cátedra: estructuras de h°a° y pretensado · pdf filepara reducir los efectos...

16
Cátedra: ESTRUCTURAS DE H°A° Y PRETENSADO Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 1 de 15 TRABAJO PRÁCTICO ESTRUCTURAS DE H°A° Y PRETENSADO Trabajo Práctico N ro. : 6 Tema: Absorción de esfuerzos horizontales por tabiques Fecha de presentación: 24/11/2017 Grupo Nro.: 6 Integrantes: 1. RIOS, Matías D. 2. ROTTCHEN, Brian J. 3. VIVANCO, Carmelo A. 4. ZURRO, Kevin S. AÑO 2017

Upload: doanthuan

Post on 04-Feb-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

Cátedra:

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 1 de 15

TRABAJO PRÁCTICO

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro.

: 6

Tema: Absorción de esfuerzos horizontales por tabiques

Fecha de presentación: 24/11/2017

Grupo Nro.: 6

Integrantes:

1. RIOS, Matías D.

2. ROTTCHEN, Brian J.

3. VIVANCO, Carmelo A.

4. ZURRO, Kevin S.

AÑO 2017

Cátedra:

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 2 de 15

1. PREDIMENSIONAMIENTO

Se planteó un diseño en donde la escalera y el ascensor estén próximos entre sí para poder aprovechar la

rigidez del conjunto. Se adoptó la siguiente disposición:

Imagen 1.1: Disposición de los tabiques.

1.1 Esbeltez límite

El espesor de los tabiques se calculó utilizando la fórmula del Reglamento, considerando la longitud

de cada tabique:

Se decidió unificar los espesores a un valor de 20 cm para todos los tabiques, esto porque dado los valores

que nos daban anteriormente no existía espacio físico para la colocación de armadura.

2. ANÁLISIS GEOMÉTRICO DEL SISTEMA

2.1 Propiedades geométricas individuales.

Corresponde al valor de inercia de una sección cuadrada la cual se calcula con la siguiente expresión:

Siendo el espesor del tabique y su largo, el cual no corresponde a la altura del piso sino a la longitud del

mismo visto en planta.

Cátedra:

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 3 de 15

Tabique 1:

( )

Tabique 2:

( )

Tabique 2:

( )

Tabique 3:

( )

2.2 Centro de rigideces.

Dada la disposición geométrica de los tabiques, la posición del centro de rigideces respecto a un eje paralelo

a la línea de acción de la fuerza (línea roja) indiscutiblemente, estará en algún punto a lo largo de un eje

vertical que pase por el tabique T2, debido a que es el único elemento que aporta rigidez en ese sentido de

análisis. Para el otro sentido la posición estará en función a los tabiques T1, T3, T4.

Imagen 2.1: Centro de rigidez.

Se colocó el eje de referencia X sobre el filo inferior del edificio, luego con la ecuación para la

determinación del centro de gravedad de un elemento, reemplazando la masa por la rigideces de cada

tabique, se calculó la posición del centro de rigideces.

∑ ∑

Cátedra:

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 4 de 15

Este punto se puede visualizar en la imagen anterior (Punto rojo marcado sobre tabique T2).

3. SOLICITACIONES

3.1 Esfuerzos Horizontales en cada nivel.

La cortante total sobre cada piso que luego será transmitida por la losa a los tabiques y será de:

Como cada piso posee 3,7 m de altura, a excepción de la planta baja, la cortante total sobre cada piso será:

Ultimo nivel:

Niveles intermedios:

Primer piso:

(

)

El esfuerzo del viento sobre el piso inferior se distribuirá totalmente al primer piso, por lo que se adoptó que

el área de influencia es la suma de la altura entre planta baja-primer piso y la mitad de la altura de este

último.

3.2 Distribución de esfuerzos en cada tabique.

Debido a la disposición del tabique 2 se puede observar que el mismo no brinda ninguna función estructural

ya que no absorbe esfuerzos de traslación y rotación. El análisis se realiza solo sobre los tabiques restantes.

Esfuerzos debido a traslación.

El mismo se determina por medio de la siguiente expresión:

Siendo la acción de la cortante en el piso (corresponde a la suma de los cortantes hasta el piso de

análisis) en el tabique y la rigidez del tabique analizado.

Para el nivel 7 se obtendría:

( )

Para los demás tabiques se resumen en la siguiente tabla:

Cátedra:

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 5 de 15

Tabla 3.1: Esfuerzos de traslación en cada tabique.

Esfuerzos debido a rotación.

