2.1 concreto.docx

19
MARCO TEORICO 2.1 Mecanismos de corrosión del acero De acuerdo con (del Valle Moreno, Perez Lopez, & Martinez Madrid, 2001) la integridad de una estructura de concreto armado depende tanto de la calidad de sus componentes como de su dosificación, para lograr las mejores propiedades que garanticen un periodo de vida útil prolongado. La barrera de protección que le proporciona el concreto a la varilla de acero es reforzada por el valor de pH alcalino que se alcanza después de las reacciones de hidratación del cemento, que pasivan al elemento metálico y lo protegen químicamente. Sin embargo, la interacción con el medio ambiente provoca que la protección se vea disminuida. Los principales agentes agresivos son los cloruros en regiones marinas y la carbonatación en zonas rurales e industriales. La combinación de los agentes agresivos tiene un efecto sinérgico, acelerando el proceso de degradación de las estructuras de concreto armado. Cuando los agentes agresivos no están presentes desde la elaboración del concreto, éstos penetran a través de él cuando la estructura es puesta en servicio. Al llegar a la superficie del metal, provocan que la corrosión se desencadene. Una vez que la corrosión se ha desencadenado, ésta se manifestará bajo tres vertientes: 1) Sobre el acero, con una disminución de su diámetro inicial y por lo tanto de su capacidad mecánica. 2) Sobre el concreto, debido a que al generarse acumulación de óxidos expansivos en la interfase acero-concreto, provoca fisuras y desprendimientos.

Upload: joozdavidlhopezzhernandeezz

Post on 09-Jul-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2.1 CONCRETO.docx

MARCO TEORICO

2.1 Mecanismos de corrosión del acero

De acuerdo con (del Valle Moreno, Perez Lopez, & Martinez Madrid, 2001) la integridad de una estructura de concreto armado depende tanto de la calidad de sus componentes como de su dosificación, para lograr las mejores propiedades que garanticen un periodo de vida útil prolongado. La barrera de protección que le proporciona el concreto a la varilla de acero es reforzada por el valor de pH alcalino que se alcanza después de las reacciones de hidratación del cemento, que pasivanal elemento metálico y lo protegen químicamente. Sin embargo, la interacción con el medio ambiente provoca que la protección se vea disminuida. Los principales agentes agresivos son los cloruros en regiones marinas y la carbonatación en zonas rurales e industriales. La combinación de los agentes agresivos tiene un efecto sinérgico, acelerando el proceso de degradación de las estructuras de concreto armado.

Cuando los agentes agresivos no están presentes desde la elaboración del concreto, éstos penetran a través de él cuando la estructura es puesta en servicio. Al llegar a la superficie del metal, provocan que la corrosión se desencadene. Una vez que la corrosión se ha desencadenado, ésta se manifestará bajo tres vertientes:

1) Sobre el acero, con una disminución de su diámetro inicial y por lo tanto de su capacidad mecánica.

2) Sobre el concreto, debido a que al generarse acumulación de óxidos expansivos en la interfase acero-concreto, provoca fisuras y desprendimientos.

3) Sobre la adherencia acero/concreto. Desde el punto de vista de la corrosión del acero en el concreto, Tutti26 definió un modelo muy sencillo que representa el tiempo que tarda una estructura de concreto proporcionando servicios para los cuales ha sido diseñada.

Este modelo se divide en dos periodos.

Periodo de iniciación: Tiempo en que tarda el agente agresivo en atravesar el recubrimiento, alcanzar el acero y provocar el rompimiento de la capa de óxido protector.

Periodo de propagación: Comprende la acumulación progresiva del deterioro, hasta que alcanza un nivel inaceptable.

