emoria presentada por pelayo acevedo...

234
ECOGEOGRAFÍA DE LA CABRA MONTÉS (CAPRA PYRENAICA): RELACIÓN CON OTROS UNGULADOS EN SIMPATRÍA EN EL CENTRO-SUR DE LA PENÍNSULA IBÉRICA MEMORIA PRESENTADA POR Pelayo Acevedo Lavandera PARA OPTAR AL GRADO DE DOCTOR VºBº LOS DIRECTORES DR. CHRISTIAN GORTÁZAR DR. JORGE CASSINELLO DR. JOAQUÍN VICENTE UNIVERSIDAD DE CASTILLA-LA MANCHA INSTITUTO DE INVESTIGACIÓN EN RECURSOS CINEGÉTICOS (CSIC – UCLM – JCCM) DEPARTAMENTO DE CIENCIA Y TECNOLOGÍA AGROFORESTAL

Upload: others

Post on 10-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

ECOGEOGRAFÍA DE LA CABRA MONTÉS (CAPRA PYRENAICA): RELACIÓN CON OTROS UNGULADOS EN SIMPATRÍA EN EL

CENTRO-SUR DE LA PENÍNSULA IBÉRICA

MEMORIA PRESENTADA POR

Pelayo Acevedo Lavandera PARA OPTAR AL GRADO DE DOCTOR

VºBº LOS DIRECTORES

DR. CHRISTIAN GORTÁZAR DR. JORGE CASSINELLO DR. JOAQUÍN VICENTE

UNIVERSIDAD DE CASTILLA-LA MANCHA

INSTITUTO DE INVESTIGACIÓN EN RECURSOS CINEGÉTICOS

(CSIC – UCLM – JCCM)

DEPARTAMENTO DE CIENCIA Y TECNOLOGÍA AGROFORESTAL

Page 2: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 3: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 4: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 5: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Para la realización de este trabajo se ha contado con la financiación de los

proyectos “Bases para la elaboración de un plan de gestión de la cabra

montés” y “Herramientas para la estimación objetiva de situaciones de

sobreabundancia de ciervo y jabalí en Castilla-La Mancha” (Dirección General

de Medio Natural, Junta de Comunidades de Castilla-La Mancha), y de los

convenios entre el Principado de Asturias y el CSIC.

Page 6: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 7: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

A mis padres José Manuel y Elena y a mis hermanos Adrián y Cristina

Cómo no, a mis primos y tíos, y a mi ahijado Alberto

Page 8: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 9: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

A Mónica por su cariño, alegría, colaboración y comprensión

Page 10: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 11: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

A Christian Gortázar, Jorge Cassinello y Joaquín Vicente

Page 12: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 13: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

AGRADECIMIENTOS

Muchas veces me he planteado la opción de comenzar y acabar esta

sección con la palabra GRACIAS... y nada más. Sencillamente por evitar el

resumir en una página la mención de tantas personas a las que debo mucho.

Primero quiero agradecer a Christian Gortázar la confianza puesta en mí

durante estos cuatro años de trabajo, muchas veces duro aunque siempre

gratificante. Junto a Christian, Jorge Cassinello y Joaquín Vicente me han

“guiado” en esta etapa, gracias por vuestro apoyo y consejos.

Ahora me vienen a la cabeza amigos de la Facultad, Kike, Jacobo,

Pablo, Isaac, Nino..., con vosotros han sido muy placenteros los años vividos

en Oviedo. Y como no, a los amiguetes de la Villa, Gale y Paula, Pedro e Isa,

Dani y les cullebres, Buta y Elena, El Conde, Velín, Fito, Sami y Sandra, Xitin y

Marga, Carlinos y Amparo, Chucho y Ana, Chendo. A los amigos de Ciudad

Real, Elena y Nacho, Raquel y Chesco, Alfredo y Marta, gracias por acogerme

entre vosotros y ser tan buena gente.

Mi vida en el IREC comenzó al poco tiempo de acabar en la Facultad,

fueron Emilio Álvarez y Pilar Collada quienes me hablaron del centro y me

presentaron a toda la gente en Ciudad Real, muchas gracias, os estoy muy

agradecido. Siguiendo con los asturianos me acuerdo y tengo que agradecer la

hospitalidad de la gente del SERIDA, Miguel, Alberto, Ana, Rosa, Isabel y

Paloma. De la Consejería de Medio Ambiente del Principado de Asturias tengo

que agradecer el apoyo de todos los Agentes Medioambientales, y de manera

especial a Jaime, Ángel y Francisco.

A Aurelio Malo y a Joaquín Hortal, gracias por acceder a evaluar la tesis,

y por los buenos consejos. Además a Joaquín debo agradecerle el tiempo que

me ha dedicado, siempre ha estado dispuesto a escuchar mis dudas y

orientarme, muchas gracias por todo.

A la gente de EBRONATURA, Marcu, J. Marco, Javier, José Luis,

gracias por compartir con nosotros toda la información y ser tan pacientes

conmigo. Ha sido muy agradable colaborar con vosotros y espero continuar

haciéndolo por muchos años.

Page 14: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

A Carlos Cano, Andrés Alguacil y todos los Guardas Rurales de

Albacete, gracias por el tiempo que me habéis dedicado y por compartir

conmigo todo vuestro conocimiento sobre cabras.

Ya en Ciudad Real, a toda la gente del IREC, empezando por “servicios

generales”, los de arriba del IREC, gracias Andrés, Arturo, Lucía, y a los de

abajo, Jorge, Vicente, Terri, Javi, Mari y Angelines, por vuestra eficacia. A “los

de ecología” y a “los de Albacete” becarios, contratados, “practicantes”,

también a los jefes, recuerdo los buenos momentos vividos con vosotros,

gracias Killo, Jota, Paquillo, Dávila, Viñu, Rafa, Julián, Tomás, Andrés, Gustau,

Loren, Fabi, Luisen, Paqui, Peibol, Inés, Ester, Pablo, Pedro, Joaquín, Esther,

Rouconen, Michi, Jorge, Marisa, María y Nacho. Espero no haber olvidado a

nadie...

Qué decir de los amigos y compañeros de sanidad animal, hemos sido

una piña y espero que siga así por mucho tiempo. Christian y María, Joaquín y

Elo, Vidal, Millaguer, José Manuel, Piratúa y Esther, Chute y Cristina, La Tita,

Francis y Dieguín, Peich, Gildo y lo que venga, Josplis, Juanma y Adrián, la Fli

también jo..., Raquel, Elisa y Loren, Victoria, Pepe, Mario y Bianki, Oscarín,

Álvaro, Gamarra, Rafita, Felisuco, Encarni, Manolo, Paqui y Pablo, Iris, Mónica,

Rafa y Dolo. Sabéis que cada uno de vosotros tiene mis agradecimientos y

siempre estaré dispuesto a echaros una mano. Os deseo lo mejor a todos.

Page 15: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 16: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 17: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

___________________________________________________________________ I

ÍNDICE

INTRODUCCIÓN……………………………………………………........................... 1

Modelos predictivos: distribución y nicho ecológico de las especies.……………………………..........................................................

3

Modelos predictivos para el estudio de la distribución...................... 5

La distribución de las especies: el nicho ecológico........................... 12

Relaciones interespecíficas y modelos predictivos........................... 15

Bibliografía......................................................................................... 17

Conocimiento actual y líneas futuras de investigación con cabra montés (Capra pyrenaica).........................…...………………….............

25

Resumen........................................................................................… 27

Abstract............................................................................................. 27

Short Foreword.................................................................................. 28

Systematics and taxonomy of the Iberian ibex..……………………… 30

Distribution.........................................…............................................ 31

Population abundance....................................................................... 33

Morphology........................................................................................ 34

Feeding habits………………………………………………………….... 36

Behavioural ecology…………………………………………………….. 37

Epidemiology and health status......................................................... 39

Conservation……………………………………………………………... 42

Future directions of Capra pyrenaica research................................ 43

Acknowledgements……………………………………………………… 45

References........................................................................................ 45

Page 18: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Índice

___________________________________________________________________ II

Objetivos y organización de la Tesis.................………..….................. 53

Objetivos…………………………………………………………………. 55

Organización de la Tesis……………………………………………...... 58

Capítulo 1. DISTRIBUCIÓN Y ESTATUS DE LAS POBLACIONES DE CABRA MONTÉS (Capra pyrenaica hispanica) EN CASTILLA-LA MANCHA………………………………………………………………………………...

61

1.1. El proceso de expansión de la cabra montés en Castilla-La Mancha, y su desplazamiento hacia hábitats subóptimos por la presencia de ganado caprino………………………………………….....

63

Resumen………………………………………………………………..... 65

Abstract………………………………………………………………….... 65

Introduction……………………………………………………………..... 66

Material and Methods………………………………………………….... 68

Results…………………………………………………………………..... 75

Discussion.....................……………………………………………….... 79

Acknowledgements…………………………………………………….... 81

References........................................................................................ 82

1.2. Relaciones entre la excreción de nematodos broncopulmonares y la abundancia relativa de cabra montés (Capra pyrenaica hispanica) en Castilla-La Mancha…………...........

89

Resumen………………………………………………………………..... 91

Abstract………………………………………………………………….... 91

Introduction……………………………………………………………..... 92

Material and Methods………………………………………………….... 93

Results…………………………………………………………………..... 96

Page 19: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

___________________________________________________________________ III

Discussion.....................……………………………………………….... 99

Acknowledgements…………………………………………………….... 101

References......................................................................................... 101

Capítulo 2. LA EXPANSIÓN DE UNGULADOS SILVESTRES MEDIADA POR EL HOMBRE PUEDE FACILITAR EL SOLAPAMIENTO DE NICHO DE ESPECIES TAXONÓMICAMENTE DISTANTES: EL CIERVO IBÉRICO Y LA CABRA MONTÉS …………………………………………………….........................

105

Resumen………………………………………………………………..... 107

Abstract………………………………………………………………….... 107

Introduction……………………………………………………………..... 108

Material and Methods………………………………………………….... 112

Results…………………………………………………………………..... 117

Discussion.....................……………………………………….………... 121

Acknowledgements………………………………………………..…….. 125

References......................................................................................... 126

Capítulo 3. LA EXPANSIÓN DE UNGULADOS SILVESTRES MEDIADA POR EL HOMBRE PUEDE FACILITAR EL SOLAPAMIENTO DE NICHO: EL CASO DE UNA ESPECIE EXÓTICA, EL ARRUI, Y LA CABRA MONTÉS....................

133

31. Perspectivas de la expansión poblacional del arrui (Ammotragus lervia, Bovidae) en la Península Ibérica: uso de modelos de adecuación de hábitat …………………………….............

135

Resumen………………………………………………………………..... 137

Abstract………………………………………………………………….... 137

Introduction……………………………………………………………..... 138

Material and Methods…………………………………………............... 141

Page 20: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Índice

___________________________________________________________________ IV

Results…………………………………………………………………..... 149

Discussion.....................……………………………………………….... 154

Acknowledgements……………………………………………..……….. 157

References......................................................................................... 157

3.2. Es el arrui (Ammotragus lervia) una amenaza para la cabra montés (Capra pyrenaica)? Una aproximación basada en modelos de adecuación de hábitat……………....................................

165

Resumen………………………………………………………………..... 167

Abstract………………………………………………………………….... 167

Introduction……………………………………………………………..... 168

Material and Methods………………………………………………….... 171

Results…………………………………………………………………..... 175

Discussion.....................………………………….……………………... 179

Acknowledgements……………………………………………………… 184

References......................................................................................... 185

Capítulo 4. SÍNTESIS Y CONCLUSIONES.......................................................... 191

4.1. Síntesis…....................................…………................................... 193

Capítulo 1…....................................................................................... 195

Capítulo 2……………………………………………………………….... 198

Capítulo 3……………..………………………………………………….. 200

4.2. Conclusiones……........................………..................................... 207

Page 21: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 22: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 23: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

MODELOS PREDICTIVOS: DISTRIBUCIÓN Y NICHO ECOLÓGICO DE LAS ESPECIES CONOCIMIENTO ACTUAL Y LÍNEAS FUTURAS DE INVESTIGACIÓN CON CABRA MONTÉS (CAPRA PYRENAICA) OBJETIVOS Y ORGANIZACIÓN DE LA TESIS

INTRODUCCIÓN

Page 24: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 25: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

MODELOS PREDICTIVOS: DISTRIBUCIÓN Y NICHO ECOLÓGICO DE

LAS ESPECIES

Page 26: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 27: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 5

MODELOS PREDICTIVOS PARA EL ESTUDIO DE LA DISTRIBUCIÓN

El estudio de las relaciones hábitat-especie ha sido uno de los pilares de

desarrollo de la ecología. Dichas relaciones se han enfocado desde muy

diversos niveles, que van desde la distribución geográfica de las especies

hasta el uso que éstas hacen de los recursos en un marco local, por ejemplo su

área de campeo (p.e., MacArthur 1972; Johnson 1980). Como es habitual en el

mundo natural, todos los niveles están organizados (Bissonette 1997) e

interconectados, por lo que los avances que se logren en la comprensión del

funcionamiento de cada uno de ellos pueden ayudar a explicar parte de los

otros. En la presente Tesis Doctoral se han estudiado estas relaciones a nivel

de distribución geográfica basándose para ello en la expresión del nicho

ecológico de las especies.

Los primeros estudios que versan sobre las relaciones hábitat-especie

se remontan a 1800, y en ellos ya se destaca la importancia que tienen los

factores climáticos en los patrones de distribución de los seres vivos (Humboldt

y Bonpland 1807; de Candolle 1855; Salisbury 1926). Otros factores

ambientales han sido incorporados en los estudios con el fin de profundizar en

el conocimiento de los condicionantes de la distribución geográfica de las

especies (p.e., Good 1953; MacArthur 1972; Stott 1981). A partir del

conocimiento de estas relaciones, se construye una disciplina alrededor del

estudio de los patrones espaciales, y que tiene una de sus bases en la

modelización de la distribución de las especies en función de sus

requerimientos ambientales. Además de su relevancia inicial, los modelos de

distribución han ganando una enorme importancia en los últimos años debido a

su utilidad como herramientas para el estudio del impacto de los cambios

ambientales (cambios en el uso del suelo, cambio climático, etc.) sobre la

distribución de los organismos (p.e., Araújo y cols. 2005a; del Barrio y cols.

2006; Rounsevell y cols. 2006; Thuiller y cols. 2006), y de las hipótesis

biogeográficas (p.e., Anderson y Wait 2001; Barret y cols. 2003; Triantis y cols.

2006), así como para el desarrollo y perfeccionamiento de los atlas de

distribución de especies (p.e., Hausser 1995; Araújo y cols. 2005b), o para

Page 28: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 6

establecer prioridades en diversos campos de la conservación (p.e., Margules y

Austin 1994; Engler y cols. 2004; Guisan y cols. 2006; Quevedo y cols. 2006).

En las siguientes secciones de este apartado se ha pretendido realizar

una introducción a los modelos predictivos, tanto en sus aspectos

conceptuales, como a las aproximaciones estadísticas en las que se sustentan.

Aspectos conceptuales

Un modelo es una simplificación de la realidad, por lo tanto toda la

complejidad y heterogeneidad de la naturaleza no puede ser predicha con

elevada precisión con un simple modelo. Levins (1966) formula el principio de

que sólo dos de las tres propiedades deseables de un modelo (generalidad,

realidad y precisión) pueden ser potenciadas simultáneamente mientras que la

tercera ha de ser sacrificada. Este balance (del inglés trade-off) permite

distinguir tres grupos de modelos (Sharpe 1990; Prentice y Helmisaari 1991;

Korzukhin y cols. 1996; ver Figura 1).

Figura 1.- Clasificación de los modelos según sus propiedades intrínsecas (Levins 1966). Figura adaptada de Guisan y Zimmermann (2000).

Page 29: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 7

En el primer grupo están aquellos en los que se potencia la generalidad

y la precisión por lo que los modelos son llamados analíticos (Pickett y cols.

1994), y son designados para predecir correctamente dentro de una realidad

limitada o simplificada, sin saber si el modelo es real o sólo es debido a

correlaciones espúreas. Un segundo grupo de modelos es elegido para ser real

y general, son los llamados mecanísticos (p.e., Prentice 1986), y basan sus

predicciones sobre relaciones causa efecto reales, aunque sus predicciones

son poco precisas. Por último, el tercer grupo sacrifica generalidad por

precisión y realidad, son los llamados modelos empíricos (p.e., Korzukhin y

cols. 1996), cuya formulación matemática tiene como principal propósito

resumir los hallazgos experimentales (p.e., Wissel 1992), aunque sus

resultados puedan no ser generales.

Esta clasificación es ampliamente usada aunque existe cierta

controversia y algunos autores la han criticado (p.e., Prentice y cols. 1992;

Korzukhin y cols. 1996) basándose en que no siempre se sacrifica una de las

propiedades ya que, en ocasiones, se pueden potenciar las tres al mismo

tiempo. Sin embargo otros autores aceptan la clasificación de Levins (1966)

considerando, sobre todo, que es muy aplicable en contextos conceptuales

(Guisan y Zimmermarnn 2000).

Desde la década de los noventa el desarrollo de nuevas teorías

ecológicas y biogeográficas ha ido aumentando, y éstas han podido ser

tratadas desde un enfoque novedoso gracias al perfeccionamiento de

programas informáticos diseñados para el manejo y análisis de la información

espacial, son los Sistemas de Información Geográfica, más conocidos por su

acrónimo SIG. En el entorno de los SIG, están progresando nuevas

metodologías de análisis para el estudio de los patrones espaciales de los

seres vivos, pudiendo englobarse todos estos estudios dentro de la rama

denominada Biogeografía de la Conservación (del inglés Biogeography

Conservation). Este término ha sido recien acuñado por Lomolino (2004), y

posteriormente Whittaker y cols. (2005) han definido sus bases. Estos últimos

autores definen la Biogeografía de la Conservación como la aplicación de los

principios, teorías y análisis biogeográficos (dinámicas de distribución de

taxones tanto individual como colectivamente) a problemas relacionados con la

Page 30: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 8

conservación de la biodiversidad. La mayoría de estas metodologías están

basadas en el modelizado de las respuestas de las especies a las condiciones

ambientales. De acuerdo con Austin y cols. (1990), las relaciones entre los

gradientes ambientales (temperatura, precipitación, humedad, etc.) y la

adecuación del medio para la supervivencia de población siguen una curva

normal (es decir, mayor adecuación en el centro del gradiente, y una progresiva

disminución hacia los dos extremos). Analizando estas relaciones con los

gradientes ambientales mediante el empleo de herramientas estadísticas (p.e.,

regresión múltiple), se obtiene un modelo de la respuesta potencial de la

especie a cada uno de los gradientes.

Básicamente, se puede decir que la correcta construcción de un modelo

predictivo comprende cinco pasos fundamentales (Figura 2), que son: i)

concepto sobre el que se desarrolla el modelo, ii) formulación matemática del

mismo, iii) calibración o puesta a punto, iv) obtención de predicciones, y v)

evaluación de su capacidad predictiva.

Figura 2.- Visión general de los sucesivos pasos (de 1 a 5) necesarios para construir un modelo cuando están disponibles dos bases de datos: una para fijar el modelo y otra para evaluarlo. La validación se puede abordar de dos maneras diferentes: usando los mismos datos con los que se ha construido el modelo mediante procedimientos como bootstrap, validación cruzada (del inglés cross-validation) o Jackknife, o usando datos independientes y comparando los valores predichos por el modelo con ellos usando medidas independientes del umbral como la aproximación ROC (del inglés receiver operating characteristic). Figura adaptada de Guisan y Zimmermann (2000).

Page 31: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 9

Cada uno de estos pasos ha sido recientemente evaluado en numerosas

publicaciones, por ejemplo, en cuanto a la formulación matemática se han

desarrollado trabajos que valoran la capacidad de distintos algoritmos para

predecir correctamente la distribución de las especies (p.e., Guisan y cols.

2002; Elith y cols. 2006), y la capacidad predictiva de los modelos ha sido

estimada siguiendo distintas metodologías y paralelamente han sido

desarrollados estudios comparativos para evaluar la potencia de cada una de

ellas (p.e., Pearce y Ferrier 2000; Segurado y Araújo 2004).

Por tanto, cada uno de los cinco procesos es clave para el correcto

desarrollo del modelo y, en la actualidad, numerosos esfuerzos y proyectos de

investigación están siendo desarrollados para perfeccionar la metodología

participando en ello, y de manera activa, varios equipos españoles (p.e.,

Brotons y cols. 2004; Chefaoui y cols. 2005; Hortal y Lobo 2005; Jiménez-

Valverde y Lobo 2005; Hortal y cols. 2006; Jiménez-Valverde y cols. 2006;

Lobo y cols. 2006).

Aproximaciones estadísticas a los modelos

Para la formulación estadística, llamada verificación por algunos autores

(p.e., Rykiel 1996), se debe seleccionar un algoritmo apropiado con el fin de

predecir un tipo de variable dependiente y estimar los coeficientes del modelo,

así como una aproximación estadística óptima considerando el contexto del

modelo (Guisan y Zimmermann 2000). La mayoría de los modelos son

específicos para un tipo particular de variable dependiente y su distribución

teórica, pudiendo considerarse éste el primer condicionante a la hora de

seleccionar el método de modelización a usar.

A continuación, se muestran y explican brevemente las principales

aproximaciones estadísticas usadas para modelizar, y para ello se agrupan en

siete categorías (Guisan y Zimmermann 2000): regresiones múltiples y sus

formas generalizadas, técnicas de clasificación, envueltas ambientales,

técnicas de ordenación, aproximaciones Bayesianas, redes neuronales y

aproximaciones mixtas.

Page 32: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 10

Regresiones generalizadas y técnicas relacionadas: Las regresiones

relacionan una variable dependiente a una (regresión simple) o varias

(regresión múltiple) variables ambientales independientes, también llamados

predictores ambientales. Los Modelos Lineales Generalizados (GLM)

constituyen la familia más flexible de modelos en cuanto a las distribuciones

que puede presentar la variable dependiente (normal, Poisson, binomial o

gamma; McCullagh y Nelder 1989). Otras técnicas de regresión alternativas

están basadas en funciones no paramétricas, son los Modelos Generalizados

Aditivos (GAM). Las regresiones son comúnmente usadas para modelizar la

distribución de las especies (p.e., Bio y cols. 1998; Lehmann 1998; Brotons y

cols. 2004; Engler y cols. 2004; Lobo y cols. 2006; Quevedo y cols. 2006).

Técnicas de clasificación: Dentro de este grupo se incluyen los árboles

de clasificación (p.e., Franklin y cols. 2000), clasificación basada en reglas

(p.e., Lenihan y Neilson 1993) y clasificación por máxima probabilidad (p.e.,

Franklin y Wilson 1991). Algunos SIG implementan las técnicas de máxima

probabilidad bajo los nombres de clasificación supervisada y sin supervisar, en

función de la presencia de datos para la calibración del modelo. Estos métodos

realmente son poco usados en estudios de distribución (p.e., Franklin 1998).

Envueltas ambientales (del inglés Environmental envelopes): Estas

técnicas se han empleado para modelizar la distribución de las especies a

escalas espaciales muy amplias (p.e., Busby 1991; Shao y Halpin 1995).

Dentro de éstas se encuentran modelos como el BIOCLIM (Busby 1986, 1991),

el HABITAT (Cocks y Baird 1991) y el DOMAIN (Carpenter y cols. 1993). En

líneas generales, estos modelos calculan con diversos algoritmos el rango de

condiciones de una serie de variables en las que está presente la especie. En

la actualidad éstas son técnicas en las que se está trabajando con el fin de

potenciar su robustez (p.e., Marra y cols. 2004; Elith y cols. 2006).

Técnicas de ordenación: La mayoría de los modelos que usan técnicas

de ordenación están basados en los análisis canónicos de correspondencia

(ver p.e., Hill 1991; Ohmann y Spiess 1998; Guisan y cols. 1999). En ellos, el

eje de ordenación principal (gradiente directo) es necesariamente una

combinación de los predictores ambientales (ter Braak 1988), y se asume que

las especies aparecen a lo largo del gradiente siguiendo una distribución

Page 33: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 11

normal. Estos métodos resultan muy apropiados para estudios de especies

raras (p.e., ter Braak 1985; Ohmann y Spiess 1998; Guisan y cols. 1999), esto

es, especies que aparecen con una frecuencia muy baja.

Aproximaciones Bayesianas: Los modelos basados en estadísticos

Bayesianos combinan probabilidades de detección de una especie establecidas

a priori (desde estudios previos) para un lugar concreto (p.e., Skidmore 1989;

Aspinall y Veitch 1993), con las probabilidades de aparición en ese sitio, pero

en este caso, condicionadas al valor de cada predictor ambiental. Son poco

usados en estudios de distribución (Fischer 1990; Brzeziecki y cols. 1993)

debido a sus limitaciones metodológicas.

Redes neuronales: Se ha recurrido a las redes neuronales para estudiar

la distribución de las especies mediante modelos predictivos de hábitat en el

marco de la teledetección (Fitzgerald y Lees 1992). Usando esta metodología,

estos autores han obtenido resultados más robustos que aplicando regresiones

múltiples, sobre todo cuando las relaciones no son lineales. Como este método

aún no ha sido muy usado para modelizar la distribución, no se entrará en

detalle (para una detallada discusión sobre el método, ver Hepner y cols. 1990;

Benediktsson y cols. 1991).

Otras aproximaciones: Entre éstas se encuentran los modelos simples

que pueden ser desarrollados directamente dentro del SIG mediante relaciones

algebraicas con los predictores (Martinez-Taberner y cols. 1992). Otros son los

modelos discriminantes (p.e., Corsi y cols. 1999), que tienen un formulado

similar al de los GLM de distribución binomial. El Análisis Factorial de Nicho

Ecológico (ENFA; Hirzel y cols. 2002) es similar a los basados en envueltas

ambientales pero requiere sólo datos de presencia para computar el modelo de

distribución. Otras metodologías han sido descritas (p.e., GARP, Stockwell y

Peters 1999) y otras nuevas se implementarán para desarrollar modelos

robustos y con elevada capacidad predictiva.

Page 34: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 12

LA DISTRIBUCIÓN DE LAS ESPECIES: EL NICHO ECOLÓGICO

El área de distribución de una especie es una compleja expresión de su

ecología e historia evolutiva (Brown 1995), estando determinada por diversos

factores que operan con diferente intensidad y a distintas escalas (Gaston

2003; Pearson y Dawson 2003). Estos factores se pueden clasificar en cuatro

grupos (Soberón y Peterson 2005):

1. Abióticos; que incluyen aspectos del clima, del suelo, etc., y que

imponen los límites fisiológicos sobre la capacidad de una especie para

persistir en un área determinada.

2. Bióticos; considerando las interacciones con otras especies que

modifican la capacidad de permanencia de las poblaciones. Estas

interacciones pueden ser positivas (p.e., mutualismo) o negativas (p.e.,

competición, depredación, parasitismo). Debido a la limitación que

suponen los factores bióticos en los procesos poblacionales, estos

obviamente pueden afectar a sus distribuciones.

3. Potencial dispersivo; son las regiones que tienen potencial como para

que una especie se pueda dispersar desde alguna población que actúa

como núcleo de origen. Este factor es muy usado para distinguir entre la

distribución actual y potencial de una especie, basándose en la

configuración del paisaje y en la capacidad de dispersión de las

especies.

4. Evolutivos; capacidad evolutiva de las poblaciones para adaptarse a

nuevas condiciones. Este factor, en ocasiones considerado

insignificante, es sin embargo de gran importancia para resumir las

posibilidades distributivas de las especies.

Los factores interaccionan dinámicamente para producir la compleja

entidad llamada distribución geográfica de las especies. Se asume que una

especie estará presente en un punto geográfico donde los tres grupos de

factores sean favorables (en este caso no se consideran los evolutivos), esto

es, donde las condiciones abióticas sean adecuadas (región A), donde un

grupo adecuado de especies constituyan el ecosistema (región B), y

Page 35: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 13

finalmente, donde pueda llegar desde los núcleos poblacionales establecidos

(región M). Esto se representa en el siguiente esquema (Figura 3).

La región A representa la expresión geográfica del Nicho Fundamental

(del inglés Fundamental Niche) de la especie (Hutchinson 1957). La región B

es aquella en las que las relaciones interespecíficas necesarias para que la

especie cohabite quedan satisfechas, tanto las negativas (p.e., competición),

como las positivas (p.e., mutualismo).

Figura 3.- a) El círculo A representa la región geográfica en la que los factores abióticos son adecuados para la especie (nicho fundamental). El círculo B es la región donde se encuentra una combinación de especies tal que permite el asentamiento de la especie considerada. A ∩ B (área sombreada en azul más la región P) es la expresión de su nicho realizado. El círculo M es la parte del mundo en términos ecológicos accesible para la especie, esto es, sin barreras dispersivas. Finalmente A ∩ B ∩ M = P es la región que contiene las peculiaridades tanto abióticas como bióticas y que es accesible para la especie (distribución de la especie). El resto de figuras representan casos extremos en el solapamiento entre las zonas A, B y M (se explican en el texto). Caso I) A = B = M. Caso II) A = M ≠ B. Caso III) A = B ≠ M. Figuras adaptadas de Soberón y Peterson (2005).

Page 36: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 14

Por ello, la intersección entre la región A y la B es la parte del mundo

que cumple los requerimientos, abióticos y bióticos, necesarios que permiten el

asentamiento estable de una especie, esto es, su Nicho Realizado (del inglés

Realized Niche; Hutchinson 1957). Finalmente, la región M representa el área

accesible para la especie desde sus núcleos poblaciones de origen, esto es,

considerando la potencialidad del medio para la expansión de la especie. Aquí,

se deben considerar las expansiones no naturales en las que ha intervenido el

hombre por medio de introducciones de especies en lugares lejanos. Desde

una perspectiva heurística, una población estable de una especie sólo puede

encontrarse en el área donde las tres regiones (A, B y M) interseccionan (área

P) y que representa la distribución de la especie (Soberón y Peterson 2005).

Dentro de este contexto, antes de aplicar un modelo matemático sobre los

datos de distribución de una especie es necesario conocer la parte del nicho de

la especie que se está modelizando, esto es, ¿se modeliza su nicho

fundamental?, ¿su nicho realizado?, o incluso ¿su distribución real?

Nunca se debe perder de vista que los datos de distribución de una

especie usados para estos propósitos son datos del área P, que a su vez

pertenece a la regiones A, B y M. En la Figura 3 se representan tres casos

extremos de solapamiento entre estas regiones. Así, el Caso I es el más simple

y optimista de todos. En él las tres regiones están solapadas por lo que el nicho

fundamental y el realizado son similares, y son también similares a la

distribución de la especie. Por lo tanto, modelizaciones de la especie podrían

ser igualmente interpretadas tanto en cuanto a nicho fundamental, como a

nicho realizado o distribución actual. El Caso II representa la situación donde M

se solapa con A, esta situación se puede dar como consecuencia del uso de

escalas espaciales de estudio pequeñas o porque las peculiaridades

dispersivas de la especie y la composición del paisaje hagan que no existan

barreras siendo la mayor parte del nicho fundamental accesible para ella. Aquí,

la región B solapa sólo con una pequeña proporción de las otras dos regiones

debido a fuertes relaciones interespecíficas (positivas y negativas), por lo que

el nicho fundamental de la especie es mucho más amplio que su área de

distribución. En esta situación las interpretaciones de la modelización deben

ser cautelosas ya que se tiende a sobreestimar el nicho fundamental. Por

Page 37: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 15

último, en el Caso III el nicho fundamental solapa con la región en la que las

interacciones son adecuadas (permiten el asentamiento de la especie), pero sin

embargo, la complejidad geográfica genera barreras que potencian la creación

de núcleos poblacionales aislados. Nuevamente en esta situación el nicho

fundamental es más amplio que el área de distribución de la especie y las

interpretaciones de los modelos han de hacerse con cierta cautela.

RELACIONES INTERESPECÍFICAS Y MODELOS PREDICTIVOS

Como anteriormente se ha descrito, el nicho fundamental de una especie

está modulado, entre otros, por factores biológicos (Soberón y Peterson 2005)

entre los que se encuentran las relaciones interespecíficas, es decir, el rango

geográfico de una especie puede verse restringido por la presencia de

competidores, depredadores, o parásitos, que reducen su nicho fundamental a

una fracción que puede ser explotada de manera estable por la especie. Ésta

es la expresión de su nicho realizado (Hutchinson 1957). Los requerimientos

ecológicos de especies emparentadas son similares y pueden impedir su

coexistencia en un ambiente limitante (p.e., MacArthur 1972), por lo que el

nicho ecológico de una especie puede quedar restringido por la presencia de

otra especie en simpatría. Por ejemplo, especies de mamíferos emparentadas,

cuando aparecen en simpatría, muestran segregación a nivel de micro y de

macrohábitat (p.e., Wilson 1968; Stoecker 1972; Emmons 1980). En algunos

casos han sido documentados comportamientos agresivos como mecanismo

para las relaciones de competencia deducidas desde patrones geográficos

(Brown 1971; Heller 1971; Murie 1971; Sheppard 1971; Stoecker 1972;

Alberico y González-M 1993). Finalmente, experimentos sobre exclusión

competitiva han confirmado la habilidad que presentan algunas especies de

mamíferos para excluir a sus congéneres donde sus rangos geográficos entran

en contacto (Koplin y Hoffmann 1968; Stoecker 1972; Chappell 1978; Schoener

1983).

Sin embargo, diferenciar los determinantes ecológicos e históricos de la

distribución de las especies en un contexto geográfico es una cuestión

Page 38: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 16

metodológicamente difícil (Endler 1982). En la mayoría de los casos, la

interpretación de estas relaciones se ha visto entorpecida por una falta de

objetividad a la hora de cuantificar la adecuación de hábitat para las especies

(p.e., MacArthur 1972; Terborgh y Weske 1975; Bergstrom y Hoffmann 1991;

Remsen y Graves 1995).

Los recientes avances en los SIG permiten ahora realizar robustos

análisis del nicho ecológico de las especies (p.e., Chefaoui y cols. 2005;

Acevedo et al. 2006 [Capítulo 1.1]; [Capítulos 2 y 3]), pudiendo ser testadas

hipótesis biogeográficas que anteriormente no podían serlo debido a

limitaciones metodológicas. En este momento, surgen estudios comparativos

entre los nichos de especies relacionadas (p.e., Anderson y cols. 2002;

Chefaoui y cols. 2005; Hortal y cols. 2005; Acevedo y cols. 2006 [Capítulo 1.1]; Lobo y cols. 2006 [Capítulos 2 y 3.2]; Figura 4).

Figura 4.- Ejemplo de estudio de relaciones de nicho entre especies. La figura muestra la variación de la adecuación de hábitat a lo largo del gradiente ambiental de la zona de estudio (factor de marginalidad) para dos especies de escarabajos (Copris hispanus es representada por la línea continua, y C. lunaris por la línea discontinua). Figura tomada de Chefaoui y cols. (2005).

Page 39: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 17

En un contexto más ecológico y menos geográfico, numerosos trabajos

han manifestado la elevada potencialidad de los ungulados para que se

establezcan relaciones de competencia entre especies que viven en simpatría

(p.e., Putman 1996 y las referencias que cita). Sin embargo, son escasos los

trabajos que evidencien variaciones en parámetros poblacionales debidas

puramente a competencia interespecífica. Respecto a esto, Putman (1996)

concluye que incluso en un ambiente limitante, a pesar de que a priori eran

esperables las relaciones de competencia entre especies simpátricas, y aunque

se detectaron cambios en sus tamaños poblacionales a lo largo del tiempo, no

se pudo concluir la existencia de un claro efecto negativo de una especie sobre

la otra, en este caso del gamo (Dama dama) sobre el corzo (Capreolus

capreolus). Otros autores han demostrado que el rango de separación en las

distribuciones del ciervo de cola blanca (Odocoileus virginianus) y el ciervo

bura (Odocoileus hemionus crooki) ha sido causado por relaciones

competitivas (Anthony y Smith 1977), y recientemente se ha visto que el corzo

ha sido desplazado por el gamo en Italia (Focardi y cols. 2006).

BIBLIOGRAFÍA

Acevedo, P., Cassinello, J., Gortázar, C. (2006) The Iberian ibex is under an expansion trend but displaced to suboptimal habitats by the presence of extensive goat livestock in central Spain. Biodiversity and Conservation DOI 10.1007/s10531-006-9032-y.

Alberico, M., González-M., A. (1993) Relaciones competitivas entre Proechimys semispinosus y Hoplomys gymnurus (Rodentia: Echimyidae) en el occidente de Colombia. Cadalsia 17, 325-332.

Anderson, R.P., Peterson, A.T., Gómez-Laverde, M. (2002) Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 98, 3–16.

Anderson, W.B., Wait, D.A. (2001) Subsidized island biogeography: another new twist on an old theory. Ecology Letters 4, 289-291.

Anthony, R.J., Smith, N.S. (1977) Ecological relationships between mule deer and white-tailed deer in southeastern Arizona. Ecological Monographs 47, 255-277.

Page 40: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 18

Araújo, M.B., Pearson, R.G., Thuiller, W., Erhard, M. (2005a) Validation of species-climate impact models under climate change. Global Change Biology 11, 1504-1513.

Araújo, M.B., Thuiller, W., Williams, P.H., Reginster, I. (2005b) Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Global Ecology and Biogeography 14, 17-30.

Aspinall, R., Veitch, N. (1993) Habitat mapping from satellite imagery and wildlife surveys using a Bayesian modelling procedure in a GIS. Photogrammetric Engineering and Remote Sensing 59, 537-543.

Austin, M.P., Nicholls, A.O., Margules, C.R. (1990) Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecological Monographs 60,161-177.

Barrett, K., Wait, D.A., Anderson, W.B. (2003) Small island biogeography in the Gulf of California: lizards, the subsidized island biogeography hypothesis, and the small island effect. Journal of Biogeography 30, 1575-1581.

Benediktsson, J.A., Swain, P.H., Ersoy, O.K., Hong, D. (1991) Classification of very high dimensional data using neural netoworks. In Proceedings of the 10th Annual International Geoscience and Remote Sensing Symposium, IGARSS ’90, College Park, MD.

Bergstrom, B.J., Hoffmann, R.S. (1991) Distribution and diagnosis of three species of chipmunks (Tamias) in the Front Range of Colorado. The Southwestern Naturalist 36, 14-28.

Bio, A.M.F., Alkemade, R., Barendregt, A. (1998) Determining alternative models for vegetation response analysis: a nonparametric approach. Journal of Vegetation Science 9, 5–16.

Bissonette, J.A. (1997) Scale-sensitive ecological properties: historical context, current meaning. In: Wildlife and landscape ecology. Effects of pattern and scale. J.A. Bissonette (ed.), Springer-Verlag, New York.

Borwn, J.H. (1995) Macroecology. University of Chicago Press, Chicago.

Brotons, L., Thuiller, W., Araújo, M.B., Hirzel, A.H. (2004) Presence-absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27, 437-448.

Brown, J.H. (1971) Mechanisms of competitive exclusion between two species of chipmunks. Ecology 52, 305-311.

Brzeziecki, B., Kienast, F., Wildi, O. (1993) A simulated map of potential natural forest vegetation of Switzerland. Journal of Vegetation Science 4, 499-508.

Busby, J.R. (1986) A biogeographical analysis of Nothofagus cunninghamii (Hook.) Oerst. in southeastern Australia. Australian Journal of Ecology 11, 1-7.

Page 41: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 19

Busby, J.R. (1991) BIOCLIM – A bioclimate analysis and prediction system. In: Nature Conservation: Cost Effective Biological Surveys and Data Analysis. C.R. Margules, M.P. Austin, M.P. (eds.), CSIRO, Melbourne.

Carpenter, G., Gillison, A.N., Winter, J. (1993) DOMAIN: a flexible modeling procedure for mapping potential distributions of plants, animals. Biodiversity and Conservation 2, 667-680.

Chappell, M.A. (1978) Behavioural factors in the altitudinal zonation of chipmunks (Eutamias). Ecology 59, 565-579.

Chefaoui, R.M., Hortal, J., Lobo, J.M. (2005) Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biological Conservation 122, 327-338.

Cocks, C.R., Baird, I.A. (1991) The role of Geographic Information Systems in the collection, extrapolation and use of survey data. In: Nature Conservation: Cost Effective Biological Surveys and Data Analysis. C.R. Margules, M.P. Austin, M.P. (eds.), CSIRO, Melbourne.

Corsi, F., Duprè, E., Boitani, L. (1999) A large-scale model of wolf distribution in Italy for conservation planning. Conservation Biology 13, 150-159.

de Candolle, A.I. (1855) Géographique botanique raisoneé. Masson. Paris.

del Barrio, G., Harrison, P.A., Berry, P.M., Butt, N., Sanjuan, M.E., Pearson, R.G., Dawson, T. (2006) Integrating multiple modelling approaches to predict the potential impacts of climate change on species' distributions in contrasting regions: comparison and implications for policy. Environmental Science & Policy 9, 129-147.

Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.McC., Peterson, A.T., Phillips, S.J., Richardson, K.S., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S., Zimmermann, N.E. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129-151.

Emmos, L.H. (1980) Ecology and resource partitioning among niche species of African rain forest squirrels. Ecological Monographs 50, 31-54.

Endler, J.A. (1982) Problems in distinguishing historical from ecological factors in biogeography. American Zoologist 22, 441-452.

Engler, R., Guisan, A., Rechsteiner, L. (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology 41, 263-274.

Fischer, H.S. (1990) Simulating the distribution of plant communities in an alpine landscape. Coenoses 5, 37-43.

Page 42: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 20

Fitzgerald, R.W., Lees, B.G. (1992) The application of neural networks to the floristic classification of remote sensing and GIS data in a complex terrain. In: Proceedings of the XVII Congress ASPRS, American Society of Photogrametry and Remote Sensing (eds.), Betherda, MD.

Focardi, S., Aragno, P., Montanaro, P., Riga, F. (2006) Inter-specific competition from fallow deer Dama dama reduces habitat quality for the Italian roe deer Capreolus capreolus italicus. Ecography 29, 407-417.

Franklin, J. (1998) Predicting the distribution of shrub species in southern California from climate and terrain-derived variables. Journal of Vegetation Science 9, 733-748.

Franklin, J., MacCullough, P., Gray, C. (2000) Terrain variables used for predictive mapping of vegetation communities in Southern California. In: Terrain Analysis: Principles and Applications. J.P. Wilson, J.C. Gallant (eds.), Wiley, New York.

Franklin, S.E., Wilson, B.A. (1991) Vegetation mapping and change detection using SPOT MLA and Landsat imagery in Kluane National Park. Canadian Journal of Remote Sensing 17, 2-17.

Gaston, K. (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford.

Good, R. (1953) The Geography of the Flowering Plants, 2nd edn. Longman, London.

Guisan, A., Broennimann, O., Engler, R., Vust, M., Yoccoz, N.G., Lehmann, A., Zimmermann, N.E. (2006) Using niche-based models to improve the sampling of rare species. Conservation Biology 20, 501-511.

Guisan, A., Edwards, T.C., Hastie, T. (2002) Generalized linear and generalized additive models in studies of species distribution: setting the scene. Ecological Modelling 157, 89-100.

Guisan, A., Weiss, S.B., Weiss, A.D. (1999) GLM versus CCA models in ecology. Plant Ecology 143, 107-122.

Guisan, A., Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135, 147-186.

Hausser, J. (1995) Säugetiere der Schweitz. Atlas des Mammifères de Suisse. Mammiferi della Svizzera. Birkhäuser, Basel.

Heller, H.C. (1971) Altitudinal zonation of chipmunks (Eutamias): interspecific aggression. Ecology 52, 312-319.

Hepner, G.F., Logan, T., Ritter, N., Bryant, N. (1990) Artificial neural network classification using a minimal training set –comparison to conventional supervised classification. Photogrammetric Engineering and Remote Sensing 56, 469-473.

Page 43: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 21

Hill, M.O. (1991) Patterns of species distribution in Britain elucidated by canonical correspondence analysis. Journal of Biogeography 18, 247-255.

Hirzel, A.H., Hausser, J., Chessel, D., Perrin, N. (2002) Ecological-niche factor analysis: How to compute habitat- suitability maps without absence data? Ecology 83, 2027-2036.

Hortal, J., Borges, P.A.V., Dinis, F., Jiménez-Valverde, A., Chefaoui, R.M., Lobo, J.M., Jarroca, S., Brito de Azevedo, E., Rodrigues, C., Madruga, J., Pinheiro, J., Gabriel, R., Cota Rodrigues, F., Pereira, A.R. (2005) Using ATLANTIS - Tierra 2.0 and GIS environmental information to predict the spatial distribution and habitat suitability of endemic species. In: A List of the Terrestrial Fauna (Mollusca and Arthropoda) and Flora (Bryophyta, Pteridophyta and Spermatophyta) from the Azores. P.A.V. Borges, R. Cunha, R. Gabriel, A.F. Martins, L. Silva, V. Vieira (eds.). Direcção Regional de Ambiente e do Mar dos Açores, Angra do Heroísmo and Ponta Delgada. Available at http://sram.azores.gov.pt/lffta/.

Hortal, J., Borges, P.A.V., Gaspar, C. (2006) Evaluating the performance of species richness estimators: sensitivity to sample grain size. Journal of Animal Ecology 75, 274-287.

Hortal, J., Lobo J.M. (2005) An ED-based protocol for optimal sampling of biodiversity. Biodiversity and Conservation 14, 2913-2947.

Hutchinson, G.E. (1957) Concluding Remarks. Cold Spring Harbor Symposia on Quantitative Biology 22, 415-427.

Jimenez-Valverde, A., Lobo, J.M. (2005) Determining a combined sampling procedure for a reliable estimation of Araneidae and Thomisidae assemblages (Arachnida, Araneae). Journal of Arachnology 33, 33-42.

Jimenez-Valverde, A., Mendoza, S.J., Cano, J.M., Munguira, M.L. (2006) Comparing relative model fit of several species-accumulation functions to local Papilionoidea and Hesperioidea butterfly inventories of Mediterranean habitats. Biodiversity and Conservation 15, 177-190.

Johnson, D.H. (1980) The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65-71.

Koplin, J.R., Hoffmann, R.S. (1968) Habitat overlap and competitive exclusion in voles (Microtus). American Midland Naturalist 80, 494–507.

Korzukhin, M.D., Ter-Mikaelian, M.T., Wagner, R.G. (1996) Process versus empirical models: which approach for forest ecosystem management? Canadian Journal of Forest Research 26, 879-887.

Lehmann, A. (1998) GIS modelling of submerged macrophyte distribution using Generalized Additive Models. Plant Ecology 139, 113-124.

Page 44: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 22

Lenihan, J.M., Neilson, R.P. (1993) A rule-based vegetation formation model for Canada. Journal of Biogeography 20, 615-628.

Levins, R. (1966) The strategy of model building in population ecology. American Scientist 54, 421-431.

Lobo, J.M., Verdu, J.R., Numa, C. (2006) Environmental and geographical factors affecting the Iberian distribution of flightless Jekelius species (Coleoptera : Geotrupidae). Diversity and Distributions 12, 179-188.

Lomolino, M.V. (2004) Conservation Biogeography. In: Frontiers of Biogeography: new directions in the geography of nature. M.V. Lomolino, L.R. Heaney (eds.), Sinauer Associates, Inc.

MacArthur, R. (1972) Geographical ecology: patterns in the distribution of species. Harper & Row, New York.

Margules, C.R., Austin, M.P. (1994) Biological models for monitoring species decline: the construction and use of data bases. Philosophical Transactions of the Royal Society of London, B 344, 69-75.

