcurrido 2 s:

Aplicamos la fórmula, considerando la velocidad como final a los 2 segundos:

Page 11: FIS 100 Cinematica

Entonces, la velocidad que llevaba la pelota hacia arriba, a los 2 segundos, fue de 10,38 metros por segundo.

Con este dato, podemos calcular la altura que alcanzó en ese momento (2 segundos).

 

A los 2 segundos la pelota alcanzó una altura de 40,38 metros.

Veamos ahora qué sucede cuando han transcurrido 5 segundos:

Podemos calcular su velocidad usando la misma fórmula

El que obtengamos -19,05 metros por segundo indica que la pelota va cayendo.

Page 12: FIS 100 Cinematica

También podemos usar la fórmula de caída libre, ya que al llegar a su altura máxima la pelota tiene cero velocidad, pero a los 5 segundos informados debemos restarle los 3,06 segundos durante los que la pelota ha ascendido hasta su altura máxima y desde donde empieza a caer:

Entonces tenemos

5 s – 3,06 s = 1,94 segundo  de caída libre, y su velocidad la dará la fórmula

Pero ahora la velocidad inicial es cero, entonces

Ahora podemos calcular la altura a que ha llegado la pelota a los 5 segundos; o sea, cuando va cayendo y lleva una velocidad de 19,03 metros por segundo:

Transcurridos 5 segundos, la pelota va cayendo y se encuentra a 27, 41 metros de altura.

Una pregunta adicional ¿cuánto ha descendido la pelota desde su altura máxima?

Ya sabemos que la altura máxima fue 45,87 metros, entones a esa altura le restamos los 27,41 metros y resulta que la pelota ha descendido 18,46 metros.

Ejercicio de práctica

Resolvamos ahora el siguiente problema:

Un objeto es eyectado verticalmente y alcanza una altura máxima de 45 m desde el nivel de lanzamiento. Considerando la aceleración de gravedad igual a 10 m/s2 y despreciando efectos debidos al roce con el aire, ¿cuánto tiempo duró el ascenso?

Veamos los datos que tenemos:

Page 13: FIS 100 Cinematica

Primero necesitamos calcular (conocer) la velocidad inicial (V0), para ello usamos la fórmula

Ahora, para conocer el tiempo que demora el objeto en llegar a velocidad cero (altura máxima = 45 m) utilizamos la fórmula

Page 14: FIS 100 Cinematica

Respuesta: El objeto demora 3 segundos en llegar a 45 metros de altura máxima

Movimiento circular 

Se define como movimiento circular aquél cuya trayectoria es una circunferencia.

El movimiento circular, llamado también curvilíneo, es otro tipo de movimiento sencillo.

Estamos rodeados por objetos que describen movimientos circulares:  un disco compacto durante su reproducción en el equipo de música, las manecillas de un reloj o las ruedas de una motocicleta son ejemplos de movimientos circulares; es decir, de cuerpos que se mueven describiendo una circunferencia.

A veces el movimiento circular no es completo: cuando un coche o cualquier otro vehículo toma una curva realiza un movimiento circular, aunque nunca gira los 360º de la circunferencia.

La experiencia nos dice que todo aquello da vueltas tiene movimiento circular. Si lo que gira da siempre el mismo número de vueltas por segundo, decimos que posee movimiento circular uniforme (MCU).

Ejemplos de cosas que se mueven con movimiento circular uniforme hay muchos:

La tierra es uno de ellos. Siempre da una vuelta sobre su eje cada 24 horas. También gira alrededor del sol y da una vuelta cada 365 días. Un ventilador, un lavarropas o los viejos tocadiscos, la rueda de un auto que viaja con velocidad constante, son otros tantos ejemplos.

Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado.

 

El movimiento circular en magnitudes angulares

La descripción de un movimiento circular puede hacerse bien en función de magnitudes lineales ignorando la forma de la trayectoria (y tendremos velocidad y aceleración tangenciales), o bien en función de magnitudes angulares (y tendremos

velocidad y aceleración angulares).  Ambas descripciones están relacionadas entre sí mediante el valor del radio de la circunferencia trayectoria.

