zacatelco flores erick adrian circuitos

22
CIRCUITOS ELECTRICOS Zacatelco Flores Erick Adrian Mecatronica área de manufacturas flexibles Turno: Matutino 1º “E

Upload: erick-adrian

Post on 12-Aug-2015

123 views

Category:

Documents


3 download

TRANSCRIPT

CIRCUITOS ELECTRICOS

Zacatelco Flores Erick Adrian

Mecatronica área de manufacturas flexibles

Turno: Matutino

1º “E”

 El circuito eléctrico

El circuito eléctrico es el recorrido preestablecido por por el que se desplazan las cargas eléctricas.

Circuito

Las cargas eléctricas que constituyen una corriente eléctrica pasan de un punto que tiene mayor potencial eléctrico a otro que tiene un potencial inferior. Para mantener permanentemente esa diferencia de potencial, llamada también voltaje ostensión entre los extremos de un conductor, se necesita un dispositivo llamado generador (pilas, baterías, dinamos, alternadores...) que tome las cargas que llegan a un extremo y las impulse hasta el otro. El flujo de cargas eléctricas por un conductor constituye una corriente eléctrica.

 Se distinguen dos tipos de corrientes:

Corriente continúa:

 Es aquella corriente en donde los electrones circulan en la misma cantidad y sentido, es decir, que fluye en una misma dirección. Su polaridad es invariable y hace que fluya una corriente de amplitud relativamente constante a través de una carga. A este tipo de corriente se le conoce como corriente continua (cc) o corriente directa (cd), y es generada por una pila o batería.

Este tipo de corriente es muy utilizada en los aparatos electrónicos portátiles que requieren de un voltaje relativamente pequeño. Generalmente estos aparatos no pueden tener cambios de polaridad, ya que puede acarrear daños irreversibles en el equipo.

Corriente alterna:

 La corriente alterna es aquella que circula durante un tiempo en un sentido y después en sentido opuesto, volviéndose a repetir el mismo

proceso en forma constante. Su polaridad se invierte periódicamente, haciendo que la corriente fluya alternativamente en una dirección y luego en la otra. Se conoce en castellano por la abreviación CA y en inglés por la de AC.

Este tipo de corriente es la que nos llega a nuestras casas y sin ella no podríamos utilizar nuestros artefactos eléctricos y no tendríamos iluminación en nuestros hogares. Este tipo de corriente puede ser generada por un alternador o dinamo, la cual convierten energía mecánica en eléctrica.

El mecanismo que lo constituye es un elemento giratorio llamado rotor, accionado por una turbina el cual al girar en el interior de un campo magnético (masa), induce en sus terminales de salida un determinado voltaje. A este tipo de corriente se le conoce como corriente alterna (a).

Electroestática

La electrostática es la rama de la Física que estudia los efectos mutuos que se producen entre los cuerpos como consecuencia de su carga eléctrica, es decir, el estudio de las cargas eléctricas en reposo, sabiendo que las cargas puntuales son cuerpos cargados cuyas dimensiones son despreciables frente a otras dimensiones del problema. La carga eléctrica es la propiedad de la materia responsable de los fenómenos

electrostáticos, cuyos efectos aparecen en forma de atracciones y repulsiones entre los cuerpos que la poseen.

Magnetismo

El magnetismo es un fenómeno físico por el que los objetos ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influidos, de mayor o menor forma, por la presencia de un campo magnético.

El magnetismo se da particularmente en los cables de electromatización. Líneas de fuerza magnéticas de un imán de barra, producidas por limaduras de hierro sobre papel.

El magnetismo también tiene otras manifestaciones en física, particularmente como uno de los 2 componentes de la radiación electromagnética, como por ejemplo, la luz.

Inductancia

Llamaremos inductancia al campo magnético que crea una corriente eléctrica al pasar a través de una bobina de hilo conductor enrrollado alrededor de la misma que conforma un inductor. Un inductor puede utilizarse para diferenciar señales cambiantes rápidas o lentas. Al utilizar un inductor con un condensador, la tensión del inductor alcanza su valor máximo a una frecuencia dependiente de la capacitancia y de la inductancia.

