btu analisis qué,por qué, y cómo how

Upload: muchopower

Post on 01-Mar-2016

28 views

Category:

Documents


2 download

DESCRIPTION

BTU importance

TRANSCRIPT

  • BTU Anlisis Utilizando un Cromatgrafo de Gases

    GC Division

  • Objetivos

    Por qu utilizamos analizadores de BTU?

    Qu es unalizador de BTU?

    Cmo trabaja un analizador de BTU?

  • Qu es un Cromtogrado de Gases en Lnea ?

  • Un Cromatgrafo de Gases en Lnea es

    Es un instrumento que mide, ya sea, un componente o varios componentes en una corriente de gas. (Proporciona la composicin de todas las partes del gas).

    Algunas propiedades fsicas de interes comn en el rea de aplicacin de gas natural (BTU) son:

    1. Poder Calorfico (BTU, Joules, calories, etc.)

    2. Densidad Relativa

    3. Compresibilidad

  • Componentes Tpicos MedidosAnalizador de BTU en Gas Natural

    Hexanos+ C6+Propano C3Isobutano IC4Normal Butano NC4Neo Pentano Neo C5Isopentano IC5Normal Pentano NC5Nitrogeno N2Methano C1Dioxid de Carbono CO2Ethano C2

    Componentes Rangos Tpicos0 0.7 %0 5 %0 1%0 1%0 1%0 1%0 1%0 15%0 100%0 10%0 15%

  • Por qu utilizamos un Cromatgrafo de Gases (GC)?

  • Actualmente mas del 80% de las necesidades de energa mundial es proporcionada por combustibles fsiless. Estas necesidades pueden ser divididas entre 40% aceite, 30% gas natural, y 10% carbn.

    La demanda global de gas est creciendo alrededor de dos veces mas rpido que la demanda de aceite.

    Taken from Pipeline & Gas Indusry (Sept. 2000) WGC Panel

    Un Mercado Creciente

  • Reservas Probadas

    United States 164,041 bcfCanada 63,874 bcfWestern Europe 156,578 bcfFormer Soviet Union 2,002,107 bcfLatin America 252,719 bcfMiddle East 1,749,241 bcfAfrica 394,177 bcfAsia Pacific 363,470 bcf

    Taken from Oil & GasJounal (June 25 . 2001) Worldwide Gas-Processing Roundup

  • Transferencia de Custodia (Volumen)

    Las compaas han acostumbrado comprar y vender gas por volumen (SCF)

    Debera existir un acuerdo contractual de rango aceptable de BTU.

    El gas debera ser analizado peridicamente (al menos una ves por mes o mas frecuentemente dependiendo del contrato) para verificar que los BTUs estuviesen en rango.

  • Transferencia de Custodia Energa

    AGA 5 / ISO 6976Energa= Volumen Corregido (del FC) X Poder Calorfico (del GC)

    AGA 8 Mtodos de SupercompressibilidadUsado para calcular Volumen Corregido

    Gross 1: SG, BTU, CO2 (From GC) Gross 2: SG, N2, CO2 (From GC) Detail Method: Utiliza toda la composicin del Gas Natural (del GC)

    Desde el comienzo de los aos 80s ha llegado as er muy comn que las comapas compren y vendar energa (Dekatherm, MMBTU).

  • Importancia de la medicin exacta de la energa

  • Ej. Usando 1020 BTUs / SCF y un Volumen of 20,000,000 SCFD con 0.1% error en BTU. @ $4.00 / Dekatherm

    1020 BTU/SCF X 20,000,000 SCFD1,000,000 BTU/Dkthm

    Pequeos errores en la medicin se suman a las prdidas $$$

    = 20,400 Dkthm/Da (asumido)

    1018.98 BTU/SCF X 20,000,000 SCFD 1,000,000 BTU/Dkthm

    = 20,379.6 Dkthm/Da(actual)

    20,400 20,379.6 = 20.4 Dkthm/Da (error)@ $4.00/Dkthm = $81.60/Da

    $2,448/Mes $29,376/Ao

    Resultado: +/-1 BTU error puede costar cerca de $30,000 al ao

  • Ejemplo de 1% Error en medicin de BTUEj. Usando 1020 BTUs / SCF y un Volumen de 20,000,000 SCFD con 1% error en BTU. @ $4.00 / Dekatherm

    20,400 Dkthm/Da (asumido)

    1009.8 BTU/SCF X 20,000,000 SCFD1,000,000 BTU/Dkthm = 20,196 Dkthm/Da (actual)

    20,400 20,196 = 204 Dkthm/Da (error)

    @ $4.00/Dkthm = $816/Da $24,480/Mes $293,760/Ao

    Nota: El error composicional que causara el erro de BTU, tambin causara errores en los clculos de AGA3/ ISO 5167.

