detallamiento.pdf

Upload: cesar-cancino-rodas

Post on 02-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 detallamiento.pdf

    1/82

    THE CIVIL & STRUCTURAL ENGINEERING PANELTHE CIVIL & STRUCTURAL ENGINEERING PANEL

    ENGINEERS AUSTRALIA SYDNEY DIVISIONENGINEERS AUSTRALIA SYDNEY DIVISION

    28 August 2012

    DetailingofReinforcementDetailingofReinforcement

    inConcrete

    Structuresin

    Concrete

    Structures

    R.I.GilbertR.I.Gilbert

  • 8/10/2019 detallamiento.pdf

    2/82

    DetailingDetailingisoftenconsideredtobetheisoftenconsideredtobethepreparationofworkingpreparationofworking

    drawingsdrawingsshowingthesizeandlocationofthereinforcementinashowingthesizeandlocationofthereinforcementina

    concretestructure.concretestructure.

    DetailingDetailinginvolvestheinvolvesthecommunicationcommunicationoftheengineeroftheengineersdesigntothesdesigntothe

    contractorswhobuildthestructure.Itcontractorswhobuildthestructure.Itinvolvesthetranslationofainvolvesthetranslationofa

    goodstructuraldesignfromthecomputerorcalculationpadintogoodstructuraldesignfromthecomputerorcalculationpadintothethe

    finalstructure.finalstructure.

    GooddetailingensuresthatGooddetailingensuresthatreinforcementreinforcement

    andconcreteinteractefficientlyandconcreteinteractefficientlytoprovidetoprovide

    satisfactorysatisfactorybehaviourbehaviourthroughoutthethroughoutthe

    completerangeofloading.completerangeofloading.

    Inthisseminar,guidelinesforInthisseminar,guidelinesforsuccessfulsuccessful

    detailingdetailinginstructuralelementsandinstructuralelementsand

    connectionsareoutlined.connectionsareoutlined.

    IntroductionIntroduction::

  • 8/10/2019 detallamiento.pdf

    3/82

    Thedetailingrequirementsofareinforcementbardependonthe

    reasonsfor

    its

    inclusion

    in

    the

    structure.

    Reasonsinclude:

    1. Tocarryinternaltensileforces,therebyimpartingstrength

    andductility;

    2. Tocontrolflexuralcracking;

    3. Tocontroldirecttensioncrackinginrestrainedstructures;

    4. To

    carry

    compressive

    forces;5. Toproviderestrainttobarsincompression;

    6. Toprovideconfinementtoconcreteincompression;

    7. Tolimitlongtermdeformation;

    8. Toprovideprotectionagainstspalling;and

    9. Toprovidetemporarysupportforotherreinforcementduring

    construction.

  • 8/10/2019 detallamiento.pdf

    4/82

    Guiding

    principles:

    Determinelocationanddirectionofallinternalforces(i.e.

    establishaloadpaththatsatisfiesequilibrium);

    Useadequatelyanchoredreinforcementwhereveratensile

    forceis

    required

    for

    equilibrium;

    Useonlyductilereinforcement(ClassNorbetter)whenthe

    reinforcementisrequiredforstrength;

    Neverrelyon

    the

    concretes

    ability

    to

    carry

    tension

    (it

    may

    not

    exist);

    Includeadequatequantitiesofreinforcementforcrackcontrol;

    Ensuresteeldetailsarepracticalandthatsteelcanbefixedand

    concretecan

    be

    satisfactorily

    placed

    and

    compacted

    around

    complexdetailswithadequatecover;and

    Ensuredetailsareeconomical.

  • 8/10/2019 detallamiento.pdf

    5/82

    Sources

    of

    tension:

    1. Tensioncausedbybending(andaxialtension):

    Positive bending

    Negative bending

    Axial tension

    Flexuraltensioncracks

    Flexuraltensioncracks

    Directtensioncracks

  • 8/10/2019 detallamiento.pdf

    6/82

    Sourcesoftension:

    2. Tensioncausedbyloadreversals:

    Cantilever beam or slabSimple beam or slab

    Impact and rebound loading

  • 8/10/2019 detallamiento.pdf

    7/82

    Sourcesoftension(ctd):

    3. Tensioncausedbyshearandtorsion:

    C

    C T

    T

    Shear

    Tensioncarriedbystirrups

    Flexureshearcracks

  • 8/10/2019 detallamiento.pdf

    8/82

    Sourcesoftension(ctd):

    4. Tensionnearthesupportsofbeams:

    Thelongitudinaltensionatthesupportisgreaterthanindicated

    bythebendingmomentdiagram.

    Thetensileforceatthebottomoftheinclinedcrackisequalto

    thecompressiveforceatthetopofthecrack.

  • 8/10/2019 detallamiento.pdf

    9/82

    Sourcesoftension(ctd):

    Lst

    AS36002009(8.1.10.4):

    Sufficientbottomsteelmustbe

    anchoredfor

    alength

    (Lst)

    past

    the

    midpointofthebearingtodevelop

    atensileforceofV*cotv/(plusany

    additionalforcearisingfromrestraint)

    Thisrequirementisdeemedtobesatisfiedifeither

    Astisextendedpastthefaceofthesupportby 12db;or Astisextendedpastthefaceofthesupportby 12db+D/2

    whereAstisthetensilesteelarearequiredatmidspan

  • 8/10/2019 detallamiento.pdf

    10/82

    Sourcesoftension(ctd):

    5. Tensionwithinthesupportsofbeamsandslabs:

    Crackingduetoinadequate

    slipjointbetweenslaband

    supportingbrickwall

  • 8/10/2019 detallamiento.pdf

    11/82

    Sourcesoftension(ctd):

    6. Tensionwithinconnections:

    Hanger

    reinf.to

    carry

    tension

    Primarygirder

    Compressionstruts

    Reactionfromsecondarybeam

    appliedhere

    Secondary

    beam

    M

    M

    C

    C

    T

    T

    M

    M

    (a)Internalforces (b)Crackpattern

    2 T

  • 8/10/2019 detallamiento.pdf

    12/82

    Sourcesoftension(ctd):

