advanced hardware architectures group: ams research activity

1
Advanced Hardware Architectures Group: AMS Research Activity Josep M. Sánchez-Chiva 1 , Juan J. Valle 1 , Saoni Banerji 1,3 , Diana Mata 1 , Piotr Michalik 3 , Daniel Fernández 3 , Jordi Cosp 2 , Jordi Madrenas 1 1, 2. Universitat Politècnica de Catalunya, Department of Electronic Engineering 1. Jordi Girona 1-3, 08034 Barcelona, Catalunya (Spain) 2. Av. d'Eduard Maristany, 10-14, 08019 Barcelona, Catalunya (Spain) 3. Nanusens, Plaça del Pi 5, 08193 Bellaterra, Catalunya (Spain) Contact: [email protected] CMOS-MEMS Magnetometer MEMS magnetometers manufactured in a standard CMOS process. BEOL in house release process Based on Lorentz force Resonant sensors with capacitive readout Sensor readout circuit Charge sensitive amplifiers on-chip Driving circuitry on-chip PCB demonstrator with: FPGA board: Signal processing and loop control Arduino Due: Reference sensors and PC-FPGA communication Power supply board Main board: Commercial sensors, amplification and A/D conversion Recent publications and patent filing Measurement setup for Magnetometer devices Taped out chip with X/Y and Z axes magnetometers with readout circuitry The Advanced Hardware Architecture (AHA) group conducts research in the field of design and specification of electronic system architectures with improved characteristics for the efficient processing of information. The most suitable technological solution, such as VLSI and totally customized solutions, high density FPGA and programmable circuits, are applied to develop intelligent electronic systems to different areas, being health one of the most relevant. Banerji, S., Fernández, D., & Madrenas, J. (2017). Characterization of CMOS-MEMS Resonant Pressure Sensors. IEEE Sensors Journal, 17(20), 6653–6661. http://doi.org/10.1109/JSEN.2017.2747140 Banerji, S., Michalik, P., Fernández, D., Madrenas, J., Mola, A., & Montanyà, J. (2017). CMOS-MEMS resonant pressure sensors: optimization and validation through comparative analysis. Microsystem Technologies, 23(9), 3909–3925. http://doi.org/10.1007/s00542-016-2878-3 De Marcellis, A., Reig, C., Cubells-Beltrán, M. D., Madrenas, J., Santos, J. D., Cardoso, S., & Freitas, P. P. (2017). Monolithic integration of GMR sensors for standard CMOS-IC current sensing. Solid-State Electronics, 135, 100–104. http://doi.org/10.1016/j.sse.2017.06.034 Valle, J., Fernández, D., Madrenas, J., & Barrachina, L. (2017). Curvature of BEOL Cantilevers in CMOS-MEMS Processes. Journal of Microelectromechanical Systems, 26(4), 895–909. http://doi.org/10.1109/JMEMS.2017.2695571 Cubells-Beltrán, M.-D., Reig, C., Madrenas, J., De Marcellis, A., Santos, J., Cardoso, S., & Freitas, P. (2016). Integration of GMR Sensors with Different Technologies. Sensors, 16(6), 939. http://doi.org/10.3390/s16060939 Valle, J., Fernández, D., & Madrenas, J. (2016). Experimental Analysis of Vapor HF Etch Rate and Its Wafer Level Uniformity on a CMOS-MEMS Process. Journal of Microelectromechanical Systems, 25(2), 401–412. http://doi.org/10.1109/JMEMS.2016.2533267 Michalik, P., Sanchez-Chiva, J. M., Fernández, D., & Madrenas, J. (2015). CMOS BEOL-embedded z-axis accelerometer. Electronics Letters, 51(11), 1–4. http://doi.org/10.1049/el.2015.0140 Cosp, J., Binczak, S., Madrenas, J., & Fernández, D. (2014). Realistic model of compact VLSI FitzHugh–Nagumo oscillators. International Journal of Electronics, 101(2), 220–230. http://doi.org/10.1080/00207217.2013.780263 De Marcellis, A., Reig, C., Cubells, M. D., Madrenas, J., Cardoso, F., Cardoso, S., & Freitas, P. P. (2014). Quasi-digital front-ends for current measurement in integrated circuits with giant magnetoresistance technology. IET Circuits, Devices & Systems, 8(4), 291–300. http://doi.org/10.1049/iet-cds.2013.0348 Fernández, D., Martinez-Alvarado, L., & Madrenas, J. (2012). A Translinear, Log-Domain FPAA on Standard CMOS Technology. IEEE Journal of Solid-State Circuits, 47(2), 490–503. http://doi.org/10.1109/JSSC.2011.2170597 Gorreta, S., Fernández, D., Blokhina, E., Pons-Nin, J., Jimenez, V., O’Connell, D., … Dominguez, M. (2012). Pulsed Digital Oscillators for Electrostatic MEMS. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(12), 2835–2845. http://doi.org/10.1109/TCSI.2012.2206459 Michalik, P., Fernndez, D., & Madrenas, J. (2012). Result-consistent counter sampling scheme for coarse-fine TDCs. Electronics Letters, 48(19), 1195. http://doi.org/10.1049/el.2012.1465 Madrenas, J., Fernandez, D., & Wang, C. (2012). LCMOS: Light-powered standard CMOS circuits. In 2012 IEEE International Symposium on Circuits and Systems (pp. 3029–3032). IEEE. http://doi.org/10.1109/ISCAS.2012.6271957 Fernández, D., Madrenas, J., & Cosp, J. (2011). A self-test and dynamics characterization circuit for MEMS electrostatic actuators. Microelectronics Reliability, 51(3), 602–609. http://doi.org/10.1016/j.microrel.2010.09.027 Fernández, D., Ricart, J., & Madrenas, J. (2010). Experiments on the Release of CMOS-Micromachined Metal Layers. Journal of Sensors, 2010, 1–8. http://doi.org/10.1155/2010/937301 European Patent, extended to the USA (PCTIB2016000490) Piotr Michalik, Daniel Fernández, Jordi Madrenas (2015). Integrated circuit comprising multilayer micromechanical structures with improved mass and reliability by using modified vias and a method to obtain thereof. Signal processing chain architecture Analog and Mixed-Signal research activity of the AHA group: BEOL-based CMOS-MEMS circuits VLSI analog conditioning Photoelectronic energy harvesting Neuromorphic/bio-inspired systems CMOS- MEMS Pressure Sensor MEMS magnetometers manufactured in standard CMOS process. BEOL in house release process Resonant sensors with capacitive readout Based on Oscillation quality factor measurement Optimal topology for maximum sensitivity with Matlab MEMS operation with COMSOL Verilog AMS model of the device Co-simulation with the signal conditioning electronics. BEOL-based CMOS-MEMS in a nutshell Metal layers are removed with HF-based etching Micromechanics and microelectronics on the same die! Before etching After etching Nonlinearity measurement Monolithic integration Triaxial CMOS-MEMS accelerometer demonstration video https ://www.youtube.com/watch?v=PpgcpgZSksI (Search 3-axis CMOS-MEMS accelerometer from UPC DEE) COMSOL simulation SEM microphotograph Oscillation Q measurement Experimental setup Experimental data (a) (d) (c) (b) Simulation data (b) (b) (d) (c) Q dependence with pressure CMOS- MEMS Triaxial Accelerometers The first CMOS-MEMS devices developed at the Department Standard CMOS technology Electrostatic devices releasing proof mass from BEOL metal layers Several layers of metals can be released with a patented procedure Lateral (X and Y) accelerometers with a comb structure Vertical (Z) accelerometers All of the integrated in the same chip including electronics conditioning. Allan deviation measured before and after 1st order temperature correction Vertical accelerometer SEM microphotograph Monolithic CMOS integration of GMR Sensors After 30 min. After 40 min. Etching estimation based on capacitance measurement Giant Magneto Resistive (GMR) material deposited on top of CMOS chips Array of 3x3 sensors on top of a 0.35 CMOS chip including electronics conditioning Z AXIS: X/Y AXES: Lateral accelerometer SEM microphotograph Signal processing chain architecture Sensor spectrum in response to 20 Hz vibration test signal against the pure noise spectrum Curvature measurement of BEOL Cantilevers