Al trabajar con magnitudes angulares es imprescindible entender lo relativo a una unidad de medida angular conocida como radián.

El radián

Si tenemos un ángulo cualquiera y queremos saber cuánto mide, tomamos un transportador y lo medimos. Esto nos da el ángulo medido en grados. Este método viene de dividir la circunferencia en 360º, y se denomina sexagesimal.

El movimiento circular del piñón se transforma en movimiento lineal en la

cremallera.

Ángulo θ con centro en C.

Page 15: FIS 100 Cinematica

(Para usar la calculadora en grados hay que ponerla en DEG, Degrees, que quiere decir grados en inglés).

El sistema de grados sexagesimales es una manera de medir ángulos, pero hay otros métodos, y uno de ellos es usando radianes.

Ahora veamos el asunto de medir los ángulos pero en radianes.

Para medir un ángulo en radianes se mide el largo del arco (s) abarcado por el ángulo θ de la figura a la izquierda. Esto se puede hacer con un centímetro, con un hilito o con lo que sea. También se mide el radio del círculo.

Para obtener el valor del ángulo (θ) en radianes  usamos la fórmula:

 y tenemos el ángulo medido en radianes

Hacer la división del arco sobre radio significa ver cuántas veces entra el radio en el arco. Como el radio y el arco deben medirse en la misma unidad,  el radián resulta ser un número sin unidades.

Esto significa que el valor del ángulo en radianes solo me indica cuántas veces entra el radio en el arco. Por ejemplo, si el ángulo θ mide 3 radianes, eso significa que el radio entra 3 veces en el arco abarcado por ese ángulo.

Su quisiéramos calcular o conocer al valor del arco, hacemos:

 

¿A cuántos grados equivale un radián?

Pero el valor de un ángulo en radianes se puede expresar (convertir) en grados. En una circunferencia entera (360º) el arco entero es el perímetro, que es igual a 2 Pi por radio

. Así, a partir de la fórmula  

  es que 360° equivalen a:

Un ángulo de un radián equivale a un ángulo de 57,3º.

Para usar la calculadora en radianes hay que ponerla en "RAD"

Periodo y frecuencia

La principal característica del movimiento circular uniforme es que en cada vuelta o giro completo de 360°, equivalente a un ciclo, se puede establecer un punto fijo como inicio y fin del ciclo.

En física, los ciclos son también llamados revoluciones para un determinado tiempo.

El periodo (T) de un movimiento circular es el tiempo que tarda una partícula o un cuerpo en realizar una vuelta completa, revolución o ciclo completo.

Por ejemplo, el periodo de rotación de la tierra es 24 horas. El periodo de rotación de la aguja grande del reloj es de 1 hora. La unidad utilizada para el periodo es el segundo o, para casos mayores, unidades mayores.

Conocida la frecuencia (en ciclos o revoluciones por segundo) se puede calcular el periodo (T) mediante la fórmula:

Se denomina frecuencia (F) de un movimiento circular al número de revoluciones, vueltas o ciclos completos durante la unidad de tiempo. La unidad utilizada para cuantificar (medir) la frecuencia de un movimiento es el hertz (Hz), que indica el número de revoluciones o ciclos por cada segundo.

Para su cálculo, usamos la fórmula

o hertz:

 

¿Cuántas veces entra el radio en el arco marcado?

Page 16: FIS 100 Cinematica

(En ocasiones se usa, en vez de hertz, seg −1  o s −1 ). Nótese que la frecuencia (F) es la inversa del periodo (T).

Una vez situado el origen O describimos el movimiento circular mediante las siguientes magnitudes angulares.

 

Posición angular (θ)

Podemos imaginar, como ejemplo, que se tiene una piedra amarrada a una cuerda y la movemos en círculos de radio r.  En un instante de tiempo t el móvil (en nuestro caso la piedra) se encuentra en el punto P. Su posición angular (lo que la piedra ha recorrido en la circunferencia) viene dada por el ángulo θ, formado por  el punto P, el centro de la circunferencia C y el origen O (desde donde empezó a girar la piedra).