Marra, M.J., Smith, E.G.C., Shulmeister, J., Leschen, R. (2004) Late Quaternary climate change in the Awatere Valley, South Island, New Zealand using a sine model with a maximum likelihood envelope on fossil beetle data. Quaternary Science Reviews 23, 1637-1650.

Martinez-Taberner, A., Ruiz-Perez, M., Mestre, I., Forteza, V. (1992) Prediction of Potencial Submerged Vegetation in a Silted Coastal Marsh, Albufera of Majorca, Baleartic Islands. Journal of Environmental Management 35, 1-12.

McCullagh, P., Nelder, J.A. (1989) Generalized Linear Models, 2nd edn. Chapman & Hall, London.

Murie, J.O. (1971) Behavioural relationships between two sympatric voles (Microtus): relevance to habitat segregation. Journal of Mammalogy 52, 181-186.

Ohmann, J.L., Spiess, T.A. (1998) Regional gradient analysis and spatial pattern of woody plant communities. Ecological Monographs 68, 151-182.

Pearce, J., Ferrier, S. (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling 133, 225–245.

Pearson, R.G., Dawson, T.P. (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12, 361-371.

Pickett, S.T.A., Kolasa, G., Jones, C.G. (1994) Ecological Understanding: the Nature of Theory of Nature. Academic Press, New York.

Page 45: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 23

Prentice, I.C. (1986) Some concepts and objectives of forest dynamics research. In: Forest Dynamics Research in Western and Central Europe. J. Fanta (ed.), PUDOC, Wageningen.

Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A., Solomon, A.M. (1992) A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 19, 117-134.

Prentice, I.C., Helmisaari, H. (1991) Silvics of north European trees: compilation, comparison and implications for forest succession modelling. Forest Ecology and Management 42, 79-93.

Putman, R.J. (1996) Competition and Resource Partitioning in Temperate Ungulate Assemblies. Chapman & Hall, London.

Quevedo, M., Bañuelos, M.J., Obeso, J.R. (2006) The decline of Cantabrian capercaille: How much does habitat configuration matter. Biological Conservation 127, 190-200.

Remsen, J.V.J., Graves, W.S. (1995) Distribution patterns and zoogeography of Atlapetes brush-finches (Emberizinae) of the Andes. The Auk 112, 210-224.

Rounsevell, M.D.A., Reginster, I., Aráujo, M.B., Carter, T.R., Dendoncker, N., Ewert, F., House, J.I., Kankaanpaa, S., Leemans, R., Metzger, M.J., Schmit, C., Smith, P., Tuck, G. (2006) A coherent set of future land use change scenarios for Europe. Agriculture Ecosystems & Environment 114, 57-68.

Rykiel, E.J.J. (1996) Testing ecological models: the meaning of validation. Ecological Modelling 90, 229-244.

Salisbury, E.J. (1926) The geographical distribution of plants in relation to climatic factors. The Geographical Journal 57, 312-335.

Schoener, T.W. (1983) Field experiments on interspecific competition. The American Naturalis 122, 240-285.

Segurado, P., Araújo, M.B. (2004) An evaluation of methods for modelling species distributions. Journal of Biogeography 31, 1555-1568.

Shao, G., Halpin, P.N. (1995) Climate controls of eastern North American coastal tree and shrub distributions. Journal of Biogeography 22, 1083-1089.

Sharpe, P.J.A. (1990) Forest modelling approaches: compromise between generality and precision. In: Process Modeling of Forest Growth Responses to Environmental Stress. R.K. Dixon, R.S. Meldahl, G.A. Ruark, W.G. Warren (eds.), Timber Press, Portland.

Sheppard, D.H. (1971) Competition between two chipmunk species (Eutamias). Ecology 52, 320-329.

Page 46: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 24

Skidmore, A.K. (1989) An expert system classifies eucalypt forest type using Landsat Thematic Mapper data and a digital terrain model. Photogrammetric Engineering and Remote Sensing 55, 1449-1464.

Soberón, J., Peterson, A.T. (2005) Interpretation of models of fundamental ecological niches and species' distribution areas. Biodiversity Informatics 2, 1-10.

Stockwell, D., Peters, D. (1999) The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science 13, 143-158.

Stoecker, R.E. (1972) Competitive relations between sympatric populations of voles (Microtus montanus and M. pennsylvanicus). Journal of Animal Ecology 41, 311-329.

Stott, P. (1981) Historical Plant Geography. An introduction. George Allen & Uwin, London.

ter Braak, CJ.F. (1985) CANOCO: A FORTRAN program for canonical correspondence analysis and detrended correspondence analysis. IWI-TNO, Wangeningen.

ter Braak, CJ.F. (1988) CANOCO: an extension of DECORANA to analyze species-environment relationships. Vegetatio 75, 159-160.

Terborgh, J., Weske, J.S. (1975) The role of competition in the distribution of Andean birds. Ecology 66, 1237-1246.

Thuiller, W., Lavorel, S., Sykes, M.T., Araújo, M.B. (2006) Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Diversity and Distributions 12, 49-60.

Triantis, K.A., Vardinoyannis, K., Tsolaki, E.P., Botsaris, I., Lika, K., Mylonas, M. (2006) Re-approaching the small island effect. Journal of Biogeography 33, 914-923.

von Humboldt, A. , Bonpland, A. (1807) Essai sur la géographie des plantes. Eur erasm, Paris.

Whittaker, R.J., Araújo, M.B., Paul, J., Ladle, R.J., Watson, J.E.M., Willis, K.J. (2005) Conservation Biogeography: assessment and prospect. Diversity and Distributions 11, 3-23.

Wilson, D.E. (1968) Ecological distribution of the genus Peromyscus. The Southwestern Naturalist 13, 267-274.

Wissel, C. (1992) Aims and limits of ecological modelling exemplified by island theory. Ecological Modelling 63, 1-12.

Page 47: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

CONOCIMIENTO ACTUAL Y LÍNEAS FUTURAS DE INVESTIGACIÓN CON

CABRA MONTÉS (CAPRA PYRENAICA) Acevedo, P., Cassinello, J. A REVIEW OF CAPRA PYRENAICA KNOWLEDGE:

TAXONOMY, DISTRIBUTION, ECOLOGY, CONSERVATION AND PROPOSAL FOR FUTURE

RESEARCH LINES. Mammal Review, en evaluación (enviado a 3/08/2006).

Page 48: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 49: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 27

RESUMEN

1. Se ha realizado una revisión de los conocimientos existentes sobre la cabra

montés, Capra pyrenaica. La mayoría de las publicaciones han sido obtenidas de

revistas locales y libros nacionales, así como de informes inéditos, siendo muy poca la

información disponible en revistas internacionales de fácil acceso para la comunidad

científica. Para solventar el problema de la reducida accesibilidad de buena parte de la

información, se ofrece esta revisión como un resumen y actualización de toda la

información disponible sobre la especie.

2. Análisis genéticos recientes han arrojado algunas dudas sobre la taxonomía

más aceptada de la especie, caracterizada ésta por la presencia de 4 subespecies de

las que sólo persisten dos, C. p. victoriae y C. p. hispanica.

3. Además de las introducciones que se vienen realizando tradicionalmente,

actualmente está teniendo lugar una expansión natural de las poblaciones de

monteses. En esta revisión, se actualiza su estatus poblacional, distribución y

abundancia.

4. Han sido realizados estudios descriptivos sobre la morfología, hábitos

alimenticios, ecología del comportamiento, epidemiología y estado sanitario de la

cabra montés. Sin embargo, estudios que integren todos estos aspectos aún no han

sido realizados.

5. Las extinciones previas deberían hacer que seamos cautelosos en la

preservación de la especie, ya que, aunque actualmente sus poblaciones están en

general expandiéndose, se han identificado una serie de amenazas potenciales para

esta especie entre las que se encuentran la sobreabundancia, las enfermedades, y la

competición tanto con ganado doméstico como con especies invasoras.

6. Finalmente se enumeran líneas de investigación que, a nuestra opinión,

deben ser priorizadas para la conservación de la cabra montés, por ejemplo, la

ecología aplicada dirigida hacia una correcta gestión de las poblaciones, así como

estudios experimentales encaminados a la identificación de posibles amenazas que

pueden acechar sobre esta especie.

ABSTRACT

1. A revision of current knowledge of the Iberian ibex, Capra pyrenaica, is

provided. Most of the published material can be obtained from local journals and

Page 50: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 28

books, as well as unpublished reports. Very little is to be found on international, easy to

access, sources. In order to solve this lack of information, the present review offers a

compilation and up-to-date revision of the species.

2. Recent genetic analyses have cast some doubts on the generally accepted

taxonomy of the species, conformed by four subspecies, from which only two persist

nowadays, C. p. victoriae and C. p. hispanica.

3. Apart from traditional translocations of ibex populations carried out by man, a

natural expansion of the species is currently taking place. Here, updated information of

its status, distribution and abundance is provided.

4. A series of descriptive studies have been carried out dealing with aspects

such as morphology, feeding habits, behavioural ecology, epidemiology and health

status; but no integrative, evolutionary or ecologically relevant work on these issues

have yet been carried out in this species.

5. Previous extinction events should make us is cautious on the preservation of

the species, since, although its current populations are in general under an expansion

trend, we have identified a series of threats, such as population overabundance,

diseases prevalence and competition against domestic livestock and invasive ungulate

species.

6. We finally enumerate a series of research topics which, to our view, should

be a priority in dealing with this species. Namely, applied ecological issues focused on

a proper management of the populations, as well as an identification of current

ecological threats based on empirical data obtained from populations under different

ecological conditions and regions.

SHORT FOREWORD

The Iberian ibex (Capra pyrenaica) is an endemic caprid of the Iberian

Peninsula, formerly widely distributed in all its mountainous regions, from the

southern coast (Sierra Nevada mountain range) to the Pyrenees. Their

populations started to suffer a steady decrease in numbers during the last

centuries due to great hunting pressure, together with agricultural development

and habitat deterioration, eventually originating the extinction of two of the four

recognized subspecies (e.g., Shackleton 1997; Pérez et al. 2002). When

attaining a scientific literature search of available works devoted to the species,

we rapidly noticed the scarcity of studies published on international, easily

Page 51: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 29

accessible, journals, while a number of local works, of a regional nature, were

also compiled.

The present review intends to fill this gap, offering a compilation and up-

to-date revision of the current knowledge of the species. It is noticeable that

prior to 1985 there was practically no mention of the species in the international

literature, afterwards there was an increase of articles, but after 90's decade a

new decline is seen (see Figure 1). We believe that this tendency basically

depends on a few numbers of researchers devoted to the study of this species.

0

5

10

15

20

25

30

35

40

45

before 1985 1985-1990 1991-1995 1996-2000 2001-2005

Years

Num

ber o

f pub

licat

ions

NationalInternationalOverall

Figure 1. The number of publications on the Iberian ibex are depicted according to the data sources: national journals and books (Spain), and international and SCI journals and books.

If we compare the number of research papers on the Iberian ibex and

other Iberian ungulate, the red deer (Cervus elaphus hispanicus), since 1990, a

ratio 34/94 is obtained (ISI Web of Knowledge database) with a clear

predomination of articles on the red deer, despite this being a subspecies of a

very well known species.

Although the term 'Spanish' ibex is commonly used in the literature, we

have gone for 'Iberian' ibex in this review because the species is currently not

only present in Spain but also in Portugal (Pérez et al. 2002). Actually, the

species is an Iberian endemism, as it originally occupied the whole Iberian

Peninsula.

Page 52: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 30

SYSTEMATICS AND TAXONOMY OF THE IBERIAN IBEX

At least a small numbers of ibexes were present in many Upper

Paleolithic and Azilian archaeological deposits in the Iberian Peninsula and

southern France (Straus 1987; Cardoso 1996). The genus Capra includes

several forms of wild goats that are present in mountain habitats from northern

Mongolia and Russia to Western Europe and Ethiopia (e.g. Manceau et al.

1999a). In Western Europe, wild goats are found in the Alps and in the Spanish

mountains.

According to paleontological studies of Crégut-Bonnoure (1992a, b), two

independent migration waves of wild goats took place in Europe. The first one

occurred some 300,000 years ago, and originated the Alpine ibex (C. ibex ibex);

the second immigration took place from Caucasus around 80,000 years ago,

origin of the Iberian ibex (C. pyrenaica). Under this scenario, no close

relationships would be expected between these European species. However,

allozyme data indicated a much lower genetic distance between the two

European species than between the other existing Capra species (Manceau et

al. 1999a). Thus, Maceau et al. (1999a) proposed another scenario, where only

one wave of immigration of Capra came into Europe, followed by a speciation

process that originated the current two European species. A paleontological

description of a Capra sp. specimen, dated around 120,000 years ago in

Germany (Toepfer 1934), combined the characters of the two European taxa;

this is in accordance with the one-wave hypothesis.

Several authors (e.g. Schaller 1977; Nowak 1991) recognize two different

subspecies for the Iberian ibex according to morphological criteria. However,

the IUCN (Shackleton 1997) recognizes four subspecies: C. pyrenaica

lusitanica, now extinct and formerly located in northern Portugal and southern

Galicia (Alados 1985a); C. p. pyrenaica, in the Pyrenees, recently extinct (Pérez

et al. 2002); C. p. hispanica, in the south and east of the Iberian Peninsula; C.

p. victoriae, mainly in central areas of Spain, such as Gredos mountain range.

However, this taxonomy is questionable because it is only based on two

morphological features: coat colour and horn morphology (Cabrera 1911),

characters that show a high inter-population variability (Couturier 1962; Clouet

1979). Manceau et al. (1999b) tested the morphologically recognized taxonomy

Page 53: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 31

of C. pyrenaica with mitochondrial DNA sequence polymorphism. Their study

does not support the recognition of the subspecies C. p. victoriae and C. p.

hispanica but it is congruent with the distinction between the Pyrenean

population and the other Iberian ones (ibid.). Although this study may not be

absolutely conclusive, it casts some doubts on the currently accepted taxonomy

for the species (Shackleton 1997):

Class: Mammalia Order: Artiodactyla Suborder: Ruminantia Infraorder: Pecora Family: Bovidae Subfamily: Caprinae Tribe: Caprinii Genus: Capra Linnaeus, 1758 Species : Capra pyrenaica, Schinz (1838) Subespecies: C. p. hispanica, Schimper (1848) C. p. pyrenaica, Schinz (1838) C. p. lusitanica, Schlegel (1872) C. p. victoriae, Cabrera (1911)

DISTRIBUTION

The status and distribution of the Iberian ibex have been studied and

revised by several authors, either in the whole peninsula (e.g. Alados 1997;

Granados et al. 2002; Pérez et al. 2002) or in some particular geographical

areas (e.g. Palomares and Ruiz-Martínez 1993; Pérez et al. 1994; Gortázar et

al. 2000; Sánchez-Hernández 2002; Acevedo et al. 2006 [Capítulo 1.1]).

Current distribution of the species is a consequence of both natural and

unnatural expansion processes. Most of translocations were carried out

posterior to 1970, except in the Maestrazgo area (in 1966), particularly during

1980s and 1990s (Pérez et al. 2002; see Figure 2). Moreover, currently a

natural expansion of the populations has been reported both for C. p. victoriae

Page 54: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 32

and for C. p. hispanica subspecies (Pérez et al. 2002; Acevedo et al. 2006

[Capítulo 1.1]).

The first distribution study dates back to 1911 (Cabrera 1911), followed

several decades later by a few articles and local reports (e.g. de la Peña 1978;

Alados 1985a, 1997). Recently, a thoroughly and long-expected revision of

current status of the Iberian populations was published (Pérez et al. 2002).

These authors established the distribution and population trends of the species,

concluding that its distribution is fragmented in 51 stable population nuclei and a

more extensive distribution area in comparison to previous studies (e.g. Alados

1997).

Mapping species distribution is a key issue in ecology and conservation

since statement of hypotheses often relies on an accurate knowledge of where

species occur. To map species distributions at large spatial scales, different

approaches have been adopted, the most common of which being the general

atlas-distribution framework (e.g. Underhill and Gibbons 2002). In this sense,

the Sociedad Española para la Conservación y Estudio de Mamíferos promoted

the creation of a distribution atlas of Iberian terrestrial mammals including the

Iberian ibex (Granados et al. 2002).

The ibex distribution in Castile–La Mancha (central Spain) has been very

recently updated (Acevedo et al. 2006 [Capítulo 1.1]). It has been noted a

wider presence of the species in this region in comparison with previous

surveys (Alados 1997; Granados et al. 2002; Pérez et al. 2002). The reported

expansion process of the species in Castile-La Mancha is to be attributed to the

natural increment of the population due to habitat changes and game

management translocations (Gortázar et al. 2000) and probably to a decrease

of its hunting pressure in this area (Garrido 2004).

In Figure 2 current distribution of the Iberian ibex is updated (from

Granados et al. 2002; Pérez et al. 2002; Acevedo et al. 2006 [Capítulo 1.1], unpublished data; C. Gortázar, J. Ferreres and M.A. Escudero personal

communications).

Page 55: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 33

POPULATION ABUNDANCE

More than 50,000 Iberian ibexes have been estimated to inhabit the

Iberian Peninsula (Pérez et al. 2002). The population status varies among the

different nuclei. The average ibex population’s density is 2.7 ind/km2, ranging

from 0.4 to more than 15.0 ind/km2, and a predomination of densities around

1.2 to 4.4 ind/km2 (Pérez et al. 2002; Sánchez-Hernández 2002; Acevedo et al.

2005a [Capítulo 1.2]).

Figure 2. Current distribution of the Iberian ibex, Capra pyrenaica (Granados et al. 2002; Pérez et al. 2002; Acevedo et al. 2006 [Capítulo 1.1]; C. Gortázar, J. Ferreres and M.A. Escudero personal communication). Dotted lines delimit boundaries of the provinces and the continuous line indicates individual translocations (Pérez et al. 2002). The predictable distribution limit of both subspecies is represented (double line), C. p. victoriae in the north-west, and C. p. hispanica in the south-east. The presence data are referred to UTM grid cells of 10 x 10 km2.

Page 56: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 34

Populations present in Sierra Nevada Natural Park, Cazorla, Segura y

Las Villas Natural Park and Gredos Regional Park represent more than 45% of

the Iberian ibexes (Pérez et al. 2002), i.e., almost half of the ibex individuals are

concentrated in three population nuclei. This may originate serious risks for the

species, due to the onset of infectious diseases under overabundance

conditions (Gortázar et al. 2006), or the appearance of stochastic negative

events which might cause populations decline. As for the two existing

subspecies, C. p. hispanica is more abundant (more than 80% of the Iberian

population) than C. p. victoriae (see Pérez et al. 2002).

There are different census methods to estimate relative abundance in

Iberian ungulate species (e.g. Alados and Escós 1996), from which indirect

methods based on traits search (e.g. Acevedo et al. 2005a [Capítulo 1.2]) are

particularly interesting, as they are cheap, effective and non-invasive (e.g.

Acevedo et al. 2005a [Capítulo 1.2], b, in press). We encourage carrying out a

proper monitoring through adequate and standardized census methods of the

ibex populations at a large spatial scale (Alados 1997).

MORPHOLOGY

Data on European ibexes morphology are derived principally from

Couturier (1962), Corbet (1966), Hainard (1949), Henrich (1961), Nievergelt

(1966), Van den Brink (1968) and Walker (1968). They are truly mountainous

animals, with large and elastic hooves and short legs, which facilitate them

running and leaping on bare rocky, rough and steep slopes (Straus 1987).

Biometrical data of the Iberian ibex are scarce and partial (Cabrera 1914;

Rodríguez de la Zubia 1969; Cabrera 1985; Escós 1988; Granados et al. 1997,

2001a). Granados et al. (1997, 2001a) studied the basic biometrical parameters

of ibexes from Sierra Nevada and reviewed the biometric data from different

ibex populations (see Table 1). Generally, body size is larger and weight higher

in C. p. victoriae than C. p. hispanica (e.g., Gonçales 1982; Granados et al.

1997; Table 1).

Page 57: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 35

The Iberian ibex has a remarkable sexual dimorphism, males being

higher in size and weight, and presenting larger horns than females (Fandos

1991; Granados et al. 1997; Table 1). Gállego and Serrano (1998) described

the postcranial skeleton of the species and they showed sex differences in

relation to biometry and bones ossification process. The maximum level of

sexual dimorphism is observed at horn length and basal horn perimeter

(Fandos and Vigal 1993; Granados et al. 2001a). The Iberian ibex horns are

unique among wild caprids, curving out and up and then back, inward, and,

depending of the subspecies, either up again or down (C. p. victoriae and C. p.

hispanica, respectively; see Schaller 1977). Horn shape and fight techniques

were studied by Alvarez (1990). Annual horn growth is influenced by the

previous year horn growth, environmental factors and, principally, by age

(Fandos 1995).

Table 1. Biometric data reported from different ibex populations (updated from Granados et al. 1997). The length measures are in centimetres and the weight is in kilograms (male – female values), “?” symbol show the absence of data.

Body weight

Cross height Body length Horn

length Basal horn perimeter

Albacete Present study 58.4-35.0 ?-? ?-? 55.8-? 23.2-?

Sierra Nevada (Granados et al. 1997) 50.4-31.3 79.3-69.0 108.6-96.9 47.5-13.9 20.7-9.7

(Cabrera 1914) ?-? 65.5-? 121.0-? ?-? ?-? (Cabrera 1985) ?-? 84.1-? 144.0-? ?-? ?-?

(Escos 1988) 65.0-? 65.0-? 132.0-116.0 63.8-19.2 22.7-? Cazorla

(Escos 1988) ?-? 67.2-66.2 128.1-118.2 48.8-13.5 20.1-8.6 (Fandos 1991) 54.9-31.5 81.1-69.7 132.1-112.8 76.0-17.1 ?-?

Gredos (Cabrera 1914) ?-? 70.0-? 135.5-? 73.2-16.5 24.4-10.0

(Gonçales 1982) 90.0-40.0 75.0-65.0 155.0-115.0 ?-? ?-? (Fandos and Vigal 1988) 61.9-36.8 ?-? ?-? 83.7-28.7 ?-?

Las Batuecas (Losa 1993) 78.0-41.0 89.0-76.0 146.0-130.0 74.0-17.0 26.0-11.5

Sierra Morena (Cabrera 1914) ?-? ?-? ?-? 85.0-? ?-?

Pirineos Aragón (Cabrera 1914) ?-? 75.0-? 148.0-? 91.0-26.8 23.0-14.0

C. p. lusitanica (Cabrera 1914) ?-? 74.5-? 142.0-? 42.0-18.0 20.0-? (França 1917) ?-? 69.5-? 140.0-? ?-? ?-?

Pirineos-Gredos (Couturier 1962) 75.0-37.5 ?-? ?-? ?-? ?-?

Page 58: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 36

Granados et al. (2001a) also studied growth parameters of the Iberian

ibex population of Sierra Nevada. These authors registered a faster female

growth rate, although slower than the ones obtained in other ibex populations

(Fandos et al. 1989; Fandos 1991). This is in agreement with Serrano et al.

(2004) findings, who showed that female ibexes have a faster ossification

process than males, finishing their bone development two years before males

(Serrano et al. 2006).

FEEDING HABITS

The feeding ecology of the Iberian ibex has been studied in several

locations, Sierra Nevada Natural Park (e.g. Martínez 1988a); Cazorla, Segura y

Las Villas Natural Park (e.g. Garcia-Gonzalez and Cuartas 1992; Alados and

Escós 1996); Gredos Regional Park (e.g. Martínez and Martínez 1987); Sierra

de Tejeda-Almijara (Martínez 1988b); Tortosa y Beceite National Game

Reserve (Martínez 1994); and Sierra de Montenegro (Palacios et al. 1978).

The Iberian ibex is a mixed feeder (browser and grazer) varying

seasonally (Garcia-Gonzalez and Cuartas 1992) and geographically (Granados

et al. 2001b) the percentage of each type of resource consumed. Feeding

studies have shown that, when resources are scarce, there is a selection of

certain species (Cuartas and Garcia-Gonzalez 1992; Garcia-Gonzalez and

Cuartas 1992). On the other hand, feeding strategies seasonality was reported

as highly influenced by population density (Garcia-Gonzalez and Cuartas 1992).

The ibex population of Tortosa y Beceite National Game Reserve is

characterized by a remarkable altitudinal gradient in the feeding strategy,

predominating a browsing behaviour at low-middle altitudes and grazing in high

altitude lands (Martínez 1994).

Grazing and browsing behaviours also differ between locations. Thus,

grazing predominates in Gredos Regional Park ibex population (Martínez 2001),

whereas browsing does in Cazorla, Segura y Las Villas Natural Park population,

except in spring time (Martínez et al. 1985). Finally, grazing behaviour has been

registered in Sierra Nevada Natural Park during summer (Martínez 1990).

Page 59: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 37

Unfortunately, none of these works have taken into account resources

availability.

Also, the Iberian ibex has been included in a few comparative studies on

wild and domestic ungulates diet (e.g. Garcia-Gonzalez and Cuartas 1989).

Autumn diet comparisons of Iberian ibex, domestic goat (Capra hircus), mouflon

and domestic sheep (Ovis aries) showed than sheep are mainly grazers and

goats browsers (ibid.).

In sum, the Iberian ibex seems to have a high feeding plasticity,

depending on many ecological circumstances; but there is a need for integrating

these results in more ecologically-designed studies, as no hypotheses

explaining such plasticity have yet put forward, such as ibex nutritional

requirements and differences according to sex and age.

BEHAVIOURAL ECOLOGY

Behaviour of the animals can be integrated into the ecological context it

occurs. Among the diverse of topics studied by behavioural ecologists, sexual

segregation is a puzzling one which has stimulated many studies and

hypotheses. In many social ungulates sexes live separately most of the year,

differing in habitat use, particularly those species showing an elevated sexual

size dimorphism. Such segregation has been reported in the Iberian ibex

(Alados 1985b). There are three main hypotheses trying to explain sexual

segregation in ungulates: the predation-risk, forage-selection, and activity

budget hypotheses. They, respectively, relate sexual segregation either to

lactating females' selection of safer habitats; to a differing forage digestion

efficiency made by males and females according to their body size, so that

males may cope better with nutritionally poor habitats; or, finally, to a differing

activity budget between males and females also related to their body size

dimorphism (see Ruckstuhl and Neuhaus 2002). These hypotheses are not

mutually exclusive, and are still under a serious debate.

Although no study testing such hypotheses has been carried out on the

Iberian ibex, a close relative, Alpine ibex (Capra ibex) shows sexual segregation

Page 60: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 38

according to the three hypotheses. Thus, males are preferentially found in

riskier (Villaret et al. 1997) and poorer habitats than females and both sexes

show a differing percentage of time spent grazing (73%; Ruckstuhl and

Neuhaus 2002).

However, it seems that local conditions play an important role that has

not yet been incorporated into the formulation of sexual segregation

hypotheses. According to the studies carried out on the Iberian ibex, during

most of the year sexes are segregated, there being only-male groups, and

female and offspring-subadults groups, whereas during the rutting season adult

males and females come together (Granados et al. 2001b). However, this

pattern may vary. Thus, in locations such as Cazorla, Segura y Las Villas

Natural Park, Sierra Nevada Natural Park, and Gredos Regional Park, ibexes

are in mixed groups all annual cycle, except in August (Gonçales 1982; Alados

and Escós 1985, 1996). A better knowledge of factors determining sexual

segregation is needed to disentangle this behaviour, which seems not to be so

uncommon in other ungulate species (K. Ruckstuhl, E. Cameron pers. comm.).

One hypothesis raised is the relationship between the optimal group size

attained and males and females densities in a given population (K. Ruckstuhl

pers. comm.). Iberian ibex group size, on the other hand, seems to be

determined by factors such as population density and type of habitat (Granados

et al. 2001b).

Regarding social and individual behaviour in the Iberian ibex, vigilance

behaviour has been studied by Alados (1985c). It was determined that lookout

individuals are adults placed in the periphery of the herds. Ibexes use alarm

calls to alert from potential danger, i.e., the presence of a potential predator.

Escape movements are made in an ordered and coordinated manner, mediated

by the markedly social hierarchies that characterize all the relations and

interactions between herd mates (Alados 1986).

Seasonal partial-migrations are frequent in species inhabiting regions

with pronounced seasonal landscape variability, as it is the case of the Iberian

ibex (Fandos and Martínez 1988). Ibex altitudinal dispersion occurs according

to resources availability, e.g., heading to rich, high altitude areas in summer,

Page 61: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 39

which are usually covered by snow in winter (e.g., Gonçales 1982; Escós 1988;

Travesí 1990).

The Iberian ibex dispersive range has been described for Andalusian

populations suggesting 1.8 km per year in Cazorla population (Escós 1988) and

0.7 km per year in Sierra Nevada population (Alados and Escós 1996). The ibex

dispersive capacity is affected by an increase of densities, lost of traditional

agriculture, and habitat improvement (Ibid.).

As for other behavioural studies, the Iberian ibex activity budget has also

been studied by several authors. Thus, higher activity rates were detected at

first and last day hours in Cazorla (Alados and Escós 1988), although this

pattern may vary according to temperature variations (e.g. Fandos 1988). It has

also been reported a seasonal variation of home ranges in this species (Escós

and Alados 1992). Home ranges are smaller during the rutting period than in

spring, depending on resources quality and availability, and ibex population

density (Escós and Alados 1992; Alados and Escós 1996).

EPIDEMIOLOGY AND HEALTH STATUS

The role of diseases on the Iberian ibex population dynamics has been

scarcely studied. The sarcoptic mange produced by Sarcoptes scabiei is the

disease more widely studied in this species (Pérez et al. 1997; León-Vizcaino et

al. 1999). Also, trematode, esporozoe, cestode, nematode and arthropod

parasites, in addition to Sarcoptes, have been studied in Iberian ibex

populations. Good reviews on this subject in Andalusian ibex populations are

Universidad de Jaén (1999), and Granados et al. (2001b) (see Table 2).

More ibex health studies were reported in parasite and eco-pathology

symposiums, such as Groupe d’Etudes sur l’Ecopathologie de la Faune

Sauvage de Montagne, Euro-American Mammal Congress, Congreso Ibérico

de Parasitología, Simposium sobre Gestión de Cabra Montés, including reports

on bacterial and viral diseases. Due to the scarce information available in

symposium abstracts and considering that most of them reported preliminary

results, we have not included them in this review.

Page 62: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 40

Table 2. Parasites of the Iberian ibex populations from Andalusia. Group (in blood) and species name and prevalence (%) is shown. The capital letters indicate the location of the parasites in the animal, being A: abomasums; I: intestine; BD: bile duct; R: rumen; L: lung; Es: erythrocytes; Ls: leucocytes; D: diaphragm; B: brain, H: head, S: skin (adapted from Universidad de Jaén 1999; Granados et al. 2001b).

Rikettsiae M. occidentalis (7.6), I Anaplasma ovis (4.5), Es Teladorsagia circumcincta (47), I

Ehrlichia phagocytophila (0.9), Ls T. trifurcata (9.1), I Eperytrozoon ovis (1.8), Es T. davtiani (0.3), A

Esporozoe Nematodivirus davtiani alpinus (57.6), I Eimeria arlongi (74.0), I N. oiratianus (56.1), I

E. ninakohlykimovae (6.0), I N. abnormalis (54.5), I E. caprina (5.0), I N. spathiger (3.0), I

E. capraovina (5.0), I N. filicollis (1.5), I E. aspheronica (0.5), I Ostertagia ostertagi (4.5), I E. christenseni (10), I Trichostrongylus vitrinus (4.5), I

E. hirci (1.0), I T. axei (0.5), A E. folchijevi (3.0), I T. capricola (3.0), I Eimeria sp. (0.5), I Trichuris sp. (2.4), I

Sarcocystis sp. (27.4), D Dictyocaulus filarial (1.2), L Babesia ovis (59.8), Es Neostrongylus sp. (31.4), L Theilleria ovis (1.8), Es Muellerius capillaris (74.3), L

Trematode Cystocaulus ocreatus (32.1), L Fasciola hepatica (1.7), BD Protostrongylus sp. (35.2), L

Dicrocoelium dendriticum (0.5), BD Arthropod Parramphistomum sp. (0.5), R Psoroptes sp. (0.6), S

Cestode Trombicula sp. (0.4), S Taenia multiceps (0.3), B Dermacentor marginatus (2.0), S

T. hydatigena (27.1), A D. reticulatus (0.6), S Echinococcus granulosus (0.2), L Haemaphysalis sulcata (32.3), S

Moniezia expansa (8.0), I Ixodes ricinus (4.2), S M. benedeni (7.8), I Rhipicephalus bursa (42.8), S

Avitellina centripunctata (0.2), I Bovicola crassipes (20.2), S Nematode Linognthus stenopsis (1.1), S

Marshallagia marshalli (21.2), I Oestrus caucasicus (62.2), H

The account of scabies epidemiology is characterized by periodic

fluctuations (outbreaks) with cycles ranging from 10 to 30 years, influenced by a

variety of hosts, parasites and external factors (e.g., Pérez et al. 1997; Rossi et

al. in press). During the last few decades, several sarcoptic mange epizootics

have affected ibex populations from, e.g., Cazorla, Segura y Las Villas Natural

Park (Fandos 1991; León-Vizcaino et al. 1999); Sierra Nevada Natural Park

(Pérez et al. 1997); Sierra Magina Range Mountains (Palomares and Ruiz-

Martínez 1993). Recently, another population affected by mange has been

reported, the northern ibex population of Albacete (P. Acevedo and C. Gortázar

unpublished data).

Page 63: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 41

When high host densities coincide with limited food availability, high

parasite prevalences can be expected due to a loss of fitness and an increase

of aggregation at the population level (Acevedo et al. 2005a [Capítulo 1.2]; Gortázar et al. 2006). This was apparently the case of the ibex sarcoptic mange

outbreaks in Cazorla, Segura y Las Villas Natural Park (León-Vizcaino et al.

1999) which produced a mortality of over 95% of the population. Nevertheless,

the hypothesis of the transmission of scabies from domestic sheep and goats to

Iberian ibex population has been suggested in the Sierra Nevada population

(Pérez et al. 1997), although no evidence exists. The negative effects of

population overabundance (Caughley 1981; see review in Gortázar et al. 2006)

can be increased by the introductions of exotic and native species, including

domestic species (Richardson and Demarais 1992). These introduced species

may originate two main effects, an increase of diseases abundance and their

transmission rate, and the appearance of new diseases (Hofle et al. 2004; J.

Ortiz pers. comm.). It has been reported a sarcoptic mange episode in free-

ranging exotic aoudads (Ammotragus lervia) in Spain (González-Candela et al.

2004). This exotic species is currently expanding from south eastern Iberian

Peninsula (Cassinello et al. 2004), so that there is a potential risk for it to spread

new diseases that could reach the Iberian ibex populations due to niche overlap

between both species (P. Acevedo, J. Cassinello, J. Hortal and C. Gortázar

unpublished data [Capítulo 3.2]).

Gastrointestinal and bronchopulmonary nematodes have also been

studied in the Iberian ibex populations (e.g., Pérez et al. 2003a; Acevedo et al.

2005a [Capítulo 1.2]). Pérez et al. (2003a) analyzed the content of the

abomasums and small intestine of the population from Sierra Nevada Natural

Park, and identified 15 species of trichostrongylid nematodes, 4 of which found

for the first time in this host. As for bronchopulmonary nematodes, they were

recently surveyed in the ibex population of Castile-La Mancha (Acevedo et al.

2005a [Capítulo 1.2]). The infective larval stages in faeces were analysed, a

non-invasive alternative technique to study host-parasite relationships in wild

ungulate populations (Festa-Bianchet 1991). Acevedo et al. (2005a [Capítulo 1.2]) identified 5 genera of bronchopulmonary nematodes and supported that

Page 64: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 42

density-dependent processes operate in the transmission of these nematodes

in the Iberian ibex.

More sanitary studies should be implemented to unravel the health status

of the Iberian ibex populations, especially in regard to viral and bacterial

diseases, in order to carry out a proper population management. Currently, a

few regional governments are promoting projects on this issue, so that in the

next years ibex epidemiology advances are expected.

Finally, haematology parameters were recently studied and its references

values reported for the Iberian ibex (Pérez et al. 2003b). The variation in these

parameters were studied under diverse stress situations: influence of capture

methods and captivity (Peinado et al. 1993, 1995), acute haemonchosis (Lavín

et al. 1997), infection by Sarcoptes scabiei (Pérez et al. 1999) and hunting

practises (Pérez et al. 2006). In addition, values from blood parameters can

provide useful information about the health and nutritional status of animals,

being also a complementary source of information for monitoring the

physiological status of ibex populations (Pérez et al. 2006).

CONSERVATION

Most Caprinae populations are particularly vulnerable to extinction

because of three main factors: genetic isolation, specialised habitat

requirements, and a low reproductive rate (Shackleton 1997). However, there

are additional factors which interact with these to further complicate

conservation aims.

Shackleton (1997) stated that 71% of the species included in the

subfamily Caprinae are suffering some type of threat, from which 8% are in a

critical situation; 23% threatened; 40% vulnerable; and 28% under a threaten

risk; whereas 1% of the species are insufficiently known.

In Spain, Caprinae conservation programs began in 1905 to preserve the

last remaining population of C. p. victoriae, through the establishment of the

National Refuge of Sierra de Gredos as well as a few more other reserves

Page 65: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 43

created to protect caprids (Alados 1997). Alados (1997) considered that the

future of the Iberian ibex depends on developing effective conservation

programs and consolidating the existing protected areas. Two main threats to

ibexes are considered (Alados 1985a, 1997): (1) the increasing presence of

domestic livestock, which might transmit diseases to wild ungulates (see

examples in Gortázar et al. 2006) and compete for resources (Acevedo et al.

2006 [Capítulo 1.1]); and (2) pressure from tourism, an issue currently under

study in Sierra Nevada population (R. Soriguer, personal communication).

These threats can be overcome by establishing management measures to (1)

control the number and health status of livestock, (2) restrict or control tourists'

presence in areas inhabited by ibexes, (3) protect large areas from hunting

when the population size do not permit a sustainable exploitation, and (4)

establish a proper monitoring of ibex populations.

Last report of the World Conservation Union (IUCN 2004) considers C.

pyrenaica as at Low Risk, but near threatened (LR/nt), whereas the existing

subspecies hold different qualifications. C. p. victoriae is Vulnerable (VU D2),

due to the few and small areas it inhabits (see Pérez et al. 2002); C. p.

hispanica is at Low Risk (LC/cd), but its viability depends on current

conservation programmes. Two other subspecies were also distinguished (see

above), but they are extinct nowadays, C. p. pyrenaica and C. p. lusitanica

(ibid).

FUTURE DIRECTIONS OF CAPRA PYRENAICA RESEARCH

The present review has shown that the Iberian ibex current knowledge is

basically focused on some aspects of its behavioural ecology, feeding habits

and diseases. Although descriptive and poorly integrated studies predominate.

We firstly appreciate that most studies and empirical information on the

Iberian ibex is currently produced by regional institutions that carry out

periodical surveys on the species status, mainly in protected areas. It would be

desirable that this kind of valuable information is not retained in poorly

accessible files and local reports, so that promoting contacts between

Page 66: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 44

managers, forest rangers and environmental agencies and research institutes

should be pursued. This would allow researchers to centralize all the available

diverse information and design adequate research projects.

Concerning new lines of research for the Iberian ibex, it would be

important to identify which aspects on its biology and conservation is a priority,

given current status of the species. We believe that applied ecological studies

should not be overlooked, given that the species, although under an expansion

process, may suffer from competition with other ungulate species (e.g., red

deer, fallow deer, aoudad and livestock; see references above) and has a

markedly hunting interest. Its former sarcoptic mange episodes should also

make to be cautious on overabundance instances in some particular areas.

Moreover, in areas recently colonized by the species, its effects on endemic

flora should also be analysed. Finally, verifying genetic differences between the

assumed subspecies will help in attaining proper conservation and

management steps to preserve their whole genetic pool, as some valuable

populations may be under threat (e.g., C. p. victoriae).

Population management from conservation and game interests should

also be pursued. Currently Iberian ibex trophies may represent an important

economic revenue, and biological features, such as factors affecting horns

growth (e.g., body condition, immune system, age), and the determination of the

genetic breeding value of large-sized horned males, will help in attaining a

sustainable wildlife management, adjusting hunting quotas in such a way that

removing 'valuable' males is prevented.

Finally, less applied but equally valuable studies devoted to natural

history issues should also be implemented in the light of current knowledge. In

sum, the available information on the species should be centralised and its

progress monitored from scientific criteria. It would be useful to carry out a

meeting of specialists to share their views and establish the necessity of a

scientific approach in conservation and management practises.

To our view, the following research topics should be implemented in the

near future to widen our knowledge of the Iberian ibex: applied ecological

studies, identify proper management strategies to preserve ibex populations

Page 67: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 45

(evaluation of census methods of mountainous caprids to improve their

efficiency and accuracy, and monitor health status of the populations to identify

disease risks), and other conservation studies (interspecific relationships with

exotic, other autochthonous, and domestic ungulates, and genetic studies to

clarify the still controversial taxonomy of the species).

ACKNOWLEDGEMENTS

We are deeply indebted to all Rural Agents of the Environment Agency of

Castilla-La Mancha. C. Cano and A. Alguacil provided us data on Albacete

population, and J.E. Granados and R. Soriguer provided us of uneasy available

bibliography. JC is currently enjoying a Ramón y Cajal research contract at the

CSIC awarded by the Ministerio de Educación y Ciencia (MEC); he is also

supported by the project PBI-05-010 granted by Junta de Comunidades de

Castilla-La Mancha. PA is enjoying a grant from the Universidad de Castilla-La

Mancha.

REFERENCES

Acevedo, P., Cassinello, J., Gortázar, C. (2006) The Iberian ibex is under an expansion trend but displaced to suboptimal habitats by the presence of extensive goat livestock in central Spain. Biodiversity and Conservation DOI 10.1007/s10531-006-9032-y.

Acevedo, P., Delibes-Mateos, M., Escudero, M.A., Vicente, J., Marco, J., Gortázar, C. (2005b) Environmental constraints in the colonization sequence of roe deer (Capreolus capreolus Linnaeus, 1758) across the Iberian Mountains, Spain. Journal of Biogeography 32, 1671-1680.

Acevedo, P., Vicente, J., Alzaga, V., Gortázar, C. (2005a) Relationship between bronchopulmonary nematode larvae and relative abundances of Spanish ibex (Capra pyrenaica hispanica) from Castilla–La Mancha, Spain. Journal of Helminthology 79, 113-118.

Acevedo, P., Vicente, J., Hofle, U., Cassinello, J., Ruiz-Fons, F., Gortázar, C. (in press). Estimation of European wild boar relative abundance and aggregation: a novel method in epidemiological risk assessment. Epidemiology and Infection DOI 10.1007/s0950268806007059.

Page 68: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 46

Alados, C. (1985a) Distribution and status of the Spanish ibex (Capra pyrenaica, Schinz). In: The biology and management of mountain ungulates. S. Lovari (ed.). Croom-Helm, Beckenham London.

Alados, C. (1985b) Group size and composition of the Spanish ibex (Capra pyrenaica, Shinz). In: The biology and management of mountain ungulates. S. Lovari (ed.). Croom-Helm, Beckenham London.

Alados, C. (1985c) An analysis of vigilance in the Spanish ibex (Capra pyrenaica). Zeitschrift für Tierpsychologie 68, 58-64.

Alados, C. (1986) Aggressive behaviour, sexual strategies and their relation to age in male Spanish ibex (Capra pyrenaica). Behaviour Processes 12, 145-158.

Alados, C., Escós, J. (1985) La cabra montés de las sierras de Cazorla y Segura. Una introducción al estudio de sus poblaciones y comportamiento. Naturalia Hispanica 28, 36 pp.

Alados, C., Escós, J. (1988) Alarms calls and fligh behaviour in Spanish ibex (Capra pyrenaica). Biology of Behaviour 13, 11-21.

Alados, C., Escós, J. (1996) Ecología y comportamiento de la cabra montés. Consideraciones para su gestión. In: Monografías del Museo Nacional de Ciencias Naturales. Consejo Superior de Investigaciones Científicas, Madrid.

Alados, C.L. (1997) Status and distribution of Caprinae by region. Spain. In Wild sheep and goats and their relatives: 125-130. Shackleton, D.M. (Ed.). Cambridge, UK: IUCN.

Alvarez, F. (1990) Horns and fighting in male Spanish ibex, Capra pyrenaica. Journal of Mammalogy 71, 608-616.

Cabrera, A. (1911) The subspecies of the Spanish ibex. Proceeding of the Zoological Society London, pp. 963-977.

Cabrera, A. (1914) Fauna Ibérica: Mamíferos. Museo Nacional de Ciencias Naturales, Madrid.

Cabrera, A. (1985) La cabra montés. In: Sierra Nevada y la Alpujarra. M. Ferrer (ed.), Granada.

Cardoso, J.L. (1996) The large Upper-Pleistocene mammals in Portugal. A synthetical approache. Geobios 29, 235-250.

Cassinello, J., Serrano, E., Calabuig, G., Pérez, J.M. (2004) Range expansion of an exotic ungulate (Ammotragus lervia) in southern Spain: ecological and conservation concerns. Biodiversity and Conservation 13, 851-866.

Caughley, G. (1981) Overpopulation. In: Problems in management of locally abundant wild mammals. P.A. Jewell, S. Holt, D. Hart (eds). Academic, New York.

Page 69: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 47

Clouet, M. (1979) Note sur la systématique du bouquetin d’Espagne. Bulletin de Society Historie Naturelle de Toulouse 115, 269-277.

Corbet, G.B. (1966) The terrestrial mammals of western Europe. Dufour Editions, Philadelphia.

Couturier, M. (1962) Le bouquetin des Alpes. Grenoble.

Crégut-Bonnoure, E. (1992a) Les Caprinae (Mammalia, Bovidae) du Pléistocène d’Europe : Intérêt biostratigraphique, paléoécologique et archéozoologique. Mém Soc Géol France 160, 85-93.

Crégut-Bonnoure, E. (1992b) Intérêt biostratigraphique de la morphologie dentaire de Capra (Mammalia, Bovidae). Annales Zoologici Fennici 28, 273-290.

Cuartas, P., Garcia-Gonzalez, R. (1992) Quercus ilex browse utilization by Caprini in Sierra de Cazorla and Segura (Spain). Vegetatio 99/100, 317-330.

de la Peña, J. (1978) La cabra montés en España. Congreso Internacional de la Caza, Suiza.

Escós, J. (1988) Estudio sobre la ecología y etología de la cabra montés (Capra pyrenaica hispanica Schimper, 1848) de las Sierras de Cazorla y Segura y Sierra Nevada oriental. Phd Thesis, Universidad de Granada, Granada.

Escós, J., Alados, C. (1992) The home-range of Spanish ibex in spring and fall. Mammalia 56, 57-63.

Fandos, P. (1988) Differences saisonnières dans la répartition des activités quotidiennes du bouquetin, Capra pyrenaica, de Cazorla. Mammalia 52, 3-9.

Fandos, P. (1991) La cabra montés (Capra pyrenaica) en el Parque Natural de Cazorla, Segura y Las Villas. Colección Técnica, ICONA, Madrid.

Fandos, P. (1995) Factors affecting horn growth in male Spanish ibex (Capra pyrenaica). Mammalia 59, 229-235.

Fandos, P., Martínez, T. (1988) Variación en la agregación y distribución de la cabra montés (Capra pyrenaica Schinz, 1838) detectado por un muestreo de excrementos. Doñana Acta Vertebrata 15, 133-140.

Fandos, P., Vigal, C.R. (1988) Body weight and horn length in relation to age of the Spanish wild goat. Acta Theriologica 33, 239-242.

Fandos, P., Vigal, C.R. (1993) Sexual dimorphism in size of the skull of Spanish ibex Capra pyrenaica. Acta Theriologica 38, 103-111.

