analisis estructural 1

10

Click here to load reader

Upload: jose-luis-quilodran-aranda

Post on 15-Jun-2015

13.358 views

Category:

Education


1 download

TRANSCRIPT

Page 1: Analisis estructural 1

ANALISIS ESTRUCTURAL

Carrera: Ingeniería Ejecución en Proyectos Estructurales

Profesor: José Luis Quilodrán Aranda

Ingeniero Civil

UNIVERSIDAD TECNICA FEDERICO SANTA MARIA

Page 2: Analisis estructural 1

CLASE 1:

INTRODUCCION AL ANALISIS ESTRUCTURALINGENIERIA ESTRUCTURAL

La Ingeniería Estructural es una rama de la Ingeniería Civil, entendiendo por esta disciplina aquella Ingeniería que sededica al estudio de las obras civiles: Edificios, caminos, aeropuertos, puentes, obras portuarias, embalses, túneles,canales, etc. Todas estas obras disponen de un esqueleto o sistema estructural que cumple la misión de preservarsu funcionalidad frente a los efectos que se producen por el servicio que prestan, o por las eventualidades que lescorresponda afrontar durante su vida útil.

Este esqueleto recibe el nombre de ESTRUCTURA, y esta conformado por un conjunto de elementos interconectadosentre si, tales como barras, losas, cables, arcos, etc. El objetivo de la estructura es transmitir las fuerzas desde el puntoen que se generan al terreno de fundación, donde se apoya. Esta transmisión de fuerzas debe hacerse de modo quelos elementos no pierdan su integridad y que las deformaciones se mantengan dentro de un rango que no altere elservicio que presta la obra. El traspaso de los esfuerzos o tensiones al terreno de fundación debe considerar lascaracterísticas de este, de modo que no se produzcan esfuerzos adicionales en la estructura que no han sidoconsiderados o que pongan en peligro la estabilidad global.

Un Proyecto de Estructuras se divide en cuatro etapas:

Etapa de Planificación: Comprende el desarrollo de un ante proyecto que satisfaga requisitos funcionales,económicos y estéticos. Es un proceso iterativo que requiere de imaginación, criterio y conocimiento de varios factorescomo topografía, condiciones del suelo, materiales, formas de construcción y amplios conocimientos estructurales.

Etapa de Análisis: Consiste en la construcción de un modelo matemático de la estructura real para ladeterminación de los esfuerzos internos y sus deformaciones. Contempla la estimación de las solicitaciones yla idealización del comportamiento mecánico de los materiales.

Etapa de Diseño: Consiste en la selección de los materiales, determinación de las formas y tamaños de secciones decada elemento. En rigor consiste en dimensionar los elementos una vez escogidos los materiales a usar. Se aplican lasNormas especificas de los distintos materiales: Acero – Hormigón Armado – Madera – Albañilería Confinada –Albañilería Armada.

Etapa de Construcción y Mantención: Considera la ejecución de la obra y su posterior mantención durante la vidaútil. Estos procesos con una debida inspección son los tendientes a garantizar un buen comportamiento durante elperiodo de servicio.

Page 3: Analisis estructural 1

La Ingeniería Estructural basa sus métodos y procedimientos en una rama de la Mecánica denominada Mecánica

Estructural, la cual trata de las FUERZAS Y DESPLAZAMIENTOS O MOVIMIENTOS de los sistemas estructurales.

Las fuerzas pueden definirse como las interacciones entre dos sistemas o entre diferentes elementos o partes de un

mismos sistema, (fuerzas internas o externas); las fuerzas se caracterizan por su magnitud, dirección, sentido y punto

de aplicación. Por otra parte los desplazamientos pueden ser de cuerpo rígido, entendiéndose por ello un

desplazamiento global del sistema, o de deformación, el cual implica un cambio de la forma del sistema.

En este curso se analizarán las acciones del tipo ESTATICAS y a aquellas cuya variación en el tiempo son lo

suficientemente lentas para permitir idealizarlas como estáticas sin introducir errores de importancia.

Además, los sistemas estructurales deben estar vinculados al terreno de fundación o a otros sistemas de modo que

permanezcan sin movimientos de cuerpo rígido cuando actúen sobre ellos fuerzas de naturaleza estática. En

consecuencia, las fuerzas que intervienen en estos tipos de sistemas están gobernadas por las leyes del equilibrio

proporcionadas por la estática.

El conjunto de deformaciones de una estructura debe satisfacer condiciones de compatibilidad geométrica, tanto de

tipo externo con los vínculos externos del sistema, como de tipo interno entendiendo por estas las condiciones de

continuidad exigidas por la naturaleza misma de los elementos estructurales y las conexiones entre ellos. Por ultimo,

las fuerzas y las deformaciones están relacionadas por la ley tensión - deformación que caracteriza al material

estructural.