Upload: others

Post on 21-Mar-2022

3 views

Category:

Documents


0 download

TRANSCRIPT

Advanced Hardware Architectures Group: AMS Research Activity

Josep M. Sánchez-Chiva1, Juan J. Valle1, Saoni Banerji1,3, Diana Mata1, Piotr Michalik3, Daniel Fernández3, Jordi Cosp2, Jordi Madrenas1

1, 2. Universitat Politècnica de Catalunya, Department of Electronic Engineering 1. Jordi Girona 1-3, 08034 Barcelona, Catalunya (Spain)2. Av. d'Eduard Maristany, 10-14, 08019 Barcelona, Catalunya (Spain)

3. Nanusens, Plaça del Pi 5, 08193 Bellaterra, Catalunya (Spain)

Contact: [email protected]

CMOS-MEMS MagnetometerMEMS magnetometers manufactured in a standard CMOS

process.BEOL in house release processBased on Lorentz forceResonant sensors with capacitive readout

Sensor readout circuitCharge sensitive amplifiers on-chipDriving circuitry on-chipPCB demonstrator with:

FPGA board: Signal processing and loop controlArduino Due: Reference sensors and PC-FPGA

communicationPower supply boardMain board: Commercial sensors, amplification and A/D

conversion

Recent publications and patent filing

Measurement setup for Magnetometer devices Taped out chip with X/Y and Z axes

magnetometers with readout circuitry

The Advanced Hardware Architecture (AHA) group conducts research in the field ofdesign and specification of electronic system architectures with improvedcharacteristics for the efficient processing of information. The most suitabletechnological solution, such as VLSI and totally customized solutions, high densityFPGA and programmable circuits, are applied to develop intelligent electronicsystems to different areas, being health one of the most relevant.

• Banerji, S., Fernández, D., & Madrenas, J. (2017). Characterization of CMOS-MEMS Resonant Pressure Sensors. IEEE Sensors Journal, 17(20), 6653–6661. http://doi.org/10.1109/JSEN.2017.2747140• Banerji, S., Michalik, P., Fernández, D., Madrenas, J., Mola, A., & Montanyà, J. (2017). CMOS-MEMS resonant pressure sensors: optimization and validation through comparative analysis. Microsystem Technologies, 23(9), 3909–3925.

http://doi.org/10.1007/s00542-016-2878-3• De Marcellis, A., Reig, C., Cubells-Beltrán, M. D., Madrenas, J., Santos, J. D., Cardoso, S., & Freitas, P. P. (2017). Monolithic integration of GMR sensors for standard CMOS-IC current sensing. Solid-State Electronics, 135, 100–104.

http://doi.org/10.1016/j.sse.2017.06.034• Valle, J., Fernández, D., Madrenas, J., & Barrachina, L. (2017). Curvature of BEOL Cantilevers in CMOS-MEMS Processes. Journal of Microelectromechanical Systems, 26(4), 895–909. http://doi.org/10.1109/JMEMS.2017.2695571• Cubells-Beltrán, M.-D., Reig, C., Madrenas, J., De Marcellis, A., Santos, J., Cardoso, S., & Freitas, P. (2016). Integration of GMR Sensors with Different Technologies. Sensors, 16(6), 939. http://doi.org/10.3390/s16060939• Valle, J., Fernández, D., & Madrenas, J. (2016). Experimental Analysis of Vapor HF Etch Rate and Its Wafer Level Uniformity on a CMOS-MEMS Process. Journal of Microelectromechanical Systems, 25(2), 401–412.

http://doi.org/10.1109/JMEMS.2016.2533267• Michalik, P., Sanchez-Chiva, J. M., Fernández, D., & Madrenas, J. (2015). CMOS BEOL-embedded z-axis accelerometer. Electronics Letters, 51(11), 1–4. http://doi.org/10.1049/el.2015.0140• Cosp, J., Binczak, S., Madrenas, J., & Fernández, D. (2014). Realistic model of compact VLSI FitzHugh–Nagumo oscillators. International Journal of Electronics, 101(2), 220–230. http://doi.org/10.1080/00207217.2013.780263• De Marcellis, A., Reig, C., Cubells, M. D., Madrenas, J., Cardoso, F., Cardoso, S., & Freitas, P. P. (2014). Quasi-digital front-ends for current measurement in integrated circuits with giant magnetoresistance technology. IET Circuits, Devices