Fandos, P., Vigal, C.R., Fernández, J.M. (1989) Weigth estimation of Spanish ibex, Capra pyrenaica, and chamois, Rupicapra rupicapra (Mammalia, Bovidae). Zeitschrift fur Saugetierkunde 54, 239-242.

Page 70: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 48

Festa-Bianchet, M. (1991) Numbers of lungworms larvae in faeces of bighorn sheep: yearly changes, influence of host sex, and effects on host survival. Canadian Journal of Zoology 69, 547-554.

França, C. (1917) Le buquetin du Gerz (Capra lusitanica). Arq. Universidade Lisboa 4, 19-54.

Gállego, L., Serrano, E. (1998) Ecosistema Capra pyrenaica: diferencias sexuales en el esqueleto postcraneal. Bilbilis, Palma de Mallorca.

García-Gonzalez, R., Cuartas, P. (1989) A comparison of the diets of the wild goat (Capra pyrenaica), domestic goat (Capra hircus), mouflon (Ovis musimon) and domestic sheep (Ovis aries) in the Cazorla mountain range. Acta Biologica Montana 9, 123-132.

García-Gonzalez, R., Cuartas, P. (1992) Feeding strategies of Spanish wild goat in the Cazorla Sierra (Spain). Ongules/Ungulates 91, 167-170.

Garrido, J.L. (2004) Aprovechamientos por especies y autonomías. In: II Máster en Conservación y Gestión de los Recursos Cinegéticos. Marzo 2004, unpublished report, Ciudad Real.

Gonçales, G. (1982) Eco-etholo gie du bouquetin en Sierra de Gredos. Acta Biologica Montana 1, 177-215.

González-Candela, M., León-Vizcaíno, L., Cubero-Pablo, M.J. (2004) Population effects of sarcoptic mange in Barbary sheep (Ammotragus lervia) from Sierra Espuña Regional Park, Spain. Journal of Wildlife Diseases 40, 456-465.

Gortázar, C., Acevedo, P., Ruiz-Fons, F., Vicente, J. (2006) Disease risks and overabundance of game species. European Journal of Wildlife Research 52, 81-87.

Gortázar, C., Herrero, J., Villafuerte, R., Marco, J. (2000) Historical examination of the distribution of large mammals in Aragón, Northeastern Spain. Mammalia 61, 411-422.

Granados, J.E., Fandos, P., Márquez, F.J., Soriguer, R.C., Cirrosa, M., Pérez, J.M. (2001a). Allometric growth in the Spanish ibex, Capra pyrenaica. Folia Zoologica 50, 19-23.

Granados, J.E., Pérez, J.M., Márquez, F.J., Serrano, E., Soriguer, R.C., Fandos, P. (2001b) La cabra montés (Capra pyrenaica, Schinz 1838). Galemys 13, 3-37.

Granados, J.E., Pérez, J.M., Soriguer, R.C., Fandos, P., Ruiz-Martínez, I. (1997) On the biometry of the Spanish ibex Capra pyrenaica, from Sierra Nevada (Southern Spain). Folia Zoologica 46, 9-14.

Granados, J.E., Soriguer, R.C., Pérez, J.M., Fandos P., García-Santiago, J. (2002) In: Atlas de los mamíferos terrestres de España. L.J. Palomo, J. Gisbert

Page 71: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 49

(eds.). Dirección General de Conservación de la Naturaleza, SECEM, SECEMU, Madrid

Hainard, R. (1949) Les Mammifères Sauvages d’Europe II. Neuchâtel : Delachaux et Niestlé.

Henrich, P. (1961) Caza Mayor. Sintes, Barcelona.

Hofle, U., Vicente, J., Nagore, D., Hurtado, A., Pena, A., de la Fuente, J., Gortázar, C. (2004) The risks of translocating wildlife: Pathogenic infection with Theileria sp. and Eleaphora elaphi in a imported red deer. Veterinary Parasitology 126, 387-395.

IUCN (2004) 2004 IUCN red list of threatened species. <www.redlist.org>. Downloaded on 26 January 2005.

Lavín, S. Marco, I., Rossi, L., Meneguz, P.G., Viñas, L. (1997) Haemonchosis in Spanish ibex. Journal of Wildlife Diseases 33, 641-651.

León-Vizcaino, L., de Ybanez, M.R.R., Cubero, M.J., Ortiz, J.M., Espinosa, J., Perez, L., Simon, M.A., Alonso, F. (1999) Sarcoptic mange in Spanish ibex from Spain. Journal of Wildlife Diseases 35, 647–659.

Losa, J. (1993) El macho montés: exposición monográfica de una pieza de caza. Junta de Castilla y León, Valladolid.

Manceau, V., Crampe, J.P., Boursot, P., Taberlet, P. (1999b) Identification of evolutionary significant units in the Spanish wild goat Capra pyrenaica (Mammalia, Artiodactyla). Animal Conservation 2, 33-39.

Manceau, V., Deprés, L., Bouvet, J., Taberlet, P. (1999a) Systematics of the Genus Capra inferred from mitochondrial DNA sequence data. Molecular Phylogenetics and Evolution 13, 504-510.

Martínez, T. (1988a) Utilisation de l’analyse micrographique de fèces pour l’étude du régime alimentarie du boutequin de la Sierra Nevada (Espagne). Mammalia 52, 46.

Martínez, T. (1988b) Données sur l’alimentation du bouquetin d’Espagne (Capra pyrenaica) dans la Sierra de Tejeda (Granada). Mammalia 52, 2.

Martínez, T. (1994) Hábitos alimentarios de la cabra montés (Capra pyrenaica) en zonas de distinta altitud en los puertos de Tortosa y Beceite. Referencia a la dieta de machos y hembras. Doñana Acta Vertebrata 21, 25-37.

Martínez, T. (2001) The feeding strategy of Spanish ibex (Capra pyrenaica) in the northern Sierra de Gredos (central Spain). Folia Zoologica 50, 19-33.

Martínez, T., Martínez, E. (1987) Diet of Spanish wild goat, Capra pyrenaica in spring and summer at the Sierras de Gredos, Spain. Mammalia 35, 547-558.

Page 72: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 50

Martínez, T., Martínez, E., Fandos, P. (1985) Composition of the food of the Spanish wild goat in Sierras de Cazorla and Segura, Spain. Acta Theriologica 30, 461-494.

Matínez, T. (1990) Régimen alimentario de la cabra montés (Capra pyrenaica) en la zona alpina de Sierra Nevada durante los meses de julio y agosto. Ecología 4, 177-183.

Nievergelt, B. (1966) Der Alpensteinbock in seinem Lebensraum. Verlag Paul Parey, Hamburg, Berlin.

Nowak, R.N. (1991) Mammals of the World. 5 edn. The Johns Hopkins University Press, Baltimore and London.

Palacios, F., Ibañez, Z., Escudero, J. (1978) Algunos datos sobre la alimentación de la cabra montés ibérica (Capra pyrenaica) y notas sobre la fauna de Montenegreto (Tarragona). Boletín de la Estación Central de Ecología 7, 56-66.

Palomares, F., Ruiz Martínez, I. (1993) Status and conservation perspectives for the Spanish ibex population of Sierra Mágina Natural Park, Spain. Zeitschrift fur Jagdwissenschaft 39, 87-94.

Peinado, V.I., Fernández, A., Viscor, G., Palomeque, J. (1993) Haematology of Spanish ibex (Capra pyrenaica hispanica) restrained by physical or chemical means. Veterinary Record 132, 580-583.

Peinado, V.I., Fernández, A., Zabala, J.L.G., Palomeque, J. (1995) Effect of captivity on the blood composition of Spanish ibex (Capra pyrenaica hispanica). Veterinary Record 137, 588-591.

Pérez, J.M., González, F.J., Granados, J.E., Pérez, M.C., Fandos, P., Soriguer, R.C., Serrano E. (2003b) Hematologic and biochemical reference intervals for Spanish ibex. Journal of Wildlife Diseases 39, 209-215.

Pérez, J.M., González, F.J., Serrano, E., Granados, J.E., Fandos, P., Carro, F., Soriguer, R.C. (2006) Is blood collected from shot Iberian ibex (Capra pyrenaica) useful for monitoring their physiological status? European Journal of Wildlife 52, 125-131.

Pérez, J.M., Granados, J.E., González, F.J., Ruiz-Martínez, I., Soriguer, R.C. (1999) Hematologic parameters of the Spanish ibex (Capra pyrenaica). Journal of Zoo and Wildlife Medicine 30, 550-554.

Pérez, J.M., Granados, J.E., Pérez, M.C., Márquez, F.J., Ferroglio, E., Rossi, L. (2003a) A survey of the gastrointestinal nematodes of Spanish ibex (Capra pyrenaica) in a high mountain habitat. Veterinary Parasitology 89, 315-318.

Pérez, J.M., Granados, J.E., Soriguer, R.C. (1994) Population dynamic of the Spanish ibex Capra pyrenaica in Sierra Nevada Natural Park (southern Spain). Acta Theriologica 39, 289-294.

Page 73: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 51

Pérez, J.M., Granados, J.E., Soriguer, R.C., Fandos, P., Marquez, F.J., Crampe, J.P. (2002) Distribution, status and conservation problems of the Spanish Ibex, Capra pyrenaica (Mammalia : Artiodactyla). Mammal Review 32, 26-39.

Pérez, J.M., Ruiz-Marínez, Granados, J.E., Soriguer, R.C., Fandos, P. (1997) The dynamics of sarcoptic mange in the ibex population of Sierra Nevada in Spain. Influence of climatic factors. Journal of Wildlife Research 2, 86-89.

Richardson, M.L., Demarais, S. (1992) Parasites and condition of coexisting populations of white-tailed and exotic deer in southcentral Texas. Journal of Wildlife Diseases 28, 485–489.

Rodríguez de la Zubia, M. (1969) La cabra montés de Sierra Nevada. Documentos Técnicos, serie cinegética 1, Ministerio de Agricultura, Madrid.

Rossi, L., Fraquelli, C., Vesco, U., Permunian, R., Sommavilla, G.M., Carmignola, G., Da Pozzo, R., Meneguz, P.G. (in press.). Descriptive epidemiology of a scabies epidemic in chamois in the Dolomite Alps, Italy. European Journal of Wildlife Research.

Ruckstuhl, K.E., Neuhaus, P. (2002) Sexual segregation in ungulates: a comparative test of three hypotheses. Biological Review 77, 77-96.

Sanchez-Hernandez, L. (2002) Characteristics of the Iberian wild goat Capra pyrenaica hispanica of Madrona and Sierra Quintana (Spain). The success of private management. Pirineos 157, 169-180.

Schaller, G.B. (1977) Mountain monarchs: wild sheep and goats of the Himalaya. Univeristy of Chicago Press, Chicago.

Schimper, H.R. (1848) Descripción abreviada de Capra hispanica. C.R. Académie Scienfic, Paris.

Schinz, R. (1838) Descripción de Capra pyrenaica. Nouveaux memoires de la Societe Helvetique d’histoire Naturell, Neuchatel.

Schlegel, H. (1872) De dierentuin van het Koninklijk Zoologisch Genootschap Natura Artis Magistra te Amsterdam zoologisch geschetst. Gebr. Van Es., Ámsterdam.

Serrano, E., Gállego, L., Pérez, J.M. (2004) Ossification of the Appendicular Skeleton in the Spanish Ibex Capra pyrenaica Schinz, 1838 (Artiodactyla: Bovidae), with Regard to Determination of Age. Anatomia Histologia Embryologia-Journal of Veterinary Medicine Series C 33, 33–37.

Serrano, E., Pérez, J.M., Christiansen, P., Gállego, L. (2006) Sex-Difference in the Ossification rate of the appendicular Skeleton in Capra pyrenaica Schinz, 1838, and its utility in the sex identification of long bones. Anatomia Histologia Embryologia-Journal of Veterinary Medicine Series C 35, 69-75.

Page 74: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 52

Shackleton, D.M. (1997) Wild Sheep and Goats and their Relatives: Status Survey and Conservation Action Plan for Caprinae. IUCN, Gland.

Straus, L.G. (1987) Upper Paleolithic Ibex hunting in Southwest Europe. Journal of Archaelogical Science 14, 163-178.

Toepfer, V. (1934) Ein diluviales Steinbockgehörn aus Thüringen. Paläontologie Zeitschrift 16, 276-281.

Travesí, R. (1990) La cabra montés en el macizo occidental de Sierra Nevada. Vida Silvestre 68, 61-65.

Underhill, L., Gibbons, D. (2002) Mapping and monitoring bird populations: their Conservation uses. In: Conserving bird biodiversity: general principles and applications. K. Norris, D.J. Pain (eds.). Cambridge University Press, Cambridge.

Universidad de Jaén (1999) Seguimiento y control de la Sarna Sarcóptica que afecta a las poblaciones de cabra montés (Capra pyrenaica hispanica) existentes en Andalucía. Junta de Andalucía. .

Van den Brink, F.H. (1968) A field guide to the mammals of Britain and Europe. Houghton Mifflin, Boston.

Villaret, J.C., Bon, R., Rivet, A. (1997). Sexual segregation of habitat by the Alpine ibex in the French Alps. Journal of Mammalogy 78, 1273-1281.

Walker, E. (1968) Mammals of the World. Johns Hopkins Press, Baltimore.

Page 75: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

OBJETIVOS Y ORGANIZACIÓN DE LA TESIS

Page 76: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 77: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 55

OBJETIVOS

En esta Tesis Doctoral se ha pretendido profundizar en el conocimiento

de la cabra montés, especialmente sobre su distribución, y las relaciones entre

ésta y la de otros ungulados con los que cohabita. Es por tanto una

investigación aplicada que pretende mostrar la utilidad de nuevas herramientas

de análisis espacial para la gestión de las poblaciones de ungulados. Con las

herramientas empleadas para el desarrollo de la presente Tesis, se pueden

responder preguntas relevantes para el manejo de las poblaciones de

ungulados en libertad: ¿Cuál es el potencial ambiental que presenta un

territorio para una especie? ¿Se puede acelerar el proceso expansivo de una

especie mediante reintroducciones? ¿Son similares los requerimientos

ecológicos de dos o más especies?

Por otro lado, este trabajo tiene una clara vertiente conservacionista que

va de la mano con la anterior. Una de las necesidades de la conservación es

preservar los ecosistemas singulares o característicos de una determinada

área biogeográfica. Estos ambientes poseen un gran valor ya que han co-

evolucionado con las especies que los habitan y sin ellos, o sin su correcta

gestión, las especies pueden ver limitadas sus posibilidades para el

mantenimiento de poblaciones estables. En este contexto, se han caracterizado

los requerimientos ambientales de ungulados endémicos de la península

Ibérica, como son la cabra montés y el ciervo ibérico, con el fin de conocer su

nicho ecológico y poder conservarlo. Por otro lado, se ha estudiado la

potencialidad ambiental que presenta la zona de estudio para un ungulado

exótico, el arrui, lo que permitirá poseer información sobre las zonas en las que

es esperable que esta especie, que se puede considerar invasora, llegue a

colonizar. Con todo ello, se pretenden conocer las relaciones espaciales que

existen, o se pueden llegar a establecer, entre especies tanto nativas como

introducidas, y la cabra montés, considerando a ésta última como una especie

endémica con gran valor conservacionista y económico en el centro-sur de la

Península Ibérica.

Hasta este trabajo, sólo había sido realizado un análisis sobre la

distribución potencial de la cabra montés. El vacío existente en esta línea de

investigación, no sólo en la cabra montés sino en los ungulados ibéricos en

Page 78: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 56

general, y la necesidad de este tipo de estudios para la correcta gestión y

conservación de las poblaciones, han sido los factores que han impulsado a la

realización de esta Tesis Doctoral. El objetivo general de esta Tesis es, pues,

identificar y caracterizar el nicho ecológico de la cabra montés, así como

las relaciones de nicho existentes entre las monteses y los ungulados

presentes en su área de distribución con los que puede competir. Para

abordar esto, se han planeado las siguientes etapas.

Inicialmente se ha diseñado un muestreo con el fin de actualizar la

distribución y conocer el estatus de las poblaciones de cabra montés de

Castilla-La Mancha, ya que aunque poblaciones de cabra como las de

Andalucía y, en menor medida, Gredos han sido muy estudiadas, las

poblaciones de otras áreas, como Castilla-La Mancha, han estado menos

seguidas. En este análisis también han sido considerados aspectos sanitarios

de la cabra enmarcados en la evaluación del estatus poblacional.

Una vez actualizada la distribución y estatus en esta región, se ha

pretendido estudiar el efecto que otras especies, tanto exóticas como

introducidas, tienen o pueden tener sobre el nicho ecológico de la cabra

montés. Para ello se ha considerando al ganado caprino -como ejemplo de

especies cuya ocupación del medio suele ser temporal-, al ciervo –como

modelo de especies que han sido introducidas en numerosas localidades-, y al

arrui -debido a su carácter exótico e inminentemente invasor-.

Debido a que el hábitat donde pastorean al ganado caprino y el de las

cabras monteses coincide en numerosas ocasiones, se ha pretendido evaluar

el efecto que las especies domésticas pueden tener sobre el uso que las

silvestres hacen del hábitat. Este objetivo se ha llevado a cabo considerando

sólo las poblaciones de Castilla-La Mancha debido a que sólo de ellas se

poseía toda la información necesaria para realizar este análisis.

Siguiendo con el planteamiento anteriormente expuesto, se ha

pretendido evaluar el efecto que tienen las introducciones de animales en la

expresión de su nicho ecológico, esto es, ¿mantiene la especie en el área

donde es introducida el mismo nicho ecológico que expresa en las áreas donde

es autóctona?, y de no ser así, ¿las modificaciones en el nicho pueden

Page 79: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 57

ocasionar que se produzca un solapamiento con el de otra especie autóctona?

El tema de las introducciones y reintroducciones de ungulados es de gran

importancia, tanto para la gestión del medio como de las especies autóctonas,

ya que éstas son prácticas habituales en la mayor parte de la Península Ibérica.

Numerosas especies han visto modificado su área de distribución con estas

acciones, y sin embargo, sus implicaciones ecológicas apenas han sido

consideradas.

Ya por último, y en esta misma dirección, se ha pretendido evaluar el

efecto que los ungulados exóticos pueden tener sobre la distribución de una

especie nativa, considerando para ello al arrui, ya que es una especie que ha

sido introducida en la península hace más de 30 años. Además, y de manera

preliminar al objetivo anterior, se ha pretendido evaluar el potencial ambiental

del área de estudio para una especie que proviene de ambientes radicalmente

distintos, como son los macizos del norte de África. El arrui continúa en

expansión desde su introducción en Sierra Espuña, y ha empezado a cohabitar

con la cabra montés hace ya unos años.

Para abordar los tres últimos objetivos expuestos, el área de estudio

seleccionada ha sido el sureste de la Península Ibérica, un territorio en el que

quedan englobados núcleos de cabra montés de gran importancia (Sierra

Nevada y Cazorla, Segura y Las Villas, entre otros), núcleos donde el ciervo es

autóctono (Sierra Morena oriental), donde es introducido (por ejemplo Cazorla y

núcleos aislados de la provincia de Albacete), y la mayor parte del área de

distribución del arrui.

A modo de resumen, se enumeran a continuación los objetivos

planteados en la presente Tesis:

1. Actualizar la distribución y conocer el estatus de las poblaciones de

cabra montés de Castilla-La Mancha.

2. Evaluar el efecto que las especies domésticas pueden tener sobre el

uso que las especies silvestres hacen del hábitat.

3. Evaluar el efecto de las introducciones de ungulados en la expresión

del nicho ecológico de la especie introducida, así como las

implicaciones de las introducciones sobre otras especies.

Page 80: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 58

4. Evaluar la potencialidad ambiental del área de estudio para una

especie que proviene de ambientes radicalmente distintos.

5. Evaluar el efecto que los ungulados exóticos pueden tener sobre la

distribución de una especie nativa.

Estos objetivos quedan abordados en los próximos capítulos según se

detalla a continuación.

ORGANIZACIÓN DE LA TESIS

En el Capítulo 1 se ha pretendido actualizar la distribución de cabra

montés en Castilla-La Mancha, así como conocer el estatus de sus poblaciones

y la relación entre la presencia de ganado caprino y el uso que las cabras

monteses hacen del medio. Para ello, se ha realizado un muestreo que

comienza con el diseño de una encuesta sobre distribución de ungulados en

Castilla-La Mancha y que ha sido dirigida a los Agentes Medioambientales de

la Junta de Comunidades de Castilla-La Mancha. Buena parte de los datos de

distribución obtenidos han sido confirmados con visitas al campo en las que se

ha aprovechado para estimar la abundancia relativa de las poblaciones

mediante indicios de presencia, así como para obtener muestras de

excrementos con el fin de poder obtener un aproximación al estado sanitario de

las mismas. Con toda esta información se han planteado dos publicaciones con

las que los objetivos 1 y 2 han quedado cubiertos.

El siguiente capítulo está dedicado al estudio de la influencia de las

introducciones de ungulados sobre la expresión del nicho ecológico de las

especies. En este caso se ha usado como modelo el ciervo ibérico (Capítulo 2).

Para ello, se han considerado dos poblaciones de ciervo en relación con su

origen, una población autóctona, la de Sierra Morena, y una población fruto de

reintroducciones que está más ampliamente distribuida por el área de estudio.

Esta clasificación de las poblaciones se ha realizado basándose en un trabajo

publicado a finales de los 80, en el que queda manifestado esta diferencia de

Page 81: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 59

origen, así como en muestreos de campo y en las encuestas de distribución

descritas en el Capítulo 1. Paralelamente se ha pretendido analizar si el

solapamiento de las áreas de distribución de ciervo y cabra montés, observado

actualmente en algunas áreas, se hubiera producido sin las reintroducciones, o

si estos altos solapamientos son fruto exclusivo de estas acciones mediadas

por el hombre. Este estudio forma parte de un artículo enviado a publicar con el

que el objetivo 3 queda resuelto.

Por último, en el Capítulo 3 se pretenden abarcar los objetivos 4 y 5.

Para ello se ha evaluado el potencial ambiental del área de estudio para una

especie exótica, el arrui, considerando el efecto que supone la transformación

humana del medio para la distribución potencial de esta especie. En este caso

los datos de distribución del arrui provienen de un artículo publicado en 2004

en el que aparecen citas sobre la presencia de la especie obtenidas mediante

muestreos de campo y entrevistas personales. Con ellas, se pretende

modelizar por un lado el nicho ambiental de la especie, considerando

únicamente variables ambientales, y por otro el nicho observado para el que se

han considerado tanto variables ambientales como antrópicas. Ambos nichos

han sido comparados y se ha podido evaluar el efecto que las alteraciones

humanas pueden tener sobre la distribución potencial de este ungulado exótico.

Por otro lado, y debido a lo proximidad taxonómica, era esperable que el arrui y

la cabra montés pudieran ocupar nichos ecológicos similares dentro del área de

estudio. Por ello, se han descrito los nichos de ambas especies y se han

comparado ambos con el fin de detectar las diferencias y similitudes que

pudieran existir. Además de éstos, se han obtenido las áreas de potencial

coexistencia de ambas especies y éstas también han sido caracterizadas

ambientalmente y comparadas sus peculiaridades ambientales por un lado con

las del nicho del arrui, y por otro el de la cabra.

Estos capítulos tienen formato estándar de artículo científico, están en

inglés, e incluyen un resumen en castellano al principio de cada uno. La Tesis

se cierra con un capítulo en castellano de síntesis y conclusiones (Capítulo 4),

en el que se resumen los resultados más significativos.

A continuación se enumeran los artículos científicos que componen la

presente Tesis Doctoral:

Page 82: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Introducción

________________________________________________________________ 60

1. Acevedo, P., Cassinello, J. A review of Capra pyrenaica knowledge:

taxonomy, distribution, ecology, conservation and proposal for future

research lines. Mammal Review, en evaluación (enviado a 3/08/2006).

[Introducción].

2. Acevedo, P., Cassinello, J., Gortázar, C. (2006) The Iberian ibex is under

an expansion trend but displaced to suboptimal habitats by the presence

of extensive goat livestock in central Spain. Biodiversity and

Conservation. DOI 10.1007/s10531-006-9032-y [Capítulo 1.1].

3. Acevedo, P., Vicente, J., Alzaga, V., Gortázar, C. (2005) Relationship

between bronchopulmonary nematode larvae and relative abundances of

Spanish ibex (Capra pyrenaica hispanica) from Castilla-La Mancha.

Journal of Helminthology 79, 113-118 [Capítulo 1.2].

4. Acevedo, P., Cassinello, J. Human-induced expansion of wild ungulates

may facilitate niche overlap of taxonomically distant species. Journal of

Biogeography, en evaluación (enviado a 29/09/2006) [Capítulo 2].

5. Cassinello, J., Acevedo, P., Hortal, J. (2006) Prospects for population

expansion of the exotic aoudad (Ammotragus lervia; Bovidae) in the

Iberian Peninsula: clues from habitat suitability modelling. Diversity and

Distributions 12, 666-678 [Capítulo 3.1].

6. Acevedo, P., Cassinello, J., Hortal, J., Gortázar, C. Is introduced exotic

aoudad (Ammotragus lervia) a threat to native Iberian ibex (Capra

pyrenaica)? A habitat suitability model approach. Diversity and

Distributions (enviado a 24/10/2006) [Capítulo 3.2].

Page 83: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

CAPÍTULO 1

1.1.- EL PROCESO DE EXPANSIÓN DE LA CABRA MONTÉS EN CASTILLA-LA MANCHA, Y SU DESPLAZAMIENTO HACIA HÁBITATS SUBÓPTIMOS POR LA PRESENCIA DE GANADO CAPRINO 1.2.- RELACIONES ENTRE LA EXCRECIÓN DE NEMATODOS BRONCOPULMONARES Y LA ABUNDANCIA RELATIVA DE CABRA MONTÉS (CAPRA PYRENAICA HISPANICA) EN CASTILLA-LA MANCHA

DISTRIBUCIÓN Y ESTATUS DE LAS POBLACIONES DE CABRA MONTÉS (CAPRA PYRENAICA HISPANICA) EN CASTILLA-LA MANCHA

Page 84: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 85: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

1.1.- EL PROCESO DE EXPANSIÓN DE LA CABRA MONTÉS EN

CASTILLA-LA MANCHA, Y SU DESPLAZAMIENTO HACIA HÁBITATS

SUBÓPTIMOS POR LA PRESENCIA DE GANADO CAPRINO

Acevedo, P., Cassinello, J., Gortázar, C. (2006) THE IBERIAN IBEX IS UNDER AN

EXPANSION TREND BUT DISPLACED TO SUBOPTIMAL HABITATS BY THE PRESENCE OF

EXTENSIVE GOAT LIVESTOCK IN CENTRAL SPAIN. Biodiversity and Conservation. DOI

10.1007/s10531-006-9032-y.

Page 86: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 87: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 65

RESUMEN

En el presente trabajo se ha actualizado el área de distribución de la cabra

montés (Capra pyrenaica, Schinz 1838) en Castilla–La Mancha, España central. La

especie está presente en el 19% de la región, y se ha detectado en áreas donde no

había sido citada anteriormente. Paralelamente, se ha realizado un análisis de

adecuación de hábitat aplicando una nueva metodología, el Análisis Factorial de Nicho

Ecológico, que precisa tan solo de datos de presencia para calcular la adecuación del

hábitat para una especie dada. Debido a que la ganadería es una actividad importante

en la región, la presencia de ganado caprino (Capra hircus) ha sido incluida en los

análisis, ya que potencialmente puede competir con las monteses. Los factores que

afectan a la abundancia relativa de cabra montés han sido determinados mediante una

regresión múltiple anidada, utilizando como factor anidado la presencia/ausencia de

ganado caprino. La presencia de cabras domésticas tuvo un efecto negativo sobre la

abundancia relativa de las monteses, causando que las últimas seleccionaran áreas

con menos matorral y más zonas cultivadas y bosques, mientras que en ausencia de

caprino, las cabras monteses estaban presentes principalmente en zonas de pastos y

matorral, con ausencia de cultivos. Finalmente se discuten las implicaciones de estos

resultados para la conservación en el contexto de una región mediterránea en la que

abundan los sistemas de ganadería extensiva.

ABSTRACT

In this paper an updated distribution of the Iberian ibex (Capra pyrenaica,

Schinz 1838) in the central Spanish region of Castile–La Mancha is shown. The

species is present in 19% of the study region, and in areas not cited so far in the

literature. A detailed analysis of habitat suitability was also carried out, applying a new

methodology, Ecological-Niche Factor Analysis, which uses presence data to build a

habitat suitability map of a given species. As livestock activity is quite intense in the

region, the presence of a potential competitor, the domestic goat (Capra hircus), was

included in the analyses. Factors affecting ibex relative abundance were determined by

means of a nested stepwise multiple regression, where livestock presence/absence

was the nested factor. The presence of livestock has a negative effect on ibex relative

abundance, causing the ibex to select areas of poor, sparse vegetation, cultivated

lands and forests, whereas in the absence of livestock, the ibex is mainly present in

Page 88: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 66

pasture–scrub lands and non-cultivated lands. Conservation implications of these

results are discussed in the context of a Mediterranean region where extensive

livestock grazing systems abound.

INTRODUCTION

To conservation biologists it is of particular interest to determine the

effects of invasive species on the natural history of autochthonous ones (see

Lodge 1993). A particular example is that of exotic ungulates introduced in

areas where they can potentially compete with native ones (see, e.g.,

Cassinello et al. 2004). Among the former, livestock represent a particular

instance (Voeten and Prins 1999), usually underestimated by conservation

biologists (Fleischner 1994). Although livestock graze more than one-third of the

world’s land area, and in many instances share resources with native ungulates

(see de Haan et al. 1997), evidences of a negative impact on the latter are not

conclusive and highly debated (e.g., Saberwal 1996; Mishra and Rawat 1998;

Madhusudan 2004; Young et al. 2005).

The development of large, relatively permanent, agriculture-based

societies was the primary event initiating livestock domestication about 10,000

years ago (Price 2002). With a few exceptions, ungulate domestication (e.g.

cattle, sheep and goats) mainly began in the Near East (Troy et al. 2001). The

presence of livestock in Europe goes back to Neolithic times, domestic sheep

and goats showing up particularly in Mediterranean countries (see, e.g., Martín

Bellido et al. 2001).

The status and distribution of the Iberian ibex have been studied by

several authors, either in the whole peninsula (e.g. Granados et al. 2002; Pérez

et al. 2002) or in some particular areas (e.g. Palomares and Ruiz-Martínez

1993; Lasso de La Vega 1994; Pérez et al. 1994; Granados et al. 1998;

Gortázar et al. 2000). Concerning Castile-La Mancha region, in central Spain,

Granados et al. (2002) indicate that the ibex is distributed exclusively in 11% of

the region, whereas Pérez et al. (2002) distinguish 51 ibex population nuclei in

Spain, out of which only 4 were located in Castile-La Mancha: Serranía de

Cuenca, Cabañeros National Park, Sierra de Alcaraz (connected to the well

Page 89: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 67

established ibex population of Sierra de Cazorla, Segura y Las Villas Natural

Park, it is supposedly in expansion), and Sierra Madrona (a series of

fragmented nuclei connected to other ones in Sierra Morena, Jaén province).

Here, we analyse the current distribution and habitat use of the Iberian

ibex (Capra pyrenaica Schinz 1838) in Castile-La Mancha. We have considered

it appropriate to use a political division to define our study area because in

Spain conservation field is partly ruled by regional governments. This region is

characterized by an intense livestock breeding activity, namely extensive sheep

and goat grazing systems (see Martin Bellido et al. 2001). We have, thus,

included in our analyses the presence of the domestic goat (Capra hircus), a

close relative of the Iberian ibex and, therefore, expected to share feeding

habits and ecological requirements with it; to our knowledge, no comparative

studies of diet and/or spatial niche use have been made so far. Sheep, on the

contrary, show a differing feeding behaviour (Martínez 2002) and probably their

potential as competitor of the Iberian ibex is less pronounced.

The spatial prediction of species distribution is an important tool for

conservation biology and management planning (e.g., Hortal et al. 2005;

Whittaker et al. 2005). Developments of ecological and biogeographic theories

have been translated into different methodologies, which are able to predict the

distribution ranges and habitat suitability of species (see Guisan and

Zimmermann 2000; Ferrier et al. 2002; Scott et al. 2002), using a wide variety of

statistical approaches and Geographical Information Systems tools (GIS) (e.g.,

Austin 2002; Rushton et al. 2004). The use of a Digital Elevation Model (DEM)

constitutes a basis for generating maps of environmental variables (see Guisan

and Zimmermann 2000), as it has basic outcomes, such as altitude, slope or

aspect, which influence the distribution of the organisms. Furthermore, the use

of digitalised land information database, allows a more detailed analysis of

factors determining species distribution.

Predictive models can easily be made from data of the presence and

absence of a given species (e.g., Osborne and Tigar 1992; Brito et al. 1999).

Nevertheless, it is necessary to distinguish true absences from a mere lack of

information (Thuiller et al. 2004; Araújo et al. 2005). The determination of true

absences of a given species in a given area is the main problem of many

Page 90: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 68

animal presence/absence data sets (Hirzel et al. 2002; Zaniewski et al. 2002).

Thus, some techniques incorporate presence-only data (Hortal et al. 2005),

such as the relatively novel Ecological Niche Factor Analysis (ENFA) (Hirzel et

al. 2002). ENFA is used to determine habitat suitability starting from the location

of presence-only data. These maps are the result of the location of a given

species within the multidimensional environmental area that is defined by

considering all mapping units within the study area (Guisan and Zimmermann

2000). These habitat suitability maps indirectly reveal the species potential

distribution (Hirzel et al. 2002). This approach is recommended when absence

data are not available (most data banks), unreliable (most cryptic or rare

species) or meaningless (invaders) (Hirzel et al. 2001), the subsequent results

are to be handled with caution (e.g., Brotons et al. 2004; Engler et al. 2004).

Using these data, this method characterizes the realized niche of the species

from a set of environmental predictors. Thus, an application of the method could

be interesting in many domains: landscape management for endangered

species, better knowledge of unknown or inaccessible areas, or also better

knowledge of ‘new species’ ecology and/or distribution (e.g. Reutter et al. 2003;

Gallego et al. 2004; Chefaoui et al. 2005). This method was originally assessed

in the Alpine ibex (Capra ibex) (Hirzel et al. 2002), but is currently widely used

(see a list of publications at http://www2.unil.ch/biomapper/bibliography.html).

Apart from an updated distribution of the Iberian ibex in Castile-La

Mancha, our aim in this study is to carry out a detailed analysis of habitat

suitability of the species and determine which factors affect its abundance

taking into account the influence of livestock presence/absence.

MATERIALS AND METHODS

The study area

Located in central Spain, it corresponds with Castile-La Mancha political

division (U.T.M. 30S 294,348-681,063 4,208,706-4,575,340), which is placed at

the southern plateau of the Iberian Peninsula. Politically, the region is

conformed of five provinces (see Figure 1), where the study species is

Page 91: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 69

distributed unevenly. Castile-La Mancha is the Iberian region where game

activity is more intense. It has a surface area of 79,226 Km2, which represents

15.7% of the whole Spanish territory. The area devoted to game activity in this

region is 70,000 Km2 (88% of its territory), big game estates occupying 19,000

Km2 (Junta de Comunidades de Castilla–La Mancha,

http://www.jccm.es/medioambiente/mednat/cazapesca.htm).

The study region shows a typical Mediterranean continental climate, with

dry periods both in summer and winter, rains concentrated in autumn and

spring, and extreme temperatures during the hottest (summer) and coldest

(winter) seasons. Mediterranean woodland vegetation is present and it is

formed of oak trees (Quercus ilex) along with shrubs of different species (e.g.,

Q. coccifera, Pistacia lentiscus, Cistus spp., Rosmarinus officinalis, etc.). Open

lands with scattered trees (evergreen oak savannah like habitats), the so-called

“dehesas”, are also common. In addition, pine woodlands (Pinus spp.) can also

be found in some elevated areas.

Figure 1. Situation of the study area (Castile-La Mancha region in central Spain), the administrative provinces concerned, and its division in 10x10 grids, showing the presence/absence of the Iberian ibex.

Page 92: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 70

Apart from the Iberian ibex, other ungulate species that can be found

free-ranging in the study area are wild boar (Sus scrofa) and red deer (Cervus

elaphus), and to a lesser extent fallow deer (Dama dama), and roe deer

(Capreolus capreolus) (see, respectively, Rosell and Herrero 2002; Carranza

2002; Braza 2002; San José 2002).

The study species

The Iberian ibex is a wild goat endemic to the Iberian Peninsula. The

IUCN (2004) considered it as at Low Risk, but near threatened (LR/nt), whereas

the existing subspecies hold different qualifications. C. p. victoriae Cabrera,

1911 is Vulnerable (VU D2), due to the few and small areas it inhabits (see

Pérez et al. 2002). C. p. hispanica Shimper, 1848 is at Low Risk (LC/cd), but its

viability depends on current conservation programmes. This latter subspecies is

widely distributed compared to the former one (ibid). Two other subspecies

were also distinguished, but they are extinct nowadays: C. p. pyrenaica Schinz,

1838 and C. p. lusitanica Schlegel, 1872 (ibid). However, the distinction of these

subspecies has been questioned by Manceau et al. (1999), who found no

genetic differences between the two existing subspecies.

The sampling method

Presence of ibexes in the study area was assessed by means of direct

field observations and by carrying out surveys (n=149) addressed to forest

rangers and staff from environmental agencies of the government of Castile-La

Mancha region. Information obtained by other naturalists was verified by visiting

areas where ibexes were reported. The sampling units were 10x10 km UTM

grid cells (n=905).

Survey addressees were asked to draw in a map their work area and the

range occupied by the Iberian ibex, red deer, wild boar and livestock. A

questionnaire was given to them, where they indicated the status of the

populations present, such as the largest group size registered, a straightforward

variable, easy to account for by field watchers.

Page 93: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 71

In order to assess ibex abundance, we firstly relied on forest rangers and

environmental managers’ indication of the largest group size registered. The

Iberian ibex is characterized by sexual segregation through most of the year,

but the largest group sizes are attained during the mating season (November-

December) according to Granados (2001), when ibexes are also more

conspicuous. We have confirmed that group sizes given in the questionnaire

refer to mixed groups observed during the mating season, when they may

reflect population abundance in species showing sexual segregation (see Toigo

et al. 1996). In addition, we validated these data by carrying out our own field

surveys.

During September 2003, we performed 17 field surveys consisting of line

transects (e.g., Burnham et al. 1980), a methodology widely used to estimate

relative abundance of wild goats (e.g., Pérez et al. 1994; Alados and Escós

1996). Average length of line transects was 3 km., and they were carried out in

the main areas where the Iberian ibex is present in Castile-La Mancha, and

during hours of maximum activity, i.e. at dawn and at dusk (e.g., Alados 1986).

We only registered female groups, and used these data to test whether the

largest group size obtained in the questionnaire was a good estimate of ibex

abundance (see Results).

Habitat suitability

The ENFA computes a habitat suitability model by comparing the

ecogeographical variables (EGVs) which characterize the locations where the

species is detected with those present in the whole study area (Hirzel et al.

2002).

Habitat suitability for the Iberian ibex was assessed in the area where the

species was more abundant according to the surveys, using 1x1 km UTM grid

cells. Twenty-seven EGVs were defined, including topographical features (e.g.

altitude, slope), land cover, and livestock presence (see Table 1), and

normalized by a Box-Cox transformation (Sokal and Rohlf 1981). We did not

considered climatic variables because of the relative homogeneity of the study

area on this matter, where only slight differences can be registered, mainly due

Page 94: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 72

to topographic variations. Average distances to each land cover classes were

calculated for each sample unit by means of “Distance Operator” tool (Idrisi32

v.32.21) (see Hirzel et al. 2002). The topographic data from a digital elevation

model (DEM) carried out by the Shuttle Radar Topography Mission (European

Environment Agency 2000), with a spatial resolution of 90 m., was extracted by

overlaying the DEM with the cells of 1x1 km. in a geographic information system

(Idrisi32 v32.21) (see Hortal et al. 2001).

Firstly, the ENFA was run, by means of BioMapper software (Hirzel et al.

2001, 2004; see http://www.unil.ch/biomapper/). It computes a global

marginality coefficient, expressing how, on all the EGVs, the species average

differs from the global average, and a global specialization coefficient,

expressing the ratio of global variance to species variance.

Formally, marginality is defined as the absolute difference between the

global mean and the species mean, divided by the standard deviations of the

global distribution multiplied by a constant (see Hirzel 2001 for details). A value

close to one means that the species lives in a very particular habitat relative to

the reference set. Similarly, specialization is defined as the ratio of the standard

deviation of the global distribution to that of the study species (Hirzel 2001). A

randomly-chosen set of cells is expected to have a specialization of one, while

any value exceeding that score indicates some form of specialization.

The factor coefficients for the marginality factor account for the

marginality of a given species in each EGV considered. It is measured as units

of standards deviations of the global distribution. The higher the absolute value

of a coefficient, the further the species departs from the average value of a

given EGV. There are other factors which express a degree of specialization,

where the higher the value, the more restricted is the range of the study species

on the corresponding variable (Hirzel 2001).

Page 95: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 73

Table 1. Ecogeographical variables (EGVs) used in the ENFA. Average values in the study region are shown (global mean), together with the standardized ones, as provided by ENFA, in areas where the Iberian ibex is present (species mean). All values are in metres, except for orientation, which is in degrees.

Codes Meaning Global mean

Species mean

TOPOGRAFIC altitud_max Maximum altitude 507.24 0.95

aspect Average orientation 98.49 0.87 slope Average slope 2.82 1.44

CULTURES dist_agriculture Average distance to cultivated lands 2260.56 0.82 dist_agroforest Average distance to agroforest lands 11990.41 1.22

dist_annual_crops Average distance to annual crops 19572.28 0.63 dist_complex_cult Average distance to complex cultures 1933.19 0.64 dist_perm_irrigate Average distance to irrigated cultures 1368.97 0.42

FRUIT TREE dist_fruit_tree Average distance to fruit tree cultures 4249.16 0.15

dist_olives Average distance to olive tree cultures 5388.66 0.04 dist_vineyards Average distance to vineyards 4714.15 1.25

WOODLAND dist_broad_leav Average distance to broad leaves forests 4828.36 1.05

dist_mixed_forest Average distance to mixed forests 6194.78 0.72 dist_connifeous Average distance to conniferous forests 3021.63 -0.34

dist_wood_scrub Average distance to wood-scrub ecotones 1509.38 0.81 dist_sclerophyllous Average distance to sclerophyllous areas 1421.79 0.34

SCRUBLAND dist_moors_heath Average distance to moors and heaths areas 29133.07 0.56

GRASSLAND dist_natu_grass Average distance to natural grass lands 2706.51 0.39

SPARSE VEG. dist_sparse_veg Average distance to sparse vegetation 12196.57 -0.32 dist_bare_rocks Average distance to bare rocks areas 24583.19 -0.05

INFRASTRUCTURE dist_village Average distance to villages 3217.65 0.84 dist_industr Average distance to industrial areas 11612.99 1.07

dist_road_rail Average distance to roads and rails 27601.89 0.74 WATER

dist_river Average distance to rivers 10852.34 -0.09 dist_inland_marshes Average distance to inland marshes 20417.79 1.38

dist_water_bodies Average distance to water bodies 14409.52 0.09 LIVESTOCK

dist_goat_livestock Average distance to goat livestock 2515.05 0.07

Habitat use

Information obtained from the surveys was registered in 10x10 km. UTM

grid squares (n=905) by means of Idrisi32 v32.21 software (Clark Labs, Clark

University). For each UTM square the frequency of occurrence of 11

ecogeographical variables (EGVs) were identified (see Table 2). These

variables were obtained from CORINE Land Use/Land Cover database, spatial

Page 96: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 74

resolution (pixel width) of 250 m (European Environment Agency 1996). From

this information we carried out both the habitat use analysis and the study of the

influence of goat livestock.

The analysis of the variables which determine habitat use (Table 2) by

the Iberian ibex was assessed by a nested stepwise multiple regression

analysis, using domestic goats presence/absence as the nested factor (e.g.

Quinn and Keough 2002). The Iberian ibex abundance was the response

variable. We designed a three step procedure to clarify the significance of the

variables and their interaction with goat livestock on the Iberian ibex habitat use.

In total, 11 habitat factors were considered: 1) We discarded a number of

variables with no statistical significance and avoided multicollinearity by using

the Spearman Rank Correlation coefficients. 2) Each of the independent

variables obtained from step 1 were then related to the dependent variable, ibex

relative abundance. Stepwise multiple regression analysis was used (Quinn and

Keough 2002). 3) Variables that yielded p<0.05 in step 2 were integrated into a

final model which also included the nested factor of livestock presence. Table 2. EGVs used in habitat use analysis for the Iberian ibex relative abundance dependent variable. The significance level of step 2 is provided (** p < 0.01, * p < 0.05, n.s. = non-significant). See text and Table 1 for more details.

Variables Meaning Significance

Goat livestock Presence/Absence of goat livestock ** Highest altitude Maximum altitude (m) n.s. Average altitude Average altitude (m) n.s. Slope Average slope index n.s. Cultures Frequency of cultures per pixel * Woodland Frequency of woodlands per pixel ** Scrubland Frequency of scrublands per pixel ** Grassland Frequency of grasslands per pixel n.s. Sparse vegetation Frequency of sparse vegetations per pixel ** Infrastructures Frequency of human infrastructures per pixel n.s. Water reservoir Frequency of rivers per pixel *

We carried out a nested regression analysis and obtained a final model

through a backward stepwise procedure. The level of significance for step 3

was set at 5%. The statistics package used was SPSS 10.06.

Page 97: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 75

RESULTS

Species distribution according to the surveys

Information covering 97.68% of the whole Castile-La Mancha region has

been obtained from 149 surveys correctly filled in. Results showed that the

Iberian ibex is present in 19% of the study area (175 out of 905 sampling units).

Five population nuclei have been identified: Montes de Toledo mountain range,

Sierra Madrona – Sierra Morena, Alto Tajo – Serranía de Cuenca, Casas

Ibáñez, and south of Albacete (see Figure 1). The species is more widely

distributed in Albacete province (it is present in 47% of the territory), followed by

Guadalajara (21%), Cuenca (15%), Ciudad Real (12%) and Toledo province

(3%).

Habitat suitability An habitat suitability map for the study species was carried out for the

province of Albacete, where the species was more abundant (see above). This

meant a total number of 15,384 1x1 km UTM grid cells.

Table 3. Correlation between ENFA factors and the environmental descriptors (EGVs). Percentages indicate the amount of specialization accounted for by each factor. Factor 1 is Marginality factor.

Variable Factor 1

(87.6%) Factor 2

(55.4%) Factor 3

(19.2%)

altitud_max 0.24 0.01 0.10 aspect 0.22 0.04 0.00 dist_agriculture 0.21 0.08 -0.02 dist_agro_forest 0.31 -0.09 0.32 dist_annual_crops 0.16 -0.26 0.16 dist_broad_leav 0.26 -0.02 0.00 dist_goat_livestock 0.02 -0.06 0.20 dist_coniferous -0.09 0.51 0.61 dist_industr 0.27 0.09 0.23 dist_inland_marshes 0.35 -0.02 -0.37 dist_road_rail 0.19 0.42 0.11 dist_sparse_veg -0.08 0.62 -0.27 dist_villages 0.21 -0.09 0.04 dist_vineyards 0.31 0.12 -0.14 dist_water_bodies 0.02 0.03 -0.34 dist_wood_scrub 0.20 -0.01 -0.01 slope 0.36 0.04 0.01

Page 98: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 76

Table 1 shows average values for the EGVs that define the habitat, both

in the whole study area (global mean) and in the area where ibexes were found

(species mean, with standardized values). For the ENFA analysis, the variable

“average distance to non-irrigated lands” was discarded due to its discontinuity.