    7. Tensionatconcentratedloads:

  • 8/10/2019 detallamiento.pdf

    13/82

    Sourcesoftension(ctd):

    8. Tensioncausedbydirectionalchangesofinternalforces:

    (a)

    T

    TT

    R

    stirrups(b)

    Lsy.t

    (c)

    C C

    R Potentialcrackinweb

    Asvatspacings

  • 8/10/2019 detallamiento.pdf

    14/82

    Sourcesoftension(ctd):

    8. Tensioncausedbydirectionalchangesofinternalforces:

    (a)

    T

    TT

    R

    stirrups(b)

    Lsy.t

    (c)

    Asvatspacings

    C

    T

    C

    T

    rm

    qt

    Ast

    m

    syst

    m

    tr

    fA

    r

    Tq == m

    sy

    vy

    st

    sv

    t

    vysvr

    f

    f

    A

    A

    q

    fAs ..==

    Transversetension: Requiredstirrupspacing:

  • 8/10/2019 detallamiento.pdf

    15/82

    Splittingfailuresarounddevelopingbars.

    F F F

    TF F F

    Tensile stresses

    tr Atr

    Splitting cracks

    a) Forces exerted by concrete on a deformed bar (b) Tensile stresses in concrete

    at a tensile anchorage

    (c) Horizontal splitting due (d) Vertical splitting due to (e) Splitting (bond) failureinsufficient bar spacing. insufficient cover at a lapped splice.

    Anchorage

    of

    deformed

    bars

    is

    tension:

  • 8/10/2019 detallamiento.pdf

    16/82

    Lsy.t

    fb

    Asfsy

    b

    sybtsy

    f

    fdL

    4.

    Forareinforcementbartoreachitsyieldstressatacritical

    crosssection,

    aminimum

    length

    of

    reinforcing

    bar

    (an

    anchorage)isrequiredoneithersideofthesection.

    AS36002009specifiesaminimumlength,calledthedevelopment

    length,Lsy.t,overwhichastraightbarintensionmustbeembeddedin

    theconcrete

    in

    order

    to

    develop

    the

    yield

    stress.

    Anaveragedesignultimatebondstressfbisassumedattheinterface

    betweentheconcreteandthereinforcingbar(=0.6).

    fbdependson typeandconditionofreinforcingbar;strength

    andcompactionofconcrete;concretecover;

    barspacing;transversereinforcement;

    transversepressure

    (or

    tension).

  • 8/10/2019 detallamiento.pdf

    17/82

    Thebasicdevelopmentlength,Lsy.tb,is

    where k1=1.3 forahorizontalbarwith>300mmofconcretecast

    below

    it

    and

    k1=

    1.0

    for

    all

    other

    bars;

    k2=(132db)/100;

    k3=1.00.15(cd db)/db (but 0.7k31.0)

    cd isthe

    smaller

    of

    the

    concrete

    cover

    to

    the

    bar

    or

    half

    thecleardistancetothenextparallelbar;

    fc shallnotbetakentoexceed65MPa

    AS36002009: (13.1.2.2)

    bdk129c2

    bsy31

    sy.tb

    5.0

    fk

    dfkkL

    =

  • 8/10/2019 detallamiento.pdf

    18/82

    AS36002009 (13.1.2.2)

    c1

    c

    a/2

    cd=min(a/2,c,c1)

  • 8/10/2019 detallamiento.pdf

    19/82

    ThedevelopmentlengthLsy.t maybetakenasthebasic

    developmentlengthormayberefinedtoincludethebeneficial

    effectsofconfinementsbytransversesteelortransversepressure

    andis

    where k4=1K (but0.7k41.0);and

    k5=1.00.04p (but 0.7k51.0);

    AS3600-2009 ctd (13.1.2.3)

    sy.tb54sy.t LkkL =

  • 8/10/2019 detallamiento.pdf

    20/82

    FIGURE 13.1.2.3(B) VALUES OFKFOR BEAMS AND SLABS

    K = 0.1 K = 0.05 K = 0

    sy.tb54sy.t LkkL =k4 = 1 -K

    where

    = (AtrAtr.min)/As;

    Atr = cross-sectional area of the transverse reinforcement along the development

    lengthLsy.t

    Atr.min= cross-sectional area of the minimum transverse reinforcement, which may

    be taken as 0.25Asfor beams and 0 for slabs

    As = cross-sectional area of a single bar of diameter dbbeing anchored

    K = is a factor that accounts for the position of the bars being anchored

    relative to the transverse reinforcement, with values given below:

    AS3600-2009 ctd (13.1.2.3)

  • 8/10/2019 detallamiento.pdf

    21/82

    ThedevelopmentlengthLsttodevelopastressstlowerthanfsy:

    Whencalculatingstdontforgettoincludethestrengthreductionfactor

    (=0.8).IfT*isthedesignultimatetensileforceinthereinforcementcausedbythefactoreddesignloads,then:

    andtherefore

    AS3600-2009 ctd (13.1.2.3)

    bsy

    st

    sy.tst

    12df

    LL =

    st

    st

    stst

    *

    *

    A

    T

    AT

  • 8/10/2019 detallamiento.pdf

    22/82

    Thedevelopmentlengthofadeformedbarwithastandardhook

    orcog:

    AS3600-2009 ctd (13.1.2.3)

    (a) Standard hook (180bend) (b) Standard hook (135bend).

    0.5Lsy.t

    4dbor 70mm

    did

    X

    0.5Lsy.t

    did/2

    X

    (c) Standard cog (90bend).

    0.5Lsy.t

    did /2

    X

    A A

    A

    X X

    X

    did 0.5d

    id

    0.5Lsy.t

    0.5Lsy.t

    0.5Lsy.t

    4dbor70mm

    (a)Standardhook(180bend) (b)Standardhook(135bend)

    (c)Standardcog(90bend)

  • 8/10/2019 detallamiento.pdf

    23/82

    WORKEDEXAMPLE:

    Considertheminimumdevelopmentlengthrequiredforthetwo

    terminated28mmdiameterbottombarsinthebeamshownbelow.