  • . 2 vlvulas(+/- 1 BTU, 12 min. anlisis)

    Controlador y analyzador3 vlvulas

    (+/- .50 BTU, 4 min. anlisis)

    Cromatgrafos Danalyzer BTU/CV

  • Cromatgrafo de Gases Principio de Operacin

  • Los Analizadores GC Consisten de Subsistemas

    Inyeccin

    Separacin

    Deteccin

    Integracin / Clculos

    Reportes

  • Cerebro del del GC Controlador

    Integracin / Clculos

    Reportes

    El controlador puede estar integrado al analizador omontado remotamente. Enva seales de control (activacin de vlvulas, cambio de corriente, etc.) einterpreta seales provenientes del analyzador.

  • Corazn del GC Horno

    Inyeccn

    Separacin

    Deteccin

    Tpicamente un horno elctrico. Se mantiene a unaTemperatura constante, y tiene flujo constante degas de arrastre (Usualmente Helio de Alta Pureza).

  • GC Horno

    El horno del GC contiene 3 componentes principales montados juntos en un horno calentado elctricamente:

    GC Vlvulas (Inyeccin de muestra, direccionamiento flujo de gas de arrastre)

    Columnas Micro-empacadas (separacin de los componentes)

    Detectores TCD (Deteccin de los componentes separados)

  • 6 purtos, Vlvula de diafragma operada por pistn

    Actuacin nica de diafragma basada en un diseo orignal de la NASA

    Sin resortes, lavadores o lubricantes. La muestra nunca estpa en contacto

    con las las partes internas. >5 Millones de operaciones por vlvula Garanta de por vida.

    Tecnologa Vlvulas Cromatogrficas

    Vlvulas de inyeccin de muestra y activacin de columnas

  • .

    .043 ID

    Tiempos de anlisis menores con consumo de gas de arrastre extremadamente bajo (10-15 cc/min. tpicamente)

    Alto grado de separacin de componentes dfine la linea base y una mejor resolucin de forma de los picos.

    Combina la durabilidad e las columnas empacadas con la ventaja de las columnas capilares.

    Diseadas en forma conjunta con vlvulas y detectores para minimizar el volumen muerto interno.

    2 aos de garanta bajo condiciones normales de operacin.

    Tecnologa Columnas Micro-empacadas

  • Utiliza (TCD) termistores para medir la concentracin de cada componente.

    Mejora la sensibilidad para mediciones de bajo nivel (elimina el requerimiento de FID para algunas aplicaciones)

    Rudo -- Immune a fallas de gas de arrastre y vibracin.

    El bloque de detector y el bloque de columnasson calentados. Cuenta con arreglo para prevenir calentamiento por encima de 85 C.

    Tecnologa Detector de Conductividad Trmica

  • El horno elctrico contiene las columnas, vlvulas y detectores TCD

    Aprobado para Clase I Div I Grupos B, C, & D

    Utilidades Mnims -- No requiere Aire o Hidrgeno

    +/- 0.1 C sobre la temperatura ambiente (-18 to 55C)

    Asegura mxima estabilidad y repetibilidad a temperatura y condiciones ambientales.

    Tecnologa Horno elctrico

  • HORNOELECTRICO

    LAZO DEMUESTRA

    COLUMNAS

    VALVULA6 PUERTOS

  • DETECTOR DEMEDICION

    DETECTOR DEREFERENCIA

  • Ruta de Flujo en el horno GC

  • Paso 1: Inicio de anlisis. Vlvula de muetreo (V-1) OFF, backflush vlvula (V-2) ON, y vlvula de doble columna (V-3) ON. El sistema de purga de muestra mantiene una muestra en fase gaseosa y pasa la muestra a travpes del tuving de transporte hacia la vlvula de muestreo, y a travs del lazo de muestreo.