The three significant factors selected (out of 27) explained 87.6% global

marginality and 75.2% global specialization. Coefficients of relationship

between variables and each one of the three factors are shown in Table 3.

Global marginality was 2.03, and global tolerance was 0.49. The habitat

suitability map can be seen in Figure 2. The first factor obtained, marginality

factor, was essentially associated to both high altitudes and slopes, and areas

distant to agro-forest lands, broadleaf woodlands, industrial areas, marshes and

vineyards (see coefficients in Table 3).

Figure 2. Habitat suitability map for the Iberian ibex in Albacete province. Observed ibex distribution is outlined. The arrow indicates a potentially suitable area not occupied by the ibex, and where livestock is present.

Ibexes are extremely sensitive to shifts from their optimal conditions on

this axis. Next factors show a certain degree of specialization, being associated

Page 99: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 77

to areas distant to coniferous forests, sparse vegetation and human

constructions, such as roads and railways, but also close to annual crops lands.

Factor 3 accounts for 19.2% of specialization, so that information provided is

much less accurate than that of the other two factors (see Table 3).

Habitat use

Relative ibex abundance was assessed by the largest size group

registered in each UTM grid cell considered in the study area, and obtained

from the questionnaire. Previously, we determined the validity of this measure

by relating it to our own average group size (see above). In our field surveys,

we detected 36 ibex groups (167 animals were counted) from the 17 transects

carried out in September 2003. The average group size was 4.76 ± 0.65, and it

correlated with the largest group size obtained in the questionnaire (Spearman

Rank Correlation: n=9, rho=0.80, p=0.01), so that the latter can be considered

as an estimate of ibex abundance. Table 4. Final model obtained for the habitat use analysis for the Iberian ibex relative abundance dependent variable (nested stepwise regression output). GL column refers to goat livestock absence (A) and presence (P). T.E. refers to the typical error.

Parameter GL Estimate T.E . t Probability

Intercept 3.07 0.86 3.58 <0.01

(A) 0.88 0.31 2.88 <0.01 Scrub land (P) -0.94 0.30 -3.13 <0.01

(A) -0.53 0.27 -2.47 0.01 Cultures (P) 0.89 0.19 4.67 <0.01

(A) -0.04 0.22 -0.20 0.84 Wood land (P) 0.81 0.22 3.65 <0.01

(A) -0.27 3.10 -0.09 0.93 Sparse vegetation (P) 1.45 0.45 3.19 <0.01

(A) 5.62 4.02 1.40 0.16 Water (P) 12.55 6.14 2.04 0.04

(A) -4.54 1.23 -3.69 <0.01 Goat livestock (P) 0 0.00 . .

Page 100: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 78

Figure 3. Relationships between Iberian ibex relative abundance and two EGVs which show opposite directions depending on the presence/absence of goat livestock, i.e. scrub land and cultures (see Table 4).

Nested stepwise multiple regression analysis showed that livestock

influences habitat use of the Iberian ibex, relegating it to suboptimal vegetation

areas (see Table 4). In those grid cells where domestic goat livestock ranges in

sympatry with the ibex, the latter occupies preferentially cultivated lands, sparse

vegetation areas and forests; whereas in absence of livestock the ibex is mainly

found in pasture-scrub areas and non-cultivated lands. The marginal effect

caused by distance to goat livestock herds (see Factor 3 in Table 3), is

exemplified in Figure 2.

In Figure 3 the relationship between those variables which showed

opposite directions, depending on the presence/absence of goat livestock, i.e.

scrub land and cultures, is shown.

Page 101: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 79

DISCUSSION

Here we have updated the Iberian ibex distribution in the region of

Castile-La Mancha (central Spain). A habitat suitability model has also been

accomplished by using the ENFA technique, particularly suitable for presence-

only data of a given species. Our results indicate that the Iberian ibex is not

occupying its optimal habitat in those areas where it shares its range with

domestic goat herds.

On ibex distribution in the study region, it is noteworthy to point out a

wider presence in comparison with previous surveys (Alados 1997; Pérez et al.

2002). A plausible explanation is the expected increase of the species area of

distribution which is taking place nowadays, in part due to a natural increment of

population numbers due to habitat changes, game management translocations

(Gortázar et al. 2000) or its recovery from past sarcoptic mange epizootics

(Pérez et al. 1997), and a probable decrease of its hunting pressure caused

precisely by the incidence of this disease (see Garrido 2004).

Concerning risks associated to parasite infections of the ibex, the main

agents are host-inspecific, e.g. sarcoptic mange (Pérez et al. 1997), so that they

can infect any ungulate species, among other mammals. Therefore, at high host

densities, as it is the case in areas with high livestock densities, the availability

of habitat for these parasites increases, as does the risk of epizootics (see

Acevedo et al. 2005 [Capítulo 1.2]).

Specific values for marginality and tolerance indexes are bound to

depend on the global set chosen as reference, so that a species might appear

extremely marginal or specialised on the scale of a whole country, but much

less so a subset of it (Hirzel et al. 2002). According to habitat suitability analysis

carried out the Iberian ibex is highly marginal in the studied area, and presents

a medium tolerance, evidencing that, although it is placed in marginal areas in

Castile-La Mancha, it seems to tolerate habitat changes, therefore

compensating its marginality with the expansion to areas of relatively

suboptimal habitat.

In our study, livestock seem to compete and displace the Iberian ibex

from its optimal habitat, i.e. pasture-scrublands (e.g., Chirosa et al. 2002), in

Page 102: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 80

those grid cells where livestock is present (see Figure 2). We have no data on

social avoidance between both species, so that future research should be

focused on confirming this apparent ecological displacement. Similar

conclusions were obtained from a study carried out in the Great Basin, where

pronghorn (Antilocapra americana) avoided areas grazed by sheep during

winter until spring-regrowth occurred, and favoured areas temporarily rested

from sheep use (Clary and Holmgren 1982; Clary and Beale 1983).

This apparent displacement of the Iberian ibex to suboptimal habitats by

livestock presence is confirmed in our nested factor analysis of habitat use. The

results obtained indicate that the ibex occupies different habitats depending on

the presence of domestic goats. When they are present, as seen in the previous

analysis of habitat suitability, the ibex is preferentially found in suboptimal

habitats, according to its resource requirements (see, e.g., Chirosa et al. 2002),

i.e. sparse vegetation, cultures and woodlands; whereas when livestock is

absent, the ibex mainly uses scrub lands and non-cultivated areas, where food

availability according to its diet is higher (e.g., Martínez and Martínez 1987;

Martínez 2000).

The question is whether both species, the ibex and the domestic goat,

actually compete for resources. Resource partitioning is defined as the

differential use by organisms of resources such as food and space (Schoener

1974; Begon et al. 1996), and may explain how species coexist despite

extensive overlap in ecological requirements (Hutchinson 1959; MacArthur and

Wilson 1967; MacArthur 1972; May 1973). On the contrary, competition is

considered to be the major selective force causing this differential use of

resources (Schoener 1974, 1986).

As livestock range and distribution exceed any natural expansion

process, they can be considered as introduced exotic species (see, e.g., Voeten

and Prins 1999), and resource partitioning with native ungulates would not be

expected but, rather, a certain overlap in resource selection (see Fleischner

1994; Edwards et al. 1996; Aagesen 2000; Prins 2000). This is the case in

North American steppes, where livestock replaced the bison (Bison bison) and

pronghorn (Schwartz and Ellis 1981; Hartnett et al. 1997). Thus, dietary niche

divergence in sympatric species can occur even at a very subtle scale (Hartnett

Page 103: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 81

et al. 1997). Campos-Arceiz et al. (2004) found that food overlap between

Mongolian gazelles (Procapra gutturosa) and livestock occurred not only at the

main forage categories but also at the selection of plant parts for foraging.

Interpretation of measures of niche overlap in terms of the implications

for competitive interactions is problematic (Putman 1996). High observed

overlap can imply competition, but only if resources are limited. In fact,

observations of high overlap might equally well be indicative of a lack of

competition (see Schoener 1983; de Boer and Prins 1990; Putman 1996).

The implications these results may have on the Iberian ibex viability and

expansion can be evaluated from different views. Ibex populations in the study

region seem to be in expansion, particularly in the provinces of Albacete,

Cuenca and Guadalajara, if we compare current abundance of the species

(Figure 1) and that of former studies (e.g. Pérez et al. 2002). Therefore,

currently isolated populations might enter into contact. This may imply new

viability risks associated to the increase of certain diseases, such as sarcoptic

mange. This disease has already been detected sporadically in Albacete

province (C. Gortázar, unpublished data), so that a consequent generalization

of its prevalence might occur in the near future. Finally, hunting pressure on the

Iberian ibex is negligible in Castile-La Mancha: a 0.0004% (63 individuals) of

total big game hunted in 1999-2003 period (Garrido 2004). Therefore, we

believe that game activity is not currently disturbing the Iberian ibex expansion

movements in the region.

As a conclusion, we encourage comparative studies of habitat use with

other ungulate species in sympatry (including exotics), as well as a monitoring

of disease prevalence and colonization process in order to assure the

establishment of the species in central Spain.

ACKNOWLEDGEMENTS

We are grateful to Leticia Díaz for her useful comments on a previous

version of the manuscript as well as her advise on the statistical analyses. We

are also indebted to M. Martínez, V. Alzaga, J. Millán, A. Pérez and J. Vicente

Page 104: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 82

for assistance in the field. This research was supported by a JCCM-CAMA

agreement, and P de Asturias and CSIC. J.C. is currently supported by the

Ministerio de Educación y Ciencia through a Ramón y Cajal contract.

REFERENCES

Aagesen, D. (2000) Crisis and conservation at the end of the world: sheep ranching in Argentine Patagonia. Environmental Conservation 27, 208-215.

Acevedo, P., Vicente, J., Alzaga, V., Gortázar, C. (2005) Relationship between bronchopulmonary nematode larvae and relative abundances of Spanish ibex (Capra pyrenaica hispanica) from Castilla – La Mancha, Spain. Journal of Helminthology 79, 113-118.

Alados, C., Escós, J. (1996) Ecología y comportamiento de la cabra montés. Consideraciones para su gestión. Monografías del Museo Nacional de Ciencias Naturales. Consejo Superior de Investigaciones Científicas, Madrid.

Alados, C.L. (1986) Time distribution of activities in the Spanish ibex, Capra pyrenaica. Biology of Behaviour 11, 70-82.

Alados, C.L. (1997) Status and distribution of Caprinae by region. Spain. In: Wild sheep and goats and their relatives. D.M. Shackleton (ed.), IUCN, Cambridge.

Araújo, M.B., Thuiller, W., Williams, P.H., Reginster, I. (2005) Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Global Ecology and Biogeography 14, 17-30.

Austin, M.P. (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modeling. Ecological Modelling 157, 101-118.

Begon, M., Harper, J.L., Townsend, C.R. (1996) Ecology: individuals, populations and communities. 3rd edn. Blackwell Science, Oxford.

Braza, F. (2002) Dama dama Linnaeus, 1758. Gamo. In: Atlas de los mamíferos terrestres de España. L.J. Palomo, J. Gisbert (eds.), Dirección General de Conservación de la Naturaleza, SECEM, SECEMU, Madrid.

Brito, J.C., Crespo, E.G., Paulo, O.S. (1999) Modelling wildlife distributions: Logistic Multiple Regression vs Overlap Analysis. Ecography 22, 251-260.

Brotons, L., Thuiller, W., Araujo, M.B., Hirzel, A.H. (2004) Presence-absence versus presence-only based habitat suitability models for bird atlas data: the role of species ecology and prevalence. Ecography 27, 285-298.

Page 105: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 83

Burnham, K.P., Anderson, D.R., Laake, J.L. (1980) Estimation of density from line transect sampling of biological populations. Wildlife Monographs 72, 1-202.

Campos-Arceiz, A., Takatsuki, S., Lhagvasuren, B. (2004) Food overlap between Mongolian gazelles and livestock in Omnogobi, southern Mongolia. Ecological Research 19, 455-460.

Carranza, J. (2002) Cervus elaphus Linnaeus, 1758. Ciervo rojo. In: Atlas de los mamíferos terrestres de España. L.J. Palomo, J. Gisbert (eds.). Dirección General de Conservación de la Naturaleza, SECEM, SECEMU, Madrid.

Cassinello, J., Serrano, E., Calabuig, G., Pérez, J.M. (2004) Range expansion of an exotic ungulate (Ammotragus lervia) in southern Spain: Ecological and conservation concerns. Biodiversity and Conservation 13, 851-866.

Chirosa, M., Delibes-Senna, J.R., Fandos, P., Granados, J.E., Pérez, M.C., Pérez, J.M., Ruiz-Martínez, I., Serrano, E., Soriguer, R.C., Weykam, S. (2002) Estimas poblacionales de Capra pyrenaica hispanica. In: Distribución, genética y estatus sanitario de las poblaciones andaluzas de cabra montés. J.M. Pérez (ed.). Junta de Andalucía, Consejería de Medio Ambiente, Sevilla.

Clary, W.P., Beale, D.M. (1983) Pronghorn reactions to winter sheep grazing, plant communities, and topography in the Great Basin. Journal of Range Management 36, 749-752.

Clary, W.P., Holmgren, R.C. (1982) Observations of pronghorn distribution in relation to sheep grazing on the Desert Experimental Range. In: Wildlife-livestock relationships symposium. J.M. Peek, P.D. Dalke (eds.), University of Idaho, Forest, Wildlife, and Range Experiment Station, Moscow.

de Boer, W. F., Prins, H. H. T. (1990) Large herbivores that strive mightily but eat and drink as friends. Oecologia 82, 264-274.

de Haan, C., Steinfeld, H., Blackburn, H. (1997) Livestock and the environment: finding a balance. Report of a Study Coordinated by FAO / World Bank / USAID.

Edwards, G.P., Croft, D.B., Dawson, T.J. (1996) Competition between red kangaroo (Macropus rufus) and sheep (Ovis aries) in the arid rangelands of Australia. Australian Journal of Ecology 21, 165-172.

Engler, R., Guisan, A., Rechsteiner, L. (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology 41, 263-274.

European Environment Agency (1996) Natural resources. CD-Rom, European Environment Agency, Copenhagen.

European Environment Agency (2000) Natural resources. CD-Rom, European Environment Agency, Copenhagen.

Page 106: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 84

Ferrier, S., Watson, G., Pearce, J., Drielsma, M. (2002) Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling. Biodiversity and Conservation 11, 2275-2307.

Fleischner, T.L. (1994) Ecological costs of livestock grazing in Western North America. Conservation Biology 8, 629-644.

Garrido, J.L. (2004) Aprovechamientos por especies y autonomías. II Máster en Conservación y Gestión de los Recursos Cinegéticos. Marzo 2004. Unpublished report, Ciudad Real

Gortazar, C., Herrero, J., Villafuerte, R., Marco, J. (2000) Historical examination of the distribution of large mammals in Aragón, Northeastern Spain. Mammalia 61, 411-422.

Granados, J. E. (2001) Distribución y estatus de la cabra montés (Capra pyrenaica, Schinz 1838) en Andalucía. PhD Thesis. Universidad de Jaén, Jaén.

Granados, J.E., Chirosa, M., Pérez, M.C., Pérez, J.M., Ruiz Martínez, I., Soriguer, R.C., Fandos, P. (1998) Distribution and status of the Spanish ibex Capra pyrenaica in Andalusia, Southern Spain. Proccedings of the 2nd World Conference of Mountain Ungulates, Aosta: 129-133.

Granados, J.E., Soriguer, R.C., Pérez, J.M., Fandos P., García-Santiago, J. (2002) Capra pyrenaica Schinz. In: Atlas de los mamíferos terrestres de España. L.J. Palomo, J. Gisbert (eds.). Dirección General de Conservación de la Naturaleza, SECEM, SECEMU, Madrid.

Guisan, A., Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135, 147-186.

Hartnett, D.C., Steuter, A.A., Hickman, K.R. (1997) Comparative ecology of native and introduced ungulates. In: Ecology and conservation of great plains vertebrates. F.L. Knopf, F.B. Samson (eds.), Springer, New York.

Hirzel, A. (2001) Linking landscape and population ecology for large population management modelling: the case of Ibex (Capra ibex) in Switzerland. PhD Thesis, Université de Lausanne. <http://www2.unil.ch/biomapper/Download/hirzel-2001-phd.zip>

Hirzel, A.H., Hausser, J., Chessel, D., Perrin, N. (2002) Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83, 2027-2036.

Hirzel, A.H., Helfer, V., Metral, F. (2001) Assessing habitat suitability models with a virtual species. Ecological Modelling 145, 111-121.

Hirzel, A.H., Posse, B., Oggier, P.A., Crettenand, Y., Glenz, C., Arlettaz, R. (2004) Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vulture. Journal of Applied Ecology 41, 1103-1116.

Page 107: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 85

Hortal, J., Borges, P.A.V., Dinis, F., Jiménez-Valverde, A., Chefaoui, R.M., Lobo, J.M., Jarroca, S., Brito de Azevedo, E., Rodrigues, C., Madruga, J., Pinheiro, J., Gabriel, R., Cota Rodrigues, F., Pereira, A.R. (2005) Using ATLANTIS - Tierra 2.0 and GIS environmental information to predict the spatial distribution and habitat suitability of endemic species. In: A list of the terrestrial fauna (Mollusca and Arthropoda) and flora (Bryophyta, Pteridophyta and Spermatophyta) from the Azores. P.A.V. Borges, R. Cunha, R. Gabriel, A.F. Martins, L. Silva, V. Vieira (eds.), Direcção Regional de Ambiente and Universidade dos Açores, Angra do Heroísmo and Ponta Delgada, Available at http://sram.azores.gov.pt/lffta/.

Hortal, J., Lobo, J.M., Martín-Piera, F. (2001) Forecasting insect species richness scores in poorly surveyed territories: the case of the Portuguese dung beetles (Col. Scarabaeinae). Biodiversity and Conservation 10, 1343-1367.

Hutchinson, G.E. (1959) Homage to Santa Rosalia or why are there so many kinds of animals? The American Naturalist 93, 145-159.

IUCN (2004) 2004 IUCN red list of threatened species. <www.redlist.org>. Downloaded on 26 January 2005.

Lasso De La Vega, B. (1994) Estimación de la población de cabra montés en Sierra Tejeda y Almijara (Málaga). In: Actas del I Congreso Internacional del Género Capra en Europa, Ronda.

Lodge, D. M. (1993) Biological invasions: lessons for ecology. Trends in Ecology & Evolution 8, 133-137.

MacArthur, R.H. (1972) Geographical ecology: patterns in the distribution of species. Harper Row, New York.

MacArthur, R.H., Wilson, E.O. (1967) The theory of island biogeography. Princeton University Press, Princeton.

Madhusudan, M.D. (2004) Recovery of wild large herbivores following livestock decline in a tropical Indian wildlife reserve. Journal of Applied Ecology 41, 858-869.

Manceau, V., Crampe, J.P., Boursot, P., Taberlet, P. (1999) Identification of evolutionary significant units in the Spanish wild goat, Capra pyrenaica (Mammalia, Artiodactyla). Animal Conservation 2, 33-39.

Martín Bellido, M., Escribano Sánchez, M., Mesías Díaz, F.J., Rodríguez de Ledesma Vega, A., Pulido García, F. (2001) Sistemas extensivos de producción animal. Archivos de Zootecnia 50, 465-489.

Martínez, T. (2000) Diet selection by Spanish ibex in early summer in Sierra Nevada. Acta Theriologica 45, 335-346.

Martínez, T. (2002) Summer feeding strategy of Spanish ibex Capra pyrenaica and domestic sheep Ovis aries in south-eastern Spain. Acta Theriologica 47, 479-490.

Page 108: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 86

Martínez, T., Martínez, E. (1987) Diet of Spanish wild goat, Capra pyrenaica, in spring and summer at the Sierra de Gredos, Spain. Mammalia 51, 547-557.

May, M.R. (1973) Stability and complexity in model ecosystems. Princeton: Princeton University Press.

Mishra, C., Rawat, G.S. (1998) Livestock grazing and biodiversity conservation: comments on Saberwal. Conservation Biology 12, 712-714.

Osborne, P.E., Tigar, B.J. (1992) Interpreting bird atlas using logistic models: an example from Lesotho, Southern Africa. Journal of Applied Ecology 29, 55-62.

Palomares, F., Ruiz Martínez, I. (1993) Status and conservation perspectives for the Spanish ibex population of Sierra Mágina Natural Park, Spain. Zeitschrift fur Jagdwissenschaft 39, 87-94.

Pérez, J.M., Granados, J.E., Soriguer, R.C. (1994) Population dynamic of the Spanish ibex Capra pyrenaica in Sierra Nevada Natural Park (southern Spain). Acta Theriologica 39, 289-294.

Pérez, J.M., Granados, J.E., Soriguer, R.C., Fandos, P., Marquez, F.J., Crampe, J.P. (2002) Distribution, status and conservation problems of the Spanish ibex, Capra pyrenaica (Mammalia : Artiodactyla). Mammal Review 32, 26-39.

Pérez, J.M., Ruiz, I., Granados, J.E., Soriguer, R.C., Fandos, P. (1997) The dynamics of sarcoptic mange in the ibex population of Sierra Nevada in Spain: Influence of climatic factors. Journal of Wildlife Research 2, 86-89.

Price, E.O. (2002) Animal domestication and behavior. Wallingford, New York: CABI Publishing.

Prins, H.H.T. (2000) Competition between wildlife and livestock in Africa. In Wildlife conservation by sustainable use: 51-80. Prins, H.H.T., Grootenhuis, J.G. and Dolan, T.T. (Eds.). Boston, MA: Kluwer Academic Publishers.

Putman, R.J. (1996) Competition and resource partitioning in temperate ungulate assemblies. London: Chapman and Hall.

Quevedo, M., Bañuelos, M.J., Obeso, J.R. (2006) The decline of Cantabrian capercaille: How much does habitat configuration matter. Biological Conservation 127, 190-200.

Quinn, G.P., Keough, M.J. (2002) Experimental design and data analysis for biologists. Cambridge: Cambridge University Press.

Reutter, B.A., Helfer, V., Hirzel, A.H., Vogel, P. (2003) Modelling habitat-suitability using museum collections: an example with three sympatric Apodemus species from the Alps. Journal of Biogeography 30, 581-590.

Page 109: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 87

Rosell, C., Herrero, J. (2002) Sus scrofa Linnaeus, 1758. Jabalí. In: Atlas de los mamíferos terrestres de España. L.J. Palomo, J. Gisbert (eds.). Dirección General de Conservación de la Naturaleza, SECEM, SECEMU, Madrid.

Rushton, S.P., Ormerod, S.J., Kerby, G. (2004) New paradigms for modelling species distributions? Journal of Applied Ecology 41, 193-200.

Saberwal, V.K. (1996) Pastoral politics: gaddi grazing, degradation, and biodiversity conservation in Himachal Pradesh, India. Conservation Biology 10, 741-749.

San José, C. (2002) Capreolus capreolus Linnaeus, 1758. Corzo. In: Atlas de los mamíferos terrestres de España: L.J. Palomo, J. Gisbert (eds.). Dirección General de Conservación de la Naturaleza, SECEM, SECEMU, Madrid.

Schoener, T.W. (1983) Field experiments on interspecific competition. The American Naturalist 122, 240-285.

Schoener, T.W. (1974) Competition and the form of habitat shift. Theoretical Population Biology 6, 265-307.

Schoener, T.W. (1986) Resource partitioning. In: Community ecology, pattern and process. J. Kikkawa, D.J. Anderson (eds.), Blackwell, Oxford.

Schwartz, C., Ellis, J. E. (1981) Feeding ecology and niche separation in some native and domestic ungulates on the shortgrass prairie. Journal of Applied Ecology 18, 343-353.

Scott, J.M., Heglund, P.J., Haufler, J.B., Morrison, M., Raphael, M.G., Wall, W.B., Samson, F. (eds.) (2002) Predicting species occurrences: Issues of accuracy and scale. Island Press, Covelo, California.

Sokal, R.R. and Rohlf, F. J. (1981) Biometry. 2nd edn. W.H. Freeman and Company, San Francisco

Thuiller, W., Brotons, L., Araújo, M.B., Lavorel, S. (2004) Effects of restricting environmental range data to project current and future species distributions. Ecography 27, 165-172.

Toigo, C, Gaillard, J.M., Michallet, J. (1996) La taille des groupes: un bioindicateur de l’effectif des populations de bouquetin des Alpes (Capra ibex ibex)?. Mammalia 60, 463-472.

Troy, C.S., MacHugh, D.E., Bailey, J.F., Magee, D.A., Loftus, R.T., Cunningham, P., Chamberlain, A.T., Sykes, B.C., Bradley, D.G. (2001) Genetic evidence for Near-Eastern origins of European cattle. Nature 410, 1088-1091.

Voeten, M.M., Prins, H.H.T. (1999) Resource partioning between sympatric wild and domestic herbivores in the Tarangire region of Tanzania. Oecologia 120, 287-294.

Page 110: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 88

Whittaker, R.J., Araújo, M.B., Paul, J., Ladle, R.J., Watson, J.E.M., Willis, K.J. (2005) Conservation Biogeography: assessment and prospect. Diversity and Distributions 11, 3-23.

Young, T.P., Palmer, T.M., Gadd, M.E. (2005) Competition and compensation among cattle, zebras, and elephants in a semi-arid savanna in Laikipia, Kenya. Biological Conservation 122, 351-359.

Zaniewski, A.E., Lehmann, A., Overton, J.M. (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecological Modelling 157, 261-280.

Page 111: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

1.2.- RELACIONES ENTRE LA EXCRECIÓN DE NEMATODOS

BRONCOPULMONARES Y LA ABUNDANCIA RELATIVA DE CABRA

MONTÉS (CAPRA PYRENAICA HISPANICA) EN CASTILLA-LA MANCHA

Acevedo, P., Vicente, J., Alzaga, V., Gortázar, C. (2005) RELATIONSHIP BETWEEN

BRONCHOPULMONARY NEMATODE LARVAE AND RELATIVE ABUNDANCES OF SPANISH

IBEX (CAPRA PYRENAICA HISPANICA) FROM CASTILLA-LA MANCHA. Journal of

Helminthology 79, 113-118.

Page 112: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 113: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 91

RESUMEN

Se ha evaluado la excreción de nematodos broncopulmonares en 160

muestras de heces de cabra montés (Capra pyrenaica hispanica Shimper 1848)

recogidas en 13 poblaciones de Castilla–La Mancha en septiembre de 2003. Se

compararon las intensidades de parasitación y prevalencias, junto con otros factores,

tales como la disponibilidad de pastos y la abundancia de otros ungulados, tanto

domésticos como silvestres. Ello se hizo a dos niveles de estudio, poblacional y grupo

fecal, mediante un procedimiento en dos pasos. Las larvas de Protostrongílidos

mostraron valores (intensidad media: 1.56 ± 0.12, n= 94; prevalencia media: 25.62 ±

6.86 %, n= 160) similares a Dictyocaulus spp. (intensidad media: 1.03 ± 0.11, n= 48;

prevalencia media: 30.00 ± 7.11 %, n= 160). A nivel poblacional, se han encontrado

correlaciones positivas entre las prevalencias de ambos grupos de broncopulmonares.

La prevalencia en ambos, pero no la intensidad de parasitación, también se

correlaciona positivamente con los índices de abundancia de las poblaciones de cabra

montés. Ello ocurre tanto a nivel poblacional como a nivel de los grupos fecales

individuales. Estas relaciones sugieren que: (i) la propagación de estos parásitos en

las poblaciones de cabra montés de Castilla–La Mancha podría responder a procesos

denso-dependientes, y (ii) las poblaciones estudiadas pueden tener una exposición y

susceptibilidad similar a ambos grupos de parásitos broncopulmonares, presentando

patrones parásito-hospedador similares a pesar de sus diferentes ciclos vitales. Los

parásitos broncopulmonares de las poblaciones de cabra montés de Castilla–La

Mancha no parecen representar un riesgo sanitario para este ungulado, pero pueden

ser usados en una red de vigilancia sanitaria para monitorizar de manera no invasiva

estas poblaciones, que actualmente están en expansión.

ABSTRACT

The excretion of bronchopulmonary nematode infective larvae was evaluated in

160 faecal samples of Spanish ibex (Capra pyrenaica hispanica Shimper 1848)

collected from 13 metapopulations in Castilla–La Mancha, south-central Spain in

September 2003. Intensities and prevalences were compared with pasture availability,

abundances of wild and domestic ungulates at both levels, i.e. for populations and for

faeces in a two-step procedure. Protostrongylid larvae showed similar infection rates

(mean intensity: 1.56 ± 0.12, n= 94; mean prevalence: 25.62 ± 6.86 %, n= 160) to

Page 114: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 92

Dictyocaulus spp. (mean intensity: 1.03 ± 0.11, n= 48; mean prevalence: 30.00 ± 7.11

%, n= 160). At the population level, positive correlation were found between the

prevalences of both bronchopulmonary taxa. The prevalence in both groups, but not

intensity, also correlated positively with Spanish ibex abundance indexes both for the

populations and individual faeces. These findings suggest that: (i) parasite spreading

across Spanish ibex populations in Castilla–La Mancha could respond to host density-

dependent processes, and (ii) these populations may have similar exposition and/or

susceptibility to both bronchopulmonary taxa resulting in similar host-parasite patterns,

despite their different life cycles. Brochopulmonary outputs in the Spanish ibex from

Castilla–La Mancha seems not to represent a health risk for this endemic wild ungulate

but may be useful in any health surveillance scheme for the increasing populations of

Spanish ibex.

INTRODUCTION

Bronchopulmonary nematode parasites are frequently found parasitizing

wild ungulates. These include several homoxenous species belonging to the

Family Dictyocaulidae (Dictyocaulus spp.), and heteroxenous parasites of the

Family Protostrongylidae (Cistocaulus spp., Neostrongylus spp., Muellerius

spp., Protostrongylus spp.), which parasitize terrestrial gasteropods as

secondary hosts (Anderson 2000). Infections are commonly asymptomatic, but

they may occasionally cause severe verminous bronchopulmonary pneumonia

and nodular lesions in the lungs (Boch and Schneidawind 1988). Usually, fatal

cases are associated to concomitant bacterial infection, and predisposing

factors, such as increased exposition to infective larvae in captivity, are involved

(Charleston 1980). Infections by lungworms in wild ungulates warrant the

attention of researchers and wildlife managers (e.g., Festa-Bianchet 1989;

Forrester and Lankester 1997; Enk et al. 2001; Vicente and Gortázar 2001).

The study of infective larval stages in faeces has been employed as a

non-invasive alternative technique to study host-parasite relationships in wild

ungulate populations (e.g., Festa-Bianchet 1991). Both population and

individual factors affecting bronchopulmonary adult infection or larvae outputs

have been evaluated in wild ungulates (e.g., Hugonnet and Cabaret 1987;

Page 115: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 93

Arnett et al. 1993), but there is little published on mountain ungulates (Manfredi

et al. 1996).

The Spanish ibex (Capra pyrenaica hispanica) is a medium-size

mountain ungulate endemic to the Iberian Peninsula. It is mainly distributed

through most of the Mediterranean range mountains and, to a lesser extent, in

central and northern Spain (Pérez et al. 2002). Currently, the populations at

Castilla-La Mancha are increasing both in distribution area and densities

(Acevedo et al. 2003). Thus, health parameters of this species need to be

monitored in addition to ecological and demographic studies of the Spanish

ibex, other sympatric wildlife, and domestic livestock.

In this context, our objective was to assess at population level the

relationships of Dictyocaulidae and Protostrongylidae bronchopulmonary faecal

larvae with the abundance indexes of the Spanish ibex and sympatric wild and

domestic ungulates in 13 populations from Castilla–La Mancha.

MATERIALS AND METHODS

Fresh faecal samples (n= 160) were collected in conjunction to an

ecological programme on Spanish ibex relative abundances in 13 areas (Figure

1) throughout the current distribution of the species in Castilla–La Mancha

(UTM coordinates: 30S 294,348-681,063 4,208,706-4,575,340; minimum

altitude= 244 m, maximum altitude= 2,274 m) during September 2003. Since

ungulate droppings tend to be aggregated, we developed a simple method

using dropping frequency (instead of their number) to estimate the relative

abundance of wild ungulates including Spanish ibex and red deer (Cervus

elaphus) (Vicente et al. 2004). Briefly, each count consisted of n= 30 transects

of 100 m, divided into ten sectors of 10 m in length. The dropping frequency

was defined as the average of the number of 10 m sectors with Spanish ibex or

red deer droppings in each transect of 100 m. (DF=ΣDi/n; where “D” is the

number of dropping-positive sectors and ranges from 0 to 10, and “n” is the

number of 100 m transects, usually 30). Habitat and management variables

considered in the study were chosen on the basis of their epidemiological

Page 116: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 94

significance to survival and transmission of infective stages, and the

characteristics of local big game and livestock. Environmental conditions for the

13 study areas were recorded every 200 m in 30 buffer areas of 25 m radio

across the lineal transects (n=15 points per area) to finally obtain mean values

of habitat land uses and habitat structure of each estate.

Figure 1. The location of sampling areas where faeces of Spanish ibex were collected within Castilla–La Mancha, during September 2003.

Thus, we considered schrub / forest / grass / soil covers (%) and habitat

availability (Mediterranean schrublands, Dehesa (Mediterranean savannah-like

habitat), Mediterranean hardwood forest, (Quercus spp.), pine plantations,

pastures, riparian habitat, agricultural areas). Data from private and government

gamekeepers regarding the number of livestock in each study area were obtain

through personal interwiews.

Page 117: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 95

Bronchopulmonary larvae were extracted from 5 g of faeces using the

beaker larval migration technique as described by Forrester and Lankester

(1997). Larvae were quantified in a Favatti counting chamber and identified to

the genus level according to their morphology and linear lengths using a

calibrated eyepiece micrometer (Melhorn et al. 1992; Cordero del Campillo and

Rojo 1999; Anderson 2000).

The terms relating to prevalence and intensity are considered as

describes Margolis et al. (1982). Standard errors for prevalences were

estimated with the expression S.E. (p) =p(1-p)/n1/2 (Martin et al. 1987).

Analyses of factors affecting the prevalence and intensity of bronchopulmonary

larvae were performed at two levels. First, the bivariable association of mean

excretion rates (prevalences and intensities) at population level for overall

broncopulmonary parasites, Dictyocaulidae, overall Protostrongylidae larvae

and the different genera were compared with habitat variability (pasture

covering) and other ungulate (cattle, sheep/goat or deer) abundance indexes

using nonparametric Spearman rank correlation coefficients (rs, n = 13). Mann-

Whitney and Chi2 non-parametric test were employed to compare the intensities

and prevalences of different protostrongylid genera.

To clarify the initial findings at the population level to elucidate the

relative importance of explanatory variables (avoiding the multiple test problem),

the outcome variables from the previous analysis were evaluated by means of

multivariable analysis for overall bronchopulmonary, Dictyocaulidae and overall

Protostongylidae throughout the faeces (n = 160). Generalized linear models

(GLM) were conducted with overall bronchopulmonary, Dictyocaulidae and

overall Protostongylidae larvae as response variables, respectively (considered

as binomial: presence,1; or absence, 0). To ensure that relationships were not

driven by a few points of small sample size, the sample size at the population

level was controlled by including this in the model as a explanatory variable.

Habitat (pasture availability) was also included as an explanatory variable.

Finally, in the case of the Dictyocaulidae and Protostrongylidae models, both

response and explanatory variables concerning larvae presence (binomial

variables: presence,1; or absence, 0) respectively were interchanged to identify

any significant relationships between these taxa for faeces. A negative binomial

Page 118: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 96

error distribution and a logistic link function (Crawley 1993) were considered.

The resulting models were reduced to their simplest form by eliminating, in a

backward stepwise manner, any explanatory variables that failed to explain

significant variation in the response. The level of significance was established at

the 5 % level. All P-values refer to two tailed tests, using SPSS 10.0.6 program

(SPSS Inc. 1999) and Statistica (Statsoft Inc. 1999) software packages.

RESULTS

Infection rates of bronchopulmonary larvae in Spanish ibex faeces from

Castilla–La Mancha are shown in Table 1 at the population level. Both overall

Protostrongylidae (mean intensity= 1.56 ± 0.12, n= 94; mean prevalence: 25.62

± 5.88 %, n= 160) and Dictyocaulus spp. (mean intensity= 1.03 ± 0.11, n= 48;

mean prevalence= 30.00 ± 43.14 %, n= 160) larvae in faeces showed similar

rates. Prevalences of Protostrongylidae and Dictyocaulus spp. correlated

positively and significantly at population level (P < 0.05, Figure 2). Table 1. Mean prevalence ± S.E.95% I.C. and mean intensity of infection of the Spanish ibex with Protostrongylidae and Dictyocaulus spp. larvae.

Protostrongylidae Dictyocaulus spp.

Sampling area Mean intensity ±

S.E.95% I.C. (n) Mean prevalence

± S.E.95% I.C Mean intensity ± S.E.95% I.C. (n)

Mean prevalence ± S.E.95% I.C

Madrona (30) 1.64 ± 0.35 (14) 46.67 ± 18.15 1.52 ± 0.48 (5) 16.67 ± 13.57 Viso Marqués (5) 1.75 ± 0.00 (1) 20.00 ± 39.20 0 0.00 ± 0.00 Garganta (10) 1.20 ± 0.21 (8) 80.00 ± 26.13 0.91 ± 0.22 (5) 50.00 ± 32.67 Becerras (10) 1.62 ± 0.43 (7) 70.00 ± 29.95 1.32 ± 0.37 (3) 30.00 ± 29.95 Fuertescusa (10) 1.68 ± 0.38 (5) 50.00 ± 32.68 0.85 ± 0.00 (1) 10.00 ± 19.60 S. Cuenca (13) 1.47 ± 0.62 (5) 45.50 ± 30.89 1.36 ± 0.20 (4) 30.80 ± 26.07 Cabriel (10) 1.45 ± 0.46 (5) 50.00 ± 32.67 0 0.00 ± 0.00 Liétor (10) 1.29 ± 0.39 (8) 80.00 ± 26.13 0.79 ± 0.32 (4) 40.00 ± 32.01 Riopar (12) 0.93 ± 0.38 (5) 41.67 ± 29.13 0.66 ± 0.099 (4) 33.33 ± 27.85 Salobre (10) 2.17 ± 0.17 (6) 60.00 ± 32.01 1.16 ± 0.35 (5) 50.00 ± 32.67 Bogarra (21) 1.17 ± 0.19 (17) 80.95 ± 17.21 0.89 ± 0.20 (12) 57.14 ± 21.70 Casas Lázaro (8) 2.18 ± 0.36 (3) 37.50 ± 35.87 1.08 ± 0.00 (1) 12.50 ± 24.50 Yeste (11) 2.40 ± 0.18 (10) 90.91 ±17.82 0.91 ± 0.18 (4) 36.36 ± 29.81 Overall 1.56 ± 0.12 (94) 25.62 ±5.88 1.03 ± 0.11 (48) 30.00 ± 43.14

Page 119: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 97

The prevalences of overall Protostongylidae and Dictyocaulus spp.

correlated positively with the Spanish ibex relative abundance (Figure 3).

Regarding the effects of habitat on parasites, pasture availability correlated

positively with the mean prevalence of Protostrongylus spp. (P < 0.05).

From the analysis of individual faeces, the presence of overall

bronchopulmonary, Protostrongylidae and Dictyocaulus spp. larvae in faeces

showed an association with higher Spanish ibex abundance indexes (P < 0.001,

P < 0.01 and P < 0.01 for overall bronchopulmonary, Protostrongylidae and

Dictyocaulus spp. larvae models, respectively). In both the Protostrongylidae

and Dictyocaulus spp. models there was no evidence to link faeces infected

with Dictyocaulus spp. with protostrongylid infections and vice versa.

rs= 0.68, P < 0.05, n=13

0

20

40

60

80

100

0 10 20 30 40 50 60

Protostrongylidae (%)

Dic

tyoc

aulu

s sp

p. (

%)

Figure 2. The relationship between the prevalences (%) of Protostrongylidae and Dictyocaulus spp. larvae in the Spanish ibex from 13 sampling sites in Castilla-La Mancha.

Four different genera of Protostrongylidae were identified: Cistocaulus

spp. (mean intensity= 1.51 ± 0.22, n= 13; mean prevalence= 8.12 ± 4.25, n=

160); Neostrongylus spp. (mean intensity= 1.62 ± 0.21, n= 32; mean

prevalence= 20.00 ± 6.22, n= 160), Muellerius spp. (mean intensity= 1.74 ±

1.17, n= 38; mean prevalence= 23.75 ± 6.61, n= 160) and Protostrongylus spp.

(mean intensity= 1.17 ± 0.15, n= 19; mean prevalence= 11.87 ± 6.05, n= 160).

Thus, all showed similar intensity rates (P > 0.05 referred to all comparison

Page 120: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 98

pairs), but Muellerius spp. and Neostrongylus spp. showed higher prevalence

values than Cystocaulus spp. and Protostrongylus spp. (P < 0.05 referred to

comparisons of pairs). When considering the different genera of

Protostrongylidae at the population level, Cistocaulus spp. correlated positively

with abundance index of small domestic ruminants (including sheep and goats)

(P < 0.01) and with the density of small ruminants (estimated as heads per km2)

according to keeper interviews (P < 0.05).

Figure 3. Relationships between both Protostrongylidae and Dictyocaulus spp. larvae prevalences (%) with the Spanish ibex relative abundance indexes throughout the study metapopulations.

rs= 0.66, P < 0.05, n=13

0

20

40

60

80

100

0,0 0,5 1,0 1,5 2,0 2,5 3,0Spanish Ibex relative abundance indexes

Dic

tyoc

aulu

s s

pp. (

%)

rs= 0.75, P < 0.01, n=13

0

20

40

60

80

100

Prot

ostr

ongy

lidae

(%)

Page 121: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 99

DISCUSSION

All taxa of bronchopulmonary parasites found in the present study had

previously been reported in the Spanish ibex. The little available literature

comes from Andalusia (Southern Spain), and includes either necropsies

(Montero et al. 1999, in Sierra Nevada), or both necropsies and coprological

examinations (Universidad de Jaén 1999, in several mountainous areas from

Andalusia). This lack of information limits the comparisons between our

infection rates and previous data.

As in the present study, Muellerius spp. (mean prevalence: 25.77%) was

also the most common protostrongylid species in the previous literature, with a

prevalence of 74.30%, always in concomitant infections with other

bronchopulmonary parasites (Universidad de Jaén 1999). To date, the only

species of the genus Muellerius spp. described in the Spanish ibex is Muellerius

capillaris (Montero et al. 1999; Universidad de Jaén 1999). Our overall

prevalences, not only for Muellerius spp., but also for the remainder of

protostrongylids, are lower than those previously described in coprosurveys.

Regarding Dictyocaulus spp., the overall prevalence data (26.35%) shows a

higher prevalence than previously reported in coprological analyses of 1.20%

(Universidad de Jaén 1999) but lower than that reported at necropsy by

Montero et al. (1999) (37.5%). In addition to the scarcity of data, the present

data refer to late summer, and consequently are not directly comparable to

those previously reported, as lower values in prevalence have been found in the

summer and autumn as compared to winter and spring in Spanish ibex

(Universidad de Jaén 1999) and Alpine ibex (Capra ibex ibex, Manfredi et al.

1996). Despite this, Dictyocaulus spp. presents a higher prevalence when

compared with the majority of the Andalusian populations (Universidad de Jaén

1999). Apart from differences in seasonal sampling, a beaker extraction method

as described by Forrester and Lankester (1997) was used in the present study,

which is an improvement on the classical Baerman funnel method, but makes

comparisons between past and present data difficult.

Factors such as exposure and / or differences in susceptibility to

parasites could be operating at the population level, and hence differences

between host and parasite populations could occur (Wilson et al. 2001). In

Page 122: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 100

particular, there was a correlation between the prevalences of both groups of

bronchopulmonary parasites (Protostrongylidae and Dictyocaulus spp.) and

host abundances. However, with field collected faeces, host sample size is

unknown but in the present study a positive association between the prevalence

of parasite taxa (overall bronchopulmonary, Dictyocaulus spp. and

protostrongylids) and host abundance supports the idea of density-dependent

processes operating in the transmission of brochopulmonary nematodes in the

Spanish ibex. This is consistent with epidemiological models which predict a

positive relationship between host population density and abundance of

macroparasites since the transmission rate generally is a positive function of

host population density (Arneberg et al. 1998; Arneberg 2001). This relationship

was noted for both indirectly (protostrongylids) and directly transmitted

(Dictyocaulus spp.) nematodes. However, the limited sample sizes of this

scarce wild ungulate in Castilla–La Mancha, which constitutes populations at

their distribution limit coming from other regions, must be taken into account

before precise conclusion can be drawn. More research is needed to elucidate

this aspect.

The Spanish ibex presents a wide range of densities in Castilla–La

Mancha (Figure 3), ranging from 0.2 to 5.8 animals per km2, which may be due

to the current spatial expansion of this species in Castilla–La Mancha, offering

different epidemiological scenarios to parasite transmission. The parasite-host

density relationships are mainly related to parasite dissemination across the

different host populations, but not to intensities. The effects of parasites on host

are expected to be parasite load dependent (e.g., Albon et al. 2002), and

suggest that current bronchopulmonary infection loads are not causing any

detrimental effects on the studied populations, since larval counts were not high

enough to produce clinical infections (Cordero del Campillo and Rojo 1999).

With reference to the relationship between habitat and parasites, a

correlation between pasture availability and the prevalence of Protostrongylus

spp. prevalence was demonstrated. Since pastures are a limited resource in

Mediterranean habitat, this finding could be related to transmission rates of the

parasite depending on the pasture microhabitat availability for infective larvae

and intermediate hosts (gastropods), and on host aggregation in these areas.

Page 123: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 101

An additional explanation may be related to pastures shared between

Spanish ibex and domestic livestock. Only the prevalence of Cystocaulus spp.

was correlated with livestock abundance, supporting the idea that wild and

domestic ruminants share at least some parasite genera, which eventually

could be transmitted at the interface.

The present study has therefore indicated a relationship between the

abundance of a wild ungulate, the Spanish ibex, and the prevalence of

bronchopulmonary parasites, suggesting density-dependent transmission rates

of these parasites. Therefore, monitoring herd levels for evidence of

bronchopulmonary parasite infections could prove to be a valuable tool for

wildlife health managers in the surveillance of populations of the endemic

Spanish ibex.

ACKNOWLEDGEMENTS

We are very grateful to public managers and gamekeepers for their help

in the fieldwork. This is a contribution to Junta de Comunidades de Castilla-La

Mancha (Convenio CAMA). Joaquín Vicente was supported by a predoctoral

grant from the Junta de Comunidades de Castilla-La Mancha and Vanesa

Alzaga had a partial grant from Universidad de Castilla-La Mancha.

REFERENCES

Acevedo, P., Alzaga, V., Martínez, M., Pérez, A., Talavera, F., Montarroso, L., Gortázar, C. (2003) Aportaciones al estudio de la distribución, dinámica poblacional y estado sanitario de la cabra montés en Castilla-La Mancha. Proceedings of the Congress VI SECEM, Ciudad Real, Spain.

Albon, S.D., Stien, A., Irving, R.J., Langvatn, R., Ropstad, E., Halvorsen, O. (2002) The role of parasites in the dynamics of a reindeer population. Proceedings of the Royal Society of London series B-Biological Sciences 269, 1625-1632.

Page 124: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 1

________________________________________________________________ 102

Anderson, R.C. (2000) Nematode parasites of Vertebrates. Their development and transmission. CABI Publishing, New York.

