advanced hardware architectures group: ams research activity

Post on 21-Mar-2022

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Advanced Hardware Architectures Group: AMS Research Activity

Josep M. Sánchez-Chiva1, Juan J. Valle1, Saoni Banerji1,3, Diana Mata1, Piotr Michalik3, Daniel Fernández3, Jordi Cosp2, Jordi Madrenas1

1, 2. Universitat Politècnica de Catalunya, Department of Electronic Engineering 1. Jordi Girona 1-3, 08034 Barcelona, Catalunya (Spain)2. Av. d'Eduard Maristany, 10-14, 08019 Barcelona, Catalunya (Spain)

3. Nanusens, Plaça del Pi 5, 08193 Bellaterra, Catalunya (Spain)

Contact: jordi.madrenas@upc.edu

CMOS-MEMS MagnetometerMEMS magnetometers manufactured in a standard CMOS

process.BEOL in house release processBased on Lorentz forceResonant sensors with capacitive readout

Sensor readout circuitCharge sensitive amplifiers on-chipDriving circuitry on-chipPCB demonstrator with:

FPGA board: Signal processing and loop controlArduino Due: Reference sensors and PC-FPGA

communicationPower supply boardMain board: Commercial sensors, amplification and A/D

conversion

Recent publications and patent filing

Measurement setup for Magnetometer devices Taped out chip with X/Y and Z axes

magnetometers with readout circuitry

The Advanced Hardware Architecture (AHA) group conducts research in the field ofdesign and specification of electronic system architectures with improvedcharacteristics for the efficient processing of information. The most suitabletechnological solution, such as VLSI and totally customized solutions, high densityFPGA and programmable circuits, are applied to develop intelligent electronicsystems to different areas, being health one of the most relevant.

• Banerji, S., Fernández, D., & Madrenas, J. (2017). Characterization of CMOS-MEMS Resonant Pressure Sensors. IEEE Sensors Journal, 17(20), 6653–6661. http://doi.org/10.1109/JSEN.2017.2747140• Banerji, S., Michalik, P., Fernández, D., Madrenas, J., Mola, A., & Montanyà, J. (2017). CMOS-MEMS resonant pressure sensors: optimization and validation through comparative analysis. Microsystem Technologies, 23(9), 3909–3925.

http://doi.org/10.1007/s00542-016-2878-3• De Marcellis, A., Reig, C., Cubells-Beltrán, M. D., Madrenas, J., Santos, J. D., Cardoso, S., & Freitas, P. P. (2017). Monolithic integration of GMR sensors for standard CMOS-IC current sensing. Solid-State Electronics, 135, 100–104.

http://doi.org/10.1016/j.sse.2017.06.034• Valle, J., Fernández, D., Madrenas, J., & Barrachina, L. (2017). Curvature of BEOL Cantilevers in CMOS-MEMS Processes. Journal of Microelectromechanical Systems, 26(4), 895–909. http://doi.org/10.1109/JMEMS.2017.2695571• Cubells-Beltrán, M.-D., Reig, C., Madrenas, J., De Marcellis, A., Santos, J., Cardoso, S., & Freitas, P. (2016). Integration of GMR Sensors with Different Technologies. Sensors, 16(6), 939. http://doi.org/10.3390/s16060939• Valle, J., Fernández, D., & Madrenas, J. (2016). Experimental Analysis of Vapor HF Etch Rate and Its Wafer Level Uniformity on a CMOS-MEMS Process. Journal of Microelectromechanical Systems, 25(2), 401–412.

http://doi.org/10.1109/JMEMS.2016.2533267• Michalik, P., Sanchez-Chiva, J. M., Fernández, D., & Madrenas, J. (2015). CMOS BEOL-embedded z-axis accelerometer. Electronics Letters, 51(11), 1–4. http://doi.org/10.1049/el.2015.0140• Cosp, J., Binczak, S., Madrenas, J., & Fernández, D. (2014). Realistic model of compact VLSI FitzHugh–Nagumo oscillators. International Journal of Electronics, 101(2), 220–230. http://doi.org/10.1080/00207217.2013.780263• De Marcellis, A., Reig, C., Cubells, M. D., Madrenas, J., Cardoso, F., Cardoso, S., & Freitas, P. P. (2014). Quasi-digital front-ends for current measurement in integrated circuits with giant magnetoresistance technology. IET Circuits, Devices