    Horno del Analizador

  • Paso 2: La vlvula de muestreo es puesta ON para capturar un volumen preciso demuestra y para permitir al gas de arrastre (Helio) barrer el lazo de muestreo hacia la primer columna. La Columna 1 separa C6, y componentes mas pesados (C6+) del resto de los componentes que constituyen la muestra de gas

    Horno del Analizador

  • Paso 3: La vlvula de muestreo es puesta OFF para purgar la prxima corriente. La vlvula backflush es puesta OFF reversing the carrier flowthrough column 1 so that C6+ components elute first (all combined as a singlepeak) to the measure detector. Note: by switching the direction of flowthrough the first column, C6+ components bypass columns 2 and 3. This helps to expedite the analysis.

    Analyzer Oven

  • Analyzer Oven

    Step 4: C6+ (heavies combined) is on its way to the detector. Column 2 separates the mediums C3, C4s, and C5s while the lightestcomponents N2, C1, CO2, and C2 continue traveling through column 2 into column 3.

  • Step 5: Dual column turns OFF after trapping the lightest components N2, C1, CO2, and C2. The medium components bypass column 3 by going through the restrictor column (R-1) and Follow C6+ to the detector. Once again this helps speed up the analysis.

    Analyzer Oven

  • Step 6: After the heavy and medium components elute to the detector the dual column valve is turned back ON freeing the light components and allowing them to cross the detector next. This is the end of the analysis and the next one is ready to begin. Typical Analysis time is 4 minutes.

    Analyzer Oven

  • Qualitative Information

    Carrier Gas Flow Is Constant

    Temperature Of Oven Is Constant

    Sample Size Is Constant

    The time each peak elutes across the detectorwill also be constant. This time is known as Retention Time of each peak. This time is programmed into the controller.

  • Thermal Conductivity DetectorsTCD

    Quantitative information

  • Thermal ConductivityExamples

    NAME SYMBOL THERMALCONDUCTIVITY ATZERO DEGREES C

    Air 5.8 Hydrogen H2 39.6 Helium He 33.6 Nitrogen N2 5.7 Argon A 3.9 Carbon Dioxide CO2 3.4 Methane CH4 7.2 Propane C3H8 3.6 Acetylene C2H2 4.5 Benzene C6H6 2.2 Butane C4H10 3.2 Chloroform CHCL3 1.6 Freon 12 CL2CF2 2.0 (Dichlorodifluoromethane) Methanol CH3OH 3.4 Acetone C3H6O 2.4

  • Detector Bridge Circuit

  • Idealized Chromatogram

    The signal from the detector is read by the controller.The controller integrates the area under each peak. Thisis known as the raw area, and is used for quantifying the component concentration.

  • Response factor is used to tell how much of a component is present in the gas RF = Raw Area / Cal Concentration

    NOTE: RF are only updated during a calibration

    Response Factors (RF)

    We use the RF to calculate the Mole % of each componentin a sample stream

    Mole % of Sample = Raw Area / RF

  • A simplified example of how RF is calculated and used in stream analysis

    Given: A calibration was run and a Raw Area for ethane calculated by the controller is 100. The known calibration gas has 5% ethane (programmed into the controller).

    RF = 100 / 5 = 20RF = Raw Area / Cal. Conc.

    Given: Sample Stream gas is run, and the raw area of ethane calculated by the controller is 200.

    Mole % = Raw Area / RFEthane = 200 / 20 = 10%

  • Typical Chromatograms And Reports

  • Gas ChromatogramShows retention times and raw area under each peak

    A Chromatogram is a picture showing the detector output

  • Gas Chromatogram Comparison

  • Typical Raw Data Report

    Response Factor (RF) = Area(comp x ) / Cal Conc.(Comp x) Mole % = Area(comp x) / RF (Comp x)

  • Typical Analysis Report

  • Typical Calibration Report

  • Sample System

  • Sample Conditioning and Sample Transport

    The sample conditioning system is a very important component in any analytical system. This is a frequently overlooked component that must deliver a representative sample from the pipeline to the GC without changing the composition.

    This is not a difficult task when low BTU gas is measured

    in warm climates. When high BTU gas is measured the potential exists to lose the heavier components as they drop into the liquid phase due to sample cooling.

