universidad nacional autÓnoma de mÉxico€¦ · a dios, por permitirme ser parte de este mundo y...

77
“DETERMINACIÓN DE LA EFICIENCIA TÉRMICA GLOBAL DE UN COLECTOR TÉRMICO SOLAR DE PLACA PLANA” México D.F. 2013 FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA TESIS Para obtener el título de: Ingeniero Químico Presenta: Roldan Luciano Viviana Director de tesis: Dr. Alejandro Rogel Ramírez UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Upload: others

Post on 06-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

“DETERMINACIÓN DE LA EFICIENCIA TÉRMICA GLOBAL DE UN COLECTOR TÉRMICO SOLAR DE

PLACA PLANA”

México D.F. 2013

FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA

TESIS

Para obtener el título de:

Ingeniero Químico

Presenta:

Roldan Luciano Viviana

Director de tesis:

Dr. Alejandro Rogel Ramírez

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Page 2: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

DEDICATORIASDEDICATORIASDEDICATORIASDEDICATORIAS

A DIOS, POR PERMITIRME SER PARTE DE ESTE MUNDO Y DARME LA FUERZA NECESARIA PARA

SIEMPRE LUCHAR POR MIS OBJETIVOS Y NUNCA PERDER LA FÉ EN MI MISMA. POR LAS

VIRTUDES DE LAS QUE ME DOTO PERO SOBRE TODO POR LOS GRANDES DEFECTOS Y LAS

MALAS ELECCIONES PUES DE ELLO HE APRENDIDO DEMASIADO.

A MIS PADRES, POR CONFIAR EN MI Y POR APOYAR MIS DECISIONES AUNQUE NO SIEMPRE

ESTUBIERAN DE ACUERDO CON ELLAS, PORQUE SIN USTEDES NO HABRIA LLEGADO TAN LEJOS,

PERO SOBRE TODO GRACIAS POR EL INMENSO AMOR QUE ME DAN. HOY PUEDEN ESTAR

ORGULLOSOS DE MÍ.

A MI MAMÁ, ROCIO LUCIANO, POR CREER EN MI Y ESTAR SIEMPRE QUE TE HE NECESITADO,

POR SOPORTAR MI MAL HUMOR CUANDO LAS COSAS NO SALEN COMO LAS ESPERO, PORQUE

AUNQUE TODO EL MUNDO ME DIERA LA ESPALDA SÉ QUE PUEDO CONTAR CONTIGO, POR

RECORRER ESTE CAMINO JUNTO A MI QUE A PESAR DE QUE NO HA SIDO FACIL PARA NINGUNA

DE LAS DOS NO ME HAS ABANDONADO, LO LOGRAMOS MAMI ASI QUE GRACIAS SIMPLEMENTE

POR SER PARTE DE MI VIDA, PUES NO SÉ QUE SERÍA DE LA MIA SIN TI. TE AMO MAMÁ.

A MI PAPÁ, EMETERIO ROLDAN, POR MADRUGAR CONMIGO PARA LLEVARME A LA ESCUELA, Y

MAS AUN POR ENSEÑARME A SER INDEPENDIENTE Y REPONSABLE DE MIS ACTOS, POR

AYUDARME A ENTENDER QUE EN LA VIDA NADA ES GRATIS Y QUE LO QUE VALE LA PENA ES

AQUELLO QUE LOGRAMOS CON NUESTRO ESFUERZO. TE AMO PAPÁ.

A MI HERMANO, SERGIO, AUNQUE NO TE LO DIGO CON MUCHA FRECUENCIA TE QUIERO

MUCHISIMO Y ADMIRO MUCHAS COSAS DE TI COMO TU GRAN CAPACIDAD PARA AMAR Y

PERDONAR, GRACIAS POR HABER SIDO MI COMPAÑERO DE JUEGOS Y PELEAS, PORQUE SÉ QUE

SI ALGUN DÍA ME QUEDARA SIN AMIGOS SIEMPRE ESTARAS TÚ. Y A PESAR DE QUE YA SEAS

TODO UN HOMBRE DE FAMILIA PARA MI SIEMPRE SERAS MI HERMANITO MENOR. TE QUIERO

CHAPARRO.

A MI CUÑADA JANETH Y MIS SOBRINAS, MELANY Y ALISON, PORQUE AL LLEGAR A MI VIDA ME

ENSEÑARON A SER PACIENTE Y TOLERANTE EN MUCHOS ASPECTOS AYUDANDOME A

RECORDAR LO HERMOSO DE LA INOCENCIA DE LOS NIÑOS. LAS QUIERO MUCHO Y SIEMPRE

QUE NECESITEN DE MI AHÍ ESTARE.

A MIS ABUELITOS, POR FORMAR PARTE DE ESTE SUEÑO Y HABERME PERMITIDO CRECER

RODEADA DE AMOR EN UNA GRAN FAMILIA, POR TODAS LAS HISTORIAS Y ENSEÑANZAS

COMPARTIDAS. LOS ADORO MIS VIEJITOS LINDOS.