El eje de rigidez del tabique 2 es colineal con el centro de rigideces, por ende no existe excentricidad que

produzca solicitaciones debido a la rotación. Es por ello que sea realiza el análisis sobre los demás tabiques:

∑ ( )

Siendo la acción sobre el tabique i, debido al momento . Los valores son la excentricidad del

tabique al centro de rigideces y la excentricidad de la fuerza.

Por ejemplo para el nivel 7 se calcularía de la siguiente manera:

La excentricidad respecto a la acción del viento da

Excentricidad del tabique 1 respecto al centro de rotación

Excentricidad del tabique 4 respecto al centro de rotación

Excentricidad del tabique 3 respecto al centro de rotación

Se debe tener en cuenta el sentido de momento y como son las acciones respecto a este.

( ) ( ) ( ) ( )

Se observa que se colocó el valor negativo a la cortante esto es debido a que el mismo produce un momento

negativo y siendo la acción de esta sobre el tabique también de signo negativo, lo cual se puede observar en

el resultado. En resumen los valores negativos son esfuerzos contrarios a la acción del viento siendo

beneficiosas para el elemento al disminuirlas.

Nivel ΣV 1 4 3

8 69,4 KN 6,9 KN 6,9 KN 55,5 KN

7 208,2 KN 20,8 KN 20,8 KN 166,6 KN

6 347,0 KN 34,7 KN 34,7 KN 277,6 KN

5 485,8 KN 48,6 KN 48,6 KN 388,6 KN

4 624,6 KN 62,5 KN 62,5 KN 499,7 KN

3 763,4 KN 76,3 KN 76,3 KN 610,7 KN

2 902,2 KN 90,2 KN 90,2 KN 721,8 KN

1 1042,8 KN 104,3 KN 104,3 KN 834,2 KN

Tabique

Cátedra:

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 6 de 15

Imagen 3.1: Fuerzas debido a la rotación.

Todo este cálculo se sistematizo en planilla de Excel la cuales se presentan a continuación:

Tabla 3.2: Esfuerzos de rotación en cada tabique

3.3 Distribución de esfuerzos en cada nivel debido a efectos combinados.

Para obtener los valores finales a lo que están sometidos los tabiques se deben combinar las solicitaciones

por efectos de traslación y rotación. Esto se logra sumando los valores anteriormente calculados:

Tabla 3.3: Esfuerzos finales en cada tabique.

N V Mv T1 T4 T3

8 69,4 KN -30,2 KNm -5,9 KN -2,7 KN 8,6 KN

7 208,2 KN -90,6 KNm -17,6 KN -8,2 KN 25,8 KN

6 347,0 KN -150,9 KNm -29,3 KN -13,7 KN 43,0 KN

5 485,8 KN -211,3 KNm -41,0 KN -19,1 KN 60,2 KN

4 624,6 KN -271,7 KNm -52,8 KN -24,6 KN 77,4 KN

3 763,4 KN -332,1 KNm -64,5 KN -30,1 KN 94,6 KN

2 902,2 KN -392,5 KNm -76,2 KN -35,5 KN 111,8 KN

1 1042,8 KN -453,6 KNm -88,1 KN -41,1 KN 129,2 KN

V

Mv

T i

Cortante en el nivel n.

Momento debido a V.

Tensiones en el tabique i

T1f T4f T3f

1,1 KN 4,2 KN 64,1 KN

3,2 KN 12,6 KN 192,3 KN

5,4 KN 21,0 KN 320,6 KN

7,5 KN 29,4 KN 448,8 KN

9,7 KN 37,9 KN 577,0 KN

11,8 KN 46,3 KN 705,3 KN

14,0 KN 54,7 KN 833,5 KN

16,2 KN 63,2 KN 963,4 KN

Cátedra:

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 7 de 15

Se puede observar como el tabique más solicitado corresponde al que posee mayor inercia, lo cual es

evidente en el comportamiento estructural de un elemento.

Para la verificación a corte en los tabiques se debe cumplir con el artículo 11.10.3 del reglamento, la cual

expresa:

Está verificación se realiza para el tabique del primer piso, el cual se encuentra más solicitado al corte.

Por lo tanto el tabique 3 en el primer piso verifica la resistencia al corte. Por otro lado el tabique 4 en el

primer piso:

4. ANÁLISIS DE DESPLAZAMIENTOS

Se consideró que la base se encuentra perfectamente empotrada por ende no existe rotaciones ni

desplazamientos de la misma. Luego para calcular el desplazamiento en un piso cualquiera se la obtiene con

la siguiente expresión:

( )

Siendo el desplazamiento total del piso anterior, ( ) la rotación debido a la cortante y momento

del piso anterior e el desplazamiento debido a los efectos de momento y corte de los pisos precedentes

acumulados.