    Takefsy = 500 MPa;fc = 32 MPa;covertothe28mmbarsc = 40 mm;

    andtheclearspacingbetweenthebottombarsa = 60 mm.

    ThecrosssectionalareaofoneN28barisAs = 620 mm2 andwithN12

    stirrups

    at

    150

    mm

    centres,

    Atr= 110 mm2

    .

    AS3600-2009

    P P

    Lsy.t

    12mm stirrups at 150mm ctrs

    Two terminated bars

    A

    A

    Elevation Section A-A

    Lsy.t+ d

    Lsy.t +D

  • 8/10/2019 detallamiento.pdf

    24/82

    Forbottombars:k1 = 1.0;

    For28mmdiameterbars:k2 = (132 28)/100 = 1.04;

    The

    concrete

    confinement

    dimension,cd= a/2 = 30 mm,

    and

    thereforek3 = 1.0 0.15(30 28)/28 = 0.99

    Thebasicdevelopmentlengthistherefore

    The

    minimum

    number

    of

    stirrups

    that

    can

    be

    located

    within

    the

    basic

    developmentlengthis7.Therefore, Atr= 7 x 110 = 770 mm2.

    Taking Atr.min = 0.25As = 155 mm2,theparameter

    = (770 155)/620 = 0.99

    Worked Example ctd (13.1.2.3)

    )29(mm11783204.1

    2850099.00.15.01sy.tb bdkL >=

    =

    c2

    bsy31

    sy.tb

    5.0

    fk

    dfkk

    L =

  • 8/10/2019 detallamiento.pdf

    25/82

    FromFigure13.1.2B,K = 0.05(asitisthetwointeriorbarsthatarebeing

    developed)andtherefore

    Itisassumedthatinthislocationthetransversepressureperpendicularto

    theanchoredbar(p)iszero,andhencek5 = 1.0.

    FromEq.13.1.2.3:

    Worked Example ctd (13.1.2.3)sy.tb54sy.t LkkL =

    95.099.005.00.10.14 === Kk

    .mm112011780.195.0.54. === btsytsy LkkL

    Thestrengthofthebeammustbecheckedatthepointwherethetwo

    barsareterminated(ie.atLsy.t+dfromtheconstantmomentregion)

  • 8/10/2019 detallamiento.pdf

    26/82

    LappedSplicesforbarsintension(13.2.2LappedSplicesforbarsintension(13.2.2AS3600AS36002009):2009):

    PLANAR VIEW

    sL adb sb

    Lsy.t.lap

    Note: For the purposes of determining cd, the dimension a shall be taken equal to (sL-db)

    irrespective of the value ofsb.

    cd, = min (a/2, ccrit )

    (i) 100% of bars spliced (no staggered splice)

    cd, = min (a/2, ccrit )

    (ii) 50% staggered splices

    PLANAR VIEW

    Lsy.t.lap

    0.3Lsy.t.lap

    a

    L

    b

    Note: For the purposes of determining cd, the dimension a shall be taken equal to 2sL

    irrespective of the value ofsb.

    (a/2, c )

    (a/2, c )

    cd= min (a/2, c)

    (i) 100% of bars spliced (no staggered splices)

    (ii) 50% staggered splicescd= min (a/2, c)

  • 8/10/2019 detallamiento.pdf

    27/82

    LappedSplicesforbarsintension:LappedSplicesforbarsintension:

    AS36002009: 13.2.2

    sy.t7sy.t.lap LkL =

    bdk

    129

    k7 shallbetakenas1.25,unlessAs providedisgreaterthanAs required

    andnomorethanonehalfofthetensilereinforcementatthesectionis

    spliced,inwhichcasek7

    =1.

    Innarrowelementsormembers(suchasbeamwebsandcolumns),the

    tensilelaplength(Lsy.t.lap)shallbenotlessthanthelargerofk7Lsy.tand

    Lsy.t +1.5sb,wheresbisthecleardistancebetweenbarsofthelapped

    spliceas

    shown

    in

    Figure

    8.15.

  • 8/10/2019 detallamiento.pdf

    28/82

    ConsiderthelappedsplicerequirementsforN12barsat200mmcentresinthe

    bottomof

    aslab.

    Cover

    =20

    mm.

    Concrete

    strength

    =25

    MPa.

    AS36002009:

    ACI31808:(Refined Clause12.2.3)

    b

    et

    dlap df

    fL

    c

    y

    1.23.13.1

    ==

    l

    12250.11.2

    0.10.15003.1

    =

    bd9.61mm743 ==

    b

    b

    trb

    set

    dlap d

    d

    Kcf

    fL

    )(1.1

    3.13.1

    c

    y

    +

    ==

    l

    12

    )12

    026(250.11.1

    8.00.10.15003.1

    +

    =

    bd7.43mm524 ==

    ACI31808:(Simplified Clause12.2.2)

    c2

    bsy31

    sy.tbsy.t.lap

    5.025.1

    fk

    dfkkLL

    ==

    252.1

    1250090.00.15.025.1

    =

    bd9.46mm563 ==

    )20013600ASin

    7.30mm369..(

    = bdfc

  • 8/10/2019 detallamiento.pdf

    29/82

    Detailingofbeams:

    Anchorageof

    longitudinal

    reinforcement:

    Favorable

    anchorage

    Elevation Section

    Unfavorableanchorage Transversetension

    Possiblecracks

    Normalpressure

    C

    C

    T TT

    Whenbottomreinforcementis

    terminatedaway

    from

    the

    support,

    thediagonalcompressionintheweb

    improvestheanchorage.