Page 2: 2.1 CONCRETO.docx

Estos periodos se ilustran en la Figura 2.1.1

Figura 2.1.1 Tiempo de vida útil de una Estructura

Durante el periodo de iniciación los agentes agresivos llegan a la superficie del metal e inician el proceso de corrosión. Los agentes más comunes son los iones cloruro y la neutralización de la pasta de concreto conocida como carbonatación. Carbonatación El pH del concreto puede cambiar por el ingreso de diversas sustancias desde el medio ambiente. Estas sustancias son principalmente el CO2 que se encuentra de manera natural en el aire y el SO3 que se produce de la combustión de combustibles fósiles. De estos, el CO2 en el aire es de mayor importancia, de ahí el nombre de carbonatación. Inicialmente el CO2 no es capaz de penetrar profundamente dentro del concreto, debido a que reacciona con el calibre del concreto superficial de acuerdo con la siguiente reacción:

H2OCO2 + Ca (OH)2 CaCO3 + H2O

Dando como resultado un cambio en el pH:

PH = 12.5 a 13.5 pH = 9

Aunque la porción de mezcla externa del concreto se carbonata rápidamente, el CO2 continúa su ingreso a mayor profundidad y cuando el pH alrededor del acero de refuerzo es cercano a 9, la capa de óxido protector pierde su estabilidad termodinámica, dando paso a la corrosión del acero. A la profundidad que el CO2 ha penetrado y por lo tanto que ha modificado el pH, generalmente se le llama “frente de carbonatación”. En la práctica es útil conocer a qué velocidad progresa el "frente de carbonatación" para estimar si ha alcanzado la interfase acero-concreto y poder aproximar el estado superficial que guarda la varilla metálica. La penetración del CO2 está determinada por la forma de la estructura de los poros y por el volumen de ellos que está ocupando por la disolución poro del concreto, ya que la velocidad de difusión del CO2 en agua es 10 veces más lenta que la velocidad de difusión del 10 en el aire.

Page 3: 2.1 CONCRETO.docx

Figura 2.1.2

Proceso de carbonatación Si el poro está seco, como se muestra en la Figura 2.1.3, el CO2 difunde fácilmente, pero la carbonatación no puede ocurrir debido a la falta de agua. Este caso sólo se presenta en concreto que está sobresecado, como ocurre en climas muy secos. Si los poros están llenos (figura 2.1.4) de agua hay apenas alguna carbonatación debido a la poca difusión del CO2 en agua, que es el caso de estructuras sumergidas.

Si los poros están parcialmente llenos de agua (figura 2.1.5), la carbonatación puede proceder hasta un espesor donde los poros del concreto están secos. Los parámetros que determinan la velocidad de carbonatación, son: la composición y cantidad del cemento, la compactación, condiciones de curado y condiciones ambientales de exposición del concreto.

Figura 2.1.3 poro seco Figura 2.1.4 poro saturado de agua

Figura 2.1.5 poro parcialmente lleno de agua

La carbonatación se presenta comúnmente en medios rurales y con mayor incidencia en zonas urbanas, en las que se alcanzan grandes concentraciones de óxidos sulfurosos (SOx) y nitrosos (NOx), que son combinados con el agua de la humedad ambiental formando los respectivos ácidos sulfurosos y nitrosos. En zonas de alta contaminación ambiental y altas precipitaciones pluviales, el pH llega a tomar valores

Page 4: 2.1 CONCRETO.docx

cercanos a 4, lo que se conoce como lluvia ácida, que afecta las estructuras de concreto de la misma forma que la carbonatación.

Cloruros

La corrosión inducida por cloruro se presenta en nuestro país en estructuras expuestas al medio marino. Los iones cloruro están presentes en el agua de mar, pero es posible que también los desplace el viento de la brisa marina a la zona costera y los deposite en estructuras de concreto cercanas a la línea de mar. Otra fuente de cloruros es en el agua de amasado, lo cual aumenta el alto riesgo de corrosión.

De acuerdo al modelo de vida útil, también es necesario que los iones cloruro avancen desde el exterior hasta llegar al nivel de la varilla. Una vez que llegan al acero, se acumulan hasta alcanzar una concentración crítica, la cual tiene la capacidad de romper la estabilidad de la película pasiva y dar inicio al proceso de corrosión.