& Systems, 8(4), 291–300. http://doi.org/10.1049/iet-cds.2013.0348• Fernández, D., Martinez-Alvarado, L., & Madrenas, J. (2012). A Translinear, Log-Domain FPAA on Standard CMOS Technology. IEEE Journal of Solid-State Circuits, 47(2), 490–503. http://doi.org/10.1109/JSSC.2011.2170597• Gorreta, S., Fernández, D., Blokhina, E., Pons-Nin, J., Jimenez, V., O’Connell, D., … Dominguez, M. (2012). Pulsed Digital Oscillators for Electrostatic MEMS. IEEE Transactions on Circuits and Systems I: Regular Papers, 59(12), 2835–2845.

http://doi.org/10.1109/TCSI.2012.2206459• Michalik, P., Fernandez, D., & Madrenas, J. (2012). Result-consistent counter sampling scheme for coarse-fine TDCs. Electronics Letters, 48(19), 1195. http://doi.org/10.1049/el.2012.1465• Madrenas, J., Fernandez, D., & Wang, C. (2012). LCMOS: Light-powered standard CMOS circuits. In 2012 IEEE International Symposium on Circuits and Systems (pp. 3029–3032). IEEE. http://doi.org/10.1109/ISCAS.2012.6271957• Fernández, D., Madrenas, J., & Cosp, J. (2011). A self-test and dynamics characterization circuit for MEMS electrostatic actuators. Microelectronics Reliability, 51(3), 602–609. http://doi.org/10.1016/j.microrel.2010.09.027• Fernández, D., Ricart, J., & Madrenas, J. (2010). Experiments on the Release of CMOS-Micromachined Metal Layers. Journal of Sensors, 2010, 1–8. http://doi.org/10.1155/2010/937301

• European Patent, extended to the USA (PCTIB2016000490) Piotr Michalik, Daniel Fernández, Jordi Madrenas (2015). Integrated circuit comprising multilayer micromechanical structures with improved mass and reliability by usingmodified vias and a method to obtain thereof.

Signal processing chain architecture

Analog and Mixed-Signal researchactivity of the AHA group:• BEOL-based CMOS-MEMS circuits• VLSI analog conditioning• Photoelectronic energy harvesting• Neuromorphic/bio-inspired systems

CMOS- MEMS Pressure SensorMEMS magnetometers manufactured in standard CMOS process.BEOL in house release processResonant sensors with capacitive readoutBased on Oscillation quality factor measurementOptimal topology for maximum sensitivity with MatlabMEMS operation with COMSOLVerilog AMS model of the deviceCo-simulation with the signal conditioning electronics.

BEOL-based CMOS-MEMS in a nutshell• Metal layers are removed with HF-based etching• Micromechanics and microelectronics on the same die!

Before etching After etching

Nonlinearity measurementMonolithic integration

Triaxial CMOS-MEMS accelerometer demonstration videohttps://www.youtube.com/watch?v=PpgcpgZSksI

(Search 3-axis CMOS-MEMS accelerometer from UPC DEE)

COMSOL simulation

SEM microphotograph

Oscillation Q measurement

Experimental setup

E x p e r im e n ta l d a ta

(a )

(d )(c )

(b )

S im u la t io n d a ta

(b )(b )

(d )(c )

Q dependence with pressure

CMOS- MEMS Triaxial AccelerometersThe first CMOS-MEMS devices developed at the DepartmentStandard CMOS technologyElectrostatic devices releasing proof mass from BEOL metal layersSeveral layers of metals can be released with a patented procedureLateral (X and Y) accelerometers with a comb structureVertical (Z) accelerometersAll of the integrated in the same chip including electronics conditioning.

Allan deviation measured before and after 1st order temperature correction

Vertical accelerometer SEM microphotograph

Monolithic CMOS integration of GMR Sensors

After 30 min. After 40 min.

Etching estimation based on capacitance measurement

Giant Magneto Resistive (GMR) material deposited on top of CMOS chips

Array of 3x3 sensors on top of a 0.35 CMOS chip including electronics conditioning

Z AXIS:

X/Y AXES:

Lateral accelerometer SEM microphotograph

Signal processing chain architecture

Sensor spectrum in response to 20 Hz vibration test signal against the pure

noise spectrum

Curvature measurementof BEOL Cantilevers