A MIS TIOS, TIAS Y A MI FAMILIA EN GENERAL, PORQUE TODOS DE ALGUNA FORMA ME HAN

APOYADO Y SÉ QUE USTEDES TAMBIEN ESTAN ORGULLOSOS DE MI, GRACIAS POR TODO, LOS

QUIERO MUCHISIMO.

Page 3: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

A MIS AMIGOS, LILIAN, JONATHAN Y RAQUEL, POR COMPARTIR CONMIGO SU TIEMPO Y

BRINDARME SU AMISTAD, POR PERMITIRME SER PARTE DE SUS VIDAS CONVIRTIENDOSE EN

PERSONAS MUY IMPORTANTES EN LA MIA. GRACIAS POR LAS RISAS, DESVELOS, ANGUSTIAS Y

CADA UNA DE LAS ANECDOTAS QUE HEMOS PASADO JUNTOS, POR LOS CONSEJOS Y POR

AYUDARME A REIR CUANDO PARECIA IMPOSIBLE HACERLO. LOS QUIERO MUCHO.

A MIS AMIGAS, DULCE Y PATRICIA, POR SEGUIR SIENDO INCONDICIONALES CONMIGO

AUNQUE PASE EL TIEMPO, POR ESCUCHARME Y ACONSEJARME, POR DEMOSTRARME QUE AUN

CON LA DISTANCIA LA AMISTAD Y EL CARIÑO PERSISTEN. LAS QUIERO MUCHO.

A LA UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO, POR PERMITIRME SER PARTE DE ESTA

GRAN INSTITUCIÓN.

A LA FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA, POR ABRIRME LAS PUERTAS DE SUS

AULAS Y HABERME ACOGIDO DURANTE ESTOS CUATRO AÑOS Y MEDIO CONVIRTIENDOSE EN

MI SEGUNDO HOGAR.

A MIS PROFESORES, POR LA ENSEÑANZA EDUCATIVA Y DE VIDA QUE CADA UNO ME OTORGO,

NO SOLO A NIVEL LICENCIATURA SINO TAMBIÉN A AQUELLOS DE PRIMARIA Y SECUNDARIA

QUE MÁS QUE MAESTROS FUERON AMIGOS.

A MI DIRECTOR DE TESIS, DR. ALEJANDRO ROGEL RAMIREZ, GRACIAS POR LA OPORTUNIDAD

DE FORMAR PARTE DE TAN IMPORTANTE PROYECTO, POR LA PACIENCIA Y CONFIANZA, POR

COMPARTIR SUS CONOCIMIENTOS Y ANECDOTAS, PERO SOBRE TODO POR SU AMISTAD. EL MÁS

SINCERO AGRADECIMIENTO Y UNA ENORME ADMIRACIÓN.

A TODAS LAS PERSONAS QUE HAN FORMADO PARTE DE MI VIDA, LAS QUE SIGUEN Y LAS QUE

POR ALGUN U OTRO MOTIVO SE HAN IDO, GRACIAS PORQUE LOS BUENOS MOMENTOS AHORA

SON RECUERDOS Y LOS MALOS SE HAN CONVERTIDO EN EXPERIENCIAS.

ESTE LOGRO NO SOLO ES MIO SINO TAMBIEN DE TODOS LOS QUE HAN CREIDO EN MI.

ROLDAN LUCIANO VIVIANA.

Page 4: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

CONTENIDO Pág. Lista de figuras I Lista de gráficas I Lista de tablas II Resumen III Objetivos IV Nomenclatura V Introducción VIII Capítulo I Calentadores solares

1.1 Colectores solares 1

Colectores solares fotovoltaicos 3 Energía fotovoltaica y su papel dentro de las

energías renovables 5

1.2 Colectores térmicos solares 6 Colectores de baja temperatura o placa plana 6 Mecanismos de circulación 10 Circulación forzada 10 Circulación natural o termosifón 11

1.3 Normas y estándar aplicables 13 México 13 Estados unidos 14 Europa 14

Capitulo II Modelado matemático

2.1 Balance de calor entre la placa absorbedora y la

cubierta de vidrio 18

2.2 Balance de calor entre la placa absorbedora y el fluido de trabajo

21

2.3 Balance de calor entre la placa absorbedora y la carcasa

23

2.4 Eficiencia del colector térmico solar de placa plana 24

Page 5: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Capitulo III Metodología experimental

3.1 Materiales para la construcción del colector 27 3.2 Metodología para el armado 28 3.3 Toma de datos experimentales 30

Capitulo IV Resultados

4.1 Perdidas de calor en el colector en un día soleado 35

Calor transferido de la placa a la cubierta de vidrio 36 Calor transferido de la placa al fluido de trabajo 41 Calor transferido de la placa a la carcasa 44 Calor transferido de la cubierta al ambiente 47

4.2 Perdidas de calor en el colector en un día nublado 50 Calor transferido de la placa a la cubierta de vidrio 51 Calor transferido de la placa al fluido de trabajo 52 Calor transferido de la placa a la carcasa 53 Calor transferido de la cubierta al ambiente 54

4.3 Eficiencia del colector 55 Conclusiones 57 Referencias bibliográficas 58 Fuentes electrónicas 58 Bibliografía 59

Page 6: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

I

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

LISTA DE FIGURAS.