Arneberg, P. (2001) An ecological law and its macroecological consequences as revealed by studies of relationships between host densities and parasite communities. Ecography 24, 352-358.

Arneberg, P., Skorping, A., Grenfell, B., Read, A.F. (1998) Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society of London B 265, 1283-1289.

Arnett, E.B., Irby, L.R., Cook, J.G. (1993) Sex and age specific lungworm infection in Rocky Mountain bighorn sheep during winter. Journal of Wildlife Diseases 29, 90-93.

Boch, J., Schneidawind, H. (1988) Krankheiten des jagdbaren Wildes. Verlag Paul Parey, Berlin

Charleston, W.A.G. (1980) Lungworm and lice of the red deer (Cervus elaphus) and the fallow deer (Dama dama), a review. New Zealand Veterinary Journal 28, 150–152.

Cordero del Campillo, M., Rojo, F.A. (1999) Parasitología Veterinaria. McGraw Hill. Interamericana.

Crawley, M.J. (1993) GLIM for ecologists. Blackwell, London.

Enk, T.A., Picton, H.D., Williams, J.S. (2001) Factors limiting a bighorn sheep population in Motana following a dieoff. Northwest Science 75, 280-291.

Festa-Bianchet, M. (1989) Individual-differences, parasites, and the costs of reproduction for bighorn ewes (Ovis canadensis). Journal of Animal Ecology 58, 785-795.

Festa-Bianchet, M. (1991) Numbers of lungworms larvae in faeces of bighorn sheep: yearly changes, influence of host sex, and effects on host survival. Canadian Journal of Zoology 69, 547-554.

Forrester, S.G., Lankester, M.W. (1997) Extracting Protostrongylid nematode larvae from ungulate feces. Journal of Wildlife Diseases 33, 511-516.

Hugonnet, L., Cabaret, J. (1987) Infection of roe-deer in France by lung nematode, Dictyocaulus eckerti Skrjabin, 1931 (Trichostrongyloidea): Influence of environmental factors and host density. Journal of Wildlife Diseases 23, 109-112.

Manfredi, M.T., Zaffaroni, E., Fraquelli, C., Bonicalzi, A., Lanfranchi, P. (1996) Diffusione del parassitismo broncopulmonare nello Stambecco (Capra i. ibex) del Piz Albris. Supplemento alle Ricerche di Biologia della Selvaggina XXIV, 97-104.

Page 125: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 103

Margolis, L., Esch, G.W., Holmes, J.C., Kuris, A.M., Schad, G.A. (1982) The use of ecological terms in parasitology (report of an Ad Hoc Committee of the American Society of Parasitologists). Journal of Parasitology 68, 131-133.

Martin, S.W., Meek, A.H., Willeberg, P. (1987) Veterinary Epidemiology. Iowa State University Press, Ames.

Melhorn, H., Düwel, D., Raether, W. (1992) Atlas de Parasitologia Veterinaria. Grass, Barcelona.

Montero, E., Montero, F.J., Espinosa, O., Cano, J. (1998) Capra pyrenaica var. hispanica wild population of the Sierra Nevada (Spain): bronchopneumonic pathology. In: Proccedings of Congress Euro-American Mammal, Santiago de Compostela.

Pérez, J.M., Granados, J.E., Soriguer, R.C., Fandos, P., Marquez, F.J., Crampe, J.P. (2002) Distribution, status and conservation problems of the Spanish ibex, Capra pyrenaica (Mammalia : Artiodactyla). Mammal Review 32, 26-39.

Universidad de Jaén (1999) Seguimiento y control de la Sarna Sarcóptica que afecta a las poblaciones de cabra montés (Capra pyrenaica hispanica) existentes en Andalucía. Junta de Andalucía.

Vicente, J., Gortázar, C. (2001) High prevalence of large spiny-tailed protostrongylid larvae in Iberian red deer. Veterinary Parasitology 96, 165-170.

Vicente, J., Segalés, J., Höfle, U, Balasch, M., Plana-Durán, J, Domingo, M., Gortázar, C. (2004) Epidemiological study on porcine circovirus type 2 (PCV2) infection in the European wild boar (Sus scrofa). Veterinary Research 35, 243-253.

Wilson, K., Bjornstad, O.N., Dobson, A.P., Merler, S., Poglayen, G., Randolph, S.E., Read, A.F., Skorping, A. (2001) Heterogeneities in macroparasite infections: patterns and processes. In: The Ecology of Wildlife Diseases. P.J. Hudson, A. Rizzoli, B.T. Grenfell, H. Heesterbeek, A.P. Dobson (eds.). Oxford University Press, Oxford.

Page 126: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 127: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

CAPÍTULO 2

Acevedo, P., Cassinello, J. HUMAN-INDUCED EXPANSION OF WILD UNGULATES MAY

FACILITATE NICHE OVERLAP OF TAXONOMICALLY DISTANT SPECIES. Journal of

Biogeography, en evaluación (enviado a 29/09/2006).

LA EXPANSIÓN DE UNGULADOS SILVESTRES MEDIADA POR ELHOMBRE PUEDE FACILITAR EL SOLAPAMIENTO DE NICHO DE ESPECIESTAXONÓMICAMENTE DISTANTES: EL CIERVO IBÉRICO Y LA CABRAMONTÉS

Page 128: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 129: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 107

RESUMEN

1. La explotación de las especies cinegéticas normalmente determina un incremento

de su área de distribución más allá de su propio potencial dispersivo. Sin embargo, los

efectos ecológicos que pueden originar las expansiones mediadas por el hombre han sido

poco estudiados. Dichas expansiones pueden producir un aumento de la presión de

herbivoría y de las relaciones de competencia por los recursos con otros herbívoros.

2. El empleo de nuevas metodologías basadas en los SIG puede ser útil para

abordar este tema. El nicho realizado del ciervo en el sureste de España se ha analizado

mediante modelos de adecuación de hábitat. Para ello se han diferenciado dos poblaciones

de ciervo en función de su origen: una población autóctona y otra introducida, originada tras

numerosas introducciones realizadas con fines cinegéticos.

3. Ambas poblaciones están bien establecidas y aparentemente se reproducen con

éxito. Sin embargo, su nicho realizado difiere sustancialmente. Esto muestra que el ciervo

presenta una elevada plasticidad ecológica, siendo capaz de adaptarse a condiciones

ecológicas subóptimas en donde ha sido introducido.

4. Las áreas de interés cinegético incluidas en este estudio, donde el ciervo ha sido

ampliamente introducido, son zonas nativas de la cabra montés. Un análisis comparativo de

la distribución potencial de ambas especies, ciervo y cabra, muestra un elevado

solapamiento de sus nichos ecológicos.

Síntesis y aplicaciones. Se muestra la presencia de diferentes nichos realizados para

poblaciones de una misma especie que únicamente difieren en su origen: poblaciones nativa

e introducida de ciervo ibérico, siendo las últimas potenciadas por intereses cinegéticos. Las

poblaciones introducidas de ciervo muestran un elevado solapamiento de nicho con la cabra

montés, pudiendo suponer una amenaza para ésta debido a la competencia por los recursos

y a la posible transmisión de enfermedades, todo ello agravado en situaciones de

sobreabundancia. Estos resultados se discuten en el contexto de las invasiones biológicas, y

se sugiere que las especies que han ampliado su distribución más allá de su potencial

dispersivo, gracias a la acción humana, deberían ser consideradas como un caso especial

de especies invasoras.

ABSTRACT

1. Game species exploitation usually determines an increase of their distribution,

further from their own dispersal potential, but we know too little on the ecological effects

these human-induced expansions may originate, particularly as an increase of herbivory

pressure and competition for resources with other herbivore species.

Page 130: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 2

________________________________________________________________ 108

2. The use of new GIS-based methodologies may help in addressing this issue. Red

deer realized niche in the south east of Spain has been analyzed by means of habitat

suitability modelling. Two populations have been distinguished, according to their origin: an

autochthonous one, inhabiting an area where the presence of the species is known since

prehistoric times, and an introduced population, originated by several introductions carried

out by human hunting interests.

3. Both populations are well-established and apparently successfully breeding.

However, the realized niche differs substantially between them. Thus, the red deer is

expressing a high ecological plasticity, adapting to suboptimal ecological conditions in areas

where it is introduced.

4. The areas of hunting interest included in our study, where the red deer has been

widely introduced, are the native land of the Iberian ibex. A comparative analysis of potential

distributions of both species showed a strong niche overlap.

Synthesis and applications. We provide evidence of differing realized niche for

populations of different origin of the same species: native and introduced populations of

Iberian red deer, the latter promoted by sport game interests. The introduced deer population

shows a strong niche overlap with native Iberian ibex, which might be under threat due to

resource competition and/or disease transmission produced by overabundance of ungulates.

We discuss these results in the light of biological invasions, and proclaim that human-

induced expansion of native species, out of their own dispersal potential, should be regarded

as a particular case of invasive species.

INTRODUCTION

According to niche theory, a given species is optimally present in any habitat

offering the fundamental requirements for it to survive, grow and reproduce, i.e., the

fundamental niche (Hutchinson 1958). However, in the light of competition between

species, the niche used is usually smaller, the so-called realized niche (ibid.). On the

other hand, the concept of native species is not actually based on ecological

assumptions, but rather on whether its presence in a given area is natural and not

caused by human intervention; whereas a non-native species is the one occupying

an area outside its natural past or present range and dispersal potential (Falk-

Petersen et al. 2006). Being native or non-native to an area does not imply

necessarily getting or not getting one's niche requirements.

Page 131: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 109

A non-native species may successfully inhabit an area provided its realized

niche is accomplished. If this establishment comes along with an expansion of its

range then it is regarded as an invasive species (ibid.). The degree of alteration

caused by invasive species on the host ecosystem depends on their capacity to

establish, reproduce and spread (Bright and Smithson 2001), i.e., on becoming

"naturalized" (Falk-Petersen et al. 2006), which is affected by the presence of

predators, competitors, parasites or diseases (Hengeveld 1989).

The unnatural, human-induced expansion of native large herbivores in Europe,

due to hunting interests, is well documented (e.g., Braza et al. 1989; Gortázar et al.

2000; Pérez et al. 2002; Mátrai et al. 2004), an expansion that might be regarded as

a particular case of invasive species. Currently, there is evidence of wild ungulates

increasing in numbers and expanding in some European countries (e.g., Cargnelutti

et al. 2002; Acevedo et al. 2005, 2006a [Capítulo 1.1]). This generalized expansion

may be facilitated by recent increasing control of exploitation and poaching and land

use changes, such as agricultural abandonment (see Acevedo et al. 2005), creation

of protected areas and conservation reserves (e.g., Alados 1997); but also facilitated

by translocations and introductions (see Falk-Petersen et al. 2006) carried out by

hunting interests (Gortázar et al. 2000; Whittaker et al. 2001; Pérez et al. 2002). But

we do not know which effects these ungulates expansions may have on the host

ecosystems and viability of ungulate populations themselves.

Spatially explicit models are increasingly applied to predict species potential

distribution and habitat suitability maps (e.g., Guisan and Zimmermann 2000;

Soberón and Peterson 2005). Most models are empirically deduced, relating

observed patterns of occupancy to environmental parameters (Corsi et al. 2000).

Despite their wide application, such models also have a series of draw-backs (Wiens

2002). One rarely considered point is that spatial models may fail to depict the native

area of occupancy, not only due to changes in habitat availability, but also because

past anthropogenic disturbance may have confounded the underlying patterns of

habitat use (Baumann et al. 2005). Hence, given an interest in the native status,

extant patterns of habitat use and distribution should be viewed in the light of

historical determinism (Patterson 1999), landscape change (Knick and Rotenberry

2000), and anthropogenic changes of faunal community structures (Berger et al.

2001).

Page 132: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 2

________________________________________________________________ 110

The fitness of ungulates is known to vary with individual access to preferred

habitat (Nielsen et al. 2004). Changes in spatial patterns of habitat conditions such

as forage availability (lason et al. 1986; Acevedo et al. 2006b), predation risk

(Skogland 1991), or vegetation cover (Mysterud and Østbye 1999; Acevedo et al.

2006b), may therefore be followed by changes in population density and distribution,

as well as alterations in habitat use or landscape colonization (Pettorelli et al. 2001;

Acevedo et al. 2005). Effects of this kind may themselves become conservation

problems (Mack et al. 2000), as ungulate species can affect their habitat negatively

by selective feeding and overgrazing of the vegetation (Soriguer et al. 2001) and for

potential competition with other native species (P. Acevedo unpublished data).

The Iberian red deer (Cervus elaphus hispanicus Hilzheimer 1909) is one of

the 12 red deer subspecies currently recognized, which were originally distributed

throughout Eurasia and the Maghreb (Geist 1998; see also Carranza 2004, and

references therein). During the last glacial period (the Würm glaciation), which ended

10,000 ybp, Eurasian large herbivores were relegated to southern and more

temperate areas; but deer were of great interest to humans as game species, and

were later reintroduced in the whole continent, including the Iberian Peninsula (e.g.,

Braza et al. 1989; Soriguer et al. 1994). Currently, the red deer is widely distributed in

the Iberian Peninsula, except for the northwestern corner and the east cost

(Carranza 2002; Figure 1). The red deer is present in practically all Iberian habitats,

provided pastures and woody plants (bushlands) are present (e.g., San José et al.

1997; Bugalho et al. 2001). It tends to occupy ecotones between forest and

shrubland-pastures, specially in Mediterranean habitats (Braza et al. 1984; Escós

and Alados 1992; Lazo et al. 1994; San José et al. 1997). The extraordinary ubiquity

of the Iberian red deer has been facilitated by human actions, direct or indirectly.

Thus, game stock introductions throughout the Iberian Peninsula started to take

place during 1950's, mainly from two mountainous regions, Sierra Morena and

Montes de Toledo (Braza et al. 1989; Gortázar et al. 2000; see Figure 1). Soriguer et

al. (1994) reported that the Servicio Nacional de Caza y Pesca introduced more than

1500 red deer individuals between 1950 and 1964 in more than 17 Spanish

provinces. This impressive human-induced expansion has originated its presence in

areas traditionally under the natural range distribution of other large herbivores, such

Page 133: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 111

as the Iberian ibex, Capra pyrenaica, a typical mountainous ungulate (Escós and

Alados 1992).

In this paper we analyse potential red deer distribution in southeastern Iberian

Peninsula, defining and comparing niches of autochthonous areas (obtained from

historical data) and areas where the species has been introduced in recent times,

away from its natural range (Braza et al. 1989). It is noteworthy the abundance of the

Iberian ibex in the study region (Pérez et al. 2002), so that a comparison with its

environmental niche will also be conducted.

Figure 1. Indication of some localities in the Iberian Peninsula where the red deer was introduced from autochthonous populations of Montes de Toledo (arrows, Centro Quintos de Mora, 1970-1990, unpub. report). In grey, current red deer distribution (adapted from Carranza 2002).

Page 134: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 2

________________________________________________________________ 112

To our knowledge, this is the first attempt to characterize the niche utilized by

the same species under its natural range distribution and the one promoted by

relatively recent human introductions.

MATERIALS AND METHODS

The study area

To properly define the realized niche (Hutchinson 1958; but see Soberón and

Peterson 2005) of a species within a given region, the area used to investigate the

species' relationship with environmental variables should encompass extreme

conditions present in the region (e.g., Austin 2002). In this sense, to carry out our

analyses, we chose a study area that contains:

- A remarkable environmental gradient.

- Population nuclei of autochthonous and introduced Iberian red deer,

and native Iberian ibex.

The study area is located in the SE of the Iberian Peninsula. It is 340 km wide

and 270 km long, and 61961 km2 corresponded to dry land (UTM 29N geographic

reference system; NW corner: 450,000, 4,330,000; SE corner: 790,000; 4,060,000;

Figure 2), including the Sierra Nevada mountain range in the SW (rising over 3400

m.a.s.l.), Segura coastal basin in the east (with mean altitudes below 20 m.a.s.l.), as

well as several other mountain ranges and high-altitude plains. Mediterranean

bushlands, oak trees (Quercus spp.) and reforestations with Pinus halepensis and P.

pinaster abound in the study area (see details in Cassinello et al. 2004).

Study ungulates distribution data

Red deer distribution data comes from literature sources and field works

(Braza et al. 1989; Carranza 2002; P. Acevedo and C. Gortázar, unpublished data;

Figure 2). We transformed the available data on deer presence from diverse scales

to 1x1 km UTM grid cells, which is sensible to available local cartography and

climatic information (see Chefaoui et al. 2005; Acevedo et al. 2006a [Capítulo 1.1]).

Page 135: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 113

Since the red deer in the study area have two independent population nuclei

regarding their historical origin, we built two different models: one for the

autochthonous population of Sierra Morena (258 grid cells of presence, Braza et al.

1989), and other one for several introduced population nuclei (253 grid cells of

presence, Braza et al. 1989; Carranza 2002; P. Acevedo and C. Gortázar,

unpublished data).

Figure 2. Distribution of ungulate populations in the study area: (a) autochthonous and introduced red deer presences (Braza et al. 1989); (b) Iberian ibex presences (Pérez et al. 2002; Acevedo et al. 2006a [Capítulo 1.1]).

Page 136: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 2

________________________________________________________________ 114

Iberian ibex distribution data were obtained from Pérez et al. (2002) and

Acevedo et al. (2006a [Capítulo 1.1]) and it was transformed to the same scale used

for red deer presences. We considered 199 grid cells of ibex presence for the

analyses (Figure 2).

Environmental data

Many factors have been described to affect the population abundance and

distribution of ungulate species in the Iberian Peninsula (e.g., Acevedo et al. 2005,

2006b). We selected 17 variables that could act as constraints of red deer and

Iberian ibex distributions in SE Iberian Peninsula (Table 1), these variables cover the

range of climatic and ecological traits present in the study region. Environmental

predictors can exert direct or indirect effects on species, arranged along a gradient

from proximal to distal predictors (Austin 2002), and are optimally chosen to reflect

the three main types of influences on the species: regulators, disturbances and

resources (sensu Guisan and Thuiller 2005).

Table 1. Variables used in the analyses (including abbreviations). See text for details and data sources.

Variables (unit) Codes

CLIMATE Winter rainfall (mm) PW

Summer rainfall (mm) PSm Mean summer temperature (ºC) TSm

Annual range of temperatures (ºC) TRn GEOMORPHOLOGY

Maximum altitude (m) AltMx Altitude range (m) AltRn

Mean slope (degrees) Slp Maximum slope (degrees) SlpMx

HABITAT STRUCTURE Forest area (%) HFr

Distance to coniferous forest area (m) DCFr Distance to broadleaved forest area (m) DBFr

Bushland area (%) HBsh Xeric-leave bush area (%) HXBsh

Distance to humid-leave bush area (m) DHBsh HUMAN PRESSURE

Distance to urban areas (m) DUr Distance to the nearest road (m) DRd

Wild Ungulates Landscape Avoidance Index WULAI

Page 137: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 115

All climate variables are courtesy of the Spanish Instituto Nacional de

Meteorología (http://www.inm.es/). Geomorphology variables were obtained from an

Iberian Digital Elevation Model of 100 m pixel width. Habitat structure variables were

obtained from the 250 m pixel width land use information of the CORINE NATLAN

European project (EEA 2000). Finally, three variables accounting for human activity

in the study area were obtained. Firstly, distance to urban areas (i.e. to the urban and

industrial categories following CORINE land use map), and distance to the nearest

road (including motorways and national and local roads, extracted from the Spanish

National Digital Atlas, courtesy of the Instituto Geográfico Nacional;

http://www.ign.es/) .

In addition, we used a Wild Ungulates Land Avoidance Index (WULAI), an

index based in the degree of alteration of landscapes by human activity and its

resultant potential avoidance by wild ungulates (Cassinello et al. 2006, [Capítulo 3.1]). Land use variables received a score according to the degree of alterations

caused by human activity, i.e., the further to the natural habitat the higher the score

(up to 100). Thus, in the original CORINE NATLAN map we assigned 100 to urban

and other constructed areas; 50 to irrigated croplands; 30 to fruit orchards and

patchy crops; 20 to vineyards; 10 to dry crops, olive groves, managed grasslands

and mosaic of crops and natural vegetation; and finally 0 landscape avoidance to

forest, bare rock, bushlands and natural grasslands. Then, mean score per 1 km2

pixel was calculated to obtain WULAI scores, ranging from 0 (minimum avoidance,

maximum preference) to 100 (maximum avoidance, minimum preference).

All variables were handled and processed in Idrisi 32 software (Clark Labs

2004). All predictors were standardized to 0 mean and 1 standard deviation to

eliminate the effect of measurement-scale differences.

Statistical methods

A variety of methods are currently available to model species distributions

(Guisan and Zimmerman 2000; Scott et al. 2002). These techniques either consider

only presence data (enveloping models) or both presence and absence data (group

discrimination techniques). The latter work more accurately when reliable absence

data of species are available (Hirzel et al. 2001; Segurado and Araújo 2004). When a

Page 138: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 2

________________________________________________________________ 116

given species is not detected in areas with theoretically suitable environmental

conditions, pseudoabsences can be obtained from available presence records

(Schadt et al. 2002; Zaniewski et al. 2002), or by distinguishing the most probable

absence localities through niche-based modelling of presence alone (Engler et al.

2004).

The two statistical methods used to model the study populations were: i)

Ecological Niche Factor Analyses (ENFA), and ii) Generalized Linear Models (GLM).

Here, ENFA was only used to obtain pseudoabsences from which the distribution

models were built through GLMs (Engler et al. 2004).

i) ENFA (Hirzel et al. 2002) is a method based on a comparison between the

environmental niche of the species and the environmental characteristics of the

entire study area (stored as GIS layers). Hence, ENFA only needs a set of presence

data and a set of background GIS predictors (Hirzel et al. 2001). Because most of the

information is usually contained in a few first factors (see ibid.), only these are kept to

compute the final Habitat Suitability map (HS map). All cells in the map obtain a HS

value that is proportional to the distance between their position and the position of

the species optimum in the new factorial space.

The generation of pseudoabsences was done by ENFA predictions, i.e. by the

HS map. The absences were chosen at random, but only in areas where predictions

by the ENFA were lower than 0.1 (see Engler et al. 2004). To avoid bias due to

inclusion of a comparatively higher number of absences (Kink and Zeng 2001), a

number of absences 10 times higher than the number of presences were selected

(see Lobo et al. 2006). All ENFA analyses were performed within the Biomapper

software (Hirzel et al. 2004).

ii) GLM (McCullagh and Nelder 1989; for habitat suitability studies application

of GLM see Guisan et al. 2002) are an extension of the classical multiple regression,

allowing non-normal response variables to be modelled. GLM (binomial with

logarithmic link function) were used here to model presence – pseudoabsence of the

study species. To select the most parsimonious model, we used a forward stepwise

model-selection procedure (see Engler et al. 2004). The statistic used to select the

final model was the Akaike Information Criteria (AIC; Chambers and Hastie 1997). All

calculations were made using STATISTICA software (StatSoft 2001).

Page 139: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 117

The Receiver Operating Characteristic (ROC, Zweig and Campbell 1993),

from a plot of sensitivity (ratio of correctly predicted positives to the total number of

positives cases) and specificity (ratio of correctly predicted negative cases to the total

number of negative cases), was used to measure of performance of models (e.g.,

Lobo et al. 2006). To compare observed and predicted maps, the continuous

probability variable generated by logistic regression should be converted to a binary

one (presence – absence), selecting a threshold cut-off point which minimizes the

difference between sensitivity and specificity (Liu et al. 2005). The area under the

ROC function (AUC), independent of the presence – pseudoabsence threshold

(Fielding 2002), is the best measure of model prediction accuracy.

We have evaluated by means of one way ANOVA if red deer introductions

were carried out on suitable areas according to the autochthonous population

realized niche. To evaluate the relationship between the HS maps obtained in the

three models, they were reclassified to obtain highly suitable areas for each model,

and then their overlap was analysed.

RESULTS

Attaining the habitat suitability models

Firstly, we carried out the ENFA models, which happened to be quite robust,

as the explained information was higher than 78% in all of them. Based on random

habitat units with a suitability <0.10 according to the ENFA analysis, a series of

random pseudoabsences were selected (2580 for the autochthonous red deer model,

2530 for the introduced one, and 1990 for the Iberian ibex model).

The results obtained in univariate logistic regressions for the three models are

shown in Table 2. The step-up model selection procedure based on the AIC, the

resulting final models and the explained deviance for each one are shown in Table 3.

Table 4 shows the coefficients and significance values of the predictors retained in

the final models. The parameters of the predictive power of the models are

summarized in Table 5 being all models classified as outstanding (sensu Hosmer

and Lemeshow 2000). The habitat suitability values assigned by GLM to the habitat

units are shown in Figure 3.

Page 140: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 2

________________________________________________________________ 118

One to one comparison between autochthonous and introduced red deer models and Iberian ibex model

The highly suitable areas (HS>0.50) for the autochthonous red deer population

covered 4.34% of the study area, of which 6.70% was highly suitable for the

introduced red deer and 13.47% for the Iberian ibex. On the other hand, the highly

suitable areas for the introduced red deer covered 7.61% of the study area, of which

3.82% was highly suitable for the autochthonous red deer and 81.58% for the Iberian

ibex. Finally, the highly suitable areas for the Iberian ibex covered 13.19% of the

study area, of which 4.43% was highly suitable for the autochthonous red deer and

47.03% for the introduced one (see Figure 3). In addition, we obtained that the red

deer introductions were carried out in areas with lower suitability scores for the

autochthonous red deer population (F1, 509=91.63 , p<0.001).

Table 2. Summary of the results of each univariate model (GLM binomial with logarithmic link function). The Wald statistics and p-values are shown, ns = non-significant. Variable codes as in Table 1.

Autochthonous red deer

Introduced red deer Iberian ibex Variable

codes Wald p Wald p Wald p

AltMx 3.09 ns 368.34 <0.001 245.84 <0.001 AltRn 14.99 <0.001 281.70 <0.001 238.87 <0.001

HFr 2.52 ns 421.83 <0.001 279.40 <0.001 DRd 152.21 <0.001 106.08 <0.001 163.83 <0.001

DCFr 22.16 <0.001 131.03 <0.001 109.64 <0.001 DBFr 3.34 ns 12.54 <0.001 55.982 <0.001

DHBsh 18.49 <0.001 67.99 <0.001 12.12 <0.001 LAI 82.80 <0.001 155.30 <0.001 114.26 <0.001

HBsh 56.66 <0.001 9.10 <0.001 1.94 ns HXBsh 3.56 ns 31.96 <0.001 11.10 <0.001 SlpMx 3.13 ns 287.89 <0.001 223.60 <0.001

Slp 9.02 <0.001 303.27 <0.001 256.21 <0.001 PW 76.88 <0.001 401.88 <0.001 265.91 <0.001

PSm 0.11 ns 314.94 <0.001 170.81 <0.001 TSm 127.06 <0.001 367.13 <0.001 256.73 <0.001 TRn 163.23 <0.001 92.83 <0.001 16.69 <0.001 DUr 127.22 <0.001 191.12 <0.001 187.84 <0.001

Page 141: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 119

Table 3. Summary of the step-up model selection procedure based on Akaike Information Criterion (AIC). D2 = percentage of the explained deviance. Variable codes as in Table 1.

D2 AIC Autochthonous red deer TRn 66.83 383.24 TRn + DHBsh 79.63 358.19 TRn + DHBsh + DUr 82.34 313.37 TRn + DHBsh + DUr + WULAI 82.89 305.85 TRn + DHBsh + DUr + WULAI + PW 83.38 299.39 TRn + DHBsh + DUr + WULAI + PW + AltMx 84.13 288.41 Introduced red deer PW 47.04 671.57 PW + PSm 60.75 629.49 PW + PSm + AltMx 68.71 604.83 PW + PSm + AltMx + HFr 70.95 551.51 PW + PSm + AltMx + HFr + DUr 71.69 528.61 PW + PSm + AltMx + HFr + DUr + DCFr 72.62 510.69 Iberian ibex AltMx 60.01 533.24 AltMx + DCFr 60.62 525.21 AltMx + DCFr + TRn 68.18 424.44 AltMx + DCFr + TRn + HXBsh 69.67 404.49 AltMx + DCFr + TRn + HXBsh + DHBsh 75.16 331.25 AltMx + DCFr + TRn + HXBsh + DHBsh + DUr 77.00 306.78 AltMx + DCFr + TRn + HXBsh + DHBsh + DUr + SlpMx 78.61 285.26

Table 4. Coefficients and significance values of the exploratory variables entered in the final models (p-values are shown ** = p<0.01) for the three study ungulate populations. Variable codes as in Table 1.

Autochthonous red deer Introduced red deer Iberian ibex Variable

codes Estimate Wald Estimate Wald Estimate Wald

(Intercept) -15.30 81.01** -4.69 339.69** -7.64 132.58** WULAI -1.08 10.35** - - - -

DUr 0.63 13.06** 0.86 49.35** 0.96 35.56** AltMx 1.95 13.27** - - 2.24 105.53** PW -2.28 18.04** 0.72 56.58** - -

DHBsh -3.44 60.27** - - 1.40 37.30** TRn 11.34 102.68** 0.86 17.61** 2.35 45.51** PSm - - 1.61 81.26** - - HFr - - 0.58 27.01** - -

DCFr - - -1.19 19.80** -7.27 44.18** HXBsh - - - - -1.10 21.67** SlpMx - - - - 1.03 19.92**

Page 142: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 2

________________________________________________________________ 120

Table 5. Summary of the statistical values of the habitat suitability models

Models AUC values

Cut-off values

Sensitivity (%)

Specificity (%)

Autochthonous red deer 0.97 0.24 98.45 98.18 Introduced red deer 0.96 0.37 91.70 91.15 Iberian ibex 0.97 0.26 95.98 96.03

Figure 3. Habitat suitability maps for the Iberian red deer and ibex in the south east of Spain: (a) autochthonous red deer population, (b) introduced red deer population, (c) Iberian ibex population.

Page 143: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 121

DISCUSSION

In this study, we provide evidence of differing realized niche for Iberian red

deer populations of different origin in the SE of the Iberian Peninsula: a native

population, with its own dispersal tendencies, and an introduced one, expanded by

human game interests. Our goal was also to test whether introduced populations

may become a threat to other sympatric autochthonous ungulates, by niche

overlapping. This seems to be the case of the Iberian ibex.

Environmental niches of autochthonous and introduced red deer populations

The potential distribution of the native red deer population is very restricted in

the study area, practically circumscribed to Sierra Morena mountain range. On the

contrary, the distribution obtained for the introduced red deer populations in the same

area is completely different, scarcely overlapping with the suitable areas of the

autochthonous deer, and showing a wide area of potential distribution. Our analyses

showed that the red deer was introduced in places with poorly environmental

characteristics according to the realized niche of the native populations.

One of the first interpretations of our results would be that the red deer

expresses a high ecological plasticity (e.g., Hofmann 1985; Gebert and Verheyden-

Tixier 2001); adapting to suboptimal ecological conditions in areas where it is

introduced (Mátrai et al. 2004). The successful establishment of these populations, in

habitats outside their ecological range and dispersal potential, identifies them to non-

native invasive species (see Falk-Petersen et al. 2006), which may originate severe

ecological disturbances in the host environment, so that, if not extirpated, at least

they should be carefully monitored (e.g., Moriarty 2004). Such disturbances can

affect the natural vegetation, other native animal species, and the own introduced

population.

Concerning mountainous habitats, in the study region there are several

Natural Parks where endemic plant species abound (Gómez-Mercado 1989), so that

they may be under threat due to the presence of introduced large herbivores. Given

that local plant and animal species may have evolved without such herbivore

pressure, these invasive species can substantially influence the composition and

Page 144: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 2

________________________________________________________________ 122

structure of plant and animal communities (Mack et al. 2000; Holmgren 2002;

González-Megías et al. 2004).

Under invasive species presence, the conservation of native animal species is

facing a series of risks, such as hybridization (e.g., Goodman et al. 1999; Carranza et

al. 2003), and competition (e.g., Forsyth and Duncan 2001). Also, the introduction of

uncontrolled individuals may originate the prevalence of new diseases (Hofle et al.

2004).

Finally, if invasive populations of red deer succeed and find no ecological

constraints they may reach high densities, there being a chance for overabundance-

driven consequences to arise, such as a decrease of fitness and a higher prevalence

of parasite and infectious diseases (Gortázar et al. 2006).

Which environmental traits explain better the autochthonous and introduced red deer distributions?

According to the GLM carried out to obtain the realized niche of the study

species, the native population is distributed in areas characterized by a high

temperature range, nearest to humid-leave bush areas, with a low winter rainfall

regime, high altitudes, far from human population nuclei, and where human

perturbations on landscape are low (WULAI low values) (Table 4).

These results are generally in agreement with the expected red deer habitat

requirements in the Iberian Peninsula (Carranza et al. 1991; Soriguer et al. 1994;

San José et al. 1997; Bugalho and Milne 2003), and in other European countries

(Morellet et al. 1996; Latham and Staines 1997; Debeljak et al. 2001). The red deer

live under Mediterranean climatic conditions and their presence in the Iberian

Peninsula has traditionally been associated with a well-developed Mediterranean-

type bush lands with small areas of pastures scattered among densely wooded areas

(Caballero 1985).

Our results suggest that the native red deer population stands for relatively

high seasonal bioclimatic variations, as it is positively related to the annual range of

temperatures (see Latham and Staines 1997; San José et al. 1997). Under this

scenario, summer is the critical period when high temperatures provoke food

shortage, as herbaceous vegetation becomes senescent (Álvarez and Ramos 1991),

Page 145: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 123

a situation resembling that described for the red deer in Scotland in winter (Clutton-

Brock and Albon 1989). Small size ungulates, such as the Iberian ibex or roe deer,

need higher quality resources than larger ones, such as the red deer, that take more

advantage from low nutritional quality plants (Gordon 1989). This may partly explain

why the red deer shows well-established populations in its native area of distribution

(Figure 2; Vicente et al. 2006), in comparison with other native ungulate species

(Pérez et al. 2002). The red deer is a mixed feeder (Hofmann 1989), being capable

of ingesting high proportions of browse during the summer (Zamora et al. 2001).

Feeding studies showed that the humid-leave bushes contributed a 30% in the red

deer diet in Mediterranean mountain ranges (Soriguer et al. 1994). This habitat also

provides suitable micro-climatic conditions, i.e. refuge (see Soriguer et al. 1994),

mainly during the critical annual periods (Lazo et al. 1994).

A highly significant relationship between habitat suitability and the intensity of

human disturbance has been appreciated in the autochthonous red deer model (see

Table 4). Humanized landscapes with moderate-to-high avoidance index scores

appear not to be suitable for the species. The effect of human population nuclei on

red deer distribution has already been reported by other authors (Debeljak et al.

2001). The red deer seems to be positively associated to the least human-induced

landscapes, similarly to other deer species (Morellet et al. 1996; Hewison et al. 2001;

but see Acevedo et al. 2005).

On the other hand, the introduced red deer populations are distributed in areas

characterized by high summer and winter rainfall regimes, far from human population

nuclei, high percentage of woodlands, close to coniferous forest, and high

temperature range (Table 4). These results are in agreement with red deer habitat

requirements in areas where the species has been introduced in the Iberian

Peninsula, e.g., Cazorla Natural Park (Soriguer et al. 1994).

Two preferred forest types emerged from the model, proximity to coniferous

forests and the proportion of woody plants (Table 5). The genus Pinus spp. is an

important food source in poor areas and during shortage periods for deer species

(Matrai and Kabay 1989; Debeljak et al. 2001), as well as for other Iberian ungulates

(Martínez 1994). In winter time, coniferous forests has more suitable micro-climatic

conditions due to its dense canopy layer (Telfer 1988), which offers shelter and safer

refuges against predators (carnivores and humans), contrary to broadleaf stands

Page 146: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 2

________________________________________________________________ 124

(Nyberg 1990). It is remarkable that habitat requirements and potential distribution of

the introduced red deer populations are close to the Iberian ibex ones (Figure 3;

Acevedo et al. 2006a [Capítulo 1.1]), whereas the native red deer does not follow

this pattern (see below).

Furthermore, WULAI was not retained in the introduced red deer model; a

plausible explanation might be that introductions were carried out in relatively high

human-transformed landscapes, where red deer would have adapted to (e.g.,

Morellet et al. 1996). It has already been reported that deer spatial use may differ

depending on local conditions (Beier and McCullough 1990). Also, Lazo et al. (1994)

showed that deer density is the most influential factor on habitat and space use,

mainly in males.

Niche comparison between red deer study populations and Iberian ibex

Red deer introductions in the Iberian Peninsula, basically due to game

interests (Braza et al. 1989; Gortázar et al. 2000), have been carried out without any

previous ecological study. This might explain the differences found between the

realized niches occupied by the same species in our study. Areas where the red deer

has been introduced, suitable for sport hunting, are typically of low productivity,

rugged high altitude areas, and in many instances home of the native Iberian ibex.

Furthermore, our results suggest that the introduced red deer have similar habitat

requirements and potential distribution than the native Iberian ibex, since their

suitability maps extraordinarily resemble to each other (Figure 3), and a 81.58% of

the highly suitable areas are overlapped. The autochthonous red deer, however,

presents a different potential distribution in the study area (see Figure 3), there being

a scarce overlap with the Iberian ibex one.

The introduction of red deer in habitats typically occupied by the Iberian ibex

might represent a threat for the latter. High diet overlap between both species has

been reported (Martínez et al. 1992), so that interspecific competition might occur,

particularly when resources are limited. Also, higher body size may represent an

advantage for the red deer when competing for resources (e.g., Gordon 1989).

Competition occurring, there is a risk of displacement of Iberian ibex population to

suboptimal habitats (see Acevedo et al. 2006a [Capítulo 1.1]).

Page 147: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 125

When high population densities are reached along with limited food

availability, high parasite abundances can be expected due to a loss of fitness and

increased aggregations (Gortázar et al. 2006). This could be another effect of wildlife

introductions as was apparently the case of the sarcoptic mange (Sarcoptes scabiei)

outbreaks in the Iberian ibex populations of Cazorla (León-Vizcaíno et al. 1999).

Since these human-induced introductions have originated the presence of the

red deer in new habitats, where the species has successfully established, we might

be before a particular case of biological invasion. This involves two essential stages:

transport of an organism to a new location (Mack et al. 2000), and establishment and

population increase in the invaded locality (Veltman et al. 1996). A third stage,

applicable to most of the invasions, is regional spread from initial successful

populations (Shigesada and Kawasaki 1997). The effects of environmental

constraints, if any, on introduced red deer populations in SE Spain may have been

mitigated by game management strategies, such as the use of fenced, protected

against predators estates, extra feeding and watering (see Vicente et al. 2006). On

the other hand, an invader will be at an advantage if its maintenance requirements

are lower than those of a resident even under environmental harshness, or if it has a

stronger response to increased resources than the resident (Shea and Chesson

2002).

ACKNOWLEDGEMENTS

We are indebted to A. Jiménez-Valverde for his help on the statistical

procedures, J. Hortal for his comments on a previous version of the manuscript, and

J. Lobo, A. Jiménez-Valverde, R. Chefaoui and J. Hortal for providing GIS

information. JC is currently enjoying a Ramón y Cajal research contract at the CSIC

awarded by the Ministerio de Educación y Ciencia (MEC); he is also supported by

the project PBI-05-010 granted by Junta de Comunidades de Castilla-La Mancha.

Page 148: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 2

________________________________________________________________ 126

REFERENCES

Acevedo, P., Cassinello, J., Gortázar, C. (2006a) The Iberian ibex is under an expansion trend but displaced to suboptimal habitats by the presence of extensive goat livestock in central Spain. Biodiversity and Conservation DOI 10.1007/s10531-006-9032-y.

Acevedo, P., Delibes-Mateos, M., Escudero, M.A., Vicente, J., Marco, J., Gortázar, C. (2005) Environmental constraints in the colonization sequence of roe deer (Capreolus capreolus Linnaeus, 1758) across the Iberian Mountains, Spain. Journal of Biogeography 32, 1671-1680.

Acevedo, P., Escudero, M.A., Muñoz, R., Gortázar, C. (2006b) Factors affecting wild boar abundance across an environmental gradient in Spain. Acta Theriologica 51, 327-336.

Alados, C.L. (1997) Status and distribution of Caprinae by region. Spain. In: Wild Sheep and Goats and their Relatives. D.M. Shackleton (ed.), IUCN, Cambridge.

Álvarez, G., Ramos, J. (1991) Estrategias alimentarias del ciervo (Cervus elaphus L.) en Montes de Toledo. Doñana Acta Vertebrata 18, 63-99.

Austin, M.P. (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling 157, 101–118.

Baumann, M., Babotai, C., Schibler, J. (2005) Native or naturalized? Validating Alpine Chamois habitat models with archaeozoological data. Ecological Applications 15, 1096-1110.

Beier, P., McCullough, D.R. (1990) Factors influencing white-tailed deer activity patterns and habitat use. Wildlife Monographs, 109, 1-51.

Berger, J., Stacety, P., Bellis, L. & Johnson, M. (2001) A mammalian predator-prey imbalance: grizzly bear and wolf extinction affect avian neotropical migrants. Ecological Applications 11, 947-960.

Braza, F., Alvarez, F., Geldof, R., Byloo, H. (1984) Desplazamientos de ungulados silvestres a través de una zona de ecotono en Doñana. Doñana Acta Vertebrata 11, 275-287.

Braza, F., Varela, I., San José, C., Cases, V. (1989) Distribution actuelle du chevreuil (Capreolus capreolus), du daim (Dama dama) et du cerf (Cervus elaphus) en Espagne. Zeitschrift fur Saugetierkunde 54, 393-396.

Bright, P.W, Smithson, T.J. (2001) Biological invasions provide a framework for reintroductions: selecting areas in England for pine marten releases. Biodiversity and Conservation 10, 1247-1265.

Bugalho, M.N., Milne, J.A. (2003) The composition of the diet of red deer (Cervus elaphus) in a Mediterranean environment: a case of summer nutritional constraint? Forest Ecology and Management 181, 23-29.

Page 149: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral Pelayo Acevedo

________________________________________________________________ 127

Bugalho, M.N., Milne, J.A., Racey, P.A. (2001) The foraging ecology of red deer (Cervus elaphus) in a Mediterranean environment: is a larger body size advantageous? Journal of Zoology 255, 285-289

Caballero, R. (1985) Hábitat y alimentación del ciervo en ambiente mediterráneo. Monografías ICONA 34, 0-133.

Cargnelutti, B., Reby, D., Desneux, L., Angibault, J.-M., Joachim, J., Hewison, A.J.M. (2002) Space use by roe deer in a fragmented landscape some preliminary results. Revue d'Ecologie (La Terre et la Vie) 57, 29-37

Carranza, J. (2002) Cervus elaphus Linnaeus, 1758. Ciervo rojo. In: Atlas de los mamíferos terrestres de España. L.J. Palomo, J. Gisbert (eds.). Dirección General de Conservación de la Naturaleza-SECEM-SECEMU, Madrid.

Carranza, J. (2004) Ciervo – Cervus elaphus. Enciclopedia Virtual de los Vertebrados Españoles. L.M. Carrascal, A. Salvador (eds.). Museo Nacional de Ciencias Naturales, Madrid. http://www.vertebradosibericos.org/

Carranza, J., Hidalgo de Trucios, S.J., Medina, R., Valencia, J., Delgado, J. (1991) Space use by red deer in a Mediterranean ecosystem as determined by radio-tracking. Applied Behaviour Science 30, 363-371.

Carranza, J., Martínez, J.G., Sánchez-Prieto, C.B., Ferández-García, J.L., Sánchez-Fernández, B., Álvarez-Álvarez, R., Valencia, J., Alarcos, S. (2003) Game species: extinction hidden by census numbers. Animal Biodiversity and Conservation 26.2, 81-84.

Cassinello, J., Acevedo, P., Hortal, J. (2006) Prospects of population expansion of the exotic aoudad (Ammotragus lervia) in the Iberian Peninsula: clues from habitat suitability modelling. Diversity and Distributions 12, 666-678.

Cassinello, J., Serrano, E., Calabuig, G., Pérez, J.M. (2004) Range expansion of an exotic ungulate (Ammotragus lervia) in southern Spain: ecological and conservation concerns. Biodiversity and Conservation 13, 851-866.

Chambers, J.M., Hastie, T.J. (1997) Statistical models, S. Chapman & Hall, London.

Chefaoui, R.M., Hortal, J., Lobo, J.M. (2005) Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biological Conservation 122, 327-338.

Clark Labs (2004) Idrisi Kilimanjaro version 14.02. GIS software package. Clark Labs, Clark University, Worcester, MA. http://www.clarklabs.org/.

Clutton-Brock, T.H., Albon, A.D. (1989) Red deer in the Highlands. Blackwell Scientific Publications, Oxford.

Corsi, F., de Leeuw, J., Skidmore, A. (2000) Modeling species distribution with GIS. In: Research techniques in animal ecology: controversies and consequences. L. Boitani, T. Fuller (eds.), Columbia University Press, New York.

Page 150: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 2

________________________________________________________________ 128

Debeljak, M., Dzeroski, S., Jerina, K., Kobler, A., Adamic, M. (2001) Habitat suitability modelling for red deer (Cervus elaphus L.) in South-central Slovenia with classification trees. Ecological Modelling 138, 321-330.

EEA (2000) NATLAN. Nature/land cover information package. European Environment Agency, Luxembourg.

Engler, R., Guisan, A., Rechsteiner, L. (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology 41, 263-274.

Escós, J., Alados, C.L. (1992). Habitat preference of Spanish ibex and other ungulates in Sierras de Cazorla y Segura (Spain). Mammalia 56, 393-406.

Falk-Petersen, J., Bøhn, T., Sandlund, O.T. (2006) On the numerous concepts in invasion biology. Biological Invasions DOI 10.1007/s10530-005-0710-6.

Fielding, A.H. (2002) What are the appropriate characteristics of an accuracy measure? In: Predicting species occurrences: issues of accuracy and scale. J.M. Scott, P.J. Heglund, M.L. Morrison, M.G. Raphael, W.A. Wall, F.B. Samson (eds.), 71–280. Island Press, Washington.

Forsyth, D.M., Duncan, R.P. (2001) Propagule size and the relative success of exotic ungulate and bird introductions to New Zealand. The American Naturalist 157, 583-595.

Gebert, C., Verheyden-Tixier, H. (2001) Variations of diet composition of red deer (Cervus elaphus L.) in Europe. Mammal Review 31, 189-201.

Geist, V. (1998) Deer of the World: their Evolution, Behavior & Ecology. Stackpole Books, Mechanicsburg.

Gómez-Mercado, F. (1989) Cartografía y estudio de la vegetación de la Sierra de Cazorla. PhD Thesis, Universidad de Granada, Granada.

González-Megías, A., Gómez, J.M., Sánchez-Piñero, F. (2004) Effects of ungulates on epigeal arthropods in Sierra Nevada National Park (southeast Spain). Biodiversity and Conservation 13, 733-752.

Goodman, S.J., Barton, N.H., Swanson, G., Abernethy, K., Pemberton, J.M. (1999) Introgression through rare hybridation: a genetic study of a hybrid zone between red and sika deer (Genus Cervus) in Argyll, Scotland. Genetics 152, 355-371.

Gordon, I.J. (1989) Vegetation community selection by ungulates on the Isle Rhum. II Vegetation community selection. Journal of Applied Ecology 26, 53-64.

Gortázar, C., Acevedo, P., Ruiz-Fons, F., Vicente, J. (2006) Disease risks and overabundance of game species. European Journal of Wildlife Research 52, 81-87.

Gortázar, C., Herrero, J., Villafuerte, R., Marco, J. (2000) Historical examination of the status of large mammals in Aragon, Spain. Mammalia 64, 411-422.