 

La velocidad angular (ω)

Cuando un objeto se mueve en una circunferencia, llevará una velocidad, ya que recorre un espacio, pero también recorre un ángulo.

Para tener una idea de la rapidez con que algo se está moviendo con movimiento circular, se ha definido la velocidad angular (ω) como el número de vueltas que da el cuerpo por unidad de tiempo. Si un cuerpo tiene gran velocidad angular quiere decir que da muchas vueltas por segundo.

De manera sencilla: en el movimiento circular la velocidad angular está dada por la cantidad de vueltas que un cuerpo da por segundo.

Otra manera de decir lo mismo sería: en el movimiento circular la velocidad angular está dada por el ángulo recorrido (θ) dividido por unidad de tiempo. El resultado está en grados por segundo o en rad por segundo.

ω = velocidad angular en rad/seg.

θ = desplazamiento angular en rad.

t = tiempo en segundos en que se efectuó el desplazamiento angular.

La velocidad angular también se puede determinar si sabemos el tiempo que tarda en dar una vuelta completa o periodo (T):

Como   entonces  

Aquí debemos apuntar que una misma velocidad angular se puede expresar de varias maneras diferentes.

Por ejemplo, para las lavadoras automáticas o para los motores de los autos se usan las revoluciones por minuto (rpm). También a veces se usan las rps (revoluciones por segundo).

También se usan los grados por segundo y los radianes por segundo.

Es decir, hay muchas unidades diferentes de velocidad angular. Todas se usan y hay que saber pasar de una a otra, lo que se hace aplicando una regla de 3 simple.

Por ejemplo, pasar una velocidad de 60 rpm a varias unidades diferentes:

La más importante de todas las unidades de velocidad angular es radianes por segundo. Esta unidad es la que se usa en los problemas.

Nota importante:

Según lo anterior es correcto, entonces, decir que la velocidad angular es

Imaginemos el punto rojo (P) como una piedra que gira amarrada al

punto C.

Trasmisión de un movimiento circular.

Page 17: FIS 100 Cinematica

, pero resulta que el radián es sólo un número comparativo, por lo mismo que la palabra radián suele

no ponerse y en la práctica la verdadera unidad es , que también puede ponerse como , e incluso como . 

En efecto, muchas veces la velocidad angular se expresa en segundos elevado a menos uno ( ) y para quienes no lo saben resulta incomprensible.

 

La velocidad tangencial (v)

Aparte de la velocidad angular, también es posible definir la velocidad lineal de un móvil que se desplaza en círculo.

Por ejemplo, imaginemos un disco que gira. Sobre el borde del disco hay un punto que da vueltas con movimiento circular uniforme.

Ese punto tiene siempre una velocidad lineal que es tangente a la trayectoria. Esa velocidad se llama velocidad tangencial.

Para calcular la velocidad tangencial hacemos: espacio recorrido sobre la circunferencia (o arco recorrido) dividido por el tiempo empleado, que expresamos con la fórmula:

pero como  entonces  que se lee velocidad tangencial es igual a velocidad angular multiplicada por el radio.

Como la velocidad angular (ω) también se puede calcular en función del periodo (T) con la fórmula y la

velocidad tangencial siempre está en función del radio, entonces la fórmula se convierte en que se lee: la velocidad tangencial es igual a 2 pi multiplicado por el radio (r) y dividido por el periodo (T).

Ver: PSU: Física; Pregunta 08_2005(2)

Además, como ω (velocidad angular) se expresa en  y el radio se expresa en metros, las unidades de la velocidad tangencial serán metros por segundo (m/seg).

 

La aceleración en los movimientos curvilíneos

En los movimientos curvilíneos o circulares la dirección cambia a cada instante. Y debemos recordar que la velocidad considerada como vector v podrá variar (acelerar o decelerar) cuando varíe sólo su dirección, sólo su módulo o, en el caso más general, cuando varíen ambos.

 

La aceleración asociada a los cambios en dirección

En razón de la aseveración anterior, y desde un punto de vista sectorial (distancia), un movimiento circular uniforme es también un movimiento acelerado, aun cuando el móvil recorra la trayectoria a ritmo constante.