Figura 1.1 Tipos de radiación solar Figura 1.2 Célula fotovoltaica y panel fotovoltaico Figura 1.3 Partes de un colector térmico solar de placa plana Figura 1.4 Cubierta de vidrio Figura 1.5 Placa absorbedora Figura 1.6 Aislantes térmicos Figura 1.7 Carcasa de un colector de placa plana Figura 1.8 Diagrama de colector solar por medio de una bomba Figura 1.9 Diagrama de colector solar por medio de termosifón Figura 1.10 Distancia entre el termotanque y el colector Figura 2.1 Diagrama de pérdidas de calor en el colector solar Figura 2.2 Distribución de termómetros en la placa absorbedora Figura 3.1 Colector solar de placa plana armado Figura 3.2 Termotanque experimental Figura 3.3 Sistema colector instalado en FES Zaragoza Campo II

LISTA DE GRÁFICAS

Gráfica 1.1 Porcentaje de energías renovables en el consumo energético Gráfica 4.1 Calor transferido de la placa absorbedora a la cubierta de vidrio Gráfica 4.2 Calor transferido entre la placa absorbedora y el agua Gráfica 4.3 Calor transferido hacia el aislante Gráfica 4.4 Calor transferido de la cubierta de vidrio hacia el ambiente Gráfica 4.5 Calores involucrados en el colector Gráfica 4.6 Calor transferido de la placa absorbedora a la cubierta de vidrio

en un día nublado Gráfica 4.7 Calor transferido de la placa absorbedora al agua en un día

nublado Gráfica 4.8 Calor transferido de la placa absorbedora al aislante en un día

nublado Gráfica 4.9 Calor transferido de la cubierta de vidrio hacia el ambiente en

un día nublado Gráfica 4.10 Calores involucrados en el colector en un día nublado

Page 7: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

II

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

LISTA DE TABLAS

Tabla 1.1 Empresas líder en la producción de células fotovoltaicas Tabla 4.1 Registros experimentales de temperaturas en un día soleado Tabla 4.2 Registros experimentales de temperaturas en un día nublado Tabla 4.3 Características físicas del colector y algunos de sus

componentes. Tabla 4.4 Resultados puntuales para el día en cuestión del calor

transferido entre la placa absorbedora y la cubierta de vidrio. Tabla 4.5 Resultados puntuales del calor transferido entre la placa

absorbedora y el agua que fluye por los tubos. Tabla 4.6 Resultados puntuales del calor transferido entre la placa

absorbedora y la carcasa mediante el aislante. Tabla 4.7 Resultados puntuales de los coeficientes de transferencia de

calor por radiación y convección del viento. Tabla 4.8 Resultados puntuales para un día nublado entre la placa y la

cubierta. Tabla 4.9 Resultados puntuales para un día nublado entre la placa y el

agua. Tabla 4.10 Resultados puntuales del calor transferido entre la placa y el

aislante en un día nublado. Tabla 4.11 Resultados puntuales para un día nublado entre la placa y el

ambiente. Tabla 4.12 Eficiencias en el colector

Page 8: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

III

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

RESUMEN

Una de las opciones más conocidas para la utilización de la energía solar es el

uso de calentadores solares en edificios y casas siendo los más comunes los

de placa plana, esto ha resultado de gran utilidad en el abastecimiento de

agua caliente, representando un ahorro considerable en el consumo de

energéticos a nivel doméstico, se encuentran en el mercado nacional varios

dispositivos de captación solar térmica, con eficiencias térmicas globales muy

aceptables, pero su costo fluctúa entre 15000 y 25000 pesos, que resulta

oneroso para la mayoría de los habitantes de este país.

Para lograr que todas las familias tengan acceso a un sistema de captación

solar es necesario que el precio sea accesible, por lo tanto es necesario contar

con un calentador solar de placa plana elaborado con materiales nativos de la

región para que disminuya el costo y aumente el acceso masivo a dichos

dispositivos, además deben ser competitivos en cuanto a eficiencia térmica en

comparación a los que actualmente se encuentran en el mercado, y eso es lo

que se pretende demostrar en este trabajo.

Page 9: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

IV

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

OBJETIVOS

1. Aplicar ecuaciones teóricas para el modelado matemático de un sistema de captación térmica solar, de placa plana.

2. Realizar el análisis térmico de un sistema de captación térmica solar de placa plana.

3. Determinar la eficiencia global de un sistema de captación térmica solar, de placa plana.

Page 10: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

V

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

NOMENCLATURA

�� Área del colector �� ��� Área del colector-aislante �� �� Área total de los tubos �� �� Área de los laterales �� � Ancho de la carcasa � �� Capacidad calorífica del agua �/��� ��� Capacidad calorífica del aire en el ambiente �/��� ��� Capacidad calorífica del aire interno �/��� � Diámetro interno del tubo � ���� Espesor del aislante � �� Espesor del vidrio � �� emisividad de la placa (carbón) �� emisividad del vidrio � Factor de eficiencia del colector � Aceleración de la gravedad 9.81 �/�� � Irradiancia solar �/�� �� Número de Grashof � Altura del colector � ���� coeficiente de transferencia de calor por convección de la placa al vidrio