Page 4: Analisis estructural 1

FORMAS ESTRUCTURALES

El esqueleto o sistema estructural de una obra puede presentar variadas características. Desde el

punto de vista de la variación de los esfuerzos y de las tensiones a lo largo de los elementos

componentes de la estructura, ellas se pueden dividir en estructuras de tensiones constantes y

estructuras de tensiones variables. Desde el punto de vista de su conformación, las estructuras

se pueden clasificar en simples y compuestas.

Page 5: Analisis estructural 1

Las estructuras reales son generalmente tridimensionales; sin embargo, en muchos casos es posible descomponer

su análisis en una serie de casos de estructuras planas, esta simplificación implica adoptar hipótesis que es

necesario ponderar adecuadamente. También es usual idealizar los elementos componentes de las estructuras como

esbeltos, entiendo por ellos elementos que tienen una dimensión (su longitud) mucho mayor que las otras dos

dimensiones. En estos casos, la posición de los elementos estructurales se idealiza por líneas determinadas por las

ubicaciones de los centros de gravedad de sus secciones.

Las estructuras que se estudiaran en esta asignatura se limitan a estructuras compuestas exclusivamente por

elementos esbeltos, tampoco se estudian las estructuras flexibles como cables o membranas.

Page 6: Analisis estructural 1

ACCIONES Y CARGAS EXTERNAS

Las acciones externas a que se ven sometidas las estructuras se pueden representar en la mayoría de los casos por

fuerzas o cargas que actúan en diferentes puntos de la estructura. Existen casos en que estas acciones imponen

deformaciones al sistema, las cuales originan esfuerzos internos que también pueden obtenerse como resultado de la

acción idealizada de un conjunto de fuerzas equivalentes; el caso de la representación de la acción sísmica a través

de un conjunto de fuerzas laterales equivalentes es un claro ejemplo de ello. Sin embargo, también existen casos en

que las deformaciones impuestas producen efectos que no son representados por un conjunto de fuerzas, como es el

caso de las solicitaciones provocadas por los cambios de forma o dimensiones originadas por cambios de

temperatura.

Las cargas a que se ven sometidas las estructuras pueden clasificarse en estáticas y dinámicas.

Desde el punto de vista del origen, las acciones o cargas se pueden clasificar en: Cargas de Peso Propio,

Sobrecarga de Uso y Cargas Eventuales.

Las cargas de Peso Propio y Sobrecargas de Uso están especificadas en la Norma Nch 1537 of.86.

Las cargas eventuales:

Sismo Nch 433 Of.96.

Nieve Nch 432

Viento Nch 431

Page 7: Analisis estructural 1

IDEALIZACIONES GEOMETRICAS Y DE COMPORTAMIENTO.

HIPOTESIS DEL ANALISIS ESTRUCTURAL CLASICO.

Los métodos y procedimientos que se presentan están basados en el comportamiento lineal y elástico de las

estructuras. Esto significa que la relación entre fuerzas solicitantes y deformaciones resultantes puede idealizarse por

un modelo lineal; así mismo, disminuciones de estas fuerzas implican que las deformaciones se recuperan

proporcionalmente, hasta hacerse nulas cuando se ha retirado la totalidad de las fuerzas.

Para que el comportamiento lineal y elástico sea posible, es necesario que se cumplan simultáneamente dos

hipótesis de tipo geométrico y uno referente al comportamiento del material estructural, las cuales se indican a

continuación. Cualquiera de estas hipótesis que no se cumpla implica una relación no lineal o de tipo plástico entre

cargas y desplazamientos.

1. Las deformaciones de los elementos son lo suficientemente pequeñas para suponer que las cargas no cambian

de posición una vez deformada la estructura, es decir, se puede suponer la geometría original no deformada durante

el desarrollo del problema sin cometer errores apreciables.

2. Los desplazamientos que sufre la estructura son lo suficientemente pequeños para no introducir esfuerzos

adicionales en los elementos.

3. La relación entre las tensiones y deformaciones, o entre esfuerzos y deformaciones asociadas, se mantiene

dentro del rango lineal elástico.

Page 8: Analisis estructural 1

ESTATICA Y GEOMETRIA.DETERMINACION E INDETERMINACION ESTRUCTURAL.Como se ha indicado anteriormente, existen dos conjuntos de elementos que participan en la solución de cualquierproblema de análisis estructural; uno de ellos son las fuerzas que actúan sobre la estructura y el otro son losdesplazamientos que ella sufre.Al conjunto de las fuerzas pertenecen las fuerzas y momentos externos actuantes, las reacciones externas de vinculoy las fuerzas o esfuerzos internos de la estructura; estas ultimas se originan por la necesidad de mantener enequilibrio cualquier subsistema estructural que se considere dentro del sistema completo.Al conjunto de desplazamientos pertenecen los desplazamientos de cuerpo rígido, las rotaciones y desplazamientoslineales de cada punto de la estructura y las deformaciones sufridas por cada sección; la acumulación de estasdeformaciones conduce a la determinación de las rotaciones y desplazamientos de cada punto de la estructura.