  • 8/10/2019 detallamiento.pdf

    30/82

    Currentwording:

    Thedesignforflexuralstrengthanddetailingofflexuralreinforcementandpretensioned tendonsatterminationshallbeextendedfromthe

    theoreticalcutoffpoint,ordebonding point,byalengthof1.0D+Lsy.t,or

    1.0D+Lpt,whereDisthememberdepthatthetheoreticalcutoffpointor

    theoreticaldebonding point

    Problem1: Thewordingdoesnotmakesense

    Problem2: Theruleisincorrect abardoesnothavetodevelop

    itsyield

    stress

    at

    the

    theoretical

    cut

    off

    point

    Amendedwording:Whereflexuralreinforcementandpretensioned tendonsaretobe

    terminated,the

    bars

    or

    tendons

    shall

    be

    extended

    from

    the

    theoretical

    cut

    offpoint,ortheoreticaldebonding point,byalengthofatleast1.0D+Lst,

    or1.0D+Lpt,respectively,whereDisthememberdepthatthetheoretical

    cutoffpointortheoreticaldebonding point

    AS3600-2009 Clause 8.1.10.1

  • 8/10/2019 detallamiento.pdf

    31/82

    Detailingofbeams(ctd):

    tiltedanchorage nearhorizontalanchorage diagonalcompression

    Reactionpressure Reactionpressure

    Sectionsand

    Elevations

    Plan

    Thetransversetensionthatmaycausesplittingin

    theplane

    of

    ahooked

    anchorageat

    asupport

    can

    beovercomeatabeamsupportsimplybytiltingthe

    hookandexposingittothenormalreactionpressure.

  • 8/10/2019 detallamiento.pdf

    32/82

    Detailingofbeams(ctd):

    Ifthebearinglengthatasupportissmallandclosetothefreeendofa

    member,asliding shearfailurealong

    asteep

    inclined

    crack

    may

    occur.

    Additionalsmalldiameterbarsmayberequiredperpendiculartothe

    potentialfailureplane

    Potentialfailuresurface

    Inclinedclampingbars

  • 8/10/2019 detallamiento.pdf

    33/82

    Detailingofbeams(ctd):

    Wherethelengthavailableforanchorageissmall,mechanical

    anchoragesinthe

    form

    of

    welded

    cross

    bars

    or

    end

    plates

    may

    be

    used.

    Commoninprecastelements,corbels,bracketsandatothersupport

    points.

    welded

    crossbarendplate

    (a)

    (b)

    (c)

    recessed

    angle

  • 8/10/2019 detallamiento.pdf

    34/82

    Detailingofbeams(ctd):

    Inshort

    span

    members,

    where

    load

    is

    carried

    to

    the

    support

    by

    arch

    action,itisessentialthatallbottomreinforcement(thetieofthearch)

    isfullydevelopedateachsupport.Closelyspacedtransversestirrups

    canbeusedtoimproveanchorageofthetiereinforcement.

    Compressivestrut

    Tie

    DoNOTterminateanybottombars

    Binding

    reinforcement

    Anchorageis

    critical

    Member

    Centreline

  • 8/10/2019 detallamiento.pdf

    35/82

    Detailingofbeams(ctd):

    Concentratingtopsteelatasupportinabeamwithinthewebcanlead

    tocrackcontrolproblemsintheadjacentslab(Leonhardt etal.)

    0

    10

    20

    3040

    50

    60

    70

    0 100 200 300 400 500

    Load kN

    Cr

    ackwidth(

    0.0

    1mm))

    As= 1030 mm2

    As= 1020 mm2

  • 8/10/2019 detallamiento.pdf

    36/82

    Detailingofbeams(ctd):

    AnchorageofStirrups:

    Tensioninstirrupismoreorlessconstantoverheightofverticalleg.

    Therefore,allpointsonverticallegmustbefullydeveloped

    Stirrupanchoragesshouldbelocatedinthecompressivezoneand

    beshown

    on

    the

    structural

    drawings.

    Theareaofshearreinforcementrequiredataparticularcross

    sectionshouldbeprovidedforadistanceDfromthatcrosssection

    inthedirectionofdecreasingshear(AS36002009 Clause8.2.12.3).

    Compressivetopchord(concrete)

    Verticalties(stirrups)Inclinedwebstruts

    (concrete)

    Tensilebottomchord(Ast)

  • 8/10/2019 detallamiento.pdf

    37/82

    Detailingofbeams(ctd):

    Typesof

    Stirrups:

    (a)Incorrect

    Inadequateanchorage

    A90cogisineffectiveifthe

    coverconcrete

    is

    lost

    Tensilelappedsplice

    (c)Satisfactory

    Compressiveside

    Tensileside

    (b)Undesirable(butsatisfactory)

    Inregionswhereductilityisrequired,

    theopenstirrups(commonlyusedin

    posttensioned

    beams)

    do

    not

    confine

    the

    compressiveconcrete

  • 8/10/2019 detallamiento.pdf

    38/82

    Detailingofbeams(ctd):

    Typesof

    Stirrups:

    cracks

    Ts

    Cd

    Compressionstrut

    Cd

    TsTs

    Rigid Flexible

    Multilegstirrupsshouldbeusedinmemberswithwidewebsto

    avoidtheundesirabledistributionofdiagonalcompressionshown

    Multileg

    sturrups better

    control

    shear

    cracking

    and

    help

    maintain

    sheartransferthoughaggregateinterlock

  • 8/10/2019 detallamiento.pdf

    39/82

    Detailingofbeams(ctd):

    Typesof

    Stirrups:

    Multilegstirrupsarealsofarbetterforcontrollingthe

    longitudinalsplittingcracks(knownasdowelcracks)that

    precipitate

    bond

    failure

    of

    the

    longitudinal

    bars

    in

    the

    shear

    span.

    Oftenthiscriticalshearcrackoccurswherebottombarsare

    terminatedintheshearspan.Additionalshearreinforcementmay

    berequiredinthisregion(Clause8.1.10.5 AS36002009).

    Dowel crack

  • 8/10/2019 detallamiento.pdf

    40/82

    Detailingofbeams(ctd):

    Crackcontrolprovidedbyshearreinforcement(Leonhardt etal):

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0 200 400 600

    Load P (kN)

    Maximumcrackwidth(mm

    1

    2

    3

    4

    (mm)

  • 8/10/2019 detallamiento.pdf

    41/82

    Detailingofbeams(ctd):

    Supportand

    Loading

    Points:

    Whenthesupportisatthesoffitofabeamorslab,thediagonal

    compressionpassesdirectlyintothesupportasshown

    When

    the

    support

    is

    at

    the

    top

    of

    the

    beam,

    the

    diagonal

    compression

    mustbecarriedbackuptothesupportviaaninternaltie.