�/���

�� Coeficiente de transferencia de calor en los tubos por conducción

�/���

���� coeficiente de transferencia de calor por radiación de la placa al vidrio

�/���

���� Coeficiente de transferencia de calor por radiación de la cubierta del vidrio al ambiente

�/���

�� Coeficiente convectivo del viento �/��� �� Conductividad térmica del agua �/�� ��� Conductividad térmica del aire interno �/�� ���� Conductividad térmica del aislante �/�� ���� Conductividad térmica del aire a temperatura ambiente �/�� �� Conductividad térmica del vidrio �/�� Longitud 0.25 para colectores horizontales � ! Longitud de los tubos � !� Largo de la carcasa �

Page 11: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

VI

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Número de tubos "# Número de Nusselt $ Perímetro del colector � $� Número de Prandtl %��� Calor total absorbido � %�&#� calor transferido al agua � %������� calor transferido a la carcasa � %�#��'�(� Calor transferido a la cubierta � %��� Calor por convección de la placa al vidrio � %��� Calor por radiación de la placa al vidrio � %) Calor en el fondo de la carcasa � %� Calor hacia los laterales � %#(�* Calor aprovechado en el colector � +� Número de Rayleigh +� ′ Número de Rayleigh considerando el ángulo de inclinación +' Número de Reynolds ,� Temperatura del agua � ,�' Temperatura del agua a la entrada del colector � ,�� Temperatura aire � ,��� Temperatura del aislante � ,��� Temperatura ambiente � ,�� Temperatura del agua a la salida del colector � ,� Temperatura de placa � ,� Temperatura de cielo � ,�' Temperatura de vidrio externa � ,�� Temperatura de vidrio interna � - Coeficiente global de transferencia de calor �/��� -) Coeficiente de transferencia de calor hacia el fondo �/��� -� Coeficiente de transferencia de calor hacia los laterales �/��� .� Flujo volumétrico de agua �//� 0 Absortancia 1�� Coeficiente de expansión volumétrica del aire en el ambiente �23 1�� Coeficiente de expansión volumétrica del aire interno �23 4� Densidad del agua ��/�/ 5� Viscosidad del agua ��/� �

Page 12: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

VII

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

5�� Viscosidad del aire en el ambiente ��/� � 5�� Viscosidad del aire interno ��/� � 7�� Viscosidad cinemática del aire en el ambiente 5 48 ��/� 7�� Viscosidad cinemática del aire interno 5 48 ��/� 4 Densidad del aire. 9 Constante de Stefan Boltzman 5.67x10-8 �/���: ; Ángulo de inclinacion <� Eficiencia del colector = Transmitancia

Page 13: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

VIII

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

INTRODUCCIÓN

Sin la presencia del sol, la vida en nuestro planeta desaparecería. Es nuestra

principal fuente energética. El sol es una esfera de materia gaseosa

inmensamente caliente, con 1.39 x 109 m de diámetro y una temperatura

efectiva de 5762 K [1] . La temperatura en la región central es mucho mayor y se

estima entre 8 x 106 y 40 x 106 K. La energía total a la salida del sol es de 3.8 x

1020 MW, esta energía se irradia hacia el exterior en todas direcciones pero

solo 1.7 x 1014 KW es interceptada por la tierra [1]. Sin embargo, incluso con

esta pequeña fracción se estima que 30 minutos de la radiación solar que cae

sobre la tierra equivale a la demanda de energía mundial durante un año. Es

importante señalar que la potencia de la radiación varía según el momento del

día; las condiciones atmosféricas que la amortiguan y la latitud. Se puede

asumir que en buenas condiciones de radiación el valor es de

aproximadamente 1000 W/m² en la superficie terrestre.

Desgraciadamente, durante los últimos 100 años hemos estado utilizando

como fuentes energéticas el petróleo, el carbón, etc., que además de estar por

agotarse, contaminan la atmósfera y la tierra con los residuos que dejan

(dióxido de carbono, óxidos nítricos, metales pesados, etc.) hasta el punto que

peligra el equilibrio ecológico de nuestro planeta.

Debido a esto, en la actualidad, se esta volviendo a pensar en el sol y otras

fuentes de energía limpias e ilimitadas para abastecernos de energía sin poner

en peligro nuestro planeta. Sin embargo a pesar de la investigación que se ha

hecho y de los conocimientos que se tienen sobre los medios de

aprovechamiento de la energía solar, su aplicación es aun insuficiente en

comparación al uso de las fuentes de energía tradicionales.

Page 14: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

CALENTADORES

SOLARES

Page 15: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

1

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

1.1 Colectores Solares

Un colector solar es un tipo especial de intercambiador térmico que transforma

radiación solar en energía térmica utilizable. El aprovechamiento mediante

colectores térmicos de la energía solar es la aplicación más inmediata de las

tecnologías solares. Se basa en la captación de energía mediante cuerpos

expuestos a radiación preferentemente de color oscuro con el fin de mejorar la

conversión.

Resulta importante definir la radiación solar y los diferentes tipos de radiación,

empezaremos diciendo que la radiación solar es el conjunto de radiaciones

electromagnéticas emitidas por el sol. Se distribuye desde la radiación infrarroja

hasta la ultravioleta.