La inductancia se representa por la letra L, que en un elemento de circuito se define por:eL = L di/dt

La inductancia depende de las características físicas del conductor y de la longitud del mismo. Si se enrolla un conductor, la inductancia aumenta. Con muchas espiras (vueltas) se tendrá más inductancia que con pocas. Si a esto añadimos un núcleo de ferrita, aumentaremos considerablemente la inductancia.

La energía almacenada en el campo magnético de un inductor se calcula según la siguiente formula: W = I² L/2...

Siendo:

W = energía (julios);

I = corriente (amperios;

L = inductancia (henrios)[1].

El Cálculo de la inductanciaEl Cálculo de la inductancia: La inductancia de una bobina con una sola capa bobinada al aire puede ser calculada aproximadamente con la fórmula simplificada siguiente: L (microH)=d².n²/18d+40 l

Siendo:

L = inductancia (microhenrios);

d = diámetro de la bobina (pulgadas);

l = longitud de la bobina (pulgadas);

n = número de espiras o vueltas.

Ejemplo 1:Se tiene una bobina de 32 espiras, 13 vueltas por centímetro y 25 mm de diámetro. Cuál será su inductancia?

- a = 25 mm / 2 = 1.25 centímetros- b = 32 / 13 = 2.46- n = 32

Entonces: L = (0.393 x 1.252 x 322) / (9 x 1.25 + 10 x 2.46) = 17.54 

Ley de Ohm

La ley de Ohm   dice que: "la intensidad de la corriente eléctrica que circula por un conductor eléctrico es directamente proporcional a la diferencia de potencial aplicada e inversamente proporcional a la resistencia del mismo".

En el Sistema internacional de unidades:I = Intensidad en amperios (A)V = Diferencia de potencial en voltios (V)R = Resistencia en ohmios ( )Ω

Tabla de resistividad

Nodo

Nodo es un espacio real o abstracto en el que confluyen parte de las conexiones de otros espacios reales o abstractos que comparten sus mismas características y que a su vez también son nodos. Todos se interrelacionan de una manera no jerárquica y conforman lo que en términos sociológicos o matemáticos se llama red. El concepto de red puede definirse como "conjunto de nodos interconectados. Un nodo es el punto en el que una curva se interseca consigo misma. Lo que un nodo es concretamente, depende del tipo de redes a que nos refiramos".

Malla o lazo

Malla o lazo es una técnica usada para determinar la tensión o la corriente de cualquier elemento de un circuito plano. Un circuito plano es aquel que se puede dibujar en un plano de forma que ninguna rama quede por debajo o por arriba de ninguna otra.

Conductor

Son materiales cuya resistencia al paso de la electricidad es muy baja. Los mejores conductores eléctricos son metales, como el cobre, el oro, el hierro y el aluminio, y sus aleaciones, aunque existen otros materiales no metálicos que también poseen la propiedad de conducir la electricidad, como el grafito o las disoluciones y soluciones salinas (por ejemplo, el agua de mar) o cualquier material en estado de plasma.

Practica 1

Medición de corriente

Objetivo:

Comprender y conocer el manejo del instrumento para la lectura de intensidades de corriente eléctrica.

Nodos

+

-

12 V R4 R3

R1 R2

Practica 2

1) DETERMINE LA RESISTENCIA TOTAL DE LA CORRIENTE.

REQ1.=(2.2*10)/(10+2.2)=1.8K OHMS

REQ2.=(2.2*10)/(10+2.2)=1.8 K OHMS

Rt=1.8+1.8= 3.6 K OHMS.

1) LA RESISTENCIA TOTAL (Rt) DE LA RED ES DE 7.2K OHMS.

DETERMINE LA RESISTENCIA R1.

REQ1.=(R1*R1)/(R1+r1)= R/2

REQ2.=(3/2R*R1)/(3/2R+R1)=6/10 R.

6R=7.2 OHMS

R=1.2 OHMS.

3) DETREMINE LA MAGNITUD Y DIRECCION DE LAS CORRIENTES: I1, I2, I3, I.

SUMA DE VOLTAJE NETO:

V=24+80=32

I1=32/4=8 A.