    Itisessentialthatadequatelyanchoredreinforcementbeincluded

    toactasthetensiontieandthereinforcementmustbeanchored

    into

    the

    support

    (a)

    Supportunder

    support

    Internal

    tie

    (b)

    Supportover

  • 8/10/2019 detallamiento.pdf

    42/82

    Detailingofbeams(ctd):

    Slabsupported

    by

    upturned

    beam:

    (a)Incorrectdetail

    Theverticalcomponentofthediagonalcompressionintheslab

    (i.e.thereactionfromtheslab)mustbecarriedintensionuptothe

    topof

    the

    upturned

    beam.

    Dontrelyontheunreinforcedsurfacetocarrythistension

    Unreinforced

    surface

    (b)Correctdetail

  • 8/10/2019 detallamiento.pdf

    43/82

    Detailingofbeams(ctd):

    Beam

    to

    beam

    connection:

    Theareaofadditional

    suspensionreinforcement

    is

    Primary

    girder

    R*

    suspensionreinforcement

    (a)Section

    Secondary

    beam

    Compressionstrutinsecondarybeam

    Suspension

    reinforcement

    (b)PrimarygirderElevation

    Stirrups

    forshear

    (c)Primarygirder Trussanalogy

    R*

    sy

    srf

    RA

    *

    =

  • 8/10/2019 detallamiento.pdf

    44/82

    Detailingofbeams(ctd):

    Beam

    to

    beam

    connection:

    Whenaloadisappliedtotheundersideofareinforcedconcretebeam,somedevicemustbeusedtotransferthishangingloadtothe

    topofthebeam

    (b)Internalrods

  • 8/10/2019 detallamiento.pdf

    45/82

    Detailingofbeams(ctd):

    Half

    Joint

    or

    dapped

    end

    joint:

    (a)Halfjoint

    (b)Strutandtiemodel Reinforcementdetail

    Hairpinreinforcement

    Suspensionreinforcement

    (c)Alternativestrutandtiemodel Reinforcementdetail

  • 8/10/2019 detallamiento.pdf

    46/82

    ExcessivecrackingExcessivecrackingduetoduetorestraineddeformationrestraineddeformationororexternalexternal

    loadsloadsisacommoncauseofdamageinreinforcedconcreteisacommoncauseofdamageinreinforcedconcrete

    structures.structures.

    ExcessivecrackingExcessivecrackinginthehardenedconcretecanbeavoidedinthehardenedconcretecanbeavoided

    byincludingsufficientreinforcementatsufficienbyincludingsufficientreinforcementatsufficientlyclosetlyclose

    spacingsspacings..

    ShrinkageShrinkagecausesacausesagradualwideningofexistingcracksgradualwideningofexistingcracksandand

    timetimedependentcrackingdependentcrackinginpreviouslyuncrackedregions.inpreviouslyuncrackedregions.

    Detailing

    for

    Crack

    ControlDetailing

    for

    Crack

    Control

    TheTheminimumquantitiesofreinforcementminimumquantitiesofreinforcement specifiedforcrackspecifiedforcrack

    controlinAS3600maynotbewhatisactuallyrequcontrolinAS3600maynotbewhatisactuallyrequiredinalliredinall

    circumstances.circumstances.

  • 8/10/2019 detallamiento.pdf

    47/82

    The

    Thewidth

    of

    acrackwidth

    of

    acrackdepends

    on

    depends

    on

    thequantity,orientationanddistributionofthethequantity,orientationanddistributionofthe

    reinforcingsteelcrossingthecrack;reinforcingsteelcrossingthecrack;

    concretecoverandmembersize;concretecoverandmembersize;

    thebondbetweenconcreteandreinforcementthebondbetweenconcreteandreinforcementinthevicinityofthecrack;inthevicinityofthecrack;

    thedeformationcharacteristicsofconcrete;andthedeformationcharacteristicsofconcrete;and

    theshrinkagestrain(andthereforethetimeaftertheshrinkagestrain(andthereforethetimeafter

    crackformation).crack

    formation).

    thecauseofthecrackthecauseofthecrack

    thedegreeofrestraintthedegreeofrestraint

    Oftensignificantly

    more

    reinforcement

    than

    the

    minimum

    specifiedamountisrequired.

  • 8/10/2019 detallamiento.pdf

    48/82

    Crack spacing, s, varies between0.5dand 1.5dand depends on

    - steel area and distribution- cover

    Crack width, w, depends on

    - steel stress- bar diameter and bar spacing- cover- adjacent crack spacings

    and the average crack spacingdecreases with time due toshrinkage

    and increases with time due toshrinkage

    d

    Maximum crack widthsincrease with time by a factor

    of between 2 and 4

    Service loads

    Flexural cracks

    Flexuralcracking:

  • 8/10/2019 detallamiento.pdf

    49/82

    SimplifiedApproachforFlexuralCrackControlinAS36002009

    (Clause8.6.1

    and

    9.4.1):

    Forreinforcedconcretebeamsandslabs,crackingisdeemedtobecontrolled

    (crackwidthswillbelessthan0.3mm)ifeachofthefollowing issatisfied:

    (a)thequantityoftensilereinforcementinabeamorslabprovidesan

    ultimatestrengthatleast20%higherthanthecrackingmoment

    calculatedassumingcs=0;

    (b) thedistance

    from

    the

    side

    or

    soffitof

    the

    member

    to

    the

    centre

    of

    the

    nearestlongitudinalbarshallnotexceed100mm;

    (c)Thecentretocentrespacingofbarsnearatensionfaceofabeamor

    slabshall

    not

    exceed

    300

    mm

    for

    abeamand

    the

    lesser

    of

    two

    times

    theslabthicknessand300mmforaslab.

    (d)Thestressinthetensilesteelislessthanalimitingvalue(asfollows):

  • 8/10/2019 detallamiento.pdf

    50/82

    SimplifiedApproachforFlexuralCrackControlinAS36002009

    (Clause8.6.1

    and

    9.4.1):

    Ctd

    Formemberssubjectprimarilytoflexure,thecalculatedsteelstresscaused

    bytheserviceabilitydesignmoment shallnotexceedthelarger ofthe

    maximumsteel

    stresses

    given

    in

    Tables

    8.6.1(A)

    and

    8.6.1(B)

    for beams

    andTables9.4.1(A)and9.4.1(B)forslabs.