La dirección del vector velocidad, que es tangente a la trayectoria, va cambiando a lo largo del movimiento, y esta variación de v que afecta sólo a su dirección da lugar a una aceleración, llamada aceleración centrípeta.

 

Aceleración centrípeta

Cuando se estudió la aceleración en el movimiento rectilíneo, dijimos que ella no era más que el cambio constante que experimentaba la velocidad por unidad de tiempo. En este caso, la velocidad cambiaba únicamente en valor numérico (su módulo o rapidez), no así en dirección.

Ahora bien, cuando el móvil o la partícula realiza un movimiento circular uniforme, es lógico pensar que en cada punto el valor numérico de la velocidad (su módulo) es el mismo, en cambio es fácil darse cuenta de que la dirección del vector velocidad va cambiando a cada instante.

La variación de dirección del vector lineal origina una aceleración que llamaremos aceleración centrípeta. Esta aceleración tiene la dirección del radio y apunta siempre hacia el centro de la circunferencia.

Las ruedas se mueven con movimiento circular.

Page 18: FIS 100 Cinematica

Como deberíamos saber, cuando hay un cambio en alguno de los componentes del vector velocidad tiene que haber una aceleración. En el caso del movimiento circular esa aceleración se llama centrípeta, y lo que la provoca es el cambio de dirección del vector velocidad angular.

Veamos el dibujo de la derecha:

El vector velocidad tangencial cambia de dirección y eso provoca la aparición de una aceleración que se llama aceleración centrípeta, que apunta siempre hacia el centro.

La aceleración centrípeta se calcula por cualquiera de las siguientes dos maneras:

 

La aceleración asociada a los cambios en su módulo (rapidez)

Ya sabemos que un movimiento circular, aunque sea uniforme, posee la aceleración centrípeta debida a los cambios de dirección que experimenta su vector velocidad. Ahora bien, si además la velocidad del móvil varía en su magnitud (módulo) diremos que además posee aceleración angular.

Resumiendo: si un móvil viaja en círculo con velocidad variable, su aceleración se puede dividir en dos componentes: una aceleración de la parte radial (la aceleración centrípeta que cambia la dirección del vector velocidad) y una aceleración angular que cambia la magnitud del vector velocidad, además de una aceleración tangencial si consideramos solo su componente lineal.  (Ver: Rapidez y velocidad).

Como corolario, podemos afirmar que un movimiento circular uniforme posee solo aceleración centrípeta y que un movimiento circular variado posee aceleración centrípeta y, además, aceleraciones angular y tangencial.

 

Aceleración angular

Tal como el movimiento lineal o rectilíneo, el movimiento circular puede ser uniforme o acelerado. La rapidez de rotación puede aumentar o disminuir bajo la influencia de un momento de torsión resultante.

La aceleración angular (α) se define como la variación de la velocidad angular con respecto al tiempo y está dada por:

donde:

α = aceleración angular final en rad/ s2

ωf = velocidad angular final en rad/s

ωi = velocidad angular inicial en rad/s

t = tiempo transcurrido en seg

Una forma más útil de la ecuación anterior es:

ωf = ωi + α t

 

Aceleración tangencial

Imaginemos de nuevo un disco que gira. Sobre el borde del disco hay un punto que da vueltas con movimiento circular acelerado.

Ese punto tiene siempre una velocidad variada que es tangente a la trayectoria. Esa variación de velocidad se llama aceleración tangencial.

Es la aceleración que representa un cambio en la velocidad lineal, y se expresa con la fórmula

Donde

α = valor de la aceleración angular en rad/s2

r = radio de la circunferencia en metros (m)

Entonces, la aceleración tangencial es igual al producto de la aceleración angular por el radio.

 

Otras fórmulas usadas en el movimiento circular

Vimos que la velocidad angular (ω) es igual al ángulo recorrido dividido por el tiempo empleado. Cuando el tiempo empleado sea justo un período (T), el ángulo recorrido será 2 pi (igual a una vuelta).

Aceleración centrípeta.