Page 151: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 129

Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993-1009.

Guisan, A., Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135, 147-186.

Guisan, A., Edwards, T.C., Hastie, T. (2002) Generalized linear and generalized additive models in studies of species distribution: setting the scene. Ecological Modelling 157, 89-100.

Hengeveld, R. (1989) Dynamics of Biological Invasions. Chapman & Hall, London.

Hewison, A.J.M., Vincent, J.P., Joachim, J., Angibault, J.M., Cargnelutti, B., Cibien, C. (2001) The effects of woodland fragmentation and human activity on roe deer distribution in agricultural landscapes. Canadian Journal of Zoology/Revue Cannadiene de Zoologie 79, 679-689.

Hirzel, A., Helfer, V., Métral, F. (2001) Assessing habitat-suitability models with a virtual species. Ecological Modelling 145, 111-121.

Hirzel, A.H., Hausser, J., Perrin, N. (2004) Biomapper 3.0. Laboratory for Conservation Biology, University of Lausanne, Lausanne.

Hirzel, A.H., Hausser, J., Chessel, D., Perrin, N. (2002) Ecological-niche factor analysis: How to compute habitat- suitability maps without absence data? Ecology 83, 2027-2036.

Hofle, U., Vicente, J., Nagore, D., Hurtado, A., Pena, A., de la Fuente, J., Gortázar, C. (2004) The risks of translocating wildlife: Pathogenic infection with Theileria sp. and Eleaphora elaphi in a imported red deer. Veterinary Parasitology 126, 387-395.

Hofmann, R.R. (1985) Digestive physiology of the red deer: their morphophysiological specialisation and adaptation. Royal Society of New Zealand Bulletin 22, 393-407.

Hofmann, R.R. (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78, 443-457.

Holmgren, M. (2002) Exotic herbivores as drivers of plant invasion and switch to ecosystem alternative states. Biological Invasions 4, 25-33.

Hosmer, D.W., Lemeshow, S. (2000) Applied Logistic Regression. Wiley Interscience, New York.

Hutchinson, G.E. (1958) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22, 415-427.

Kink, G., Zeng, L. (2001) Explaining rare events in international relations. International Organization 55, 693–715.

Page 152: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 2

________________________________________________________________ 130

Knick, S., Rotenberry, J. (2000) Ghost of habitat past, contribution of landscape change to current habitats used by shrubland birds. Ecology 81, 220-227.

lason, G., Duck, C.D., Clutton-Brock, T.H. (1986) Grazing and reproductive success of red deer: the effect of local enrichment by gull colonies. Journal of Animal Ecology 55, 507-515.

Latham, J., Staines, B.W. (1997) Correlations of red (Cervus elaphus) and roe deer (Capreolus capreolus) densities in Scottish forest with environmental variables. Journal of Zoology (London) 242, 681-704.

Lazo, A., Soriguer, R.C., Fandos, P. (1994) Habitat use and ranging behaviour of a high-density population of Spanish red deer in a fenced intensively managed area. Applied Animal Behaviour Science 40, 55-65.

León-Vizcaino, L., de Ybanez, M.R.R., Cubero, M.J., Ortiz, J.M., Espinosa, J., Pérez, L., Simon, M.A., Alonso, F. (1999) Sarcoptic mange in Spanish ibex from Spain. Journal of Wildlife Diseases 35, 647–659.

Liu, C., Berry, P.M., Dawson, T.P., Pearson, R.G. (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385-393.

Lobo, J.M., Verdú, J.R., Numa, C. (2006) Environmental and geographical factors affecting the Iberian distribution of flightless Jekelius species (Coleoptera: Geotrupidae). Diversity and Distributions 12, 179-188.

Mack, R.N., Simberloff, D., Lonsdale, W.M., Evans, H., Clout, M., Bazzaz, F.A. (2000) Biotic invasions: Causes, epidemiology, global consequences, and control. Ecology Application 10, 689-710.

Martínez, T. (1994) Dieta estacional de la cabra montés (Capra pyrenaica) en los Puertos de Tortosa y Beceite (área mediterránea del nordeste de España). Ecología 8, 373-380.

Martínez, T. Soriguer, R., Fandos, P. (1992) Trophics relations between the wild goat (Capra pyrenaica) an the red deer (Cervus elaphus) in the south-east Spain (S. Cazorla). In: Proceedings of the International Congress of the genus Capra in Europe, Ronda.

Mátrai, K., Kabay, P. (1989) Winter plant selection by red and roe deer in a forest habitat in Hungary. Acta Theriologica 34, 227-234.

Mátrai, K., Szemethy, L., Tóth, P., Katona, K., Székely,. J. (2004) Resource use by red deer in lowland nonnative forest, Hungary. Journal of Wildlife Management 68, 879-888.

McCullagh, P., Nelder, J.A. (1989) Generalized Linear Models, 2nd edn. Chapman & Hall, London.

Morellet, N., Guibert, B., Klein, F., Demolis, C. (1996) Utilisation de l’habitat forestier par le cerf (Cervus elaphus) dans le massif d’Is-sur-tille (Côte-d’ Or). Gibier Faune Sauvage 13, 1477-1493.

Page 153: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 131

Moriarty, A. (2004) The liberation, distribution, abundance and management of wild deer in Australia. Wildlife Research, 31, 291-299.

Mysterud, A., Østbye, E. (1999) Cover as a habitat element for temperate ungulates: effects on habitat selection and demography. Wildlife Society Bulletin 27, 385-394.

Nielsen, E., Linnell, J., Andersen, R. (2004) Individual access to preferred habitat affects fitness components in female roe deer Capreolus capreolus. Journal of Animal Ecology 73, 44-50

Nyberg, J. (1990) Interactions of timber management with deer and elk. In: Deer and elk habitats in coastal forest of southern Bristish Columbia. J.B. Nyberg, D.W. Janz (eds.). Ch. 4. B.C. Ministry of Forests and B.C. Ministry of Environment, Victoria.

Patterson, B. (1999) Contingency and determinism in mammalian biogeography, the role of history. Journal of Mammalogy 80, 345-360

Pérez, J.M., Granados, J.E., Soriguer, R.C., Fandos, P., Marquez, F.J., Crampe, J.P. (2002) Distribution, status and conservation problems of the Spanish ibex, Capra pyrenaica (Mammalia : Artiodactyla). Mammal Review 32, 26-39.

Pettorelli, N., Gaillar, J., Duncan, P., Quellet, J., van Laere, G. (2001) Spatial variations in habitat quality, local density and phenotypic quality in roe deer. Oecologia 128, 400-405.

San-José, C., Braza, F., Aragón, S., Delibes, J. R. (1997) Habitat use by roe and red deer in southern Spain. Miscellania Zoologica 20, 27-38.

Schadt, S., Revilla, E., Wiegand, T., Knauer, F., Kaczensky, P., Breitenmoser, U., Bufka, L., Çerveny, J., Koubek, P., Huber, T., Stanisa, C., Trepl, L. (2002) Assessing the suitability of central European landscapes for the reintroduction of Eurasian lynx. Journal of Applied Ecology 39, 189–203.

Scott, J.M., Heglund, P.J., Haufler, J.B., Morrison, M., Raphael, M.G., Wall, W.B., Samson, F. (2002) Predicting species occurrences. Issues of accuracy and scale. Island Press, Covelo, CA.

Segurado, P., Araújo, M.B. (2004) An evaluation of methods for modelling species distributions. Journal of Biogeography 31, 1555–1568.

Shea, K., Chesson, P. (2002) Community ecology theory as a framework for biological invasions. Trends in Ecology & Evolution 17, 170-176.

Shigesada, N., Kawasaki, K. (1997) Biological Invasions: Theory and Practice. Oxford University Press, London.

Skogland, T. (1991) What are the effects of predators on large ungulate populations. Oikos, 61, 401-410.

Soberón, J., Peterson, A.T. (2005) Interpretation of models of fundamental ecological niches and species' distribution areas. Biodiversity Informatics 2, 1-10.

Page 154: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 2

________________________________________________________________ 132

Soriguer, R., Fandos, P., Bernaldez, E., Delibes, J.R. (1994) El ciervo en Andalucía. Junta de Andalucía, Sevilla.

Soriguer, R., Rodríguez-Sierra, A., Domínguez-Nevado, L. (2001) Análisis de la incidencia de los grandes herbívoros en la marisma y vera del Parque Nacional de Doñana. Organismo Autónomo de Parques Nacionales, Madrid.

StatSoft, I. (2001) STATISTICA (data analysis software system). StatSoft, Inc., Tulsa.

Telfer, E.F. (1988) Habitat use by moose in southwestern Alberta. Alces 24, 14-21.

Veltman, C. J., Nee, S., Crawley, M. J. (1996) Correlates of introduction success in exotic New Zealand birds. The American Naturalist 147, 542–557.

Vicente, J., Höfle, U., Garrido, J.M., Fernández-de-Mera, I.G., Juste, R., Barral, M., Gortázar, C. (2006) Wild boar and red deer display high prevalences of tuberculosis-like lesions in Spain. Veterinary Research 37, 1–11.

Whittaker, D., Manfredo, M.J., Fix, P.J., Sinnot, R., Miller, S., Vaske, J. (2001) Understanding beliefs and attitudes about an urban wildlife hunt near Anchorange, Alaska. Wildlife Society Bulletin 29, 1114-1124.

Wiens, J.A. (2002) Predicting species occurrences: progress, problems, and prospects. In: Predicting Species Occurrences: Issues of Accuracy and Scale. J.M. Scott, P.J. Heglund, M.L. Morrison, J.B. Haufler, M.G. Raphael, W.A. Wall, F.B. Samson (eds.), Island Press, Covelo.

Zamora, R., Gomez, J.M., Hodar, J.A., Castro, J., Gracia, D. (2001) Effect of browsing by ungulates on sapling growth of Scots pine in a Mediterranean environment: consequences for forest regeneration. Forest Ecology and Management 144, 33-42.

Zaniewski, A.E., Lehmann, A., Overton, J.McC. (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecological Modelling 157, 261–280.

Zweig, M.H., Campbell, G. (1993) Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry 39, 561–577.

Page 155: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

CAPÍTULO 3

3.1.- PERSPECTIVAS DE LA EXPANSIÓN POBLACIONAL DEL ARRUI (AMMOTRAGUS LERVIA, BOVIDAE) EN LA PENÍNSULA IBÉRICA: USO DE MODELOS DE ADECUACIÓN DE HÁBITAT 3.2.- ES EL ARRUI (AMMOTRAGUS LERVIA) UNA AMENAZA PARA LA CABRA MONTÉS (CAPRA PYRENAICA)? UNA APROXIMACIÓN BASADA EN MODELOS DE ADECUACIÓN DE HÁBITAT

LA EXPANSIÓN DE UNGULADOS SILVESTRES MEDIADA POR EL HOMBRE PUEDE FACILITAR EL SOLAPAMIENTO DE NICHO: EL CASO DE UNA ESPECIE EXÓTICA, EL ARRUI, Y LA CABRA MONTÉS

Page 156: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 157: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

3.1.- PERSPECTIVAS DE LA EXPANSIÓN POBLACIONAL DEL ARRUI

(AMMOTRAGUS LERVIA, BOVIDAE) EN LA PENÍNSULA IBÉRICA: USO

DE MODELOS DE ADECUACIÓN DE HÁBITAT

Cassinello, J., Acevedo, P., Hortal, J. (2006) PROSPECTS FOR POPULATION

EXPANSION OF THE EXOTIC AOUDAD (AMMOTRAGUS LERVIA; BOVIDAE) IN THE IBERIAN

PENINSULA: CLUES FROM HABITAT SUITABILITY MODELLING. Diversity and

Distributions 12, 666-678.

Page 158: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 159: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 137

RESUMEN

Se ha estudiado la distribución geográfica y la adecuación de hábitat del arrui

(Ammotragus lervia), ungulado introducido y actualmente en expansión en el sureste de la

Península Ibérica. Se ha evaluado el nicho de la especie usando el Análisis Factorial de

Nicho Ecológico (ENFA) sobre i) variables medioambientales (clima y tipo de hábitat), y ii)

índice de evitación del paisaje del arrui y otras variables relacionadas con alteraciones en el

medio producidas por el hombre. Ambas descripciones del nicho han sido comparadas para

estudiar el impacto de las interferencias humanas sobre la selección de nicho de la especie.

Los modelos ENFA se han calibrado usando datos de la población original de arrui en la

Península Ibérica, Sierra Espuña, y se han validado usando datos de otra población libre,

originada de forma independiente, en la provincia de Alicante. El modelo de adecuación de

hábitat para el nicho puramente ambiental predice una distribución potencial para el arrui a

lo largo de un eje suroeste-noreste, siguiendo la Cordillera Subbética, y está limitado por

una baja precipitación en invierno, altas altitudes, fuertes pendientes y por la presencia de

bosques. Además de estos condicionantes ecológicos, las carreteras y el uso humano del

medio restringen la potencialidad ambiental para el arrui. Teniendo en cuenta que,

potencialmente, el arrui es un competidor de los ungulados nativos y una amenaza para la

flora endémica, el estudio de sus tendencias expansivas puede ser de gran valor para la

conservación.

ABSTRACT

We studied the geographic distribution and habitat suitability of an introduced

ungulate, the aoudad (Ammotragus lervia), that is currently expanding its range in

southeastern Iberian Peninsula. We assessed the niche of the species using Ecological

Niche Factor Analysis (ENFA) on i) environmental variables (climate and habitat type), and ii)

potential aoudad landscape avoidance and human disturbance variables. We compared both

niche descriptions to study the impact of human interference on niche selection of the

species. ENFA models were calibrated using data on the population growth from the original

release location, in Sierra Espuña mountains, and validated using data from another free-

ranging population, originated independently in the Alicante province. The habitat suitability

model for the purely environmental niche predicts a potential distribution along a SW-NE axis

in the study area, following the Cordillera Sub-Bética mountain range, being constrained by

low winter precipitation, high altitude, high terrain slope and the presence of forest. In

addition to these ecological traits, roads and landscape use restricted the environmental

Page 160: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 138

range potentially available for the species. Since the aoudad is a potential competitor of

native ungulates and a threat to endemic flora, prospects for its potential dispersion might be

of great conservation value.

INTRODUCTION

Both passive and active human actions have facilitated the transportation of

species outside their original distribution range and habitats. Introduction of exotic

species has become a serious issue in conservation ecology, resulting in the birth of

a new discipline, the study of biological invasions (e.g. Hengeveld 1989; Lodge 1993;

Ruesink et al. 1995; Mooney and Hobbs 2000; Sax et al. 2005). It has been generally

assumed that invasive alien species pose one of the greatest threats to biodiversity

(Diamond 1989; Wilcove et al. 1998; but see also Sax and Brown 2000; Brown and

Sax 2004; Gurevitch and Padilla 2004; Didham et al. 2005; Borges et al. 2006). In

this context, the interest in game species has played a major role in spreading many

exotic mammals (e.g., Crosby 1986; Macdonald et al. 1988; Jaksic et al. 2002;

Richardson et al. 2003). These introductions were often carried out without regard for

their effects on the environment, e.g. threats to native species and endemic flora

(e.g., Mack and D'Antonio 1998).

The aoudad, Ammotragus lervia Pallas 1777, is a North African caprid

successfully introduced as a game species in mountainous desert regions of Texas,

New Mexico and California in USA (Ogren 1965), and southern Spain (Cassinello

2000). The aoudad has shown a formidable capacity to establish, spread and extend

its distribution (Gray 1985; Cassinello et al. 2004), the characteristics typical of

biological invasions (Williamson 1996). During the phase of establishment of an

invasive species a series of factors that determine success operate in a stochastic

manner primarily on mortality and sex ratios. Spread occurs when an established

population grows in size and increases in distribution, thereby escaping stochastic

extinction effects (Soulé 1987).

Very few individuals are required for introduced ungulate populations to

become established (Forsyth and Duncan 2001). The aoudad, which is native to the

Saharan Desert mountains where resources are scarce and sparsely distributed,

encountered richer habitats where it was introduced in USA and Spain. Increased

Page 161: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 139

food availability, along with a scarcity of competitors and predators, allowed high birth

rates, and a swift spread of the population (see Wolf et al. 1996). Following Colautti

and MacIsaac’s (2004) terminology, in this region the aoudad is in the process of

changing from Stage III (localized and not dominant) to Stage IVa (widespread but

not dominant). Here we analyse several environmental and anthropogenic factors

(both humanized landscape configuration and human degree or disturbance) that

might be influencing the spread of the introduced aoudad population in southeastern

Spain. This knowledge may help to establish management procedures to prevent

further range expansion, and reduce the potential negative effects of the aoudad on

native fauna and flora.

The relationship between environmental variation (temperature, precipitation,

humidity) and the survival of a species can be used to model its potential response to

environmental gradients (Austin et al. 1990). These descriptions can be used to

produce predictive maps of species distribution (see reviews at Guisan and

Zimmermann 2000; Ferrier et al. 2002; Scott et al. 2002; Guisan and Thuiller 2005),

as well as to describe the characteristics of the niche of the species (see, e.g.,

Peterson et al. 1999; Robertson et al. 2001; Soberón and Peterson 2005; Araújo and

Guisan 2006). In conjunction with the use of modern statistics, predictive models

have become powerful tools to address relationships between species and their

environment, being increasingly common in ecological literature. They gained

importance as a research tool on conservation issues (see Araújo and Guisan 2006;

Guisan et al. 2006), especially to assess the effect of climatic change on the

distribution of organisms (e.g., Thuiller et al. 2006), to study species niche (Guisan

and Zimmermann 2000) and the spatial patterns of biodiversity (e.g., Hortal et al.

2004). A variety of methods have been used to analyse the ecological niche of the

species from data on their presence (see Guisan and Zimmermann 2000; Soberon

and Peterson 2005). Among others, there are methods based on presence-only data,

such as BIOCLIM (Hortal et al. 2005); methods that can handle with presence-only

data, among others, such as ENFA, GARP (e.g., Anderson 2002) or MAXENT (see,

e.g., Guisan et al. 2006); methods based on both presence and absence (or

pseudoabsence) data, such as GLM (Lobo et al. 2006) (see a review of the

performance of a number of methods at Elith et al. 2006). In addition to these

methods, others try to develop resource selection methods from data on the

Page 162: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 140

abundance of the species (e.g., Olivier and Wotherpoon 2005; Boyce 2006; Meyer

and Thuiller 2006).

The adaptation of niche theory to species distribution modelling is currently

under debate (Soberón and Peterson 2005; Araújo and Guisan 2006). Since, current

terminology is rather ambiguous, and therefore could be misleading for the

development of a general framework (Araújo and Guisan 2006), a clear definition of

the niche concepts used is needed when studying the geographic response of a

species. To clarify the two different expressions of the geographic response of the

aoudad, we use two different definitions of aoudad’s geographic response based on

Soberón and Peterson's (2005) and Araújo and Guisan's (2006) recent works:

Environmental Niche (similar to Soberón and Peterson’s Fundamental Niche), which

is merely the response of the species to abiotic factors, and Observed Niche

(following Araújo and Guisan 2006), which includes its interactions with the biotic part

of the studied systems, in our case landscape configuration and human disturbance.

In fact, following Araújo and Guisan (2006), the Environmental Niche could be better

described as the Observed Environmental Niche, but we have preferred the term

Environmental Niche throughout the text for the sake of clarity.

Ecological Niche Factor Analysis (ENFA; Hirzel 2001; Hirzel et al. 2001, 2002)

provides a good tool to describe the geographic expression of the niche of a species.

This ordination technique identifies the main gradients that a species responds to in

an area. ENFA uses presence-only, presence/absence or abundance data to

compute a number of orthogonal factors from several predictors. Since these factors

are built to maximize the discrimination between the areas where the species is

present, compared to the rest of the region, they might be seen as the most

important gradients the species is responding to in the study area (Hirzel et al. 2002;

see also Chefaoui et al. 2005). It is then assumed that the response of a species

along the principal axes constitutes a description of its observed niche (i.e. the spatial

expression of its niche with regard to habitat conditions included within the

predictors). ENFA methodology has been successfully used to model the

environmental response of other caprids in their native range (Capra ibex, Hirzel

2001; Capra pyrenaica, Acevedo et al. 2006 [Capítulo 1.1]) as well as of

reintroduced populations (e.g., Gypaetus barbatus in Switzerland, Hirzel et al.

Page 163: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 141

2004a). Note that several other approaches are available to build spatial predictions

from presence only data (Hortal et al. 2005; see a comparison in Elith et al. 2006).

We used ENFA, as well as the derived niche description method proposed by

Chefaoui et al. (2005; see also Hortal et al. 2005), to: a) model the potential

distribution of the introduced aoudad in the southeastern Iberian Peninsula; b) study

the environmental determinants underlying the aoudad's spatial response (i.e. its

environmental niche); and c) evaluate the effect of landscape structure and human

disturbance on such response (i.e. its observed niche).

MATERIALS AND METHODS

The study area

To properly define the geographic niche of a species within a given region, the

area used to investigate the species' relationship with environmental variables should

encompass extreme conditions present in the region. Thus, to carry out ENFA

analyses, we chose a study area that contains both the aoudad population nuclei,

and the coastal and mountain environments present in SE Iberian Peninsula. The

study area was 340 km wide and 270 km long, and 61961 km2 corresponded to dry

land (UTM 29N geographic reference system; NW corner: 450,000, 4,330,000; SE

corner: 790,000; 4,060,000; Figure 1), including the Sierra Nevada mountain range in

the SW (rising over 3400 m.a.s.l.), Segura coastal basin in the east (with mean

altitudes below 20 m.a.s.l.), as well as several other mountain ranges and high-

altitude plains. The study area comprised a number of sub-areas defined by the

vegetation succession series present, which identify plant communities and soil

composition (Rivas Martínez 1987). Mediterranean bushlands, oak trees (Quercus

spp.) and reforestations with Pinus halepensis and P. pinaster abound in the study

area (see details in Cassinello et al. 2004).

The study species

The aoudad, a North African caprid (subfamily Caprinae), is now a common

inhabitant of southeastern Spain having been introduced as a small population (16

Page 164: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 142

males and 20 females) in Sierra Espuña Natural Park in 1970 (see details in

Cassinello 2000; Cassinello et al. 2004). Since then the population has increased

rapidly and by 1990 around 2,000 individuals were estimated to inhabit the Sierra

Espuña and surroundings mountains (ARMAN 1991).

Figure 1.- Location of the study area in southeastern Spain. Province boundaries are shown. The records of the aoudad presence are depicted. The southernmost group (circles) corresponds to the dispersion of the Sierra Espuña nucleus, whereas the eastern ones (squares) are the nuclei in the Alicante province. The geographic coordinate system shown is the UTM.

A sarcoptic mange episode affected the aoudad population in 1991, during

which time the numbers of aoudad decreased by over 90% (González-Candela and

León-Vizcaíno 1999). However, the aoudad population recovered very quickly in the

area, and is currently estimated to be over 1,000 individuals (González-Candela et al.

2004). Apart from the population that originated in the Sierra Espuña, since 1990

another free-ranging population of aoudads has established in the Alicante province,

Page 165: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 143

originating from escapes from two game estates in the area (Serrano et al. 2002;

Cassinello et al. 2004).

Data origin

Distributional data

The aoudad presence data come from Cassinello et al. (2004), and were

obtained by surveys conducted intermittently during 3 years (from 1999 to 2001),

mainly during August, September and October, the beginning of the mating season,

when animal visibility is enhanced (Solbert 1980; Gray and Simpson 1982, 1983; J.

Cassinello, pers. obs.).

In geographically explicit analyses, the spatial resolution (grid cell size)

constitutes a key decision for the accuracy and reliability of the results (see Chefaoui

et al. 2005). In this study, we transformed the available data on aoudad presence

(Cassinello et al. 2004) from 100 x 100 m UTM grid cells to a 1 x 1 km UTM grid

cells. This could create error and scale problems, but previous studies have shown a

degree of correlation in species' distribution patterns across narrow ranges of scales

(Hartley et al. 2004).

Since free-ranging aoudads in the study area have two independent

population nuclei, we used one population to calibrate ENFA models (Sierra Espuña

population nucleus, n=60 records), and the other, as an independent set, for the

empirical evaluation of the predictive maps (Alicante population nuclei, n=22

records).

Environmental data

Data from an Iberian GIS database compiled and managed by J. M. Lobo, A.

Jiménez-Valverde, R. M. Chefaoui and J. Hortal (for details contact JH, or see

http://www.biogeografia.com/ for additional information) was imported and processed

into the raster-based Idrisi GIS System (Clark Labs 2001, 2004). A set of GIS maps

for the study area was produced, including a number of continuous variables that

were thought to determine the aoudad distribution (see below). All of the variables

were extracted at a 1-km2 resolution, corresponding to the chosen resolution of

Page 166: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 144

aoudad presence data. This grain size chosen for the analyses is a consensus

between the spatial accuracy of biological data, the mobility of the aoudad, and the

large spatial extent used (see another example at Chefaoui et al. 2005).

Many climatic and ecological factors have been used to explain the variations

in population abundance and distribution of ungulate species in the Iberian Peninsula

(e.g., Acevedo et al. 2005, 2006 [Capítulo 1.1]). Here, we selected 42 variables that

could act as determinants of current aoudad distribution in SE Iberian Peninsula; 38

accounting for environmental variation (climate, habitat structure, vegetation

characteristics and geomorphology), one index of the adequacy of landscape to

aoudads, and four for direct human disturbance (Table 1):

i) Seventeen climate variables were obtained from the monthly values of the

digital version of the Spanish National Climate Atlas (provided by the Instituto

Nacional de Meteorología; freely available at http://www.inm.es/); four accounting for

seasonal precipitations (mm), twelve accounting for the mean, maximum and

minimum temperature at each season (ºC), and one accounting for the annual range

of temperatures (ºC).

ii) Nine geomorphology variables were extracted for each 1 km2 pixel from an

Iberian Digital Elevation Model of 100 m pixel width extracted from a global DEM

(Clark Labs 2000): mean, maximum and minimum altitude (m.a.s.l.), altitude range

(meters), mean, maximum and minimum slope (degrees), percentage of area with

slopes greater than 30º, and mean aspect diversity, using a 7x7 pixel kernel on a 9-

categories reclassified aspect map (see Clark Labs 2001, 2004 for the method; and

Chefaoui et al. 2005 for an example of the use of this variable).

iii) Habitat structure variables were obtained from the 250 m pixel width land

use information of the CORINE NATLAN European project (EEA 2000); six variables

accounting for land cover (Table 1) were extracted as percentages of each land

category per 1 km2 pixel, whereas mean land use diversity was obtained with the

same technique as aspect diversity.

iv) Five variables account for the type of vegetation available, according to its

nutritional value; the information on vegetation composition coming from the digital

version of the Spanish National Forest Map (Ruiz de la Torre 2002) was rasterized to

a 100 m pixel width resolution, and reclassified to obtain the surface of each 1 km2

Page 167: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 145

pixel occupied by pine trees (Pinus sp.), xeric-leaved trees (e.g., Quercus ilex,

Juniperus sp.), humid-leaved trees (e.g., Quercus pyrenaica, Fraxinus sp.), xeric-

leaved bushes (e.g., Cistus sp.), and humid-leaved bushes (e.g., Pistacia sp.).

v) A landscape avoidance index was created by combining available land use

map and the degree of alteration made by human activity in comparison to natural

habitats. This index was based on potential land avoidance by the aoudad rather

than landscape preference or use, and could be applicable to most Mediterranean

wild ungulates. We have denominated it Wild Ungulates Land Avoidance Index

(WULAI). Land use variables receive a score proportional to the rareness of

encountering aoudads in these landscapes, i.e., the further to the original habitat the

higher the score (up to 100). Thus, in the original CORINE NATLAN map (100 x 100

m pixel resolution; EEA 2000) we assigned 100 to urban and other constructed

areas; 50 to irrigated croplands; 30 to fruit orchards and patchy crops; 20 to

vineyards; 10 to dry crops, olive groves, managed grasslands and mosaic of crops

and natural vegetation; and finally 0 landscape avoidance to forest, bare rock,

bushlands and natural grasslands. WULAI scores were averaged across each

square kilometre, ranging from 0 (minimum avoidance, maximum use) to 100

(maximum avoidance, minimum use).

vi) Finally, four distance variables account for potential human disturbance

(see, e.g., Osborne et al. 2001; Schadt et al. 2002): the distance to urban areas,

roads, and first order roads (highways and national level roads), calculated with the

Distance Operator tool of Idrisi 32 software. In addition, the distance to the Sierra

Espuña population nucleus (DSE), i.e. the original release location (Cassinello 2000),

was used in several analyses, to account for the recent dispersion of the species

(see Acevedo et al. 2005).

All variables were Box-Cox normalized prior to their use in the ENFA analyses.

Statistical Analyses

Niche modelling

ENFA analyses were conducted using BioMapper (Hirzel et al. 2004b; freely

available at http://www.unil.ch/biomapper/). This software uses the ENFA

methodology to produce predictive maps of habitat suitability (i.e., potential

Page 168: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 146

distribution) from GIS information (see applications at Hirzel 2001; Hirzel et al. 2001,

2002; Hirzel and Arlettaz 2003; Gallego et al. 2004; Hirzel et al. 2004a; Chefaoui et

al. 2005; Hortal et al. 2005; Acevedo et al. 2006 [Capítulo 1.1]). We developed two

different ENFA analyses, one to describe the Environmental Niche (herein,

environmental niche model) using the variables in the first four of the above-

mentioned groups and using all variables present in the six groups above to describe

the likely Observed Niche. Table 1.- Variables used in the analyses (including abbreviations). See text for details and data sources. Climate Geomorphology PW Precipitation in winter (mm) Alt Mean altitude (m) PF Precipitation in autumn (mm) AltMx Maximum altitude (m) PSp Precipitation in spring (mm) AltMn Minimum altitude (m) PSm Precipitation in summer (mm) AltRn Altitude range (m) TW Mean temperature in winter (ºC) Slp Mean slope (º) TF Mean temperature in autumn (ºC) SlpMx Maximum slope (º) TSp Mean temperature in spring (ºC) SlpMn Minimum slope (º) TSm Mean temperature in summer (ºC) Slp30 Area with slope > than 30º (%) TMxW Maximum temperature in winter (ºC) AspDv Aspect diversity (H’ index) TMxF Maximum temperature in autumn (ºC) TMxSp Maximum temperature in spring (ºC) Habitat structure TMxSm Maximum temperature in summer (ºC) HFr Forest area (%) TMnW Minimum temperature in winter (ºC) HCFr Coniferous forest area (%) TMnF Minimum temperature in autumn (ºC) HBFr Broadleaved forest area (%) TMnSp Minimum temperature in spring (ºC) HBsh Bushland area (%) TMnSm Minimum temperature in summer (ºC) HGrs Grassland area (%) TRn Annual range of temperatures (ºC) HDC Dryland crops (%) LUDv Land use diversity (H’ index) Vegetation VHTr Humid-leave tree area (%) Landscape use VXTr Xeric-leave tree area (%) WULAI Landscape Avoidance Index VHBsh Humid-leave bush area (%) VXBsh Xeric-leave bush area (%) Human disturbance VPTr Pine tree area (%) DUr Distance to urban areas (km) DRd Distance to the nearest road (km) DHw Distance to the nearest highway (km) DSE Distance to Sierra Espuña nucleus (km)

These analyses, and the resulting habitat suitability maps, are produced in two

steps:

1. ENFA was used to characterize the response of the aoudad to the main

variations of the used predictors in the study area. ENFA analysis identifies two key

components of species environmental niches: marginality and tolerance, that is, how

rare are the conditions selected by the species within the context of the studied

Page 169: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 147

region, and how tolerant is the species to modifications of these conditions produced

by secondary gradients (see Hirzel 2001 and Hirzel et al. 2002). Computationally,

marginality is a measure of the distance between the central trend of the species

environmental selection and the mean environmental conditions of the region in the

most important environmental gradient (i.e. the higher the marginality, the more

extreme the conditions with regard to the area studied), and tolerance measures the

range width with regard to all gradients present in the study area (see below), that is,

how the species tolerates environmental variations (varying from 0 to 1; i.e. the

closer to 0, the more specialist the species). In this context, the specialisation of a

species is defined as the inverse of its tolerance. In our study, aoudad presence data

was used to identify a number of orthogonal factors in the predictors, accounting for

the maximum differentiation between mean conditions for the study area, and mean

conditions where the aoudad was found. The first factor (Marginality Factor) accounts

for the marginality of the species, whereas the other factors (Specialization Factors)

account for the species' response to other secondary environmental gradients.

2. Once ENFA factors are computed, habitat suitability scores for each pixel

are calculated and mapped in accordance to the responses of the species to each

factor. Partial suitability scores are computed for each factor as the percent distance

to the median scores of observed presences, and Habitat Suitability is obtained as a

weighted average of these partial suitabilities, according to the variability explained

by each factor. These scores are then mapped using the ENFA factor maps (Hirzel et

al. 2002).

Model validation and accuracy

Two measures of how the resulting suitability model explains the observed

data were used: Explained Information, which accounts for the total variability of the

species distribution explained by the model, and Explained Specialisation, which

accounts for additional variability in the Marginality and Specialisation Factors that is

not included in the Explained Information measure (Hirzel et al. 2004b).

Since both Explained Information and Explained Specialisation measures are

derived from the observed data, no assessment of how the model can be

extrapolated to the rest of the region is made. However, before using the ENFA

results or habitat suitability maps (HSMs), we needed to evaluate their accuracy in

Page 170: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 148

describing the actual spatial response of the aoudad. A good way to assess the real

accuracy of any spatial prediction is to use independent data to determine how model

predictions perform outside the boundaries of the data used in developing the ENFA.

We used two different validation strategies based in such assumption to determine a)

the predictive power of the ENFA model within the range of the population used to

calibrate it (within-data validation; i.e. the accuracy to describe the distribution of the

Sierra Espuña population), and b) its ability to predict the geographic responses of

other aoudad populations (external validation; i.e., placed outside of the bounds of

the range used to develop the model). While the former measures how the model fit

into the data, the latter gives a measure of the generality of the niche description of

the species.

Within-data validation was made through the Jackknife cross validation

procedure implemented in Biomapper 3.0 software (Hirzel et al. 2001; Boyce et al.

2002). Briefly, the data originally used for the ENFA analysis is partitioned in several

spatially-aggregated groups; each group is extracted once from the original dataset,

the models is recalibrated according to the new dataset, and the prediction results

are compared to the group of data plots extracted; this procedure is repeated as

much times as groups defined (see Boyce et al. 2002 for details). Model accuracy is

measured as the agreement between independent and calibration data, using

Spearman correlations. For the external validation, we used the presence data from

Alicante population nuclei; the predictions of the Sierra Espuña model are compared

with the presences in Alicante, and the degree of agreement between predictions

and independent data is measured using Spearman correlations. This way, a truly

empirical evaluation of the generality of the ENFA model in describing aoudad

distribution is performed using an independent population.

Niche analysis

Following Chefaoui et al. (2005), we assume that the variation of habitat

suitability scores across environmental gradients provides a description of the shape

of the species' response to such gradients. To obtain a graphic representation of this

response, we divided the Marginality Factor scores in 20 homogeneous intervals,

and the average habitat suitability scores at each interval were represented for each

habitat model (see Chefaoui et al. 2005; Hortal et al. 2005).

Page 171: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 149

To evaluate the relationship between the habitat suitability maps obtained in

the two models, they were reclassified to obtain suitable areas (HS scores between

50-75) and highly suitable areas (HS scores >75) for each model, and then, we

analysed the surface occupied by them.

RESULTS

Description of the Environmental Niche

Thirty-one environmental variables were used for the ENFA analysis, being

reduced to four factors that explained 77.5% of the variance (Table 2).

Table 2. Coefficients of the variables used in the environmental niche ENFA. Variable codes as in Table 1.

Variable Marginality Factor 2 Factor 3 Factor 4

1 HFr 0.324 0.000 0.000 0.000 2 HBsh 0.023 0.000 0.000 0.000 3 VXBsh 0.131 0.000 0.000 0.000 4 VPTr 0.205 0.000 0.000 0.000 5 HDc -0.125 0.000 0.000 0.000 6 AltMx 0.231 0.702 0.707 0.731 7 AltMn 0.017 -0.636 -0.64 -0.662 8 AspDv 0.077 0.000 0.000 0.000 9 LUDv -0.023 0.000 0.000 0.000 10 Alt 0.184 0.000 0.000 0.000 11 SlpMx 0.438 0.000 0.000 0.000 12 Slp 0.386 0.000 0.000 0.000 13 SlpMn 0.155 0.000 0.000 0.000 14 PW -0.142 0.000 0.000 0.000 15 PF -0.012 0.000 0.000 0.000 16 PSp -0.086 0.000 0.000 0.000 17 PSm -0.034 0.000 0.000 0.000 18 AltRn 0.361 -0.149 -0.15 -0.155 19 TRn -0.052 0.128 0.116 0.025 20 TMxW -0.016 0.000 0.000 0.000 21 TMxF -0.083 0.000 0.000 0.000 22 TMxSp -0.043 0.000 0.000 0.000 23 TMxSm -0.101 0.000 0.000 0.000 24 TW -0.122 0.206 0.187 0.04 25 TF -0.171 0.000 0.000 0.000 26 TSp -0.144 0.000 0.000 0.000 27 TSm -0.213 -0.15 -0.136 -0.029 28 TMnW -0.081 0.000 0.000 0.000 29 TMnF -0.095 0.000 0.000 0.000 30 TMnSp -0.095 0.000 0.000 0.000 31 TMnSm -0.124 0.000 0.000 0.000

Page 172: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 150

The marginality factor (first axis) explained a lowest percentage (0.73%) than

specialization. The specialization factors (2, 3 and 4) explained 38.35%, 26.61%, and

11.81%, respectively. The maximum and mean slopes and altitude range were, in

that order, the variables with the highest marginality coefficients, i.e., the scores of

these variables in the presence cells differed from their mean values in the study

area (Table 2).

Figure 2a.- Habitat Suitability Maps for the environmental niche model. The scale on the right shows habitat suitability values (0 = low suitability; 100 = high suitability). The geographic coordinate system shown is the UTM.

Prospects on the observed niche

Thirty-seven environmental, landscape and human disturbance variables were

included in the ENFA to develop the observed niche model (see Table 3). These

variables were reduced to four factors explaining 75.6 % of the variance (Table 3).

Such reduction in explained variability from the environmental niche model

comes from the higher complexity in the description of the region, provided by the

new variables, which might be uncorrelated with the environmental ones used in the

other model.

Page 173: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 151

Table 3. Coefficients of the variables used in the observed niche. Variable codes as in Table 1. DSE refers to the distance to the original release location in Sierra Espuña.

Variable Marginality Factor 2 Factor 3 Factor 4

1 HFr 0.270 0.000 0.000 0.000 2 HBsh 0.019 0.000 0.000 0.000 3 VXBsh 0.109 0.000 0.000 0.000 4 VPTr 0.171 0.000 0.000 0.000 5 HDc -0.104 0.000 0.000 0.000 6 AltMx 0.192 0.668 0.625 -0.694 7 AltMn 0.142 -0.605 -0.566 0.628 8 AspDv 0.064 0.000 0.000 0.000 9 LUDv -0.019 0.000 0.000 0.000 10 Alt 0.153 0.000 0.000 0.000 11 SlpMx 0.364 0.000 0.000 0.000 12 Slp 0.321 0.000 0.000 0.000 13 SlpMn 0.129 0.000 0.000 0.000 14 PW -0.118 0.000 0.000 0.000 15 PF -0.010 0.000 0.000 0.000 16 PSp -0.072 0.000 0.000 0.000 17 PSm -0.029 0.000 0.000 0.000 18 AltRn 0.300 -0.141 -0.132 0.147 19 TRn -0.043 0.184 -0.234 -0.144 20 TMxW -0.013 0.000 0.000 0.000 21 TMxF -0.069 0.000 0.000 0.000 22 TMxSp -0.036 0.000 0.000 0.000 23 TMxSm -0.084 0.000 0.000 0.000 24 TW -0.101 0.296 -0.377 -0.232 25 TF -0.143 0.000 0.000 0.000 26 TSp -0.120 0.000 0.000 0.000 27 TSm -0.177 -0.214 0.273 0.168 28 TMnW -0.067 0.000 0.000 0.000 29 TMnF -0.079 0.000 0.000 0.000 30 TMnSp -0.079 0.000 0.000 0.000 31 TMnSm -0.103 0.000 0.000 0.000 32 DSE -0.473 0.000 0.000 0.000 33 DHw 0.107 0.000 0.000 0.000 34 DRd 0.184 0.000 0.000 0.000 35 DUr 0.188 0.000 0.000 0.000 36 WULAI -0.058 0.000 0.000 0.000

Since ENFA is an ordination technique, based in the differences between the

central trends of species and the whole region in the hyperspace formed by the

descriptor variables used, the higher the number of uncorrelated variables, the more

complex the description of variability, and thus the smaller the variability explained

when these variables are incorporated to the analysis.

The marginality factor explained the lowest percentage (0.17%) of

specialization in this model. The specialization factors (2, 3 and 4) explained 34.39%,

22.60%, and 18.43%, respectively. The proximity to the original release location,

Page 174: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 152

followed by the maximum and mean slopes, and the altitude range were the

variables with higher marginality coefficients, i.e., the scores of these variables in the

presence cells differed from their mean values in the study area (Table 3). As in the

environmental niche model, this result indicates that aoudads show a preference for

using rough and craggy areas. Similarly, maximum and minimum altitude had the

highest coefficients amongst the specialization factors. The marginality coefficient

obtained was 1.55, demonstrating an even higher separation of the species from the

central part of the environmental gradient.

Figure 2b.- Habitat Suitability Maps for the observed niche model. The scale on the right shows habitat suitability values (0 = low suitability; 100 = high suitability). The geographic coordinate system shown is the UTM.

The global tolerance value was 0.27, which suggests that the aoudad is

relatively specialized in this region of Southern Spain. The HSM (Figure 2b) showed

a high probability of appearance of the aoudad in the centre of the study area

following a southwest – northeast axis, but this distribution was more patchily than in

the environmental niche model. Again, Jackknife validation indicates that the

predictive map of aoudad’s observed niche is reliable (within-data validation; mean

Page 175: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 153

Spearman R = 0.92), also showing a high predictive capacity when is validated with

the Alicante population (external validation; mean Spearman R = 0.61).

Changes in Habitat Suitability

The variation of mean habitat suitability scores of both environmental and

observed niche models along the gradient identified by the marginality factors can be

seen in Figure 3. Both models showed similar environmental adaptations; however,

the observed niche model was more restricted and had lower habitat suitability

values than the environmental niche model.

Figure 3.- Variation of the mean habitat suitability scores along the gradient defined by the marginality factor. As the marginality factors for both models were highly correlated, we plotted them against the one from the environmental niche model. The marginality factor was divided into 20 intervals, and mean values per interval are shown.

The suitable areas (HS>50) in the environmental model covered 7.78% of the

study area (4823 km2) 34.77% of this area was suitable, and 12.32% was highly

suitable (HS>75) in the observed niche model (1677 and 594 km2, respectively). On

the other hand, the highly suitable areas in the introduced model covered 1.39% of

Page 176: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 154

the study area (861 km2), being 76.07% suitable and 36.01% highly suitable in the

observed niche model (655 and 310 km2, respectively).

DISCUSSION

We performed an analysis of the factors determining habitat suitability (both in

the environmental and observed niches) in the introduced aoudad population in

southeastern Spain. The species currently occupies several mountainous areas of

the Cordillera Sub-Bética mountain range. Two main zones can be distinguished

from the presence data, the one originating from the first release in Sierra Espuña

Natural Park in 1970, which comprises a wide-ranging population; and a second one,

further north, originating from escapes from a couple of hunting estates in Alicante

(see Cassinello et al. 2004). Since data on habitat suitability in its native range in

North Africa is not available, we have used nuclei from one of these zones (Alicante)

as an independent test to determine the reliability of the geographic expression of

both niche descriptions calculated from the other (Sierra Espuña nucleus).

Habitat suitability of the aoudad in Spain

According to our characterization of its environmental niche (see Figure 2a),

the aoudad selected areas characterized by a low winter precipitation regime, high

altitudes and terrain slopes as well as with the presence of forest lands. These

results agree with the habitat selection expected for a mountain ungulate such as the

aoudad, where rocky and precipitous areas abound, from the sea level up to the

extent of snow-free altitudes (see Shackleton 1997). This niche characterization for

the aoudad is highly reliable, as our maps showed a high predictive power when

validated using the second population in Alicante. Therefore, we suggest a high

potentiality for this exotic ungulate to conquer new areas around its current

distribution range in southern Spain.

The description of aoudad’s current habitat suitability varies when landscape

avoidance and anthropogenic variables are included in the analysis to develop the

observed niche model. When landscape avoidance and human disturbance effects

Page 177: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 155

are included in the ENFA model, it appeared that the aoudad was associated with

less mountainous areas, with higher temperatures, forest and dryland crop areas

(see Table 3). Human land use data will also be more patchily distributed than

environmental parameters, therefore contributing to a more patchy distribution. This

resulted in a narrower, more patchy suitability map (Figure 2b), due to the landscape

and human disturbance constraints added to ENFA calculations. The high

coefficients obtained for the distance to the original release locality indicate that

current aoudad distribution is clearly shaped by the location of the initial release. In

addition, the observed niche was narrower than the environmental niche, and was

also placed nearer to one of the extremes of the marginality factor axis (see Figure

3).

There was an important relationship between habitat suitability for the aoudad

and the intensity of human disturbance; humanized landscapes with moderate-to-

high WULAI scores appear not to be suitable for the species. If WULAI scores are

plotted against HSM scores, there is a progressive diminution of the maximum

habitat suitability for the aoudad as its landscape avoidance increases, reaching 0

above intermediate levels of disturbance (Figure 4).

Figure 4.- Relationship between the habitat suitability for the aoudad, and the Wild Ungulates Land Avoidance Index (WULAI) from the observed niche analysis (see Figure 2b).

However, the current analysis does not allow us to separate the effects of

different types of land use on the aoudad range expansion. These single effects

Page 178: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 156

could be even stronger than that measured by our landscape use index, so the exact

effects of landscape modification by humans on aoudad dispersion remain untested.

As an example, distance to roads presents more explanatory power than WULAI

(see Table 3), an effect of using a complex mixture of land use categories (EEA

2000) within a single index (see Methods). Thus, further analyses are needed to

unravel the individual effects of these human impacts on aoudad habitat selection.

Conservation concerns

Most ungulate species in Spain are currently expanding in range (e.g., the

Iberian ibex; Pérez et al. 2002; Acevedo et al. 2006 [Capítulo 1.1]). Some species

are occupying new habitats that may have not supported large herbivores for a long

time; consequently, local plant species may have evolved without recovering high

grazing pressure, so that they may not be tolerant to a more intensive herbivore

presence. Furthermore, the increasing presence of allochthonous ungulates, such as

the European mouflon (Ovis aries musimon) and the aoudad, make things worse as

they may particularly threaten local plant species (Rodríguez-Piñero and Rodríguez-

Luengo 1992). It has been seen that exotic species can substantially influence the

composition and structure of plant and animal communities, alter nutrient and water

cycles, and change disturbance regimes (e.g. Parker et al. 1999; Mack et al. 2000;

Holmgren 2002).

This work shows that the potentially high expansion capacity of the exotic

aoudad in the south of Spain is resulting from the similarity of the host habitat to that

of the region of origin, North Africa. In Spain, the aoudad has not yet reached

suitable areas located at much higher altitudes (i.e., Sierra Nevada mountain range),

which is the native land of the Iberian ibex. We hypothesize that if the aoudad

reaches these areas, potential competition may arise with the ibex, given the

biological similarities of these caprid species. In addition, the Sierra Nevada (a

Spanish National Park) is known to be an important hotspot for Iberian plants, both in

terms of richness and endemism (see Castro Parga et al. 1996; Lobo et al. 2001).