    Table 8.6.1(A): Maximum steel stress for Table 8.6.1(B): Maximum steel stress for

    tension or flexure in r.c. beams. flexure in r.c. beams.

    Nominal bardiameter

    (mm)

    Maximum steelstress

    (MPa)

    Centre-to-centrespacing

    (mm)

    Maximum steelstress

    (MPa)10 360 50 360

    12 330 100 320

    16 280 150 280

    20 240 200 240

    24 210 250 200

    28 185 300 160

    32 160

    36 140

    40 120

  • 8/10/2019 detallamiento.pdf

    51/82

    SimplifiedApproachforFlexuralCrackControlinAS36002009

    (Clause8.6.1

    and

    9.4.1):

    Ctd

    Formemberssubjectprimarilytotension,thecalculatedsteelstresscaused

    bytheserviceabilitydesignactionsshallnotexceedthemaximumsteel

    stressesgiven

    in

    Tables

    8.6.1(A)

    for

    beams

    and

    Tables

    9.4.1(A)

    for

    slabs.

    Table 9.4.1(A): Maximum steel stress for Table 9.4.1(B): Maximum steel stress for

    flexure in r.c. slabs. flexure in r.c. slabs.

    Maximum steel stress (MPa)for overall depthDs(mm)

    Nominal bardiameter

    (mm) 300 > 300

    Centre-to-centrespacing

    (mm)

    Maximum steelstress

    (MPa)

    6 375 450 50 360

    8 345 400 100 320

    10 320 360 150 280

    12 300 330 200 24016 265 280 250 200

    20 240 300 160

    24 210

  • 8/10/2019 detallamiento.pdf

    52/82

    RestrainedShrinkageCrackinginSlabsRestrainedShrinkageCrackinginSlabs::

    ProvidedthatProvidedthatbondedreinforcementbondedreinforcementatatreasonablespacingreasonablespacingcrossescrosses

    thecrackandthatthememberdoesnotthecrackandthatthememberdoesnotdeflectexcessively,flexuraldeflectexcessively,flexural

    cracksareusuallywellcontrolledinreinforcedconcretecracksareusuallywellcontrolledinreinforcedconcretebeamsandbeamsand

    slabs.slabs.

    Incontrast,Incontrast,directtensioncracksdirecttensioncracksduetorestrainedshrinkageandduetorestrainedshrinkageand

    temperaturechangesfrequentlyleadtoserviceabilityprobtemperaturechangesfrequentlyleadtoserviceabilityproblems,lems,

    particularlyinregionsoflowmoment.particularlyinregionsoflowmoment.

    SuchcracksusuallyextendcompletelythroughthememberandaSuchcracksusuallyextendcompletelythroughthememberandarere

    moreparallelsidedthanflexuralcracks.moreparallelsidedthanflexuralcracks.

    If

    uncontrolled,

    these

    cracks

    can

    become

    very

    wide

    and

    lead

    toIf

    uncontrolled,

    these

    cracks

    can

    become

    very

    wide

    and

    lead

    towaterproofingandcorrosionproblems.waterproofingandcorrosionproblems.

    TheycanalsodisrupttheintegrityandthestructuralactionTheycanalsodisrupttheintegrityandthestructuralactionoftheslab.oftheslab.

    Th l b i t i d b b d h i k i d t i

  • 8/10/2019 detallamiento.pdf

    53/82

    Flexuralcracks

    Onewayfloorslabsupportedonbeams

    Fulldepthrestrainedshrinkagecracks

    Usuallymoresteelisrequiredtocontroltherestrainedshrinkage

    cracksthanisrequiredtocontroltheflexuralcracksandprovide

    adequatestrength.

    Theslabisrestrainedbybeamsandshrinkageinducestension

    intheslabinthedirectionofthebeams

    R t i d Sh i k C ki i Sl bR t i d Sh i k C ki i Sl b CtdCtd

  • 8/10/2019 detallamiento.pdf

    54/82

    RestrainedShrinkageCrackinginSlabsRestrainedShrinkageCrackinginSlabsCtdCtd::

    Inthe

    primary

    direction,

    shrinkage

    will

    cause

    small

    increases

    in

    the

    widthsofthemanyfineflexuralcracksandmaycauseadditional

    flexuretypecracksinthepreviouslyuncracked regions.

    However,inthesecondarydirection,whichisineffectadirect

    tensionsituation,

    shrinkage

    generally

    causes

    afew

    widely spaced

    crackswhichpenetratecompletelythroughtheslab.

    Iftheamountofreinforcementcrossingadirecttensioncrackis

    small,yieldingofthesteelwilloccurandawide,unserviceablecrack

    willresult.

    To

    avoid

    this

    eventuality,

    the

    minimum steel

    ratio,

    minis

    where . For32MPa concrete, min=0.0034.

    Foraserviceablecrackwidth,significantlymoresteelthanthisis

    required.

    sy

    ctst

    f

    f

    db

    A 2.1

    min

    min =

    =

    '25.0 cct ff =

  • 8/10/2019 detallamiento.pdf

    55/82

    CrackControlinSlabsCrackControlinSlabsAS3600AS36002009:2009:

    Wheretheendsofaslabarerestrainedandtheslabisnotfree to

    expandorcontractinthesecondarydirection,theminimumareaof

    reinforcementintherestraineddirectionisgivenbyeitherEq.1a,

    1bor1c,asappropriate(seebelow).

    Foraslabfullyenclosedwithinabuildingexceptforabriefperiodof

    weatherexposureduringconstruction:

    (i)

    where

    a

    strong

    degree

    of

    controlover

    cracking

    is

    required:

    (ii) whereamoderatedegreeofcontrolovercrackingisrequired:

    (iii) whereaminordegreeofcontrolovercrackingisrequired:

    ( ) )a2.9(10)5.20.6( 3min

    = DbA cps

    ( ) )b2.9(10)5.25.3( 3min

    = DbA cps

    ( ) )c2.9(10)5.275.1( 3min

    = DbA cps

    (1a)

    (1b)

    (1c)

    F ll h l b f di i i E Cl ifi i A1

  • 8/10/2019 detallamiento.pdf

    56/82

    ForallotherslabsurfaceconditionsinExposureClassificationA1

    and

    for

    exposure

    classification

    A2,

    Eq.