(

) (

)

Para el Nivel 1 se obtendría el siguiente valor:

El momento proveniente de los pisos superiores siendo la carga de cada piso por la distancia desde ese punto

queda:

La cortante en el nivel 1 acumulado queda:

( )

Cátedra:

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 8 de 15

Debido a que es el primer nivel no posee rotación acumulada ( )

( ( )

( )

) (

)

El valor total para el primer queda:

( )

Los valores de rotación y desplazamientos obtenidos para este nivel se acumulan a los siguientes para

calcular los desplazamientos acumulados. Todo este procedimiento se reproduzco en planillas de Excel

obteniendo la siguiente tabla resumen:

Tabla 4.1: Desplazamientos acumulados para cada piso.

Obteniendo en el nivel final una corrimiento total de 110,3mm.

Imagen 4.1: Desplazamiento totales en cada piso.

h ΣT3f M φi θi (θi-1)*h δi yi

3,7 64,1 KN 0,0 KNm 1,60E-05 4,76E-03 17,6 mm 0,1 mm 110,3 mm

3,7 192,3 KN 237,2 KNm 6,39E-05 4,74E-03 17,3 mm 0,3 mm 92,7 mm

3,7 320,6 KN 948,9 KNm 1,60E-04 4,68E-03 16,7 mm 0,6 mm 75,1 mm

3,7 448,8 KN 2135,1 KNm 3,20E-04 4,52E-03 15,5 mm 1,0 mm 57,8 mm

3,7 577,0 KN 3795,7 KNm 5,43E-04 4,20E-03 13,5 mm 1,6 mm 41,2 mm

3,7 705,3 KN 5930,8 KNm 8,31E-04 3,66E-03 10,5 mm 2,3 mm 26,1 mm

3,7 833,5 KN 8540,3 KNm 1,18E-03 2,83E-03 6,1 mm 3,1 mm 13,4 mm

3,8 963,4 KN 11624,3 KNm 1,64E-03 1,64E-03 0,0 mm 4,2 mm 4,2 mm

Cátedra:

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 9 de 15

Imagen 4.2: Diagramas de corte y momento.

5. ALTERNATIVA DE DISEÑO

Para reducir los efectos de rotación de la planta debido a la excentricidad del centro de rigidez, se podrá

hacerlo de dos maneras. Una de ellas es suponiendo una sección transversal y despejando su ubicación en

planta y la otra es suponiendo su ubicación y despejando la sección transversal. Se adopta elegir este último

camino debido a que por cuestiones arquitectónicas el tabique se encuentre en lugares donde no entorpezcan

la circulación. Por lo tanto se debe calcular la longitud del tabique para que cumpla la condición:

Dicha medida consta desde el borde inferior visto en planta, esto quiere decir, que dicho centro se debe

ubicar en el centro de la planta. También se escoge que el espesor del tabique coincida con los que ya se

encuentran, es decir 20 cm.

La disposición del nuevo tabique se lo pondrá a una distancia de 16,5 metros del borde inferior de la planta

hasta su correspondiente eje. Partiendo de la ecuación:

Despejando los términos, llegamos a la siguiente ecuación:

∑ ( )

Donde los ∑ ( ) representa la suma de las rigideces de los tabiques exceptuando el último. es la

distancia desde el filo inferior visto en planta hasta el baricentro del tabique a calcular.

Pero a su vez la rigidez es:

Cátedra:

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 10 de 15

Por lo tanto la longitud del nuevo tabique será de 6m ubicado a 16,5m desde el borde inferior del edificio

visto en planta, o también a 3,9m de eje a eje del tabique 3 como se muestra en la imagen 5.1.

Imagen 5.1: Disposición del nuevo tabique.

Otra alternativa para el cumplimiento de los desplazamientos admisibles es el aumento de uno de ellos para

que dicho corrimiento se encuentre entre los valores admisibles detallados en la sección 7 del presente

trabajo.

Las propuestas que surgieron son incrementar individualmente un metro en el largo de los tabiques 1, 3 y 4,

esto quiere decir que se propone aumentar el largo de un tabique y mantenerlos los otros sin modificar sus

dimensiones. Así se podrá evaluar el comportamiento y movimiento total del tabique más solicitado. En la

tabla 5.1 se muestran dichos corrimientos siempre para el tabique 3 bajo un incremento unitario.