Los iones cloruro pueden estar presentes en el concreto de tres maneras: enlazados, adsorbidos y disueltos en el agua que se conserva en los poros, lo que constituye la disolución poro. La Figura 2.1.6 ilustra los tres casos, e indica los equilibrios que se establecen para los cloruros en el concreto.

Figura 2.1.6 Equilibrios del ion cloruro en el concreto

Los iones cloruro que son dañinos para el acero de refuerzo son los que se hallan disueltos o libres, pero debido a los equilibrios que se presentan es posible que los que están adsorbidos se incorporen a la disolución y se tornen peligrosos. Cuando se utiliza agua de amasado con cloruros, cierta cantidad reacciona con los compuestos hidratados del concreto para formar las sales de Friedel, otra cantidad se adsorbe en la superficie de las paredes de los poros y sólo una parte queda disuelta. Esta distribución depende del tipo y la cantidad de cemento con que se dosifique al concreto.

Page 5: 2.1 CONCRETO.docx

En el caso de una fuente externa de iones cloruro, el acceso es a través de los poros del concreto. Al avanzar al interior una cantidad reacciona, otra se adsorbe y otra fracción queda disuelta. El medio de exposición es determinante para el ingreso de los iones cloruro. En una estructura sumergida en agua de mar, el mecanismo lo determina la diferencia de concentración entre el exterior y el interior del concreto, es decir, se favorece un proceso difusivo.

En obras que se hallan a la intemperie, durante el día, por efecto de la humedad relativa del ambiente, se evapora una cierta cantidad de agua contenida en los poros, quedando parcialmente llenos. Si la brisa marina deposita sal sobre su área superficial, el ingreso del ion es por succión capilar, o sea cuando que la humedad relativa permite la formación de una película superficial de agua (punto de rocío) que es succionada por los poros capilares para llenarse nuevamente. En la succión, la sal que se depositó durante el día es arrastrada por el agua condensada y penetra al interior del concreto. Una combinación de las dos formas de ingreso de cloruro se observa en la zona de variación de marea, en la que los poros eliminan agua durante marea baja y se saturan en marea alta.

En el caso de los cloruros que pudieran ser adicionados durante el amasado del hormigón, los códigos de fabricación y de cálculo de estructuras de hormigón de todos los países limitan su contenido en proporciones variables, tal como se muestra en la tabla de la figura 2.1.7

Tabla No. 2.1.7 Valor crítico de cloruros en hormigones reforzados

Page 6: 2.1 CONCRETO.docx

Las divergencias en las cantidades máximas de cloruros admitidas por los distintos códigos aparecen debido a la inexistencia de un límite único de aplicación general. Ello se produce tanto por las diferencias de características de los cementos (su contenido en álcalis y velocidad de hidratación), como por los distintos tipos de acero utilizados (composición química, rugosidad superficial y estado de conservación), así como por las distintas materias potencialmente suministradoras de los cloruros. En relación a este límite máximo de cloruros es importante mencionar que parte de ellos se puede combinar con las fases alumínicas y ferríticas de los cementos, por lo que los más peligrosos son los que quedan sin combinar o “libres”.

La proporción cloruros entre libres y cloruros combinados no es constante, ya que está influida por la finura del cemento, su contenido en yeso, la temperatura durante el fraguado y la humedad de los poros del hormigón. En cuanto a los cloruros que penetran desde el exterior es necesario diferenciar el caso de ambientes marinos de aquellos donde se hace uso de las sales de deshielo, ya que sus proporciones relativas en el exterior del hormigón pueden ser muy diferentes. Así, mientras el agua o ambiente marino contiene una cierta proporción constante de cloruros, en el caso de las sales de deshielo, su proporción exterior será proporcional a la cantidad de sales que se emplean al año debido a la frecuencia y duración de las heladas. Tres son los aspectos relevantes a tener en cuenta en el caso de los cloruros que penetran desde el exterior:

• El tiempo que tardan en llegar hasta la armadura.