Los tipos de radiación solar son función de las transformaciones que sufre la

radiación solar al incidir sobre la atmosfera terrestre.

Figura 1.1 Tipos de radiación solar

Page 16: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

2

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Radiación directa: Se recibe directamente del sol. Para medir la radiación

directa se utilizan los términos de irradiancia, rapidez de incidencia de energía

radiante sobre una superficie [W/m2], e irradiación, cantidad de energía

radiante por unidad de área [J/m2].

Radiación difusa: Se recibe del sol después de ser desviada por dispersión

atmosférica.

Radiación terrestre: Proviene del reflejo en objetos terrestres.

Radiación global: Es la suma de las radiaciones directa y difusa.

Radiación total: Es la suma de las radiaciones directa, difusa y terrestre.

El Sol emite energía entre 0,2 y 4,0 micrómetros de la cual aproximadamente un 9 % es radiación ultravioleta, un 50 % corresponde a luz visible y un 41 % a radiación infrarroja.

Después de establecer lo anterior, podemos decir que el flujo de energía radiante que finalmente intercepta el colector procede de la radiación global en el rango infrarrojo, visible y ultravioleta del espectro solar (abarcando las longitudes de onda entre 0.3 y 3 micrómetros) y es un flujo variable con el tiempo y la localización geográfica, por naturaleza.

Para fines energéticos la energía solar se aprovecha a través de dos vías mediante dos principios físicos diferentes.

� Vía fotovoltaica. Transforma directamente la energía solar en energía

eléctrica mediante células solares.

� Vía térmica. Absorben la energía solar y la transforma en calor.

Page 17: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

3

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Colectores solares fotovoltaicos

Un captador solar fotovoltaico es un conjunto de células solares fotovoltaicas

destinadas a producir electricidad a partir de energía solar.

Su funcionamiento se basa en el efecto fotovoltaico. Este efecto se produce

cuando sobre materiales semiconductores convenientemente tratados incide la

radiación solar produciéndose electricidad.

Figura 1.2 Célula fotovoltaica y panel fotovoltaico

Para que los sistemas fotovoltaicos provean de energía eléctrica durante las

noches, resulta necesario la utilización de baterías en las cuales se acumula la

energía eléctrica generada durante el día, este hecho encarece su aplicación.

Sin embargo se están desarrollando sistemas fotovoltaicos conectados

directamente a la red eléctrica.

En la actualidad España es uno de primeros países con mas potencia

fotovoltaica del mundo con una potencia acumulada instalada de 3.523 MW [2].

El uso de los colectores solares fotovoltaicos implica una demanda existente en

Célula

foltovoltaica

Panel solar fotovoltaico

Page 18: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

4

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

el mercado y por lo tanto son varias las empresas que compiten por cubrir

dicha demanda, Alemania es el segundo fabricante mundial de paneles

solares fotovoltaicos detrás de Japón, con cerca de 5 millones de metros

cuadrados de paneles solares, aunque solo representa el 0.03% de su

producción energética total.

Tabla 1.1 Empresas líder en la producción de células fotovoltaicas

Región Principales fabricantes

Europa RWE-Schott Solar (Alemania)

Isofoton (España)

Q-Cells (Alemania)

Deutsche Cell (Alemania)

Photowatt-France (Francia)

Ersol (Alemania)

Shell (Alemania/Holanda)

Astro Power (España)

Estados Unidos Shell Power

Astro Power

RWE Schott Solar

Japón Sharp

Kyocera

Sanyo

Kaneka

Mitsubishi Heavy Industries

Resto del mundo BP Solar (Australia)

Fuente: Solar generation. Solar electricity for over 1 billion people and 2 million jobs by 2020

(EPIA)

Page 19: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Energía fotovoltaica y su papel dentro de las energías renovables

De acuerdo a la REN 21 la producción de energía renovable se incrementó en

15.07% con respecto al primer trimestre de 2012. El

por la biomasa/biocombustibles, el 0.2

oceanomotriz, el 61.2 % para la eólica, 0.2% perteneciente a la CSP

Solar Concentrada), mientras que

18.2%.

Como es bien sabido la energía solar fotovoltaica forma parte de las energías

renovables o limpias, que día con día aumentan de popularidad dentro de las

opciones para producir energía sin dañar el equilibrio ecológico del planeta

El siguiente gráfico muestra el porcentaje de la contribución de los diferentes

tipos de energías renovables en el consumo energético nacional.

Gráfica 1.1 Porcentaje de energías renovables en el consumo energético

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

oltaica y su papel dentro de las energías renovables

De acuerdo a la REN 21 la producción de energía renovable se incrementó en

o al primer trimestre de 2012. El 19.8% esta representado

iomasa/biocombustibles, el 0.2% corresponde a la energía

oceanomotriz, el 61.2 % para la eólica, 0.2% perteneciente a la CSP

, mientras que para la energía solar fotovoltaica

Como es bien sabido la energía solar fotovoltaica forma parte de las energías

renovables o limpias, que día con día aumentan de popularidad dentro de las

opciones para producir energía sin dañar el equilibrio ecológico del planeta

El siguiente gráfico muestra el porcentaje de la contribución de los diferentes

tipos de energías renovables en el consumo energético nacional.