Therefore, if the aoudad reached the region, many endangered endemic plants could

be at a higher risk. Given this potential threat, it is important to develop strategies to

prevent the aoudad dispersing through the suitable areas located in the western

limits of its current distribution (see Figure 2). Our analysis has identified several

Page 179: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 157

constraints to the dispersal of the aoudad associated with the intensity of human

disturbance and land use. This suggests that further investigations on the individual

effects (e.g., management of cultivated landscapes, grazing intensities and

competition with livestock) could help to design land use strategies that are able to

create a landscape matrix which offers a high frictional effect on aoudad dispersal.

ACKNOWLEDGEMENTS

We are indebted to Falk Huettmann and two anonymous referees for their help

in revising a previous version of the manuscript. We also wish to thank Jorge M.

Lobo, Alberto Jiménez-Valverde and Rosa M. Chefaoui for their work on and

maintenance of the GIS database, and to them and David Nogués-Bravo and Miguel

B. Araújo for some discussions on the geographic expression of the niche of the

species. This work has also benefited from the critical comments of Burt P. Kotler as

well as from some discussion with Miguel B. Araújo and David Nogués-Bravo. JC is

currently enjoying a Ramón y Cajal research contract at the CSIC awarded by the

Ministerio de Educación y Ciencia (MEC); he is also supported by the project PBI-05-

010 granted by Junta de Comunidades de Castilla-La Mancha. PA is enjoying a grant

from Principado de Asturias and CSIC. JH is supported by a Portuguese FCT

(Fundação para a Ciência e Tecnologia) grant (BPD/20809/2004), and also by the

Fundación BBVA project “Yámana - Diseño de una red de reservas para la

protección de la biodiversidad en América del Sur Austral utilizando modelos

predictivos de distribución con taxones hiperdiversos”, as well as the Spanish MEC

project CGL2004-0439/BOS.

REFERENCES

Acevedo, P., Cassinello, J., Gortázar, C. (2006) The Iberian ibex is under an expansion trend but displaced to suboptimal habitats by the presence of extensive goat livestock in central Spain. Biodiversity and Conservation DOI 10.1007/s10531-006-9032-y.

Acevedo, P., Delibes-Mateos, M., Escudero, M.A., Vicente, J., Marco, J., Gortázar, C. (2005) Environmental constraints in the colonization sequence of roe deer

Page 180: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 158

(Capreolus capreolus Linnaeus, 1758) across the Iberian Mountains, Spain. Journal of Biogeography 32, 1671-1680.

Anderson, R.P., Gómez-Laverde, M., Peterson, A.T. (2002) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Global Ecology and Biogeography 11, 131-141.

Araújo, M.B., Guisan, A. (2006) Five (or so) challenges for species distribution modelling. Journal of Biogeography 33, in press.

ARMAN (1991) Informe sobre el Parque Natural de la Sierra de Espuña. Unpublished Report, Agencia Regional del Medio Ambiente y la Naturaleza (ARMAN), Murcia.

Austin, M.P., Nicholls, A.O., Margules, C.R. (1990) Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecological Monographs 60, 161-177.

Borges, P. A. V., Lobo, J. M., Azevedo, E. B., Gaspar, C., Melo, C., Nunes, V. L. (2006) Invasibility and species richness of island endemic arthropods: a general model of endemic vs. exotic species. Journal of Biogeography 33, 169-187.

Boyce, M.S. (2006) Scale for resource selection functions. Diversity and Distributions 12, 269-276.

Boyce, M.S., Vernier, P.R., Nielsen, S.E., Schmiegelow, F.K.A. (2002) Evaluating resource selection functions. Ecological Modelling 157, 281-300.

Brown, J.H., Sax, D.F. (2004) An essay on some topics concerning invasive species. Austral Ecology 29, 530-536.

Cassinello, J. (2000) Ammotragus free-ranging population in the south-east of Spain: a necessary first account. Biodiversity and Conservation 9, 887-900.

Cassinello, J., Serrano, E., Calabuig, G., Pérez, J.M. (2004) Range expansion of an exotic ungulate (Ammotragus lervia) in southern Spain: ecological and conservation concerns. Biodiversity and Conservation 13, 851-866.

Castro Parga, I., Moreno Saiz, J.C., Humphries, C.J., Williams, P.H. (1996) Strengthening the Natural and National Park system of Iberia to conserve vascular plants. Botanical Journal of the Linnaean Society 121, 189-206.

Chefaoui, R.M., Hortal, J., Lobo, J.M. (2005) Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biological Conservation 122, 327-338.

Clark Labs (2000) Global Change Data Archive Vol. 3. 1 km Global Elevation Model, CD-Rom, Clark University.

Clark Labs (2001) Idrisi 32 Release 2. GIS software package. Clark Labs, Worcester, MA.

Page 181: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 159

Clark Labs (2004) Idrisi Kilimanjaro version 14.02. GIS software package. Clark Labs, Clark University, Worcester, MA.

Colautti, R.I., MacIsaac, H.J. (2004) A neutral terminology to define 'invasive' species. Diversity and Distributions 10, 135-141.

Crosby, A.W. (1986) Ecological imperialism: the biological expansion of Europe, 900–1900. Cambridge University Press, Cambridge.

Diamond, J.M. (1989) Overview of recent extinctions. In: Conservation for the Twenty-first Century. D. Western, M.C. Pearl (eds.), Oxford University Press, Oxford.

Didham, R.K., Tylianakis, J.M., Hutchinson, M.A., Ewers, R.M., Gemmell, N.J. (2005) Are invasive species the drivers of ecological change? Trends in Ecology & Evolution 20, 470-474.

EEA (2000) NATLAN. Nature/land cover information package. European Environment Agency, Luxembourg.

Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC., Peterson, A.T., Phillips, S.J., Richardson, K.S., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S., Zimmermann, N.E. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129-151.

Ferrier, S., Watson, G., Pearce, J., Drielsma, M. (2002) Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling. Biodiversity and Conservation 11, 2275-2307.

Forsyth, D.M., Duncan, R.P. (2001) Propagule size and the relative success of exotic ungulate and bird introductions to New Zealand. The American Naturalist 157, 583-595.

Gallego, D., Cánovas, F., Esteve, M.A., Galián, J. (2004) Descriptive biogeography of Tomicus (Coleoptera: Scolytidae) species in Spain. Journal of Biogeography 31, 2011-2024.

González-Candela, M., León-Vizcaíno, L., Cubero-Pablo, M.J. (2004) Population effects of sarcoptic mange in Barbary sheep (Ammotragus lervia) from Sierra Espuña Regional Park, Spain. Journal of Wildlife Diseases 40, 456-465.

González-Candela, M., León-Vizcaíno, L. (1999) Sarcoptic mange in Barbary sheep (Ammotragus lervia) population of Sierra Espuña Regional Park (Murcia). Galemys 11, 43-58.

Gray, G.G. (1985) Status and distribution of Ammotragus lervia: a worldwide review. In: Wild Sheep. Distribution, Abundance, Management and Conservation of the Sheep of the World and Closely Related Mountain Ungulates. M. Hoefs (ed.), Northern Wild Sheep and Goat Council, Whitehouse, Yukon.

Page 182: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 160

Gray, G.G., Simpson, C.D. (1982) Group dynamics of free-ranging Barbary sheep in Texas. Journal of Wildlife Management 46, 1096-1101.

Gray, G.G., Simpson, C.D. (1983) Population characteristics of free-ranging Barbary sheep in Texas. Journal of Wildlife Management 47, 954-962.

Guisan, A., Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135, 147-186.

Guisan, A., Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters 8, 993-1009.

Guisan, A., Lehmann, A., Ferrier, S., Austin, M.P., Overton, J.M., Aspinall, R., Hastie, T. (2006) Making better biogeographical predictions of species' distributions. Journal of Applied Ecology 43, 386-392.

Gurevitch, J., Padilla, D.K. (2004) Are invasive species a major cause of extinctions? Trends in Ecology & Evolution 19, 470-474.

Hartley, S., Kunin, W.E., Lennon, J.J., Pocock, M.J.O. (2004) Coherence and discontinuity in the scaling of species distribution patterns. Proceedings of the Royal Society Biological Sciences B 271, 81-88.

Hengeveld, R. (1989) Dynamics of Biological Invasions, Chapman & Hall, London.

Hirzel, A., Helfer, V., Métral, F. (2001) Assessing habitat-suitability models with a virtual species. Ecological Modelling 145, 111-121.

Hirzel, A.H. (2001) When GIS come to life. Linking landscape- and population ecology for large population management modelling: the case of Ibex (Capra ibex) in Switzerland. Page 106. Institute of Ecology, Laboratory for Conservation Biology. University of Lausanne, Lausanne.

Hirzel, A.H., Arlettaz, R. (2003) Environmental-envelope based habitat-suitability models. In: J. Manly (ed) 1st Conference on Resource Selection by Animals. Omnipress, Laramie.

Hirzel, A.H., Hausser, J., Chessel, D., Perrin, N. (2002) Ecological-niche factor analysis: How to compute habitat- suitability maps without absence data? Ecology 83, 2027-2036.

Hirzel, A.H., Hausser, J., Perrin, N. (2004b) Biomapper 3.0. Laboratory for Conservation Biology. University of Lausanne, Lausanne.

Hirzel, A.H., Posse, B., Oggier, P.A., Crettenand, Y., Glenz, C., Arlettaz, R. (2004a) Ecological requirements of a reintroduced species, with implications for release policy: the Bearded vulture recolonizing the Alps. Journal of Applied Ecology 41, 1103-1116.

Holmgren, M. (2002) Exotic herbivores as drivers of plant invasion and switch to ecosystem alternative states. Biological Invasions 4, 25-33

Page 183: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 161

Hortal, J., Borges, P.A.V., Dinis, F., Jiménez-Valverde, A., Chefaoui, R.M., Lobo, J.M., Jarroca, S., Brito de Azevedo, E., Rodrigues, C., Madruga, J., Pinheiro, J., Gabriel, R., Cota Rodrigues, F., Pereira, A.R. (2005) Using ATLANTIS - Tierra 2.0 and GIS environmental information to predict the spatial distribution and habitat suitability of endemic species. In: A List of the terrestrial fauna (Mollusca and Arthropoda) and flora (Bryophyta, Pteridophyta and Spermatophyta) from the Azores P.A.V. Borges, R. Cunha, R. Gabriel, A.F. Martins, L. Silva, V. Vieira (eds.), Direcção Regional de Ambiente e do Mar dos Açores, Angra do Heroísmo and Ponta Delgada. Available at http://sram.azores.gov.pt/lffta/.

Hortal, J., Garcia-Pereira, P., García-Barros, E. (2004) Butterfly species richness in mainland Portugal: Predictive models of geographic distribution patterns. Ecography 27, 68-82.

Jaksic, F.M., Iriarte, J.A., Jiménez, J.E., Martínez, D.R. (2002) Invaders without frontiers: cross-border invasions of exotic mammals. Biological Invasions 4, 157-173.

Lobo, J.M., Castro, I., Moreno, J.C. (2001) Spatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic Islands. Biological Journal of the Linnean Society 73, 233-253.

Lobo, J.M., Verdú, J.R., Numa, C. (2006) Environmental and geographical factors affecting the Iberian distribution of flightless Jekelius species (Coleoptera: Geotrupidae). Diversity and Distributions 12, 179-188.

Lodge D.M. (1993) Biological invasions: lessons for ecology. Trends in Ecology & Evolution 8, 133–137.

Macdonald I.A.W., Graber, D.M., DeBenedetti, S., Groves, R.H., Fuentes, E.R. (1988) Introduced species in nature reserves in Mediterranean type climatic regions of the world. Biological Conservation 44, 37–66.

Mack, M.C., D’Antonio, C.M. (1998) Impacts of biological invasions on disturbance regimes. Trends in Ecology & Evolution 13, 193–198.

Mack, R.N., Simberloff, D., Lonsdale, W.M., Evans, H., Bazzas, F.A. (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10, 689–710.

Meyer, C.B., Thuiller, W. (2006) Accuracy of resource selection functions across spatial scales. Diversity and Distributions 12, 288-297.

Mooney, H.A., Hobbs, R.J. (eds.) (2000) Invasive species in a changing world. Island Press, Washington.

Ogren, H. (1965) Barbary sheep. New Mexico Department of Game and Fish Bulletin 13, Santa Fe.

Olivier, F., Wotherpoon, S.J. (2005) GIS-based application of resource selection functions to the prediction of snow petrel distribution and abundance in East Antarctica: Comparing models at multiple scales. Ecological Modelling 189, 105-129.

Page 184: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 162

Osborne, P.E., Alonso, J.C., Bryant, R.G. (2001) Modelling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards. Journal of Applied Ecology 38, 458-471.

Parker, I.M., Simberloff, D., Lonsdale, W.M., Goodell, K., Wonham, M., Kareiva, P.M., Williamson, M.H., Von Holle, B., Moyle, P.B., Byers, J.E., Goldwasser, L. (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions 1, 3–19.

Pérez J.M., Granados, J.E., Soriguer, R.C., Fandos, P., Marquez, F.J., Crampe, J.P. (2002) Distribution, status and conservation problems of the Spanish ibex, Capra pyrenaica (Mammalia: Artiodactyla). Mammal Review 32, 26-39.

Peterson, A.T., Soberón, J., Sánchez-Cordero, V. (1999) Conservatism of ecological niches in evolutionary time. Science 285, 1265-1267.

Richardson, D.M., Cambray, J.A., Chapman, R.A., Dean, W.R.J., Griffiths, C.L., Le Maitre, D.C., Newton, D.J., Winstanley, T.J. (2003) Vectors and pathways of biological invasions in South Africa - Past, future and present. In: Invasive Species: Vectors and Management Strategies. G. Ruiz, J. Carlton (eds.), Island Press, Washington, D.C.

Rivas-Martínez, S. (1987) Introducción. Nociones sobre fitosociología, biogeografía y bioclimatología. In. La vegetación de España. M. Peinado, S. Rivas-Martínez (eds.). Colección Aula Abierta. Universidad de Alcalá de Henares, Madrid.

Robertson, M.P., Caithness, N., Villet, M.H. (2001) A PCA-based modelling technique for predicting environmental suitability for organisms from presence records. Diversity and Distributions 7, 15-27.

Rodríguez-Piñero J.C., Rodríguez-Luengo, J.L. (1992) Autumn food-habits of the Barbary sheep (Ammotragus lervia Pallas 1777) on La Palma Island (Canary Islands). Mammalia 56, 385-392.

Ruesink J.L., Parker, I.M., Groom, M.J., Kareiva, P.M. (1995) Reducing the risks of nonindigenous species introductions. Bioscience 45, 465–477.

Ruiz de la Torre, J. (2002) Mapa Forestal de España. Escala 1:200.000. Memoria General. Ministerio de Medio Ambiente. Organismo Autónomo Parque Nacionales, Madrid.

Sax, D.F., Brown, J.H. (2000) The paradox of invasion. Global Ecology and Biogeography 9, 363-371.

Sax, D.F., Stachowicz, J.J., Gaines, S.D. (2005) Species invasions: Insights into ecology, evolution and biogeography, Sinauer Associates, Inc., Sunderland, Massachussets.

Schadt, S., Revilla, E., Wiegand, T., Knauer, F., Kaczensky, P., Breitenmoser, U., Bufka, L., Cerveny, J., Koubek, P., Huber, T., Stanisa, C., Trepl, L. (2002) Assessing the suitability of central European landscapes for the reintroduction of Eurasian lynx. Journal of Applied Ecology 39, 189-203.

Page 185: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 163

Scott, J.M., Heglund, P.J., Haufler, J.B., Morrison, M., Raphael, M.G., Wall, W.B., Samson, F. (eds.) (2002) Predicting species occurrences: issues of accuracy and scale. Island Press, Washington, D.C.

Serrano, E., Calabuig, G., Cassinello, J., Granados, J.E., Pérez, J.M. (2002) Corología del Arrui (Ammotragus lervia Pallas 1777) en el Sudeste Peninsular. Galemys 14, 17-29.

Shackleton, D.M. (ed.) (1997) Wild sheep and goats and their relatives: status survey and conservation action plan for Caprinae. IUCN, Gland.

Soberón, J., Peterson, A.T. (2005) Interpretation of models of fundamental ecological niches and species' distribution areas. Biodiversity Informatics 2, 1-10.

Solbert, A.G.K. (1980) Social organization and behaviour of aoudad (Ammotragus lervia Pallas) in Texas. In: Symposium on Ecology and Management of Barbary Sheep. C.D. Simpson (ed.). Texas Technical University Press, Lubbock.

Soulé, M.E. (1987) Viable populations for conservation. Cambridge University Press, Cambridge.

Thuiller, W., Lavorel, S., Sykes, M.T., Araújo, M.B. (2006) Using niche-based modelling to assess the impact of climate change on tree functional diversity in Europe. Diversity and Distributions 12, 49-60.

Wilcove D.S., Rothstein, D., Dubow, J. (1998) Quantifying threats to imperiled species in the United States. Bioscience 48, 607–615.

Williamson, M. (1996) Biological invasions. Chapman & Hall, London.

Wolf, C.M., Griffith, B., Reed, C., Temple, S.A. (1996) Avian and mammalian translocations: update and reanalysis of 1987 survey data. Conservation Biology 10, 1142–1154.

Page 186: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 187: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

3.2.- ES EL ARRUI (AMMOTRAGUS LERVIA) UNA AMENAZA PARA LA

CABRA MONTÉS (CAPRA PYRENAICA)? UNA APROXIMACIÓN BASADA EN

MODELOS DE ADECUACIÓN DE HÁBITAT

Acevedo, P., Cassinello, J., Hortal, J., Gortázar, C. IS INTRODUCED EXOTIC AOUDAD

(AMMOTRAGUS LERVIA) A THREAT TO NATIVE IBERIAN IBEX (CAPRA PYRENAICA)? A HABITAT

SUITABILITY MODEL APPROACH. Diversity and Distributions, en evaluación (enviado a

24/10/2006).

Page 188: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 189: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 167

RESUMEN

La llegada de especies invasoras es una de las principales amenazas para la

conservación de la biodiversidad. Un caso particular es el de los ungulados silvestres que

están en aumento en regiones fuera de su rango natural de expansión debido a intereses

cinegéticos. Desafortunadamente se conoce poco sobre los efectos que estos herbívoros

pueden ocasionar en el ecosistema hospedador. El presente estudio es el primer análisis

comparativo de los requerimientos de hábitat de dos especies de ungulados que pueden

estar compitiendo por los recursos en el sur de Europa: la endémica cabra montés (Capra

pyrenaica) y el exótico arrui (Ammotragus lervia). El arrui es un caprino norteafricano

introducido en 1970 como especie de caza en el sureste de España, en donde se ha

adaptado formidablemente, estando sus poblaciones en expansión. El Análisis Factorial de

Nicho Ecológico es usado para describir el nicho realizado de ambas especies en donde sus

rangos de distribución se fusionan. Las especies estudiadas ocupan áreas marginales de

relieve accidentado en la región. La marginalidad es mayor para la cabra montés y su

distribución parece estar más en equilibrio con las condiciones regionales que en el caso del

arrui, el cual es menos tolerante a gradientes ambientales secundarios. Las áreas con

elevada adecuación para cada especie son secundariamente adecuadas para la otra. La

reclasificación de los mapas de adecuación muestra las áreas de potencial coexistencia

espacial, así como los rasgos ecológicos que las diferencian. Los resultados obtenidos no

permiten inferir competición por los recursos entre estas especies. Sin embargo, la

expansión actual del arrui podría ocasionar la invasión de los hábitats favoritos de la cabra

montés. La inadecuada política cinegética y la semejanza climática de la región de estudio

con las áreas nativas del arrui, debido a un fuerte proceso de desertificación, están

facilitando una alta tasa de expansión de esta especie. Se recomienda monitorizar las

poblaciones de esta especie exótica, así como promover prácticas de conservación activas

con el fin de preservar los recursos naturales de esta región europea.

ABSTRACT

The arrival of alien species is one of the main threats to the conservation of

biodiversity. One particular case is that of wild ungulates, which are increasingly present in

regions further to their natural expansion range due to human hunting interest. Unfortunately,

we know little on the effects these large herbivores may have on the host ecosystems. This

study deals with a first comparative analysis of habitat requirements of two ungulate species

that may be facing competition for resources in the south of Europe: the native Iberian ibex

Page 190: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 168

(Capra pyrenaica) and the exotic aoudad (Ammotragus lervia). The aoudad is a North

African caprid introduced in 1970 as a game species in southeastern Spain. It formidably

adapted and populations are freely expanding since then on. Ecological Niche Factor

Analysis is used to describe the realized niche of both species where their distribution ranges

merge. Both species occupy marginal areas of rugged terrain in the region. Marginality is

higher for the Iberian ibex, whose distribution appears to be more in equilibrium with regional

conditions than that of the aoudad, which is less tolerant to secondary environmental

gradients. Highly suitable areas for each species are secondarily-suitable for the other.

Reclassified and cross-tabulated habitat suitability maps showing the areas of potential

spatial coexistence and differences in ecological traits between both species are provided.

The results obtained do not allow inferring resource competition between these species.

However, current aoudad expansion could lead it to invade ibex favourite habitats.

Inadequate hunting policy and monitoring, and increasing climatic resemblance of the study

region with the native aoudad areas, due to a strong desertification process, are facilitating a

high rate of expansion. We strongly recommend monitoring these exotic populations, and

promote active conservation practices, if we want to preserve the unique natural resources

present in this European region.

INTRODUCTION

One of the main threats to biodiversity is the arrival of alien species in regions

further to their natural expansion range, reaching new ecosystems which may be

altered by their presence, thus affecting the viability of autochthonous fauna and flora

(e.g., Diamond 1989; Wilcove et al. 1998; Gurevitch and Padilla 2004; Didham et al.

2005). Sport hunting activity is becoming the main driving force of the unnatural

expansion of some species of ungulates all over the world (e.g., Crosby 1986;

Macdonald et al. 1988; Gortázar et al. 2000; Jaksic et al. 2002).

Uncontrolled exploitation and poaching used to be the main threat to

European autochthonous ungulate populations, although current hunting regulations

are causing their recovery and even expansion in some countries (e.g., Cargnelutti et

al. 1992; Sidorovich et al. 2003; Geisser and Reyer 2004; Acevedo et al. 2006a

[Capítulo 1.1]). Such expansion is noteworthy in areas where game activity is not

allowed, i.e., protected lands and those close to urban zones (e.g. Whittaker et al.

2001; Cahill et al. 2003). In the Iberian Peninsula, the expansion of the wild boar, Sus

Page 191: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 169

scrofa, has been registered since several decades ago (Sáez-Royuela and Tellería

1986; Gortázar et al. 2000; Acevedo et al. 2006b). Other recent examples are roe

deer, Capreolus capreolus (Acevedo et al. 2005) and Iberian ibex, Capra pyrenaica

(Pérez et al. 2002; Acevedo et al. 2006a [Capítulo 1.1]). The expansion of the latter

may rely on recent habitat changes, i.e. agricultural lands abandonment, game

management translocations (Gortázar et al. 2000), its recovery from past sarcoptic

mange epizootics (Pérez et al. 1997), and a decrease of its hunting pressure

probably caused by the incidence of this disease (see Garrido 2004).

These rapid increases in the populations of large herbivores are provoking

their local overabundance (Gortázar et al. 2006). These high densities are resulting

in a serious threat for plant communities due to overgrazing pressures, which are

also rising due to the increasing presence of allochthonous ungulates, such as the

European mouflon (Ovis aries musimon) and the aoudad (Ammotragus lervia).

Of special concern is the aoudad, an African generalist ungulate, which has

been successfully introduced outside its African range as a game species in USA

and Spain. There, it has adapted formidably to Mediterranean-like regions, where

food resources are abundant, in contrast with the desert lands occupied in its native

African range. In these areas, the abundance of resources, along with the scarcity of

competitors and predators, results in high birth rates and a quick spread of the

population (see Wolf et al. 1996). Due to this, the aoudad has rapidly adapted to

southern Iberian habitats, presenting elevated population growth rates (Cassinello

2000; Cassinello et al. 2004). The effects that this alien species may cause on native

flora and fauna are yet uncertain, although its potential as a competitor of native

ungulates has already been postulated, mainly based on diet overlap between the

aoudad and desert bighorn, Ovis canadensis nelsoni (Simpson et al. 1978) and mule

deer, Odocoileus hemionus (Bird and Upham 1980; Krysl et al. 1980).

The relationships between environmental gradients and the adequacy for the

survival of the populations of a species can be used to model the potential response

of the species to these gradients (Austin et al. 1990). Such description can be used

to produce predictive maps of species distribution (Guisan and Zimmermann 2000;

Araújo and Guisan 2006), and to describe the characteristics of the niche of the

species (e.g., Peterson et al. 1999; Robertson et al. 2001; Chefaoui et al. 2005;

Soberón and Peterson 2005; Araújo and Guisan 2006). Two kinds of predictive maps

Page 192: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 170

can be obtained for a species, describing i) current distribution or ii) habitat suitability

(i.e., potential distribution). The latter could serve as a tool for the study and threat

assessment of biological invasions, as habitat suitability can be used as an indicator

of the risk for a particular territory to be invaded by the alien species (e.g., Peterson

and Vieglais 2001; Peterson 2003).

The Ecological Niche Factor Analysis (ENFA, Hirzel et al. 2002) models

habitat suitability by comparing the environmental response of the species to the

environmental characteristics of the entire study area. This methodology can be used

to develop habitat suitability maps from raw presence data. Therefore, ENFA is

recommended when absence data are not available (most data banks), unreliable

(most cryptic and rare species) or meaningless (invaders) (Hirzel et al. 2001).

Recently, Chefaoui et al. (2005) proposed to describe the realized niche of a species

using ENFA results. Given that the factors identified by ENFA represent the main

environmental gradients that are shaping the spatial response of the species in the

study region, it can be assumed that the response of a species to these gradients

constitutes its realized niche. Therefore, the distribution of habitat suitability scores

through these factors could be used to describe and study the characteristics of the

realized niche of species, as well as niche differentiation among several related

species (Chefaoui et al. 2005; Hortal et al. 2005). Here, the realized niche is intended

as the portion of the fundamental niche where the species is currently present, rather

than where is competitively dominant (the original definition of Hutchinson 1958, see

discussion in Soberón and Peterson 2005; Araújo and Guisan 2006).

We compare habitat requirements and habitat suitability for autochthonous

Iberian ibex and exotic aoudad inhabiting the southeastern Iberian Peninsula,

according to their current distribution (Pérez et al. 2002; Cassinello et al. 2004;

Acevedo et al. 2006a [Capítulo 1.1]). Our goal is to compare the environmental

requirements of both species to identify differences and similarities, and advance

whether competition for resources and threats to the Iberian ibex are expected. To do

this, we use ENFA and the niche description proposed by Chefaoui et al. (2005) to

characterize the response of both ungulate species to the main environmental

variations in the study area, as well as to predict their potential distribution. This is

the first attempt to compare ecological traits between aoudads and Iberian ibexes, as

to date no field study whatsoever has been carried out in the regions where both

Page 193: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 171

species coexist. The results are used to assess the potential impacts of current

aoudad expansion in the conservation of ibex populations.

MATERIAL AND METHODS

Study region

We have chosen a geographic extent that hosts the environmental extremes

present in SE Iberian Peninsula (i.e., coastal and mountain), the current area of

expansion of the aoudad (Cassinello et al. 2004).

Figure 1. Presence data of the Iberian ibex (black dots) and the aoudad (grey dots), and location of the study area. Provinces borders are shown along with the main mountain ranges where the species can be found.

Such window encompasses 340 km width and 270 km height (61,961 km2 of

land area; UTM 29N geographic reference system; NW corner: 450,000-4,330,000;

SE corner: 790,000-4,060,000; Figure 1), including Sierra Nevada mountain range in

the SW (rising over 3,400 m.a.s.l.), Segura coastal basin in the east (with mean

Page 194: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 172

altitudes below 20 m.a.s.l.), as well as several other mountain ranges and high-

altitude plains, such as Sierra Espuña (origin of the aoudad introduced population),

Sierra María, Sierra de Los Filabres, and Cazorla, Segura y Las Villas Natural Park.

Aoudad and Iberian ibex distribution data

Aoudad distribution data (Cassinello et al. 2004, Figure 1) comes from direct

field observations and interviews to local shepherds, hunters, and biologists and park

managers from regional environmental agencies, and verified with visits to the areas

where aoudads were reported. Iberian ibex distribution data were obtained by means

of direct field observations and interviews addressed to forest rangers and staff from

environmental agencies (Pérez et al. 2002; Acevedo et al. 2006a [Capítulo 1.1]).

Environmental data

Many climatic and ecological factors have been described to affect the

population abundance and distribution of ungulate species in the Iberian Peninsula

(e.g., Virgós 2002; Acevedo et al. 2005, 2006b). We selected 12 variables that could

act as determinants of current aoudad and Iberian ibex distribution in SE Iberian

Peninsula, also encompassing the range of climatic and ecological traits present in

the study region (Table 1). Ten of these variables account for environmental

variations (climate, habitat structure, vegetation characteristics and geomorphology),

and the other two do for human impact.

Data comes from an Iberian GIS database compiled and managed by J. M.

Lobo, A. Jiménez-Valverde, R. M. Chefaoui and J. Hortal. Climate variables were

obtained from the monthly values of the digital version of the Spanish National

Climate Atlas (provided by the Instituto Nacional de Meteorología; available at

http://www.inm.es/). Geomorphology variables were calculated from an Iberian Digital

Elevation Model of 100 m pixel width. Habitat structure variables were obtained from

the 250 m pixel width land use information of the CORINE NATLAN European project

(EEA 2000). Finally, two variables accounting for human pressure on aoudad and

ibex populations were obtained: distance to urban areas (i.e. to the urban and

industrial categories following CORINE land use map), and distance to the nearest

road (including motorways and national and local roads, extracted from the Spanish

Page 195: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 173

National Digital Atlas, courtesy of the Instituto Geográfico Nacional;

http://www.ign.es/). All variables were handled and processed in a GIS environment

(Clark Labs 2004). Information was extracted at 1 km2 grain (1 x 1 km pixels), to fit

with the spatial resolution of biological data (see another examples at Chefaoui et al.

2005; Acevedo et al. 2006a [Capítulo 1.1]). In addition, these variables were Box-

Cox normalized prior to their use in the ENFA analyses.

Table 1. Variables used in the analyses (and their measurement units). Average values are shown for the whole study region (global), and for the areas where the aoudad and the Iberian ibex are present.

Means VARIABLES (UNIT)

Global Aoudad Iberian ibex

CLIMATE Winter rainfall (mm) 132.92 108.65 209.14

Summer rainfall (mm) 46.29 40.73 61.69 Mean summer temperature (ºC) 22.95 21.9 19.28

Annual range of temperatures (ºC) 15.33 15.21 15.58

GEOMORPHOLOGY Maximum altitude (m) 806.46 1066.77 1670.46

Altitude range (m) 101.14 187.37 204.59 Mean slope (degrees) 5.56 10.40 11.21

Maximum slope (degrees) 12.23 23.01 22.24

HABITAT STRUCTURE Forest area (%) 11.86 33.17 39.80

Shrubland area (%) 27.72 33.88 17.08

HUMAN PRESSURE Distance to urban areas (m) 3974.88 5714.69 7335.62

Distance to the nearest road (m) 2050.21 2915.65 3431.15

Statistical analyses

Niche modelling

BioMapper 3.0 (Hirzel et al. 2004a; http://www.unil.ch/biomapper) was used to

model the niche of the study species. This software uses ENFA to produce predictive

maps of habitat suitability (i.e., potential distribution) from GIS variables (see

applications at Hirzel 2001; Hirzel et al. 2001, 2002; Hirzel and Arlettaz 2003;

Gallego et al. 2004; Hirzel et al. 2004b; Chefaoui et al. 2005; Hortal et al. 2005;

Page 196: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 174

Acevedo et al. 2006a [Capítulo 1.1]; Cassinello et al. 2006 [Capítulo 3.1]). These

maps are produced in two steps.

In a first step, a description of the realized niche of the species is build. The

response of the species to the main environmental variations in the study area is

characterized from presence data using ENFA. Briefly, the predictors are reduced to

a number of orthogonal factors, accounting for the maximum differentiation between

the average conditions at the whole study territory, and at the sites where the species

is present (Hirzel 2001). The factor scores of the first axis (marginality factor) express

the Marginality of the focal species on each predictor variable. A Marginality

coefficient is also computed taking into account all predictor variables, so that the

marginalities of different species within a given area can be directly compared (Hirzel

et al. 2002). The factor scores of the subsequent factors, specialisation factors,

receive a different interpretation: the higher (absolute values) scores, the more

restricted is the range of the focal species on the corresponding variable. A

Tolerance coefficient is also computed (ibid.). ENFA is similar to the Principal

Component Analysis, but looks for factors of biological significance (Hirzel et al.

2001). The marginality factor reflects the direction on which the species niche mostly

differs from the available conditions in the global area. Subsequent factors represent

the specialisation, and are extracted successively by computing the direction that

maximises the ratio of the species distribution (Hirzel 2001). The higher absolute

value of the factor scores of a variable, the further the species departs from the mean

available habitat regarding the corresponding variable (scores<0 indicate that

species prefers values that are lower than average with respect to the study area,

while scores>0 indicate preference for higher than average values).

Secondly, predictive maps of habitat suitability are produced. Once ENFA

factors are computed, a habitat suitability map (HSM) is calculated and mapped from

the responses of the species to each factor. Briefly, partial suitability scores are

computed for each factor as the average distance to the median scores of observed

presences, and HSM is obtained as a weighted average of these partial suitabilities

(Hirzel et al. 2002).

Page 197: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 175

Model validation and accuracy

Explained Information (ExI) and Explained Specialisation (ExS) are used to

measure how the resulting suitability model explains the observed data. The former

accounts for the total variability of the species distribution explained by the model,

whereas the latter does for additional variability on the marginality and specialisation

factors not included in the Explained Information measure (Hirzel et al. 2004a). In

addition, the robustness and predictive power of the HSMs were assessed by means

of the spatially explicit Jackknife cross-validation procedure implemented in

Biomapper software (Boyce et al. 2002; Hirzel et al. 2002).

Niche description

ENFA analysis identifies two descriptors of species environmental niches:

marginality and tolerance coefficients (see above). We also described the shape of

the environmental niche of the species as the variation in the habitat suitability scores

throughout the environmental gradient defined by the Marginality Factor (see

Chefaoui et al. 2005; Hortal et al. 2005). To do this, Marginality Factor scores were

divided in a number of homogeneous intervals, and mean habitat suitability scores at

each interval were represented for each species. In addition, the HSM map obtained

for each species was reclassified (see Chefaoui et al. 2005) in three categories

according to HSM scores: low habitat suitability (0-33); medium habitat suitability (34-

66) and high habitat suitability (66-100). These new maps were cross-tabulated in the

GIS environment to pinpoint zones suitable for the two study species (high habitat

suitability for the Iberian ibex and high habitat suitability for the aoudad), where

coexistence and competition could occur. The environmental variables that

characterize each zone were examined using Bonferroni corrected ANOVA analyses

(Perneger 1998).

RESULTS

The 12 environmental variables considered were reduced to three factors in

both ENFA analyses (see Table 2), explaining 82.34% and 83.20% of the variance in

Page 198: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 176

the aoudad and Iberian ibex distributions, respectively. The first axes explained very

low percentages of the specialization for both species (<4%).

Maximum and mean slopes, altitude range and presence of forests were the

variables with higher scores in the marginality factor for the aoudad model, while low

summer temperatures, maximum altitude, mean slope and winter rainfall were so in

the ibex model. Temperature range and winter rainfall presented the higher

coefficients at the specialization factors for the two species, which thus show similar

secondary restrictions (Table 2).

Table 2. Coefficients of the variables used in ENFA, and percentages explained by marginality (MF) and specialization factors (SF).

Aoudad model Iberian ibex model Variables

MF SF 1 (43.49%)

SF 2 (17.53%) MF SF 1

(48.01%) SF 2

(14.54%)

Forest area 0.362 0.000 0.006 0.264 0.075 -0.140 Shrubland area 0.026 0.146 0.029 0.025 0.115 -0.275 Maximum altitude 0.258 -0.281 0.257 0.475 -0.099 -0.366 Distance to the nearest road 0.248 0.069 0.018 0.219 0.015 -0.085 Distance to urban areas 0.253 0.093 -0.103 0.271 0.04 -0.154 Maximum slope 0.490 0.111 -0.151 0.252 0.205 -0.044 Mean slope 0.432 -0.074 -0.365 0.279 -0.094 -0.055 Winter rainfall -0.159 0.583 -0.330 0.277 0.298 -0.403 Summer rainfall -0.038 -0.507 0.410 0.212 0.088 0.404 Altitude range 0.404 -0.029 0.228 0.269 -0.013 0.135 Annual range of temperatures -0.058 -0.444 -0.657 0.040 -0.893 -0.154 Mean summer temperature -0.238 -0.272 -0.071 -0.495 0.155 -0.606

Both ungulate species occupy marginal areas in the study region (aoudad

marginality coefficient=1.15; ibex marginality coefficient=2.08, see Figure 2).

However, although the Iberian ibex is more marginal than the aoudad in its

environmental selection according to the main environmental gradient in the region,

this species is quite tolerant to the secondary environmental gradients (tolerance

coefficient=0.84). Therefore, ibex distribution appears to be more in equilibrium with

regional conditions than aoudad distribution, which is less tolerant to secondary

gradients (tolerance coefficient=0.68). Moreover, highly suitable areas for each

species were secondarily-suitable for the other one (Figure 2).

Page 199: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 177

0

10

20

30

40

50

60

70

-4,05

-2,56

-1,80

-1,21

-0,70

-0,20 0,4

21,3

42,8

65,3

8

Ibex Marginality Factor

Hab

itat S

uita

bilit

y

AoudadIberian Ibex

Figure 2. Variation of mean habitat suitability scores along the marginality factor. The factor was divided into 20 intervals, and mean HSM values are shown. As marginality factors for both models were highly correlated, only one was used for plot the figure, the ibex model.

Figure 3a. Habitat suitability maps for the study species: a) the aoudad. Habitat suitability

scores have been reclassified in three categories (0-33 = low suitability, 34-66 = medium suitability, and 67-100 = high suitability).

Page 200: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 178

Figure 3b. Habitat suitability maps for the study species: b) the Iberian ibex. Habitat suitability scores have been reclassified in three categories (0-33 = low suitability, 34-66 = medium suitability, and 67-100 = high suitability).

The so-obtained HSMs are highly reliable, since our model validation

produced the following outcome: ExI=66%, ExS=83%, and average Spearman

coefficient at Jackknife validations of 0.97 for the ibex, and ExI=65%, ExS=82%, and

Spearman coefficient = 0.95 for the aoudad.

Figure 4. Map showing the highly suitable areas (habitat suitability > 66) for each one of the study species, as well as the areas of potential coexistence.

Page 201: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 179

Reclassified HSMs for both species are shown in Figure 3, where areas of

low, medium and high habitat suitability are depicted. Cross-tabulated HSMs show

the areas of spatial coexistence between both species (i.e., highly suitable for both

species) as well as those ones highly suitable for one of them exclusively (Figure 4).

High suitability areas were significantly different in ecological traits for the two

species (Table 3, Figure 5), and were also different to the sites highly suitable for

both species.

DISCUSSION

One of the possible adverse consequences of the presence of the exotic

aoudad in the south of Europe is its incidence on other taxonomically close

autochthonous ungulates, or on ecologically convergent species. Here we present

the first study on habitat similarities between aoudad and Iberian ibex, according to

data on the distribution of both species in the south east of the Iberian Peninsula.

Table 3. Environmental differentiation between the areas of potential coexistence of the aoudad and the Iberian ibex, and the areas suitable to each one of these species (HS > 66 in both models). Results of the analyses of variance are shown; ANOVA test coefficient (F), Bonferroni-corrected p-value (ns=no significant, ***p≤0.0001); the areas with significantly higher values for a given dependent variable in each comparison are indicated (A=aoudad, C=potential coexistence, and I=Iberian ibex).

Aoudad vs. potential

coexistence

Aoudad vs. Iberian ibex

Iberian ibex vs. potential

coexistence

Variables

F p-value

area with a higher mean value

F p-value

area with a higher mean value

F p-value

area with a higher mean value

Forest area 56.52*** C 72.13*** I 8.34ns - Shrubland area 19.28*** A 0.82ns - 14.75*** I Maximum altitude 612.68*** C 3212.16*** I 27.82*** I Distance to the nearest road 48.89*** A 43.11*** I 95.35*** I Distance to urban areas 30.23*** C 94.01*** I 0.12ns - Maximum slope 0.30ns - 70.04*** I 13.84*** I Mean slope 0.52ns - 225.10*** I 57.60*** I Winter rainfall 814.17*** C 1046.59*** I 65.42*** C Summer rainfall 1168.11*** C 941.18*** I 84.14*** C Altitude range 2.89ns - 209.29*** I 64.14*** I Annual range of temperatures 193.29*** C 150.00*** I 96.73*** C Mean summer temperature 498.62*** A 2222.7*** A 15.61*** C

Page 202: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 180

On the methodological approach

The ENFA-based methodological approach used here (based on Chefaoui et

al. 2005) could be of great utility for the study of the realized niches of most species,

as well as for monitoring the potential spread of invasive species. Since the seminal

works of Austin, Nicholls and Margules (Margules et al. 1987; Nicholls 1989; Austin

et al. 1990), Generalized Linear and Generalized Additive Models (GLM and GAM,

respectively), linked to GIS applications, have become very popular in species

distribution predictions (e.g., Guisan et al. 2002; Dennis and Shreeve 2003; Nogués-

Bravo and Martínez-Rica 2004; Quevedo et al. 2006). When absence or pseudo-

absence data are available, more robust habitat models can be built from these

techniques (e.g., Engler et al. 2004; Lobo et al. 2006; but see Hirzel et al. 2001).

However, in the specific case of invading species, some times these species are not

yet occupying all their potential habitats in the landscape, and ENFA could produce

better results to GLM as 'absence data' of this species would not be reliable (Hirzel et

al. 2001).

Figure 5. Plots showing mean (±SE95%C.I.) values of some ecological variables present in highly suitable areas for the aoudad, aoudad and Iberian ibex (potential coexistence areas) and Iberian ibex. Statistically significant differences are indicated in Table 3. (a) Percentage of forest and shrubland areas; (b) maximum altitude and slope; (c) winter rainfall and mean summer temperature; (d) distances to urban areas and roads.

Page 203: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 181

Given that both the Iberian ibex and the aoudad are under remarkable

expansion processes in the study region (Cassinello 2000; Pérez et al. 2002;

Cassinello et al. 2004; Acevedo et al. 2006a [Capítulo 1.1]; Cassinello et al. 2006

[Capítulo 3.1]), we used ENFA analyses to implement maps of the potential

distribution of both species. In addition, ENFA could also be more useful than GLM

when ecological interpretation is the aim of the study, even in situations where GLM

provides higher correlations to the observed data (Hirzel et al. 2001). The niche-

description methodology derived by Chefaoui et al. (2005), based in such premises,

is used here to describe the realized niches of both caprids in southeastern Iberian

Peninsula. However, ENFA results usually overestimate habitat suitability (Zaniewski

et al. 2002; Engler et al. 2004); therefore, such limitation should be considered when

interpreting our results.

Niche description for the study species

The Iberian ibex and the aoudad occupy restricted habitats in the study area,

but ibex distribution appeared to be more in equilibrium with regional conditions than

that of aoudad, which is less tolerant to secondary environmental gradients. It then

emerges that the aoudad in Spain has not reached all its potentially suitable areas

yet, some of them located at higher altitudes. According to the known biology and

ecology of the aoudad (e.g., Ogren 1965; Shackleton 1997; Cassinello 1998), as well

as to our results (see Figure 1), the species show a strong potential to reach and

settle in other mountainous regions, native to the Iberian ibex, such as Sierra Nevada

mountain range (part of the Spanish National Parks network since 1999).

According to our analyses, the aoudad selects areas characterized by high

slopes and altitude ranges, and an important presence of forests. Such requirements

agree with the habitat selection made by the aoudad both in its native North African

range (Shackleton 1997) and in the regions where it has been introduced (Johnston

1980; Cassinello 2000). On the contrary, although the Iberian ibex also selects

mountainous areas, they are more marginal than the used by the aoudad, pictured by

low summer temperatures and high altitudes, and, to a lower extent, by high slopes

(see also Acevedo et al. 2006a [Capítulo 1.1]) and high winter rainfall. In these

areas, food availability according to its diet is expected to be higher (Martínez and

Martínez 1987; Martínez 2000).

Page 204: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 182

The results of this study defined a series of ecological traits that can be easily

related to the mountain ranges where the two study species are predominantly found

in the south east of Spain (see Figure 1). Thus, the aoudad ranges a wide variety of

mountainous regions of very different altitudes and scattered throughout the study

area (see Figure 3a), whereas the ibex is found in spatially restricted areas, in the

mountain ranges with higher elevations in the study area (Figure 3b).

Cross-tabulated HSMs allowed the comparison between areas highly suitable

for one of the study species (but not for the other) and areas highly suitable for both

species (the areas of potential coexistence). Differences found between the

ecological variables included in the analyses can be explained by the characteristics

of the mountain ranges concerned. Basically, we appreciate higher marginality

values and lower plasticity in the Iberian ibex than in the aoudad, which

comparatively tends to act as a generalist in terms of habitat preference (e.g., Gray

and Simpson 1980; Escós and Alados 1992). Also, areas of coexistence are more

similar in terms of climate to highly suitable areas exclusively of the ibex, so that

before a hypothetical competitive situation, the autochthonous caprid may be at an

advantage. It is noticeable that the aoudad significantly selects areas with lower

winter rainfall and higher mean summer temperatures, thus resembling its North

African origin (Shackleton 1997). Finally, the areas highly suitable for the aoudad are

closer to urban areas and roads than the Iberian ibex ones, probably because of the

higher niche plasticity of aoudads and the location of their release site, Sierra Espuña

and surrounding mountains (see Cassinello 2000).

Implications for conservation

A competition conflict could arise in areas of potential coexistence between

the Iberian ibex and the aoudad, due to the a priori biological similarities of both

caprids (Schaller 1977). Current distribution of the study species already overlaps

(Figure 1), and our HSMs indicate that this overlap might increase in time. If the

aoudad reaches core native areas of the Iberian ibex (e.g., Sierra Nevada, Sierra de

Cazorla), there might be a conservation problem for the latter. But, would the aoudad

actually be a threat to the Iberian ibex?

Page 205: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 183

Given our results, the aoudad might not be such a serious threat for the

Iberian ibex at southeastern Spain, since areas of coexistence are potentially scarce

(merely 14.8% of the whole highly suitable areas for the ibex) and they tend to be

closer to optimal conditions for the ibex, despite the fact that the aoudad has not

probably found its optimum. However, as Putman (1996) highlights, it is problematic

to extract the implications for competitive interactions from measures of niche

overlap. High overlaps can imply competition, but only if resources are limited. In fact,

observations of high overlap might equally well be indicative of a lack of competition

(de Boer and Prins 1990; Putman, 1996). On the other hand, species segregation

can also be a result of competition. However, the aoudad has reached the Iberian

ibex' domains only recently. Therefore, we would not expect that competition leading

to segregation has already happened between both species. As far as we know, it

would be then premature to indicate whether the aoudad will or will not be a threat to

the autochthonous ibex and to which degree.