• La proporción que induce la despasivación.

• La velocidad de corrosión que provocan una vez desencadenada la corrosión.

En cuanto al tiempo que tardan los cloruros en llegar a la armadura en una estructura ya construida, lo importante es averiguar a qué profundidad han penetrado en el momento de hacer la inspección, ya que el recubrimiento de hormigón debe ser superior a la profundidad que sean capaces de alcanzar estos iones en el tiempo previsto de vida útil de la estructura.

En cuanto al límite para la despasivación, puede ser lógicamente diferente en el concreto endurecido que en el fresco, aunque los códigos no abordan este problema y se considera el mismo límite para las dos circunstancia. Sin embargo, se ha detectado que muchos concretos soportan cantidades muy superiores a este límite sin que las armaduras muestren signo alguno de corrosión. Ello es debido a la influencia de factores como el potencial eléctrico de la armadura (que refleja el contenido en oxígeno entre otras circunstancias) y el pH de la solución de los poros (relación Cl- /OH- ). Todo ello lleva a la tendencia futura de delimitar una proporción de cloruros que supongan un riesgo estadístico de corrosión de la armadura, en lugar de fijar un valor único para este límite.

Page 7: 2.1 CONCRETO.docx

2.2 El concreto reforzado

Según (Hernandez Montes & Gil Marin, 2007) el hormigón por si solo es un material que resiste bien a compresión (en torno a 30 N/mm2 o MPa) aunque menos que el acero (que su resistencia a compresión está en torno a 400 N/mm2) e incluso menos que la madera. Una característica del hormigón es su baja resistencia a tracción, del orden de 10 veces menor que la resistencia a compresión, hablando en términos poco precisos.

Consideremos la viga fabricada exclusivamente con hormigón (sin acero) de la figura 2.2.1). El valor máximo de la carga (q) que puede resistir la viga será aquella que origine una tensión de tracción igual a la resistencia a tracción del hormigón. Cuando esta carga se alcance la viga colapsará sin previo aviso.

Figura 2.2.1 Viga de hormigón

En la viga de la figura 2.2.1 la rotura se producirá en las fibras inferiores, pues es en ellas donde se experimentan las máximas tracciones. Podemos fácilmente intuir que, en general, el empleo de hormigón sin armadura (hormigón en masa) no es adecuado. En el elemento estructural de la figura 2.2.1 se está desaprovechando la capacidad de trabajo del hormigón a compresión ya que éste podría resistir tensiones mucho mayores. Además se está confiando en la capacidad de trabajo del hormigón a tracción que, dado que no se puede garantizar que el hormigón no tenga grietas que lo incapaciten para resistir esta solicitación, es muy poco fiable.

Para mejorar los inconvenientes antes descritos se plantea la necesidad de introducir un material que resista a tracción lo que el hormigón no puede: el acero. Este material añadido debe colocarse en las zonas donde es más necesario (figura 2.2.2) o sea, donde se desarrollan las tracciones. Al conjunto de ambos materiales trabajando de esta forma se le denomina hormigón armado

Page 8: 2.1 CONCRETO.docx

Figura 2.2.2 Viga de hormigón con acero en la zona de tracción

Con la aparición en el mercado aceros de alto límite elástico, aceros cuya resistencia a tracción es muy elevada (en torno a 2000 N/mm2), se plantea la posibilidad de su empleo junto con el hormigón. Para ambos aceros, el de alto y bajo límite elástico, el módulo de elasticidad es siempre aproximadamente el mismo; Es igual a 200000 N/mm2, lo que implica que pasar de una tensión inicial de 0 a una tensión igual a su resistencia máxima requiere una deformación grande en el acero de alto límite elástico. Por tanto, si se pretende emplear este tipo de acero para armar una viga, tal como se indica en la figura 2.2.2, el hormigón se agrietará exageradamente y aparecerán grandes deformaciones antes de alcanzar tensiones próximas a su máxima capacidad.