Page 19: FIS 100 Cinematica

Entonces podemos calcular la velocidad angular (ω) como:

Pero como , esta misma fórmula se puede poner como:

 

Ejercicios sobre movimiento circular uniforme

Ejercicio 1)

Un móvil con trayectoria circular recorrió 820° ¿Cuántos radianes son?

Desarrollo

Sabemos que 1 rad = 57,3°

Entonces

Ejercicio 2)

Un tractor tiene una rueda delantera de 30 cm de radio, mientras que el radio de la trasera es de 1 m. ¿Cuántas vueltas habrá dado la rueda trasera cuando la delantera ha completado 15 vueltas?

Desarrollo:

En este ejercicio la longitud (distancia, espacio) que recorre cada rueda en una vuelta corresponde al perímetro de cada una (perímetro del círculo), cuya

fórmula es , entonces:

Entonces, si en una vuelta la rueda delantera recorre 1,884 metro, en 15 vueltas recorrerá: 15 • 1,884 m = 28,26 m

¿Cuantas veces la rueda trasera ha tenido que girar (dar una vuelta) para recorrer esa distancia de 28,26 m?

Dividimos  esa distancia por la distancia recorrida en una vuelta por la rueda trasera:

28,26 m : 6,28 m = 4,5 vueltas.

Por lo tanto, la rueda trasera ha tenido que dar cuatro vueltas y media para recorrer la misma distancia que la delantera ha recorrido en 15 vueltas.

Ejercicios sobre el movimiento circular variado (acelerado)

Ejercicio 1)

Un automóvil, cuyo velocímetro indica en todo instante 72 km/h, recorre el perímetro de una pista circular en un minuto. Determinar el radio de la misma. Si el automóvil tiene una aceleración en algún instante, determinar su módulo, dirección y sentido.

Si la pista es circular, la velocidad que tiene el auto es la velocidad tangencial. Si da una vuelta a la pista en un minuto, significa que su periodo (T) es de un minuto.

Ahora, como  , entonces:

 velocidad  angular .

Por otro lado, la velocidad tangencial es 20 m/s (72 km/h), reemplazando en la fórmula:

Tenemos

Como en un tractor, la rueda delantera es más chica.

Page 20: FIS 100 Cinematica

Calculamos r:

R = 192 m Radio de la pista

Ahora, aunque su velocidad  (rapidez) sea constante, igual tiene aceleración centrípeta, cuyo módulo es

Aceleración centrípeta, dirigida hacia el centro de la pista.

 

Ejercicio 2)

Un automóvil recorre la circunferencia de 50 cm  de radio con una frecuencia F de 10 hz.

Determinar:

a) el periodo.

b) la velocidad angular.

c) su aceleración.

Una frecuencia de 50 hz es una frecuencia de 50 1/s. Para su desarrollo, sólo debemos aplicar formulas.

Sabemos que

,  entonces

, velocidad angular   (039)El período T es

 s (Período)Conocemos la velocidad angular y el radio, podemos calcular la velocidad tangencial:

, velocidad tangencial.

Su aceleración va a ser la aceleración centrípeta, que siempre esta apuntando hacia el centro de la circunferencia. El módulo de esta aceleración se puede calcular por cualquiera de las siguientes dos  fórmulas:

Usando la segunda:

Ejercicio 3)

¿Cuál es la aceleración que experimenta un niño que viaja en el borde de un carrusel que tiene 2 m de radio y que da una vuelta cada 8 segundos?

Si el niño da 1 vuelta cada 8 segundos su velocidad angular va a ser:

Page 21: FIS 100 Cinematica

Para calcular la aceleración centrípeta tenemos

Entonces:

Es la aceleración centrípeta del niño.

 

Ejercicio 4)

Calcular la velocidad angular y la frecuencia con que debe girar una rueda, para que los puntos situados a 50 cm de su eje estén sometidos a una aceleración que sea 500 veces la de la gravedad.

Veamos los datos:

Necesitamos que  la aceleración centrípeta sea igual a 500 g:

La velocidad angular para la cual se cumpla esto va a ser:

Ahora calculamos la frecuencia (F) a partir de

Page 22: FIS 100 Cinematica