  • Sample Conditioning and Sample Transport

    The Joules-Thompson (JT)

    Cooling effect causes heavier components to drop into liquid phase.

    Will bias energy readings low because the high BTU contributors drop out of the vapor-phase sample before the GC even has a chance to measure it.

  • Sample Conditioning and Sample Transport

    Pressure Balancing stream to stream.

    Minimizes normalization.Minimizes cross-stream contamination if solenoids do not seal completely.

  • Sample Conditioning and Sample Transport

    Calibration Standards

    may require heated insulation blankets when installed in High BTU applications in cooler climates.

    Sample transport lines require heat tracing to a heated area or all the way to the sample valve.

  • Sample Conditioning and Sample Transport

  • Sample Conditioning and Sample Transport

  • Instrument Performance

    Repeatability

    Accuracy

    Linearity

  • Repeatability and Accuracy can be checked by your calibration

    Response Factor (RF) = Area(comp x) Cal Conc.(Comp x)

    Mole % = Area(comp x) RF(Comp x)

  • Instrument Performance-Linearity CheckUsing three standards

    Component Standard Heating Standard Heating Standard Heating #1 Value 1 #2 Value 2 #3 Value 3

    Hexanes + C6+ 0.01 0.53 0.03 1.59 0.20 10.58Propane C3 1.00 25.16 3.00 75.48 7.00 176.13

    Iso-Butane IC4 0.50 16.26 0.10 3.25 0.40 13.01N-Butane NC4 0.50 16.31 0.10 3.26 0.40 13.05

    Neo Pentane Neo C5 0.08 3.19 0.00 0.00 0.00 0.00Iso-Pentane IC5 0.08 3.20 0.30 12.00 0.80 32.01N Pentane NC5 0.10 4.01 0.30 12.03 0.80 32.07Nitrogen N2 3.32 0.00 2.00 0.00 1.00 0.00Methane C1 89.50 904.15 87.67 885.47 77.40 781.74

    Carbon dioxide CO2 2.91 0.00 1.50 0.00 1.00 0.00Ethane C2 2.00 35.39 5.00 88.48 11.00 194.66

    Totals 100.00 1008.20 100.00 1081.56 100.00 1253.25

    Note: Heating values are based on GPA 98 Engineering Data Book Volume II Section 23. Using 60 F and 14.696 base conditions

  • Physical Property Calculations-Pressure Base

    TypicalNaturalGas

    Composition PressureBase @14.73

    PressureBase @14.696

    PressureBase @15.023

    Nitrogen 2.46Methane 89.709C02 1.001Ethane 5.001Propane .999Iso-Butane .300N-Butane .300Iso-Pentane

    .100

    N-Pentane .100C6+ .03RelativeDensity

    .6222 .6222 .6223

    Gross DryBTU

    1053.70 1051.26 1074.73

  • Physical Property Calculations-GPA Standards

    TypicalNatural Gas

    GPA 2145-96 GPA 2145-2000 (Jan 1release)

    Rich Gas 1300 BTU +0.0138 BTUTypical USGulf Coast

    1078 BTU +0.0032 BTU

    Table 4

    Constants that are not so constant

  • Conclusion

    BTU Analyzers Play an important part in gas energy measurement

    During the analysis the GC uses columns to separate the gas into its constituents

    The GC uses thermal conductivity detectors to quantify the mole % of each component present

    A BTU is calculated for each constituent based on mole %

    By summing up each of these individual values we find the total BTU value of the gas

  • Questions and Answers

    Slide 1Slide 2Slide 3Slide 4Slide 5Slide 6Slide 7Slide 8Slide 9Slide 10Slide 11Slide 12Slide 13Slide 14Slide 15Slide 16Slide 17Slide 18Slide 19Slide 20Slide 21Slide 22Slide 23Slide 24Slide 25Slide 26Slide 27Slide 28Slide 29Slide 30Slide 31Slide 32Slide 33Slide 34Slide 35Slide 36Slide 37Slide 38Slide 39Slide 40Slide 41Slide 42Slide 43Slide 44Slide 45Slide 46Slide 47Slide 48Slide 49Slide 50Slide 51Slide 52Slide 53Slide 54Slide 55Slide 56Slide 57Slide 58Slide 59