& Systems, 8(4), 291–300. http://doi.org/10.1049/iet-cds.2013.0348• Fernández, D., Martinez-Alvarado, L., & Madrenas, J. (2012). A Translinear, Log-Domain FPAA on Standard CMOS Technology. IEEE Journal of Solid-State Circuits, 47(2), 490–503. http://doi.org/10.1109/JSSC.2011.2170597• Gorreta, S., Fernández, D., Blokhina, E., Pons-Nin, J., Jimenez, V., O’Connell, D., … Dominguez, M. (2012). Pulsed Digital Oscillators for Electrostatic MEMS. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(12), 2835–2845.

http://doi.org/10.1109/TCSI.2012.2206459• Michalik, P., Fernandez, D., & Madrenas, J. (2012). Result-consistent counter sampling scheme for coarse-fine TDCs. Electronics Letters, 48(19), 1195. http://doi.org/10.1049/el.2012.1465• Madrenas, J., Fernandez, D., & Wang, C. (2012). LCMOS: Light-powered standard CMOS circuits. In 2012 IEEE International Symposium on Circuits and Systems (pp. 3029–3032). IEEE. http://doi.org/10.1109/ISCAS.2012.6271957• Fernández, D., Madrenas, J., & Cosp, J. (2011). A self-test and dynamics characterization circuit for MEMS electrostatic actuators. Microelectronics Reliability, 51(3), 602–609. http://doi.org/10.1016/j.microrel.2010.09.027• Fernández, D., Ricart, J., & Madrenas, J. (2010). Experiments on the Release of CMOS-Micromachined Metal Layers. Journal of Sensors, 2010, 1–8. http://doi.org/10.1155/2010/937301

• European Patent, extended to the USA (PCTIB2016000490) Piotr Michalik, Daniel Fernández, Jordi Madrenas (2015). Integrated circuit comprising multilayer micromechanical structures with improved mass and reliability by usingmodified vias and a method to obtain thereof.

Signal processing chain architecture

Analog and Mixed-Signal researchactivity of the AHA group:• BEOL-based CMOS-MEMS circuits• VLSI analog conditioning• Photoelectronic energy harvesting• Neuromorphic/bio-inspired systems

CMOS- MEMS Pressure SensorMEMS magnetometers manufactured in standard CMOS process.BEOL in house release processResonant sensors with capacitive readoutBased on Oscillation quality factor measurementOptimal topology for maximum sensitivity with MatlabMEMS operation with COMSOLVerilog AMS model of the deviceCo-simulation with the signal conditioning electronics.

BEOL-based CMOS-MEMS in a nutshell• Metal layers are removed with HF-based etching• Micromechanics and microelectronics on the same die!

Before etching After etching

Nonlinearity measurementMonolithic integration

Triaxial CMOS-MEMS accelerometer demonstration videohttps://www.youtube.com/watch?v=PpgcpgZSksI

(Search 3-axis CMOS-MEMS accelerometer from UPC DEE)

COMSOL simulation

SEM microphotograph

Oscillation Q measurement

Experimental setup

E x p e r im e n ta l d a ta

(a )

(d )(c )

(b )

S im u la t io n d a ta

(b )(b )

(d )(c )

Q dependence with pressure

CMOS- MEMS Triaxial AccelerometersThe first CMOS-MEMS devices developed at the DepartmentStandard CMOS technologyElectrostatic devices releasing proof mass from BEOL metal layersSeveral layers of metals can be released with a patented procedureLateral (X and Y) accelerometers with a comb structureVertical (Z) accelerometersAll of the integrated in the same chip including electronics conditioning.

Allan deviation measured before and after 1st order temperature correction

Vertical accelerometer SEM microphotograph

Monolithic CMOS integration of GMR Sensors

After 30 min. After 40 min.

Etching estimation based on capacitance measurement

Giant Magneto Resistive (GMR) material deposited on top of CMOS chips

Array of 3x3 sensors on top of a 0.35 CMOS chip including electronics conditioning

Z AXIS:

X/Y AXES:

Lateral accelerometer SEM microphotograph

Signal processing chain architecture

Sensor spectrum in response to 20 Hz vibration test signal against the pure

noise spectrum

Curvature measurementof BEOL Cantilevers

top related