Trabajar a resistencias máximas con acero de alto límite elástico sólo es posible si éste es introducido en el hormigón con una predeformación (o tensión inicial, denominada pretensado). Con esta técnica es posible que, para deformaciones pequeñas o nulas, el acero trabaje a tensiones cercanas a su tensión máxima.

Particularidades del material compuesto

El material compuesto hormigón-acero posee algunas características especiales debido a su relación sinérgica que van más allá de la introducción que acabamos de hacer, puramente mecanicista.

La primera gran ventaja es que el hormigón genera cal libre durante su fraguado y endurecimiento, Ca(OH)2, lo que hace que tenga un pH muy elevado (≅12). Este ambiente alcalino protege al acero de un posible proceso de corrosión.

El acero, que de por sí es muy vulnerable frente a la acción del fuego, está recubierto por una capa de hormigón que le confiere un gran aislamiento. El efecto es que el conjunto puede permanecer expuesto a grandes temperaturas durante horas sin que su capacidad mecánica se vea alterada.

Page 9: 2.1 CONCRETO.docx

Con el paso del tiempo, y debido a que el hormigón es poroso, el CO2 del aire penetra por los poros del hormigón reaccionando con la cal libre y despasivizando el medio (proceso de carbonatación). Este fenómeno es el principal causante de la degradación del hormigón pues deja expuesto al acero frente a la corrosión. Durante este proceso el hormigón se carbonata. La superficie que separa la masa de hormigón carbonatado de la que no lo está se denomina frente de carbonatación.

Las contaminaciones del hormigón por sales de cloro (Cl-) crean un efecto parecido al descrito anteriormente; estas sales pueden provenir del agua, de los áridos, o aparecer con posterioridad a la fabricación del hormigón (p.ej. uso de sales de deshielo en carreteras).

La tracción absorbida por las barras de acero será trasmitida al hormigón mediante tensión cortante (fricción) a lo largo del perímetro de las barras de acero. Para asegurar la transmisión de estas tensiones de cortante se necesita garantizar una buena adherencia entre hormigón y acero. Esta adherencia queda garantizada por varios mecanismos.

El primero de estos mecanismos es de naturaleza físico- química, su origen está en la interfase hormigón- acero que se produce en el contacto de ambos.

El segundo mecanismo se debe al hecho de que el hormigón retrae al endurecer, lo que provoca un mejor agarre de las armaduras.

El tercer mecanismo es un mecanismo forzado: las barras de las armaduras pasivas, que son las empleadas en hormigón armado, están fabricadas con corrugas que mejoran la adherencia.

Descripción y características del concreto reforzado

Bombeando hormigón.Cortesía de HOLCIM (España) S.A. www.holcim.es

Page 10: 2.1 CONCRETO.docx

El hormigón (concreto en varios países de Ibero-América) es una mezcla de: cemento, agua y áridos como componentes principales. Además pueden añadírsele adiciones (hasta un 35% del peso de cemento, dependiendo del tipo de adición) y aditivos (<5% del peso de cemento). El objetivo de las adiciones y de los aditivos es mejorar alguna de las propiedades del hormigón aunque en la práctica las adiciones se emplean sobre todo para abaratar el precio final del hormigón.

Las adiciones son: puzolanas naturales, cenizas volantes, escoria de alto horno y polvo de sílice. Los aditivos, como los superplastificantes, se utilizan fundamentalmente para mejorar la trabajabilidad temporal del hormigón y permitir relaciones bajas de agua/cemento. En peso, las proporciones aproximadas de cada uno de los componentes de un hormigón típico vienen reflejadas en la figura 2.2.3

Figura 2.2.3 Componentes del hormigón en peso

En el instante en que el agua entra en contacto con el cemento se produce una reacción química exotérmica de hidratación y en poco tiempo (unos días) el hormigón se endurece tomando el aspecto de una piedra, ver figura 3.2. Cuando se agrega agua al cemento y a los áridos se forma una pasta gelatinosa que puede tomar cualquier forma. El agua es necesaria para que el hormigón fresco sea manejable y moldeable y por este motivo la cantidad de

agua añadida será superior a la estrictamente necesaria para el proceso de hidratación y endurecimiento del hormigón. El agua en exceso no llega a formar parte de la estructura química del hormigón endurecido sino que se evapora con el tiempo y hace que el hormigón adquiera una naturaleza porosa.