Gráfica 1.1 Porcentaje de energías renovables en el consumo energéticoPV: Fotovoltaica

CSP: Energía Solar Concentrada

5

Determinación de la eficiencia térmica global de un

oltaica y su papel dentro de las energías renovables

De acuerdo a la REN 21 la producción de energía renovable se incrementó en

% esta representado

onde a la energía

oceanomotriz, el 61.2 % para la eólica, 0.2% perteneciente a la CSP (Energía

otovoltaica es el

Como es bien sabido la energía solar fotovoltaica forma parte de las energías

renovables o limpias, que día con día aumentan de popularidad dentro de las

opciones para producir energía sin dañar el equilibrio ecológico del planeta.

El siguiente gráfico muestra el porcentaje de la contribución de los diferentes

tipos de energías renovables en el consumo energético nacional.

Gráfica 1.1 Porcentaje de energías renovables en el consumo energético

Page 20: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

6

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

1.2 Colectores térmicos solares

Un colector térmico solar es el dispositivo encargado de captar la radiación

solar y convertir su energía en energía calorífica.

Existen los siguientes tipos de colectores térmicos solares:

� Colectores de baja temperatura

� Colectores de temperatura media

� Colectores de alta temperatura

En este caso solo nos basaremos en los de baja temperatura también

conocidos como colectores térmicos solares de placa plana.

Colectores de baja temperatura o placa plana

Proveen calor útil a temperaturas menores de 80 °C mediante absorbedores

metálicos o no metálicos para todas aquellas actividades en las que el calor

requerido no es mayor a 60 °C, por ejemplo el calentamiento de agua para

usos domésticos.

En el interior de estos colectores se lleva a cabo un efecto invernadero, logrado

por una cubierta generalmente de vidrio debido a que una parte de la radiación

que atraviesa la cubierta y llega a la placa absorbedora es reflejada hacia la

cubierta transparente, con una longitud de onda superior a 3 micrómetros para

la cual ésta es opaca, consiguiendo así retener la radiación en el interior.

El siguiente esquema muestra los principales componentes de un colector

térmico solar de placa plana.

Page 21: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

7

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

1 Cubierta

transparente

2 Placa

absorbedora

3 Tubos

4 Aislante

5 Carcasa

Figura 1.3 Partes de un colector térmico solar de placa plana

Cubierta transparente

Es la encargada de producir el efecto invernadero, permite la entrada de

radiación solar hasta la placa absorbedora y minimiza las pérdidas de calor por

radiación y convección hacia el medio ambiente por la parte superior del

colector.

Figura 1.4 Cubierta de vidrio

1

2

4

5

3

Page 22: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

8

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Placa absorbedora

Es la encargada de convertir la energía radiante captada en calor y de transferir

dicho calor por conducción hacia el fluido de trabajo. Todo esto de la forma

más eficiente posible. La cara de la placa absorbedora que se expone al sol

debe de estar cubierta de una pintura de color negro para mejorar la captación.

Figura 1.5 Placa absorbedora

Material aislante

Se encarga de disminuir las pérdidas de calor por radiación y convección hacia

el exterior por la parte posterior y por los laterales del colector. Los aislantes

térmicos más utilizados en los colectores solares de placa plana son: Fibra de

vidrio, espuma rígida de poliuretano y poliestireno expandido.

Page 23: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

9

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Figura 1.6 Aislantes térmicos (fibra de vidrio a la izq. y poliestireno expandido a la derecha)

Carcasa

Protege y soporta los elementos que constituyen el colector solar, debe ser

rígida y estructuralmente resistente para que asegure la estabilidad del

colector, lo más resistente posible a la intemperie, es decir a efectos corrosivos

de la atmosfera y a la inestabilidad química debido a las inclemencias del

tiempo. Además se debe evitar toda geometría que permita la acumulación de

agua, hielo o algún otro tipo de residuo inconveniente en el exterior del

colector.

Figura 1.7 Carcasa de un colector de placa plana

Page 24: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

10

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Mecanismos de circulación

Se refiere al mecanismo mediante el cual se lleva a cabo el movimiento del

fluido que se encuentra dentro de los tubos en el colector, se conocen dos tipos

de mecanismos: por circulación forzada y la circulación natural también

conocida como termosifón.

Circulación forzada

Se dota a la instalación con bombas de circulación para provocar el movimiento

del fluido de trabajo (generalmente agua o aire).

Figura 1.8 Diagrama de colector solar por medio de una bomba.

Page 25: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

11

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Circulación natural o Termosifón

El fluido de trabajo circula de manera natural por la diferencia de densidades

del fluido, como consecuencia de variaciones en la temperatura.

El agua al calentarse sufre un desplazamiento vertical basado en la

disminución de su densidad con el aumento de la temperatura, esto provoca

que el agua contenida en un deposito (termotanque) se encuentre estratificada,

ocupando las posiciones más altas, las de mayor energía o temperatura.

La idea fundamental consiste en tomar el agua contenida en la parte inferior el

deposito (que se encuentra a una temperatura menor que la de la parte

superior en un intervalo de temperatura entre 10 y 25°C), hacerla circular a

través del colector térmico solar para elevar su temperatura y devolverla

nuevamente a la parte superior del deposito para que mediante este proceso el

agua se caliente y se almacene en el termotanque para poder disponer de ella

en los periodos de baja o nula radiación.