En la primera parte tabla se modificó la longitud del tabique 1 que pasó a ser de 4 metros y los demás se

mantienen sin variar como se muestra en la imagen 5.1. En la segunda parte se modificó el tabique 3 y los

demás permanecieron sin alterar y por último, en la tercera parte de la tabla se varió la longitud del tabique 4

y los demás permanecen inalterados.

Tabla 5.1: Deformaciones para el tabique 3.

h yi

3,7 110,6 mm

3,7 93,0 mm

3,7 75,3 mm

3,7 58,0 mm

3,7 41,3 mm

3,7 26,2 mm

3,7 13,4 mm

3,8 4,2 mm

yi

57,6 mm

48,5 mm

39,4 mm

30,4 mm

21,8 mm

13,9 mm

7,2 mm

2,3 mm

yi

106,6 mm

89,6 mm

72,6 mm

55,9 mm

39,8 mm

25,2 mm

12,9 mm

4,1 mm

Cátedra:

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 11 de 15

6. ANÁLISIS POR SOFTWARE

El tabique más solicitado se modeló en software como una barra de de altura, con las dimensiones de

sección igual a la del tabique, empotrada en su base. Se colocaron cargas puntuales a la altura de los

diferentes entrepisos. Los resultados del análisis se muestran en las siguientes imágenes:

Imagen 6.1: Esquema de cargas

CORTE (KN) MOMENTO (KNm) DESPLAZAMIENTOS (cm)

Imagen 6.2: Esquemas de corte, momento y desplazamientos.

Cátedra:

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 12 de 15

También se modeló el tabique como un elemento superficial, pudiendo obtener solamente valores de

deformaciones (tanto horizontal como vertical) y valores de tensiones los cuales se muestran en las imágenes

6.3 y 6.4.

Imagen 6.3: Deformación del tabique, lateral y vertical.

Imagen 6.4: Tensiones en el tabique.

Asimismo se modeló la estructura completa para comparar el comportamiento tridimensional con los valores

obtenidos por el método descripto en la sección 4, en la imagen 6.5 se muestra la disposición estructural

modelada junto con las cargas actuantes en KN/m para cada piso. En la imagen 6.6 se indican los

desplazamientos totales de distintos puntos de la estructura y en color rojo el máximo corrimiento del punto,

estos valores se encuentran en centímetros.

Cátedra:

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 13 de 15

Imagen 6.5: Modelo estructural.

Imagen 6.6: Desplazamientos totales.

Cátedra:

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 14 de 15

7. CONCLUSIÓN

Los puntos a destacar del método realizado son la simplicidad y rapidez a la hora de estimar el centro de

rotación mediante el centro de rigidez y también que al analizar el tabique, se lo aísla de la demás estructura

y se considera empotrada en la base. Esto no permite modelarla como una barra isostática empotrada en la

base y con cargas aplicadas en los nudos de cada piso.

Cabe destacar la diferencia que nos en el desplazamiento del último piso en comparación con el que nos

arroja el software. Una de las causas puede ser debida a no considerar la rotación producida por el corte en el

método analítico desarrollado.

En los casos donde se encuentren tabiques combinados para la circulación vertical, se deberá modelar la

estructura en un software de elementos finitos para obtener las reacciones y desplazamientos para cada

punto, considerando el aporte del conjunto losa-viga-tabique.

Consultando varios reglamentos, nacionales e internacionales, que sugieren valores límites para el

desplazamiento de una estructura en altura tenemos una mejor noción de los resultados obtenidos.

Por ejemplo, la norma española para aceros, EAE, estipula un valor límite para el desplazamiento total de la

estructura de como se muestra en la tabla 7.1 (y para cada piso si se tienen cerramientos frágiles

susceptibles a deformaciones).

Tabla 7.1: Valores de desplazamiento lateral admisibles según EAE.

También se consultó el Reglamento CIRSOC 301 tabla A-L.4.1, aunque es de estructuras metálicas,

brindando diferentes valores como se muestra en la tabla 7.2.

Tabla 7.2: Valores de desplazamiento lateral admisibles según CIRSOC 301.

Cátedra:

ESTRUCTURAS DE H°A° Y PRETENSADO

Trabajo Práctico Nro. 6: Absorción de esfuerzos horizontales por tabiques Página 15 de 15

En los análisis realizados por procedimientos aproximados existe una discrepancia con los resultados

obtenidos por elementos finitos, esta discrepancia resulta de las aproximaciones del método y a su vez no

contempla la rotación debida al corte. En el modelo espacial estas diferencias son mas evidentes aun, debido

a que se contempla la resistencia global de la estructura, cuando en un pórtico plano no se admiten por

ejemplos, los posibles esfuerzos entre un plano de pórtico y otro.