    1a

    applies

    where

    a

    strong

    degreeofcontrolovercrackingisrequiredforappearanceorwhere

    cracksmayreflectthroughfinishes

    andEq.

    1b

    applies

    where

    a

    moderatedegreeof

    control

    over

    cracking

    isrequiredandwherecracksareinconsequentialorhidden fromview.

    ForExposure

    Classifications

    B1,

    B2,

    C1

    and

    C2,

    Eq.

    1a

    always

    applies.

    TheminimumsteelareagivenbyEq.1cisappropriateinan

    unrestraineddirectionwheretheslabisfreetoexpandorcontract.

    Inthe

    primary

    directionof

    aone

    way

    slab

    or

    in

    each

    direction

    of

    a

    twowayslab,theminimumquantityofreinforcementisthegreaterof

    theminimumquantityrequiredforthestrengthlimitstate or75%of

    theminimumarearequiredbyEqs.1a,1bor1c,asappropriate.

    ( ) )a2.9(10)5.20.6( 3min

    = DbA cps

    ( ) )b2.9(10)5.25.3( 3min

    = DbA cps

    (1a)

    (1b)

    Consideraslabrestrainedateachend.

  • 8/10/2019 detallamiento.pdf

    57/82

    Withtime,restrainedshrinkagecracksoccuratroughlyregularcentres

    dependingon

    the

    amount

    of

    reinforcement:

    (a) Portion of restrained member after all cracking

    (c) Steel stress after all shrinkage cracking

    (b) Average concrete stress after all shrinkage

  • 8/10/2019 detallamiento.pdf

    58/82

    Typicalvalues:

    Considera140mmthick,4mlongslabfullyrestrainedatbothends

    andsymmetricallyreinforcedwithN12barsat250mmcentres top

    andbottom.Hence,As=900mm2/mand=As/Ac=0.00643.

    L = 4 m

    140 mm

    For25MPa concretewithafinalshrinkagestrainof0.0007and

    typicalmaterialproperties,ashrinkagecrackinganalysisofthis

    restrainedslabindicates4or5fulldepthcrackswithinthe4m

    lengthwiththemaximumfinalcrackwidthabout0.3mm.

  • 8/10/2019 detallamiento.pdf

    59/82

    If p=0:

    p=As/Ac

    2.8 mm onelargeunserviceable

    crack

    If p=0.0035

    0.6 0.7 mmabout

    three

    unserviceable

    (?)cracks

    If p=0.006

    0.3 0.4 mmFour

    or

    five

    serviceable

    (?)cracks

    4 m140 mm

    Detailingofcolumns:

  • 8/10/2019 detallamiento.pdf

    60/82

    g

    Lappedcompressive

    splices:

    Normal

    fitment

    spacing,s

    Additional

    fitmentspacing,

    s

  • 8/10/2019 detallamiento.pdf

    61/82

    g

    Typicaltie

    arrangements

    in

    columns:

    AS36002009requirementsforrestrainingsinglelongitudinalbarsincolumns:

    (i) Everycornerbar;

    (ii)

    All

    bars

    where

    bars

    are

    spaced

    at

    centres >

    150

    mm;(iii)Atleasteveryalternatebarwherebarcentres150mm.

    Forbundledbars eachbundlemustberestrained.

    Alllongitudinalbarsin

    thesecolumnsarerestrained

    at

    (i)

    a

    bend

    in

    a

    fitment

    of

    135orless;or(ii)atafitmenthookswith

    includedangleof135orless,asshown.

    Detailingofcolumns:

  • 8/10/2019 detallamiento.pdf

    62/82

    Minimumbar

    diameters

    for

    fitments

    (AS3600

    2009):

    610

    12

    16

    12

    Single bars up to 20Single bars 24 to 28

    Single bars 28 to 36

    Single bar 40

    Bundled bars

    Minimum bar diameter

    for fitment and helix (mm)

    Longitudinal bar diameter

    (mm)

    Maximumspacingoffitments(AS36002009):

    Thespacingoffitments(orthepitchofahelix)shouldnotexceedthe

    smallerof:

    Dcand15dbforsinglebars

    0.5Dcand7.5dbforbundledbars

    DetailingofBeamcolumnConnections:

  • 8/10/2019 detallamiento.pdf

    63/82

    KneeConnections

    (or

    two

    member

    connections):

    (a) (b) (c)

    (d)

    Figure 8.37 Two-member connections.

    DetailingofBeamcolumnConnections:

  • 8/10/2019 detallamiento.pdf

    64/82

    KneeConnections

    under

    Opening Moment:

    M

    M

    C

    C

    T

    T

    T2M

    M

    (a) Internal forces (b) Crack pattern

    M

    M

    M

    M

    (a) Unsatisfactory (b) Unsatisfactory

    M

    M

    (c) Potentially satisfactory

    fsy

    syst

    fsy

    svf

    fA

    f

    TA

    ..