El conjunto de fuerzas satisfacer la condición de equilibrio, cualquiera sea el subsistema que se haya considerado, esdecir, las fuerzas y momentos que actúan sobre cualquier subsistema deben satisfacer: F = 0 y M = 0 en torno acualquier punto de la estructura.

Por otra parte, el conjunto de desplazamientos debe satisfacer la condición de compatibilidad, tanto en lo que refierea la compatibilidad externa con los vínculos como a la compatibilidad interna; esta ultima exige que no existandesplazamientos o quiebres finitos entre puntos o secciones vecinas de los elementos.

El conjunto de fuerzas y desplazamientos están relacionados entre si por las relaciones tensión / deformación queidentifican al material componente de la estructura.

Por consiguiente, la solución de cualquier problema de análisis estructural, debe satisfacer tres principios básicos:

ESTATICA, el conjunto de fuerzas debe satisfacer equilibrio.GEOMETRIA, el conjunto de desplazamientos debe satisfacer compatibilidad y continuidad.RELACION TENSION / DEFORMACION DEL MATERIAL, relaciona el conjunto de fuerzas con susdesplazamientos.

Page 9: Analisis estructural 1

DETERMINACION DE REACCIONES EXTERNAS Y ESFUERZOS INTERNOS.

El concepto de vinculo esta asociado a una restricción de los movimientos absolutos de un sistema o del movimiento

relativo entre partes de un mismo sistema. Estos vínculos pueden ser externos o internos al sistema; un vinculo

externos es una forma de limitación del desplazamiento o rotación de algún punto del sistema estructural; un vinculo

interno es una forma de limitación del desplazamiento o rotación relativa entre dos partes de un sistema.

La existencia de un vinculo requiere necesariamente del desarrollo de una reacción de vinculo para materializar la

restricción de desplazamiento o rotación del punto del sistema que esta vinculado. Si se trata de un vinculo externo al

sistema se desarrolla una reacción externa; si es un vinculo interno se desarrolla una reacción o esfuerzo interno.

Se define como sistema simple aquel que esta compuesto por un solo cuerpo; un sistema simple que se puede mover

en un plano tiene tres grados de libertad de movimiento, los cuales pueden pensarse como las dos componentes de

desplazamientos de un punto cualquiera del sistema, mas el Angulo de rotación en torno a dicho punto.

El vinculo externo que fija un punto del sistema recibe el nombre de rotula fija, al eliminar la posibilidad de

desplazamiento de dicho punto según dos direcciones cualquiera del plano, le quita al sistema dos grados de libertad.

El vinculo externo que obliga a un punto del sistema a moverse según una línea del plano, generalmente recta, se

llama rotula deslizante. Este vinculo le quita al sistema un grado de libertad.

Por ultimo, el vinculo externo que fija un punto del sistema y que además impide que el sistema gire en torno a este

punto, recibe el nombre de empotramiento, e implica que le quita tres grados de libertad al sistema.

Page 10: Analisis estructural 1

REACCIONES EXTERNAS Y DIAGRAMAS DE ESFUERZOS INTERNOS EN VIGAS Y PORTICOS.

La determinación analítica de las reacciones externas de sistemas simples planos, estáticamente determinados, se

realiza usando las condiciones que deben satisfacer las fuerzas externas que actúan sobre un sistema cuando éste

está en equilibrio estático. Estas condiciones se reducen en tres ecuaciones escalares; dos de ellas imponen la

condición de suma nula para las componentes de las fuerzas externas según dos direcciones arbitrarias del plano en

que se encuentra el sistema, generalmente las direcciones vertical y horizontal; la tercera ecuación proviene de la

suma nula de los momentos de estas fuerzas en torno a un punto arbitrario del plano. Dado que la vinculación no

redundante de sistemas simples implica introducir tres incógnitas de reacción de vinculo, las tres condiciones

anteriores son suficientes para determinar las reacciones externas de estos sistemas. En el caso de vinculación

aparente, alguna de estas ecuaciones se desvanece en cuanto a la determinación de las incógnitas y el problema no

puede ser resuelto.

Una vez determinadas las reacciones de vinculo externo se puede proceder a la determinación de los esfuerzos

internos de los sistemas, ya sean simples o compuestos. La determinación de estos esfuerzos en cada una de las

secciones conduce a los diagramas de esfuerzos internos, los cuales son indispensables para el procedimiento de

diseño o dimensionamiento de los elementos estructurales.

Los esfuerzos internos que se transmiten a través de una sección corresponde a las componentes de la resultante de

las fuerzas externas ubicadas a un lado de la sección. En un sistema plano estas componentes son el momento

flector M, el esfuerzo axial N y el esfuerzo de corte V.

El momento flector M es igual al momento de todas las fuerzas externas que actúan a un lado de la sección,

con respecto al centroide de la sección.

El esfuerzo axial N es igual a la resultante de las fuerzas externas que actúan a un lado de la sección,

proyectada según la dirección perpendicular a la sección.

El esfuerzo de corte V es igual a la resultante de las fuerzas externas que actúan a un lado de la sección,

proyectada en el plano de la sección.