Figura 2.2.4 Aspecto del hormigón endurecido

Page 11: 2.1 CONCRETO.docx

La propiedad más importante del hormigón es su resistencia a compresión. La relación agua/cemento de la mezcla es la variable que más afecta a la resistencia a compresión del hormigón. Un hormigón con gran cantidad de agua será muy poroso, retraerá en exceso y tendrá una resistencia baja.

Para medir la docilidad del hormigón (trabajabilidad) se emplea el ensayo de asiento en el cono de Abrams (figura 2.2.3). Este ensayo consiste en un molde de acero troncocónico en el que se vierte hormigón y una vez lleno se retira el molde y se mide lo que ha descendido la masa, atribuyéndole su consistencia en función de este descenso: seca de 0 a 2 cm, plástica de 3 a 5 cm, blanda de 6 a 9 cm y fluida de 10 a 15 cm. Este ensayo es un referente de la calidad del hormigón: cuanto más dócil es un hormigón, más agua contiene y, por tanto, menor será su resistencia.

Ensayo de consistencia

El ensayo más importante para medir la resistencia a compresión es el de rotura de probetas cilíndricas1 de 15×30 cm, medidas en hormigón de 28 días y curado a 20ºC con el 90% de humedad (EN 206-1). La norma española EHE define como resistencia del hormigón a compresión al resultado obtenido mediante el ensayo en rotura de la probeta cilíndrica en las condiciones anteriormente expuestas. Además hay otros ensayos no destructivos que miden la resistencia a compresión, aunque de forma menos precisa, como son los ensayos de ultrasonidos o los métodos esclerométricos. Antes de usar estos ensayos no destructivos conviene conocer sus limitaciones, que están suficientemente explicadas en la literatura especializada2.

La rapidez con la que el hormigón adquiere resistencia depende, entre otros factores, de la temperatura exterior: cuanto mayor es la temperatura más rápido es el proceso de hidratación. Esto provoca que a temperaturas en torno a 0ºC sea necesario tomar medidas especiales como calentar los áridos o cubrir el hormigón, en este último caso se trata de aprovechar el calor generado por el proceso exotérmico. Por otro lado, en fábricas de productos prefabricados de hormigón es habitual utilizar técnicas de curado con vapor para acelerar el proceso de endurecimiento.

Page 12: 2.1 CONCRETO.docx

1.- En otros países se utilizan otro tipo de probetas como probetas prismáticas.

2.- Por ejemplo: en hormigones viejos no es riguroso emplear métodos esclerométricos.

Los métodos esclerométricos están basados en un índice de rebote de una masa contra la superficie del hormigón con objeto de medir su módulo de elasticidad y, a partir de éste estimar su resistencia. Puesto que el proceso de carbonatación (comentado en el primer capítulo) lleva asociado un fenómeno de endurecimiento, los hormigones viejos serán más duros en su exterior que en su interior (no carbonatado).

La resistencia del hormigón aumenta con el tiempo. De manera aproximada, se puede decir que la resistencia de un hormigón de un año es un 10% superior a la resistencia que el mismo hormigón tenía a los 28 días.

El conocimiento de la forma de trabajar del hormigón estructural hace que el ingeniero o arquitecto pueda emplear el hormigón, un material frágil cuya resistencia a tracción es muy pequeña, para construir elementos estructurales resistentes y dúctiles.

Page 13: 2.1 CONCRETO.docx