I2=32/12=2.66 A.

I3=32/10=3.2 A.

4) DETERMINE LAS CORRIENTES I1 E I2.

REQ1.=(160*270)/(160+270)=100.46 OHMS

I1=20/47=0.425A.

6/100.46=0.059A

5) DETERMINE LA RESISTENCIA R3 SI LA CORRIENTE ATRAVEZ DE ELLA ES DE :2A.

I=V/R

R=V/I

R3=120/2

R3=60 OHMS.

6) CALCULAR VALORES DE LOS RESISTORES.

R=120/8=15 OHMS.

REQ1.=(2*2)/(2+2.)=2/3R

2/3R=15 OHMS.

1/3R=7.5 OHMS.

R=22.5 OHMS.

7) DETERMINA LA RESISTENCIA R3 SI LA CORRIENTE ATRAVÉZ DE ELLA ES DE 2ª.

I=V/R

R=V/I

R3=120V./2A

R3= 60 OHMS.

8) DETERMINAR LA CORRIENTE I, I7.

DETERMINAR LOS VOLTAJES V3, V5 Y V7.

CALCULAR LA POTENCIA SUMINISTRADA DE RT.

I=240V/10OHMNS

I=24A.

I7=240V/2OHMS.

I7=120A. I3=240V/4OHMNS I3=60A. I5=240V/6OHMS I5=40A.

V3=R3*I3 V3=4*60 V3=240V. V5=R5*I5 V5=6*40 V5=240V.

V7=R7*I7 V7=120*2 V7=240V.

P=V*I P=240V.*120A. P=28800W.

12) DETERMINAR LOS VOLTAJES VA, VB Y VC.

DETERMINAR LAS CORRIENTES I1 E I2.

-V-36+60=0

V=24 I=V/R

I=24/1000 I=0.024A.

I2=60/10000 I=0.006A.

VA=36V.

VB=60V.

V1=0.0006*5000 VC=30V.

13) DETERMINA RT.

SI FUERA LONGITUD INFINITA.

¿COMO SE COMPORTARIA LA RESISTENCIA VIENDO HACIA EL SIGUIENTE RESISTOR VECTORIAL DE OHMN CON LA RESISTENCI TR DESEA?

+/RT=1/0.75+1/3+1/3

RT=4/3+2/3=6/3=2 OHMNS

1/RT=1/1+1/3=4/3 OHMNS.

14) DETERMINAR RT.

DETERMINAR I, I1 E I2

DETERMINAR EL VOLTAJE VC.

Req1=150/25= 6 ohmns

Req2=6*12/18=8 ohmns

RT=4ohmns

IS=35/4=9AMP. I1=36/6=6AMP. I2=36/12=3AMP.

LEY DE LOS VOLTAJE DE KIRCHOFF.

-36+30V+VC=0

VC=6V.

Practica 4

Cabe señalar que El led tienen se manejara con las siguientes característicasLeds Voltajes que manejan (volts) Intensidades de corriente (mA)Rojo 1.8 -2.2 10

Con esas condiciones:

Constante de carga del capacitor t= (R C)t= (1000 Ω) ( 1000 x 10-6 F)

t= 1 s“Esperamos que se cargue por completo Al tiempo t= 5 RC segundos” .Por lo tanto para t>5 s ya no circulará corriente

La corriente inicial de carga solo es dependiente la resistencia.

I= I= 24V1000Ω

I = 24 mA

La potencia que debe disipar la resistenciaP= I2 R

P =(24mA)2 1000 Ω P = 576 mW “ es una corriente considerable”

2.- se arma el circuito como se muestra y hace prueba de continuidad. “recuerda esta se hace sin conexión de la fuente de alimentación”

Realiza tus observaciones referentes a la prueba para las dos posiciones del interruptor1.- Cuando cierra desde el interruptor el capacitor se empieza a cargar2.- Cuando se abre el interruptor corre la corriente, para prender el led y el

capacitor se empieza a descargar.3.- que corriente inicial pasará por el led al pasar al interruptor a posición de

descarga? 24VRespalda tus observaciones con imágenes