Despite this reasoning, recent evidence showed the displacement of the

Iberian ibex to suboptimal habitats by extensive goat livestock presence in central

Spain (Acevedo et al. 2006a [Capítulo 1.1]). This should alert us on possible similar

effects in southeastern Spain caused by the aoudad, a species strongly gregarious

(Gray and Simpson 1982; J. Cassinello, pers. obs.).

There is also another threat to be considered. Both study species are

colonizing new habitats in the south of Spain and their expansive movements are

noticeable (Pérez et al. 2002; Cassinello et al. 2004; Acevedo et al. 2006a [Capítulo 1.1]), although both have experienced similar population decreases due to sarcoptic

mange episodes few years ago (Pérez et al. 1997; González-Candela and León-

Vizcaíno 1999). Concerning to future sarcoptic episodes, as the current ibex

distribution in the study region is characterized by isolated nuclei (see Figure 1;

Pérez et al. 2002), contacts between them would be less probable than contacts with

hypothetically infected aoudad populations, which may occupy larger extensions in

the study area. Thus, if the aoudad acts as a vector of this disease, it would then

represent a risk for the ibex.

The increasing presence of allochthonous ungulates in Spain, due to sport

hunting introductions (i.e. the European mouflon and the aoudad), may particularly

threaten local plant species (Rodríguez-Piñero and Rodríguez-Luengo 1992; Zamora

Page 206: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

________________________________________________________________ 184

et al. 2001). In the case of the aoudad, its expansion might put in serious risk the yet

threatened, highly endemic flora of Sierra Nevada. The key importance of such

mountain range for the conservation of Iberian plant biodiversity (see, e.g., Castro

Parga et al. 1996; Blanca et al. 1998; García et al. 1999; Lobo et al. 2001)

recommends monitoring the aoudad grazing habits (either intensity and grazed

species) in their expansion.

Finally, there are a series of aspects that may determine the degree of Iberian

ibex and aoudad current expansion and effects caused by the latter on

autochthonous fauna and flora. Recent climatic changes and the strong

desertification which are taking place in the south east of Spain (e.g., Puigdefábregas

and Mendizábal 2004), originating lower rainfall regimes and higher mean annual

temperatures, may cause significant habitat changes which will favour the expansion

of a desert caprid, such as the aoudad. On the other hand, the strong game interest

showed on the aoudad by private game estates in the south of Spain, and the

subsequent risk of animals escaping from badly protected fences (Serrano et al.

2002; Cassinello et al. 2004; P. Acevedo, direct observations), may speed up its

colonizing process and therefore their effects on the host ecosystem.

ACKNOWLEDGEMENTS

We thank J.M. Lobo, A. Jiménez-Valverde, D. Nogués-Bravo and M.B. Araújo

for the output of hours of conceptual and practical discussion on niche modelling. We

are also indebted to J.M. Lobo, A. Jiménez-Valverde and R.M. Chefaoui and for their

work on the original GIS database. The Spanish Instituto Nacional de Meteorología

kindly provided climate data for such database. PA is enjoying a grant from

University of Castilla-La Mancha. JC is currently enjoying a Ramón y Cajal research

contract at the CSIC awarded by the Ministerio de Educación y Ciencia (MEC); he is

also supported by the project PBI-05-010 granted by Junta de Comunidades de

Castilla-La Mancha. JH is supported by a Portuguese FCT (Fundação para a Ciência

e Tecnologia) grant (BPD/20809/2004), and also by the Spanish MEC project

CGL2004-0439/BOS.

Page 207: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

____________________________________________________________________ 185

REFERENCES

Acevedo, P., Cassinello, J., Gortázar, C. (2006a) The Iberian ibex is under an expansion trend but displaced to suboptimal habitats by the presence of extensive goat livestock in central Spain. Biodiversity and Conservation, DOI 10.1007/s10531-006-9032-y.

Acevedo, P., Delibes-Mateos, M., Escudero, M.A., Vicente, J., Marco, J., Gortázar, C. (2005) Environmental constraints in the colonization sequence of roe deer (Capreolus capreolus Linnaeus, 1758) across the Iberian Mountains, Spain. Journal of Biogeography 32, 1671-1680.

Acevedo, P., Escudero, M.A., Muñoz, R., Gortázar, C. (2006b) Factors affecting wild boar abundance across an environmental gradient in Spain. Acta Theriologica 53, 327-336.

Araújo, M.B., Guisan, A. (2006) Five (or so) challenges for species distribution modelling. Journal of Biogeography, In press.

Austin, M.P., Nicholls, A.O., Margules, C.R. (1990) Measurement of the realized qualitative niche: environmental niches of five Eucalyptus species. Ecological Monographs 60, 161-177.

Bird, W., Upham, L. (1980) Barbary sheep and mule deer food habits of Large Canyon, New Mexico. In: Symposium on Ecology and Management of Barbary Sheep. D. Simpson (ed.), Texas Tech. University Press, Lubbock.

Blanca, G., Cueto, M., Martínez-Lirola, M.J., Molero-Mesa, J. (1998) Threatened vascular flora of Sierra Nevada (southern Spain). Biological Conservation 85, 269-285.

Boyce, M.S., Vernier, P.R., Nielsen, S.E., Schmiegelow, F.K.A. (2002) Evaluating resource selection functions. Ecological Modelling 157, 281-300.

Cahill, S., Llimona, F., Gràcia, J. (2003) Spacing and nocturnal activity of wild boar Sus scrofa in a Mediterranean metropolitan park. Wildlife Biology 9, 3-13.

Cargnelutti, B., Spitz, F., Valet, G. (1992) Analysis of the dispersion of wild boar (Sus scrofa) in southern France. Ongules/Ungulates 91, 423-425.

Cassinello, J. (1998) Ammotragus lervia: a review on systematics, biology, ecology and distribution. Annales Zoologici Fennici 35, 149-162.

Cassinello, J. (2000) Ammotragus free-ranging population in the south-east of Spain: a necessary first account. Biodiversity and Conservation 9, 887-900.

Cassinello, J., Acevedo, P., Hortal, J. (2006) Prospects of population expansion of the exotic aoudad (Ammotragus lervia) in the Iberian Peninsula: clues from habitat suitability modelling. Diversity and Distributions 12, 666-878.

Page 208: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

____________________________________________________________________ 186

Cassinello, J., Serrano, E., Calabuig, G., Pérez, J.M. (2004) Range expansion of an exotic ungulate (Ammotragus lervia) in southern Spain: ecological and conservation concerns. Biodiversity and Conservation 13, 851-866.

Castro Parga, I., Moreno Saiz, J.C., Humphries, C.J., Williams, P.H. (1996) Strengthening the Natural and National Park system of Iberia to conserve vascular plants. Botanical Journal of the Linnean Society 121, 189-206.

Chefaoui, R.M., Hortal, J., Lobo, J.M. (2005) Potential distribution modelling, niche characterization and conservation status assessment using GIS tools: a case study of Iberian Copris species. Biological Conservation, 122, 327-338.

Clark Labs (2004) Idrisi Kilimanjaro version 14.02. GIS software package. Clark Labs, Clark University, Worcester.

Crosby, A.W. (1986) Ecological imperialism: the biological expansion of Europe, 900–1900. Cambridge University Press, Cambridge.

de Boer, W.F., Prins, H.H.T. (1990) Large herbivores that strive mightily but eat and drink as friends. Oecologia 82, 264-274.

Dennis, R.L.H., Shreeve, T.G. (2003). Gains and losses of French butterflies: test of predictions, under-recording and regional extinction from data in a new atlas. Biological Conservation 110, 131-139.

Diamond, J.M. (1989) Overview of recent extinctions. In: Conservation for the Twenty-first Century. D. Western, M.C. Pearl (eds.). Oxford University Press, Oxford.

Didham, R.K., Tylianakis, J.M., Hutchinson, M.A., Ewers, R.M., Gemmell, N.J. (2005) Are invasive species the drivers of ecological change? Trends Ecology & Evolution 20, 470-474.

EEA (2000) NATLAN. Nature/land cover information package. European Environment Agency, Luxembourg.

Engler, R., Guisan, A., Rechsteiner, L. (2004) An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of Applied Ecology 41, 263-274.

Escós, J., Alados, C.L. (1992) Habitat preference of Spanish ibex and other ungulates in Sierras de Cazorla y Segura (Spain). Mammalia 56, 393-406.

Gallego, D., Cánovas, F., Esteve, M.A., Galián, J. (2004) Descriptive biogeography of Tomicus (Coleoptera: Scolytidae) species in Spain. Journal of Biogeography 31, 2011-2024.

García, D., Zamora, R., Hódar, J.A., Gómez, J.M. (1999). Age structure of Juniperus communis L. In the Iberian peninsula: Conservation of remnant populations in Mediterranean mountains. Biological Conservation 87, 215-220.

Page 209: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

____________________________________________________________________ 187

Garrido, J.L. (2004) Aprovechamientos por especies y autonomías. II Máster en Conservación y Gestión de los Recursos Cinegéticos. Unpublished report, Ciudad Real.

Geisser, H., Reyer, H.U. (2004). Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boars. Journal of Wildlife Management 68, 939-946.

González-Candela, M., León-Vizcaíno, L. (1999) Sarcoptic mange in Barbary sheep (Ammotragus lervia) population of Sierra Espuña Regional Park (Murcia). Galemys 11, 43-58.

Gortázar, C., Acevedo, P., Ruiz-Fons, F., Vicente, J. (2006) Disease risks and overabundance of game species. European Journal of Wildlife Research 52, 81-87.

Gortázar, C., Herrero, J., Villafuerte, R., Marco, J. (2000) Historical examination of the status of large mammals in Aragon, Spain. Mammalia 64, 411-422.

Gray, G.G., Simpson, C.D. (1980) Ammotragus lervia. Mammal Species 144, 1-7.

Gray, G.G., Simpson, C.D. (1982) Group dynamics of free-ranging Barbary sheep in Texas. Journal of Wildlife Management 46, 1096-1101.

Guisan, A., Edwards, T.C., Hastie, T. (2002) Generalized linear and generalized additive models in studies of species distribution: setting the scene. Ecological Modelling 157, 89-100.

Guisan, A., Zimmermann, N.E. (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135, 147-186.

Gurevitch, J., Padilla, D.K. (2004) Are invasive species a major cause of extinctions? Trends in Ecology & Evolution 19, 470-474.

Hirzel, A., Helfer, V., Métral, F. (2001) Assessing habitat-suitability models with a virtual species. Ecological Modelling 145, 111-121.

Hirzel, A.H. (2001) When GIS Come to Life. Linking Landscape and Population Ecology for Large Population Management Modelling: The Case of Ibex (Capra ibex) in Switzerland. Phd Thesis, Institute of Ecology, Laboratory for Conservation Biology. University of Lausanne, Lausanne.

Hirzel, A.H., Arlettaz, R. (2003) Environmental-envelope based habitat-suitability models. In: 1st Conference on Resource Selection by Animals. J. Manly (ed.). Omnipress, Laramie.

Hirzel, A.H., Hausser, J., Chessel, D., Perrin, N. (2002) Ecological-niche factor analysis: How to compute habitat- suitability maps without absence data? Ecology 83, 2027-2036.

Hirzel, A.H., Hausser, J., Perrin, N. (2004a) Biomapper 3.0. Laboratory for Conservation Biology. University of Lausanne, Lausanne.

Page 210: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

____________________________________________________________________ 188

Hirzel, A.H., Posse, B., Oggier, P.-A., Crettenand, Y., Glenz, C., Arlettaz, R. (2004b) Ecological requirements of a reintroduced species, with implications for release policy: the Bearded vulture recolonizing the Alps. Journal of Applied Ecology 41, 1103-1116.

Hortal, J., Borges, P.A.V., Dinis, F., Jiménez-Valverde, A., Chefaoui, R.M., Lobo, J.M., Jarroca, S., Brito de Azevedo, E., Rodrigues, C., Madruga, J., Pinheiro, J., Gabriel, R., Cota Rodrigues, F., Pereira, A.R. (2005) Using ATLANTIS - Tierra 2.0 and GIS environmental information to predict the spatial distribution and habitat suitability of endemic species, In: A List of the Terrestrial Fauna (Mollusca and Arthropoda) and Flora (Bryophyta, Pteridophyta and Spermatophyta) from the Azores. P.A.V. Borges, R. Cunha, R., A.F.,Gabriel, Martins, L. Silva, & Vieira, V. Horta (eds.). Direcção Regional de Ambiente and Universidade dos Açores. Angra do Heroísmo and Ponta Delgada. http://sram.azores.gov.pt/lffta/.

Hutchinson, G.E. (1958) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22, 415-427.

Jaksic, F.M., Iriarte, J.A., Jiménez, J.E., Martínez, D.R. (2002) Invaders without frontiers: cross-border invasions of exotic mammals. Biological Invasions 4, 157-173.

Johnston, D.S. (1980) Habitat utilization and daily activities of Barbary sheep. In: Symposium on Ecology and Management of Barbary Sheep. C.D. Simpson (ed.). Texas Tech. University Press, Lubbock.

Krysl, L.J., Simpson, C.D., Gray, G.G. (1980) Dietary overlap of sympatric Barbary sheep and mule deer in Palo Duro Canyon, Texas. In: Symposium on Ecology and Management of Barbary Sheep. C.D. Simpson (ed.). Texas Tech. University Press, Lubbock.

Lobo, J.M., Castro, I., Moreno, J.C. (2001) Spatial and environmental determinants of vascular plant species richness distribution in the Iberian Peninsula and Balearic Islands. Biological Journal of the Linnean Society 73, 233-253.

Lobo, J.M., Verdú, J.R., Numa, C. (2006) Environmental and geographical factors affecting the Iberian distribution of flightless Jekelius species (Coleoptera: Geotrupidae). Diversity and Distributions 12, 179-188.

Macdonald, I.A.W., Graber, D.M., DeBenedetti, S., Groves, R.H., Fuentes, E.R. (1988) Introduced species in nature reserves in Mediterranean type climatic regions of the world. Biological Conservation 44, 37–66.

Margules, C.R., Nicholls, A.O., Austin, M.P. (1987) Diversity of Eucalyptus species predicted by a multi-variable environmental gradient. Oecologia 71, 229-232.

Martínez, T. (2000). Diet selection by Spanish ibex in early summer in Sierra Nevada. Acta Theriologica 45, 335-346.

Martínez, T., Martínez, E. (1987) Diet of Spanish wild goat, Capra pyrenaica, in spring and summer at the Sierra de Gredos, Spain. Mammalia 51, 547-557.

Page 211: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

____________________________________________________________________ 189

Nicholls, A.O. (1989) How to make biological surveys go further with Generalised Linear Models. Biological Conservation 50, 51-75.

Nogués-Bravo, D., Martínez-Rica, J.P. (2004) Factors controlling the spatial species richness pattern of four groups of terrestrial vertebrates in an area between two different biogeographic regions in northern Spain. Journal of Biogeography 31, 629–640.

Ogren, H. (1965) Barbary sheep. New Mexico Department of Game and Fish Bulletin 13, Santa Fe.

Pérez, J.M., Ruiz, I., Granados, J.E., Soriguer, R.C., Fandos, P. (1997) The dynamics of sarcoptic mange in the ibex population of Sierra Nevada in Spain: Influence of climatic factors. Journal of Wildlife Research 2, 86-89.

Pérez, J.M., Granados, J.E., Soriguer, R.C., Fandos, P., Marquez, F.J., Crampe, J.P. (2002) Distribution, status and conservation problems of the Spanish Ibex, Capra pyrenaica (Mammalia : Artiodactyla). Mammal Review 32, 26-39.

Perneger, T.V. (1998) What is wrong with Bonferroni adjustments. British Medical Journal 136, 1236-1238.

Peterson, A.T. (2003) Predicting the geography of species' invasions via ecological niche modeling. Quarterly Review of Biology 78, 419-433.

Peterson, A.T., Soberón, J., Sánchez-Cordero, V. (1999) Conservatism of ecological niches in evolutionary time. Science 285, 1265-1267.

Peterson, A.T., Vieglais, D.A. (2001) Predicting species invasions using ecological niche modeling: New approaches from bioinformatics attack a pressing problem. Bioscience 51, 363-371.

Puigdefábregas, J., Mendizábal, T. (2004) Prospects for desertification impacts in Southern Europe. In: Environmental Challenges in the Mediterranean 2000-2050. A. Marquina (ed.). Kluwer Academic Publishers, Netherlands.

Putman, R.J. (1996) Competition and Resource Partitioning in Temperate Ungulate Assemblies. Chapman & Hall, London.

Quevedo, M., Bañuelos, M.J., Obeso J.R. (2006) The decline of Cantabrian capercaille: How much does habitat configuration matter. Biological Conservation 127, 190-200.

Robertson, M.P., Caithness, N., Villet, M.H. (2001) A PCA-based modelling technique for predicting environmental suitability for organisms from presence records. Diversity and Distributions 7, 15-27.

Rodríguez-Piñero, J.C., Rodríguez-Luengo, J.L. (1992) Autumn food-habits of the Barbary sheep (Ammotragus lervia Pallas 1777) on La Palma Island (Canary Islands). Mammalia 56, 385-392.

Page 212: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 3

____________________________________________________________________ 190

Sáez-Royuela, C., Tellería, J.L. (1986) The increased population of Wild Boar (Sus scrofa) in Europe. Mammal Review 16, 97-101.

Schaller, G.B. (1977) Mountain Monarchs: wild sheep and goats of the Himalaya. University of Chicago Press, Chicago.

Serrano, E., Calabuig, G., Cassinello, J., Pérez, J.M. (2002) The human dimension that favours the unnatural expansion of an exotic ungulate (Ammotragus lervia) throughout the Iberian Peninsula. Pirineos, Journal of Mountain Ecology 157, 181-189.

Shackleton, D.M. (1997) Wild Sheep and Goats and their Relatives: Status Survey and Conservation Action Plan for Caprinae. IUCN, Gland.

Sidorovich, V.E., Tikhomirova, L.L., Jedrzejewska, B. (2003) Wolf Canis lupus numbers, diet and damage to livestock in relation to hunting and ungulate abundance in northeastern Belarus during 1990-2000. Wildlife Biology 9, 103-111.

Simpson, C.D., Krysl, L.J., Hampy, D.B., Gray, G.G. (1978) The Barbary sheep: a threat to desert bighorn survival. Trans. Desert Bighorn Council 22, 26-31.

Soberón, J., Peterson, A.T. (2005) Interpretation of models of fundamental ecological niches and species' distribution areas. Biodiversity Informatics 2, 1-10.

Virgós, E. (2002) Factors affecting wild boar (Sus scrofa) occurrence in highly fragmented Mediterranean landscapes. Canadian Journal of Zoology-Revue Canadienne de Zoologie 80, 430-435.

Whittaker, D., Manfredo, M.J., Fix, P.J., Sinnot, R., Miller, S., Vaske, J. (2001) Understanding beliefs and attitudes about an urban wildlife hunt near Anchorange, Alaska. Wildlife Society Bulletin 29, 1114-1124.

Wilcove D.S., Rothstein, D., Dubow, J. (1998) Quantifying threats to imperiled species in the United States. Bioscience 48, 607–615.

Wolf, C.M., Griffith, B., Reed, C., Temple, S.A. (1996) Avian and mammalian translocations: update and reanalysis of 1987 survey data. Conservation Biology 10, 1142–1154.

Zamora, R., Gómez, J.M., Hódar, J.A., Castro, J., García, D. (2001) Effect of browsing by ungulates on sapling growth of Scots pine in a Mediterranean environment: consequences for forest regeneration. Forest Ecology and Management 144, 33-42.

Zaniewski, A.E., Lehmann, A., Overtonm J.M. (2002) Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecological Modelling 157, 261-280.

Page 213: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

CAPÍTULO 4

4.1.- SÍNTESIS 4.2.- CONCLUSIONES

SÍNTESIS Y CONCLUSIONES

Page 214: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 215: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

4.1.- SÍNTESIS

Page 216: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 217: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 195

En este apartado se pretenden destacar los resultados más relevantes de

cada uno de los capítulos presentados. Por lo tanto, éste se plantea como un

apartado resumen de los resultados más destacables, y no se entrará en

demasiados aspectos relativos a la discusión de los mismos, ya que esa tarea ya ha

sido realizada de manera independiente en cada uno de los capítulos.

Capítulo 1- DISTRIBUCIÓN Y ESTATUS DE LAS POBLACIONES DE CABRA MONTÉS (Capra pyrenaica hispanica) EN CASTILLA-LA MANCHA

Resulta destacable el aumento que se ha detectado en la distribución de

cabra montés en Castilla-La Mancha. Han sido descritos dos nuevos núcleos

poblacionales, el de la zona de Casas Ibáñez (noreste de Albacete) y el de los

términos municipales próximos a Los Navalucillos (en los Montes de Toledo). El

primero de ellos parece tener como origen la expansión de las poblaciones de la

Muela de Cortes (suroeste de Valencia) y de las Hoces del Cabriel (sureste de

Cuenca). El núcleo de los Montes de Toledo es posible que se estableciera a partir

de cabras que se han escapado de fincas privadas, valladas perimetralmente, y en

la actualidad han formado una población en terrenos abiertos que presenta, por el

momento, un reducido número de efectivos. Por lo tanto esta especie se ha

mostrado en proceso de expansión también en Castilla-La Mancha, siendo éste

particularmente acentuado en alguno de sus núcleos poblaciones, entre los que se

pueden citar el del sur de Albacete (principalmente las poblaciones de las cuencas

del Río Mundo y Río Segura), y el de la Serranía de Cuenca y Alto Tajo (norte de

Cuenca y este de Guadalajara).

Se puede decir que el incremento de las poblaciones de ungulados silvestres

en la Península Ibérica es debido, en gran medida, a tres causas comunes: cambios

en los usos del suelo que están originando una re-naturalización del medio, ausencia

de depredadores y manejo cinegético al que están sujetas las poblaciones. Como

factor limitante del crecimiento de las poblaciones, habría que añadir la sarna

sarcóptica, que ha provocado grandes fluctuaciones poblacionales. Dependiendo de

la especie objeto de estudio, cada una de estas causas tendrá un peso relativo

distinto. Así, se ha visto que los cambios de uso del suelo han tenido gran influencia

Page 218: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 4

________________________________________________________________ 196

en la expansión, tanto numérica como del área de distribución, del jabalí en la

Península; sin embargo la actividad cinegética parece ser la principal responsable de

la expansión del ciervo.

En este sentido, la cabra montés muestra una situación intermedia entre los

dos ejemplos anteriormente citados. Se consideran como determinantes de su

expansión la presión cinegética, que es reducida en muchos de sus núcleos

poblacionales, la ausencia de depredadores y la modulación poblacional mediada

por relaciones interespecíficas. Esta última causa no se ha citado anteriormente

como general ya que apenas tiene efecto sobre especies como el ciervo y el jabalí,

aunque en otras, como el corzo y la cabra montés, parece ejercer una elevada

influencia.

Con los datos actualizados de la distribución de la cabra montés, y mediante

el Análisis Factorial de Nicho Ecológico (ENFA, su acrónimo en inglés), se ha podido

caracterizar medioambientalmente el nicho que la cabra montés ocupa en la

provincia de Albacete. Se ha visto que la cabra ocupa zonas marginales dentro del

área de estudio, en pocas palabras, se distribuye por zonas que presentan unas

características ambientales diferentes a las del conjunto de la provincia.

Medioambientalmente, las zonas ocupadas por la cabra presentan elevadas

pendientes y, en menor medida, elevadas altitudes, y están lejos de zonas alteradas

por el hombre, como pueden ser cultivos (viñedos en este caso) y zonas industriales.

Esta descripción de nicho es característica de un ungulado de montaña que ocupa

un medio adecuado para la especie aunque completamente rodeado de zonas

humanizadas, o al menos transformadas por el hombre.

Por otro lado, en este apartado ha quedado manifiesto un desplazamiento de

la cabra montés debido a la presencia de rebaños de ganado caprino. Ambas

especies cohabitan en Castilla-La Mancha siendo habitual que las zonas donde las

domésticas son pastoreadas sean las más adecuadas para las monteses. En este

trabajo se ha podido observar como en las zonas donde hay rebaños de domésticas,

la mayor abundancia de monteses aparece en ambientes a priori sub-óptimos para

ellas, esto es, zonas con mayor proporción de cultivos y menor proporción de

matorrales. Estos resultados pueden ser reflejo de una exclusión competitiva, ya que

en ausencia de ganado caprino se observa la situación inversa, es decir, hay mayor

abundancia de monteses en los medios con reducida proporción de cultivos y

Page 219: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 197

elevada de matorrales. La relación entre ambas especies, por lo tanto, puede verse

marcada por el establecimiento de una competición por los recursos o bien, aunque

no es excluyente, las monteses pueden estar indirectamente evitando algún parásito

de las domésticas, que llega al medio mediante los excrementos y otros exudados.

Enlazando con esto, se ha realizado un estudio parasitológico, más

concretamente de los nematodos broncopulmonares, en los principales núcleos

poblacionales de cabra montés en Castilla-La Mancha teniendo en cuenta la

presencia de ganado doméstico. Para ello se ha usado una técnica no invasiva

como son los análisis coprológicos. Esta metodología permite la obtención de

prevalencias e intensidades medias de excreción larvaria a nivel de género.

Se han identificado 5 géneros de la familia Protostongylidae y uno de la

familia Dictyocaulidae, y los resultados aquí obtenidos concuerdan con los de otros

estudios sobre la especie en cuanto a los géneros que han sido identificados y a la

frecuencia de aparición de cada uno de ellos. Las prevalencias e intensidades de

excreción larvaria han sido relacionadas con factores ambientales y con la

abundancia de ungulados (cabra montés y ganado caprino) a nivel poblacional. Se

ha obtenido que ambas familias parecen presentar patrones de trasmisión

dependientes de la densidad de cabra montés, ya que sus prevalencias, aunque no

sus intensidades de parasitación, se relacionan positivamente con la abundancia de

cabra montés. Este resultado es interesante puesto que aún siendo dos familias de

parásitos que presentan ciclos de vida muy diferentes, Protostongylidae necesita de

un hospedador intermediario mientras que Dictyocaulus spp. presenta un ciclo

directo, parecen mostrar el mismo patrón de transmisión. Del mismo modo, se ha

obtenido una relación positiva entre la abundancia de ganado caprino y la

prevalencia de Cystocaulus spp., y otra relación, y en el mismo sentido, entre

Protostongylus spp. y la proporción de pastizales. Esto pone de manifiesto que

domésticos y silvestres pueden estar compartiendo parásitos. Además de la relación

directa observada con Cystocaulus spp., la relación entre la prevalencia de

Protostongylus spp. y los pastizales indica la posibilidad de interacción entre ambas

especies, ya que es en los pastizales donde puede ocurrir la exposición común a las

formas infestantes de los citados parásitos en el pasto durante las horas de

alimentación. Estos resultados van en la línea de la relación descrita anteriormente

entre las cabras domésticas y silvestres bajo un planteamiento basado en el uso que

Page 220: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 4

________________________________________________________________ 198

los animales hacen del medio. La competición interespecífica mediada por parásitos

ha sido descrita como una interacción capaz de desplazar unas especies frente a

otras. Sin embargo, serían necesarios estudios experimentales y comparativos de la

parasitofauna de ambas especies para poder corroborar esta hipótesis. En un

sentido más amplio, estos resultados también evidencian el riesgo de transmisión de

otros agentes infecto-contagiosos derivado del uso común del hábitat, como la sarna

sarcóptica, especialmente cuando el ganado caprino que ocupa zonas marginales

suele presentar las peores condiciones sanitarias dentro de la cabaña ganadera.

Capítulo 2- LA EXPANSIÓN DE UNGULADOS SILVESTRES MEDIADA POR EL HOMBRE PUEDE FACILITAR EL SOLAPAMIENTO DE NICHO DE ESPECIES TAXONÓMICAMENTE DISTANTES: EL CIERVO IBÉRICO Y LA CABRA MONTÉS

Las introducciones de ciervos en la Península Ibérica han modificado

notoriamente el área de distribución de la especie. Estas acciones han sido y

continúan siendo habituales dentro de las estrategias de manejo de las poblaciones

de ungulados cinegéticos. En este contexto, se ha recopilado, a modo de ejemplo,

buena parte de la información existente sobre las introducciones de ciervo que se

han realizado con ejemplares provenientes de una sola finca de los Montes de

Toledo, Los Quintos de Mora. Es destacable que desde esta población se

repartieran, entre 1970 y 1990, más de 3500 ciervos que han llegado a un gran

número de regiones para ser introducidos tanto en fincas privadas como en montes

públicos.

En este capítulo se ha usado al ciervo como modelo de especie ampliamente

introducida para estudiar el efecto que estas introducciones pueden tener sobre: i) la

expresión del nicho ecológico de la propia especie introducida, ii) sobre otras

especies autóctonas que comparten el medio. Para abordar el primer punto se han

considerado dos poblaciones de ciervos en función de su origen poblacional, una

población autóctona (distribuida por Sierra Morena), y una población introducida

(considerada así la población de Cazorla, Segura y Las Villas, y otros núcleos

aislados), para modelizar el nicho ocupado por ambas. Los datos de distribución y

origen de estas poblaciones han sido obtenidos de fuentes bibliográficas y de

Page 221: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 199

muestreos de campo, y se han considerado factores climáticos, geomorfológicos, de

estructura y composición del hábitat, y antrópicos como predictores para construir los

modelos. La modelización se ha realizado siguiendo metodologías descritas y

evaluadas recientemente que se basan en la generación de pseudo-ausencias para,

con ellas, implementar el modelo predictivo mediante Modelos Lineales

Generalizados.

Como primer resultado se ha obtenido que ambas poblaciones ocupan nichos

ecológicos diferentes aún siendo poblaciones de la misma especie. Brevemente, el

nicho ecológico de la población autóctona está condicionado positivamente por el

rango de temperaturas, la disponibilidad de matorral y la altitud máxima, y

negativamente por el índice de evitación del paisaje, la proximidad a las zonas

urbanas y la cantidad de precipitación en invierno. Similarmente, el modelo realizado

para las poblaciones de ciervo introducido ha permitido caracterizar su nicho

ecológico en el área de estudio. La adecuación del hábitat para esta población, esto

es, su nicho realizado, está relacionada positivamente con la cantidad de

precipitación, tanto en invierno como en verano, con el rango de temperaturas, con

el porcentaje de bosques y con la proximidad a los bosques de coníferas, y

negativamente con la proximidad a los núcleos urbanos.

Como puede deducirse desde estas breves descripciones de los nichos de

ambas poblaciones, los condicionantes ambientales que modulan ambos son

claramente distintos. Esto resulta más visible aún observando la representación

espacial de ambos modelos, en la que se puede observar que la distribución

potencial predicha para ambas poblaciones apenas se solapa. Llegados a este

punto se puede afirmar que, según los modelos realizados, el ciervo ha sido

introducido en áreas fuera de su potencial expansivo, esto es, áreas que no

hubiesen alcanzado las poblaciones nativas de manera natural. El establecimiento

de estas poblaciones introducidas puede haber originado perturbaciones en los

ambientes hospedadores. Cuando se menciona el término perturbación se pretende

hacer referencia al impacto que estas poblaciones pueden causar sobre la

vegetación natural, sobre la fauna nativa y sobre la propia especie introducida. Se

considera que, al menos, estas poblaciones introducidas deben ser monitorizadas y

eficientemente manejadas para que sus efectos sobre el ecosistema hospedador no

lleguen a ser críticos y mucho menos irreversibles.

Page 222: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 4

________________________________________________________________ 200

Por otro lado, y con el fin de abordar el segundo punto expuesto al principio

de este apartado, se ha visto que la distribución potencial predicha para la cabra

montés está ampliamente solapada con la de las poblaciones introducidas de ciervo,

no siendo así con la de las poblaciones de ciervo autóctonas. Este resultado pone

de manifiesto que las introducciones de ciervo han facilitado el solapamiento del

nicho ecológico con la cabra montés. A grandes rasgos, Sierra Morena sería la única

zona del área de estudio donde la población de ciervo autóctono y la cabra montés

cohabitarían. Sin embargo, el solapamiento entre las poblaciones de ciervo

introducidas y las de cabra montés es mucho más amplio, pudiendo llegar a

establecerse en un porcentaje muy alto de las zonas ecológicamente adecuadas

para la cabra montés. Este resultado pone de manifiesto nuevamente que las

introducciones de animales realizadas sin ninguna base científico-técnica pueden

acarrear efectos negativos en el ecosistema. En este caso, el solapamiento de los

nichos de ambas especies podría originar el establecimiento de relaciones de

competencia por los recursos, sobre todo cuando éstos son limitantes, ya que ha

sido descrito que ambas especies, ciervo y cabra montés, presentan un elevado

solapamiento en su dieta. Estas relaciones de competencia podrían acarrear el

desplazamiento de una especie, en este caso la cabra al ser a priori

competitivamente inferior que el ciervo, fuera de su nicho ecológico óptimo de

manera similar a la relación anteriormente descrita entre las cabras domésticas y las

silvestres.

Capítulo 3- LA EXPANSIÓN DE UNGULADOS SILVESTRES MEDIADA POR EL HOMBRE PUEDE FACILITAR EL SOLAPAMIENTO DE NICHO: EL CASO DE UNA ESPECIE EXÓTICA, EL ARRUI, Y LA CABRA MONTÉS

Además de las introducciones realizadas con especies nativas, como el caso

descrito y estudiado en el apartado anterior, son también frecuentes las

introducciones de ungulados exóticos enmarcadas, nuevamente, dentro de la

gestión cinegética. En la Península Ibérica los ungulados exóticos más ampliamente

introducidos son el arrui y el muflón, no descartando con ello que otros ungulados

exóticos, africanos o asiáticos, puedan encontrarse actualmente en suelo peninsular.

Un caso distinto es el del gamo, especie que también ha sido repartida por nuestra

Page 223: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 201

geografía. Actualmente existe cierta controversia sobre si los gamos deben ser

considerados o no como ungulados exóticos en la península. Parece que, a día de

hoy, destacan los defensores de su condición autóctona que, entre otras cuestiones,

argumentan la posibilidad de que los antecesores del gamo nunca llegaran a

desaparecer tras la última glaciación, por lo que la especie sería propia de la

península; del mismo modo destaca la existencia de citas muy antiguas sobre la

presencia de gamos en la península, entre las que se encuentra una sobre la

existencia de pastores de gamos en la zona del Parque Nacional de Doñana ya en

1580. No se pretende aquí formar parte de este debate, por lo que para estudiar el

efecto de las especies exóticas se ha empleado como modelo al arrui, ya que nadie

tiene dudas sobre su carácter exótico.

Primeramente se ha evaluado el potencial ambiental del área de estudio para

el arrui. Para ello se han implementado dos modelos de adecuación de hábitat

basados en el ENFA, considerando en uno de ellos únicamente variables

ambientales, y en el otro tanto variables ambientales como antrópicas. Comparando

los resultados obtenidos en ambos modelos se puede estudiar el efecto que las

alteraciones que el hombre introduce en el medio producen sobre la selección del

nicho de la especie.

La distribución actual del arrui en el área de estudio se encuentra

fragmentada en dos núcleos poblacionales entre los que todavía parece que no

existe flujo de individuos. El origen de cada uno de ellos es diferente, así el más

ampliamente distribuido, el núcleo de Sierra Espuña, es el resultado de la

introducción de unos pocos animales en 1970, y sin embargo, el núcleo de Alicante

se ha establecido desde unos ejemplares que se escaparon de acotados cinegéticos

privados en 1990. Se ha partido de datos de observaciones de individuos de ambas

poblaciones para construir los modelos predictivos aquí presentados. Al contar con

datos de dos poblaciones independientes, el poder predictivo de los modelos

realizados puede ser evaluado de una manera robusta, es decir, con los datos de

una población, en este caso la de Sierra Espuña, se construyen los modelos y se

evalúa la capacidad predictiva de los mismos con los datos de la otra población, la

de Alicante.

Los resultados de los análisis que se han realizado indican que el nicho

ambiental que está ocupando el arrui en la península es próximo al que ocupa en

Page 224: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 4

________________________________________________________________ 202

África. Esta afirmación puede resultar un tanto arriesgada, aunque si se enmarca en

el contexto de que el nicho ambiental del arrui se ha caracterizado por reducidas

precipitaciones, altas altitudes y pendientes, y presencia de cobertura forestal, nadie

dudaría que se pudieran estar describiendo condiciones similares a las del macizo

del Atlas, una de las zonas de donde es nativo. Resulta destacable el elevado

potencial ambiental del área de estudio para esta especie, por lo que sería esperable

que el arrui, con elevada capacidad de adaptación al medio, aumentase su actual

área de distribución en años venideros.

Cuando las variables antrópicas (variables relacionadas con las alteraciones

del medio debidas a acciones humanas) se incluyen en los modelos, la adecuación

del territorio varía respecto a la obtenida en el modelo puramente ambiental. El nicho

observado, en este caso, presenta una distribución fragmentada debido a que,

generalmente, los usos del suelo alterados por el hombre se disponen en el espacio

de manera más parcheada que otros usos del suelo que pueden considerarse

naturales. Además de la fragmentación, el nicho observado de la especie, en el que

se incluyen los condicionantes antrópicos, presenta menor amplitud que el basado

únicamente en factores ambientales. Este resultado podría estar indicando que el

arrui se podría haber expandido por el área de estudio a una mayor velocidad, y

podría estar más ampliamente distribuido de lo que está en la actualidad si el medio

hubiera estado poco humanizado. Debe también apuntarse, a la vista de los

resultados, la posibilidad de que podría producirse un aumento de la capacidad

expansiva de esta especie como consecuencia del abandono del medio rural en las

zonas de sierra del área de estudio.

Otra cuestión destacable está relacionada con el índice de la evitación del

paisaje por los ungulados (WULAI, su acrónimo en inglés) y los modelos de

adecuación obtenidos. El cálculo de este índice está basado en el conocimiento

previo que existe sobre la ecología de ungulados, así como en el grado de alteración

humana que presenta cada uno de los usos del suelo. Se ha visto que existe una

relación entre el WULAI y la adecuación del hábitat para el arrui, poniendo esto de

manifiesto que el índice tiene la capacidad de estimar la potencialidad ambiental del

territorio para, al menos, el arrui. Sin embargo, los análisis realizados no permiten

separar de manera independiente los efectos de los diferentes usos del suelo sobre

el rango de expansión de la especie. Serían necesarios más estudios para evaluar el

Page 225: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 203

efecto individual de los diferentes usos del suelo sobre la distribución de los

ungulados.

Las especies exóticas, como el arrui, pueden ocasionar efectos negativos

sobre la fauna y flora del ecosistema que actúa como hospedador. En el caso de la

fauna, estos efectos serán más acentuados sobre especies taxonómicamente

cercanas, o bien sobre especies ecológicamente convergentes. Desde este punto de

vista, se hipotetiza la posibilidad de que el arrui alcance nichos ecológicos propios

de otras especies nativas, como la cabra montés debido a la potencialidad ambiental

del territorio para esta especie exótica, y el marcado proceso de expansión en el que

están inmersas sus poblaciones. Si esta hipótesis se cumpliera, se podrían

establecer relaciones interespecíficas entre las especies nativas y exóticas a gran

escala, y todo ello podría desembocar en un importante problema de conservación.

Enlazando con esto se han evaluado los nichos ambientales de la cabra

montés y del arrui con el fin de identificar diferencias y similitudes que pudieran

existir entre ellos. Los resultados obtenidos muestran que ambas especies ocupan

hábitats marginales dentro del área de estudio, estando la distribución de la cabra

montés en una situación de mayor equilibrio con las condiciones ambientales que la

del arrui. Este resultado es lógico teniendo en cuenta que la cabra montés es una

especie autóctona que lleva evolucionando con el medio desde tiempos del

Paleolítico. Sin embargo el arrui, aunque ya lleva más de 30 años en la península,

todavía no ha alcanzado su óptimo ambiental. Esta especie se ha mostrado menos

tolerante a los gradientes ambientales secundarios que la cabra, siendo este

resultado un indicio más de que el arrui todavía no ha alcanzado todas las zonas

ambientalmente adecuadas del área de estudio, aunque estos y otros estudios dejan

entrever que el que esta especie alcance su nicho óptimo en la Península Ibérica es

cuestión de tiempo.

La descripción del nicho de la cabra montés obtenida aquí es similar a la

obtenida en los análisis realizados en el Capítulo 1. Las diferencias que se pueden

encontrar entre ambas descripciones son debidas a que los modelos predictivos son

contexto-dependientes, esto es, dependen de la extensión y de los gradientes

ambientales existentes en el área de estudio. En este análisis, el nicho ambiental de

la cabra montés se caracteriza por presentar bajas temperaturas en verano,

elevadas altitudes y pendientes, y altas precipitaciones en invierno. El nicho del arrui

Page 226: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 4

________________________________________________________________ 204

se caracteriza por elevadas pendientes y amplios rangos de altitud, y con elevada

presencia de bosques. Estos análisis muestran que los nichos de ambas especies

presentan unos rasgos ecológicos que pueden ser fácilmente relacionados con

ambientes agrestes. De este modo, se puede decir que el arrui ocupa una amplia

variedad de sistemas montañosos de diferente altitud que se encuentran dispersos

por el área de estudio, mientras que la cabra montés se distribuye por áreas muy

restringidas en el contexto del presente estudio, que son los sistemas montañosos

con mayores altitudes.

Se ha realizado una comparación entre las áreas que presentan alta

adecuación de hábitat para las especies estudiadas, considerando para ello tres

escenarios: i) zonas de elevada adecuación para la cabra montés pero no para el

arrui, por lo tanto “exclusivas” de cabra, ii) zonas de elevada adecuación para el arrui

pero no para la cabra, “exclusivas” de arrui y iii) zonas de elevada adecuación para

ambas especies, que se han denominado zonas de potencial coexistencia. Existen

sutiles diferencias ambientales que definen cada uno de los escenarios

considerados. Estas diferencias ponen de manifiesto que la cabra montés presenta

menor plasticidad ecológica que el arrui, esto es, las monteses sólo habitan en

medios donde sus requerimientos ambientales queden cubiertos, mientras que el

arrui tiene una elevada capacidad para adaptarse a medios distintos lo que hace que

actúe como una especie generalista en lo que a preferencia de hábitat se refiere.

Climatológicamente hablando, las áreas de coexistencia parecen ser más similares a

las “exclusivas” de la cabra montés que a las “exclusivas” de arrui. Esto puede

indicar que, ante una hipotética relación competitiva entre ambas especies, la cabra

montés estaría en situación ventajosa respecto al exótico. Esta afirmación debe ser

considerada en el contexto de que actualmente el arrui puede no haber alcanzado

su nicho óptimo, por lo que su proceso expansivo y adaptativo podría hacer que esta

situación se viese alterada en un futuro. Por otro lado, la escasa plasticidad

ecológica que ha mostrado la cabra montés en este estudio, podría estar indicando

que ante una situación de competencia con una especie que alcance y colonice su

nicho ecológico, se producirían efectos negativos sobre las poblaciones de

monteses ya que si éstas son desplazadas de sus ambientes óptimos,

previsiblemente, y debido a su reducida capacidad de adaptación, el estatus de sus

poblaciones podría verse mermado.

Page 227: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 205

Además de la competición por los recursos, la expansión del arrui por los

ambientes donde se asientan poblaciones de cabra montés puede ser una amenaza

para las nativas debido a que ambas especies comparten enfermedades, como por

ejemplo la sarna sarcóptica. Por ello, otro de los posibles efectos negativos que los

arruis pueden ejercer sobre la cabra montés radica en que los exóticos podrían

llegar a actuar como vehículos de enfermedades facilitando su transmisión entre

poblaciones.

Page 228: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 229: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

4.2.- CONCLUSIONES

Page 230: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 231: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Tesis Doctoral

________________________________________________________________ 209

Las conclusiones que se han podido extraer desde los estudios realizados en

esta Tesis Doctoral son:

1- La cabra montés está en marcado proceso expansivo en Castilla-La Mancha

destacando los núcleos de la Serranía de Cuenca-Alto Tajo y el del sur de

Albacete. Han sido descritos dos nuevos núcleos poblacionales, el de Casas

Ibáñez, y el de Los Navalucillos. En la provincia de Albacete, las principales

zonas adecuadas para las cabras se caracterizan por: i) estar muy ligadas a las

cuencas del Río Mundo y del Río Segura, ii) presentar orografía complicada, y iii)

presentar una reducida proporción de usos del suelo transformados por el

hombre.

2- La presencia de ganado caprino y su interacción con variables ambientales ha

permitido detectar una relación interespecífica entre domésticas y silvestres. El

ganado caprino desplaza a las cabras monteses hacia hábitats, a priori, menos

adecuados para ellas, como son los medios con elevada proporción de cultivos y

reducida proporción de matorrales.

3- Los nematodos broncopulmonares, ampliamente distribuidos por la poblaciones

de cabra montés de Castilla-La Mancha, presentan patrones de excreción de

larvas compatibles con fenómenos de transmisión dependientes de la densidad de

hospedadores. Por vez primera se han encontrado evidencias de que cabra

montés y ganado doméstico podrían compartir la epidemiología de algunos

géneros de nematodos broncopulmonares. Estos parásitos podrían ser de

utilidad como indicadores en una red de vigilancia sanitaria de las poblaciones de

cabra montés de Castilla–La Mancha.

4- Las introducciones de ciervo se han realizado en áreas no adecuadas para la

especie según los requerimientos ambientales que han mostrado las poblaciones

autóctonas. Introducir ciervos más allá de su potencial dispersivo hace que la

expresión del nicho ecológico de la especie se vea modificada. La introducción

de ciervos con fines cinegéticos ha facilitado el solapamiento de su “nuevo” nicho

ecológico con el de la cabra. Estrategias de gestión, como las introducciones

para la generación de nuevas poblaciones, deben tener en cuenta los

requerimientos ambientales de la especie en sus núcleos originales con el fin de

Page 232: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e

Capítulo 4

________________________________________________________________ 210

no perturbar ni el comportamiento de la propia especie, ni el ecosistema

hospedador.

5- Los resultados de los análisis que se han realizado indican que el nicho

ambiental que está ocupando el arrui en la península es próximo al que ocupa en

África. Éste se caracteriza por reducidas precipitaciones, altas altitudes y

pendientes, y presencia de cobertura forestal.

6- Las variables relacionadas con las alteraciones del medio debidas a acciones

humanas fragmentan el nicho observado y restringen levemente la distribución

potencial del arrui. Estos resultados sugieren que el arrui se hubiera expandido

por el área de estudio a una mayor velocidad, y estaría más ampliamente

distribuido de lo que está en la actualidad, si el medio hubiera estado menos

humanizado.

7- Existen similitudes en las características ambientales que definen los nichos del

arrui y de la cabra montés. Sin embargo, pequeñas diferencias ambientales

definen los nichos exclusivos de ambas especies como las áreas donde,

potencialmente, pueden cohabitar. Estas últimas presentan características

ambientales más próximas al nicho de la cabra que al del arrui. Por ello se

concluye que: i) la cabra montés presenta menor plasticidad ecológica que el

arrui, ii) ante una hipotética relación competitiva entre ambas especies, la cabra

montés estaría en situación ventajosa respecto al arrui debido a que esta relación

se establecería en un medio con características ambientales más adecuadas

para la cabra. Esta afirmación debe ser considerada en el contexto de que

actualmente el arrui no ha alcanzado su nicho óptimo, por lo que su proceso

expansivo y adaptativo podría hacer que esta situación se viese alterada en unos

pocos años.

Page 233: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e
Page 234: EMORIA PRESENTADA POR Pelayo Acevedo Lavanderadigital.csic.es/bitstream/10261/8298/3/Tesis_PAcevedo.pdf · en Oviedo.Y como no, a lo s amiguetes de la Villa, Gale y Paula, Pedro e