    22

    ==

    DetailingofBeamcolumnConnections:

  • 8/10/2019 detallamiento.pdf

    65/82

    KneeConnections

    under

    Opening Moment

    Suggested

    detail:

    Diagonal flexural bars

    Diagonal

    stirrups

    M

    M

    DetailingofBeamcolumnConnections:

  • 8/10/2019 detallamiento.pdf

    66/82

    KneeConnections

    under

    Closing Moment:

    M

    M

    T

    T

    C

    C

    T2

    M

    M

    (a) Internal forces (b) Crack pattern

    M

    M

    (a) Wall or slab connection (whenp fct.f fsy) (b) Beam to column knee connection

    M

    M

    DetailingofBeamcolumnConnections:

  • 8/10/2019 detallamiento.pdf

    67/82

    Threemember

    connections:

    (a) Internal forces (b) Crack pattern

    High bond stress

    Poor anchorageconditions

    DetailingofBeamcolumnConnections:

  • 8/10/2019 detallamiento.pdf

    68/82

    Threemember

    connections

    Reinforcement

    detail:

    Larger diameter bar to distribute

    bearing stresses in bend

    Ties to carry diagonal tension, tocontrol vertical splitting and to

    confine the concrete core

    DetailingofBeamcolumnConnections:

  • 8/10/2019 detallamiento.pdf

    69/82

    Fourmember

    connections:

    (a) Internal forces (b) Crack pattern (c) Reinforcement detail

    DetailingofCorbels:

  • 8/10/2019 detallamiento.pdf

    70/82

    (a) Strut-and-tie action (b) Reinforcement detail (c) Welded primary steel

    Crack control steel

    Main or primary tensilereinforcement

    Cross bar todistribute bearingstresses in bend

    T

    C

    weld=db

    weld=db

    tweld=db/2

    tweld=db/2

    db

    db

    Primary tensile reinforcement

    Anchorbar

    (d) Satisfactory weld details (17)

    Weldedanchor bar

    (see Fig 8.46d)

    Primarytension steel

    DesignofCorbels:

    *

  • 8/10/2019 detallamiento.pdf

    71/82

    T

    C

    d D

    a

    V*

    Figure 8.47

    d/2

    )8.0(tan

    *

    === sys fAV

    T

    tan

    *

    sy

    sf

    VA =

    )6.0(9.0 == stccsstust AfC

    Tie:

    Strut:

    )0.13.0(cot66.00.1

    12

    +

    = ss

    2/sh AA

    ParkandPaulay suggestthatagoodfirstestimateofcorbeldimensions

    isobtainedfrom:

    andACI31808suggests

    cw fdbV 56.0/*

    sycwssyc ffdbAffda /2.0//04.0and0.1/

    DesignofCorbels:

  • 8/10/2019 detallamiento.pdf

    72/82

    d D

    400mm

    D/2

    200 mm

    T*

    C*

    (b)

    V*

    dc=400/sin

    = 541 mm

    d D

    400mm

    V*= 500kN

    D/2 200mm

    (a)

    bw = 300 mm

    MPa32=cf MPa500=syf Cover = 30 mm

    Bearing plate = 200 x 300 mm in plan

    dc = 200/sin= 270 mm

    DesignofCorbels:

  • 8/10/2019 detallamiento.pdf

    73/82

    From :56.0/* cw fdbV mm5263256.0300

    105003

    =

    d

    WithD = d+cover+0.5bardia andassuming20mmdiameterbars,

    takeD=570mmandtherefored =530mm.

    Fromthegeometry:

    and

    Try

    4

    N20

    bars

    (1240

    mm2

    )Now

    Thestrutefficiencyfactor:

    and

    400

    )90tan(100tan

    =

    d o7.47=

    23

    mm1138

    7.47tan5008.0

    10500=

    =sA

    OK/122.00078.0/ == sycws ffdbA

    65.0

    cot66.00.1

    12 =

    +

    =

    s

    kN91181150329.065.06.0 ==ustC

    OKkN743cos/** ==> VC

    DesignofCorbels:

  • 8/10/2019 detallamiento.pdf

    74/82

    285

    285

    4 N20

    3 N12stirrups

    ELEVATION

    PLAN

    285

    285

    4 N20

    3 N12Stirrups

    N28 weldedcross-bar

    ELEVATION

    PLAN

    N24 cross-bar

    (welded to N20s)

    JOINTSINSTRUCTURES:

  • 8/10/2019 detallamiento.pdf

    75/82

    Jointsare

    introduced

    into

    concrete

    structures

    for

    two

    main

    reasons:

    1) Asstoppingplacesintheconcretingoperation.Thelocationof

    theseconstructionjointsdependsonthesizeandproduction

    capacityof

    the

    construction

    site

    and

    work

    force;

    2) Toaccommodatedeformation(expansion,contraction,rotation,

    settlement)withoutlocaldistressorlossofintegrityofthe

    structure.Suchjointsinclude:

    controljoints(contractionjoints);

    expansionjoints;

    structuraljoints(suchashinges,pinandrollerjoints);

    shrinkagestrips;and

    isolationjoints.

    Thelocationofthesejointsdependsontheanticipated

    movementsofthestructureduringitslifetimeandtheresulting

    effectsonstructuralbehaviour.

  • 8/10/2019 detallamiento.pdf

    76/82

    ConstructionJoints:

    Steel dowels to improve shear strength

    1stpour 2ndpour

    Waterstop where water tightness is required

    (a) Butt joint (b) Keyed joint

    (c) Doweled joint

  • 8/10/2019 detallamiento.pdf

    77/82

    Control

    Joints

    (or

    Contraction

    Joints):

    Debond dowel to ensure free contraction

    Saw cut > 0.2 t and 20 mm 0.75 t

    Discontinue every second bar if necessary so thatp< 0.002

    (a) Saw-cut joint in slab on ground (b) Wall (t < 200 mm)

    (d) Wall (t 200 mm) (c) Doweled joint

    t

    0.75 t

    Discontinue every second bar if necessary so thatp< 0.002

  • 8/10/2019 detallamiento.pdf

    78/82

    Typical

    control

    joint

    locations:

    Control joint locations

    (a) Wall elevation

    (b) Balcony plan

  • 8/10/2019 detallamiento.pdf

    79/82

    Alternative

    shrinkage

    strip

    details:

    Shrinkagestrip

    Shrinkagestrip

    Expansionjointdetails:

  • 8/10/2019 detallamiento.pdf

    80/82

    25 mm

    Joint locations(a) Double column and beams

    (b) Half joint

    (c) Building plans joint locations

    (a) Double column and beams

    Alternativestructuralhingejointsatbaseofacolumn:

  • 8/10/2019 detallamiento.pdf

    81/82

    Elastic, easily

    compressible

    material

    Mesnager

    hinge

    Confinement steel

  • 8/10/2019 detallamiento.pdf

    82/82

    THANKS FOR YOUR ATTENTION

    ARE THERE ANY QUESTIONS ?