Figura 1.9 Diagrama de colector solar por medio de termosifón.

Page 26: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

12

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

La circulación por termosifón implica el riesgo de una circulación inversa, es

decir que el fluido se enfríe en los colectores, volviéndose más denso y

retrocediendo hacia el depósito.

Para evitar la circulación inversa, se recomienda que entre la parte superior del

colector y la parte inferior del termotanque exista un desnivel mínimo de

aproximadamente 30 cm [5], en cualquier latitud y altitud.

Figura 1.10 Distancia entre el termotanque y el colector

Page 27: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

13

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

1.3 Normas aplicables

En la mayoría de los países existen leyes, normativas y recomendaciones que

afectan a múltiples aspectos relacionados con el diseño, construcción,

funcionamiento y mantenimiento de los colectores térmico solares.

Debido a esto algunos de los documentos normativos sobre los requisitos

generales y los métodos de ensayo aplicable a los colectores térmicos se listan

a continuación, a modo de ejemplo:

México

En México el sistema de normalización para el aprovechamiento de la energía

solar funciona a partir de la Ley Federal de Metrología y Normalización. Se

conoce como el NESO-13 y fue creado por el Organismo Nacional de

Normalizacion (NORMEX).

El NESO-13 esta formado por las siguientes normas:

NMX-ES-001-NORMEX 2005. Rendimiento Térmico y Funcionalidad de

Colectores Solares para Calentamiento de Agua. Métodos de Prueba y

Etiquetado.

NMX-ES-002_NORMEX 2007. Definiciones y terminología.

NMX-ES-003_NORMEX 2007. Requerimientos mínimos para la instalación de

sistemas solares térmicos para calentamiento de agua.

NMX-ES-004_NORMEX 2007. Evaluación térmica de sistemas solares para

calentamiento de agua.

Page 28: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

14

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Estados Unidos

ASHRAE 93, 2003 . Métodos de ensayo para determinar el rendimiento térmico

de colectores solares.

Europa

Para el caso de Europa las normas aplicables son las siguientes:

UNE-EN 12975-1:2001 Sistemas térmicos solares y sus componentes.

Captadores solares. Parte 1: Requisitos generales (Asociación española de

normalización y certificación).

UNE-EN 12975-2:2001 Sistemas térmicos solares y sus componentes.

Captadores solares. Parte 2: Métodos de ensayo (Asociación española de

normalización y certificación).

UNE-EN 12976-1:2006 Sistemas térmicos Solares y sus componentes.

ISO 9488 Energía solar, vocabulario.

ISO 9806-1 1994. Método de ensayo para colectores solares. Parte 1:

Comportamiento térmico para calentamiento de líquidos.

Page 29: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

MODELADO

MATEMÁTICO

Page 30: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

15

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

En este capítulo se muestran las ecuaciones para determinar el calor que se

pierde hacia las diferentes partes del colector (tubos, cubierta, vidrio, los

extremos y el fondo de la carcasa) partiendo de la placa absordedora.

La transferencia de calor sucede por conducción, convección y radiación. Por

ello debemos saber en qué consiste cada uno de los mecanismos.

Transferencia de calor por conducción:

La conducción térmica consiste básicamente en la transferencia de calor por

medio de colisiones de los átomos que forman la materia. Es decir debido al

contacto entre dos superficies a diferentes temperaturas.

Transferencia de calor por convección:

La convección es la transferencia de energía por el movimiento de un fluido

generalmente aire. Los datos de transferencia de calor por convección son

correlacionados normalmente en términos de tres parámetros a dimensionales:

el número de Reynolds Re , el número de Nusselt Nu y el número de Prandtl Pr.

Transferencia de calor por radiación:

Radiación es el mecanismo de transporte de energía mediante radiación

electromagnética, por lo tanto no requiere de un medio para su propagación.

Ahora que sabemos en qué consiste cada mecanismo de transferencia de

calor, señalaremos en donde ocurre cada uno, la conducción se da

principalmente entre la placa, el aislante y los tubos por donde circula el fluido

de trabajo en este caso el agua. La convección y la radiación están presentes

en el flujo de calor entre la placa y la cubierta de vidrio.

Page 31: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

16

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Figura 2.1 Diagrama de pérdidas de calor en el colector solar

Consideraciones para el modelado matemático:

1. Sistema en estado estacionario

2. El flujo es laminar

3. El mecanismo de circulación es mediante termosifón.

Para fines del balance de calor diremos que el calor absorbido por la placa es

igual al calor que cede hacia los tubos, los extremos y el fondo de la caja, y

hacia la cubierta de vidrio (figura 2.1), quedando la ecuación como:

Q?@A B QCD@EFGH? I Q?JD? I QC?GC?A? 2.1

Page 32: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

17

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Para la temperatura de la placa (,�K se tomara un promedio para el cálculo

debido a que en el colector solar con el que se cuenta para realizar el balance

de calor hay instalados tres termómetros, uno en cada extremo y uno en el

centro de la placa.

Para la temperatura del agua ,� también usaremos un promedio entre la

temperatura de entrada y la de salida ( ,�' L ,�� respectivamente).

Figura 2.2 Distribución de termómetros en la placa absorbedora

De acuerdo al esquema anterior:

,� B ,�3 I ,�� I ,�/3 2.2

,� B ,�' I ,��2 2.3

Page 33: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

18

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

2.1 Balance de calor entre la placa absorbedora y la cubierta de vidrio

El calor es transferido de la placa absorbedora hacia la cubierta de vidrio mediante los mecanismos de convección y radiación, por ello se ven implicados los coeficientes de transferencia de calor tanto el convectivo como el de radiación pues no existe un contacto directo entre la placa y el vidrio, sin embargo mediante las capas de aire se transfiere calor, por lo tanto el calor transferido por radiación %��� puede calcularse como:

%��� B ���� O,� P ,��Q�� 2.4

Para el coeficiente de transferencia de calor por radiación entre la placa y el vidrio ���� , usaremos la temperatura de la placa ,� y la temperatura interna del

vidrio ,�� además de la constante de Stefan Boltzman y las emisividades de la placa �� (carbón) y el vidrio �� , cuyos valores se tomarán de la tabla 4.3.

���� B 9O,�� I ,���QO,� I ,��QS 1�� I 1�� P 1U 2.5

Calor perdido por convección %���:

%��� B ���� O,� P ,��Q�� 2.6

Para determinar el coeficiente convectivo ���� se debe conocer el valor del

Número de Nusselt "#, la conductividad térmica del aire ��� y una longitud

característica de 0.25 m para colectores solares horizontales [5].

Page 34: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

19

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

���� B "#��� 2.7

El número de Nusselt es función del número de Rayleigh y este a su vez del

número de Prandtl y del número de Grashof. Por lo tanto las ecuaciones que

utilizaremos son las siguientes:

�� B �1��O,� P ,��Q /7���

2.8

$� B ���5����� 2.9

Para el cálculo de los números adimensionales las propiedades del aire deben

ser tomadas en función a su temperatura, con las ecuaciones de P.T.

Tsilingiris[3].

Coeficiente de expansión volumétrica 1�� : 1�� B 1,��

2.10

Capacidad calorífica del aire ��� : ��� B 1.03409 P 0.284887\102/ ,�� I 0.7816818\102^,���

P 0.4970786\102_,��/ I 0.1077024\1023�,��:

2.11

Page 35: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

20

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Viscosidad 5��: 5�� B `P0.98601 I 9.080125\102�,�� P 1.17635575\102:,���

I 1.2349703\102b,��/ P 5.7971299\10233,��:c\102^

2.12

Conductividad térmica ���: ��� B P2.276501\102/ I 1.2598485\102:,�� P 1.4815235\102b,���

I 1.73550646\1023d,��/ P 1.066657\1023/,��:I 2.27663035\1023b,��e

2.13

Después de calcular el número de Grashof �� y el de Prandtl $� se obtiene el

número de Rayleigh +�:

+� B ��$� 2.14

Cuando el valor del número de Rayleigh Ra es mayor a 1000 existe convección,

y si 107 < Ra < 1011. Entonces:

"# B 0.15+�3 /8 2.15

Para determinar el calor cedido de la placa a la cubierta de vidrio %�#��'�(� se

suman el calor cedido por radiación %��� y el calor cedido por convección %���:

%�#��'�(� B %��� I %��� 2.16

Page 36: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

21

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

2.2 Balance de calor entre la placa absorbedora y el fluido de trabajo

La transferencia de calor en está parte del colector sucede básicamente por conducción debido al contacto de la placa absorbedora con los tubos y estos a su vez con el agua que fluye por la parte interna. Por lo tanto el calor cedido al agua %�&#� se calculará con los valores de temperatura obtenidos previamente

con las ecuaciones 2.2 y 2.3.

%�&#� B �f �f g,� P ,�K 2.17

Para poder conocer el valor del área total de los tubos ��, utilizaremos la

siguiente ecuación, donde es el número total de tubos, � el diámetro interno

del tubo y ! el largo de los tubos.

�� B h�! 2.18

De igual manera que en el caso anterior el coeficiente de transferencia de calor �� depende directamente del número de Nusselt, pero en está ocasión el valor

de la longitud característica se sustituye por el valor del diámetro interno �:

�� B "#�� � 2.19

Para el número de Nusselt se empleará la siguiente correlación:

"# B 0.0015 +'d.be$�3 /8 2.20

Page 37: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

22

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Como se puede observar es necesario recurrir nuevamente al número de Prandtl, y al de Reynolds, calculando las propiedades físicas del agua como función de la temperatura de acuerdo a:

$� B ��5���

2.21

+' B 44� .�h�5� 2.22

Las propiedades del agua se calculan a la Temperatura del agua ,� obtenida anteriormente (ecuación 2.3) de acuerdo a P.M.E. Koffi, et al(4).

Densidad:

4� B 1001 P 0.08832,� P 0.003417,�� 2.23

Capacidad Calorífica:

�� B 4226 P 3.244,� I 0.0575,�� P 0.0002656,�/ 2.24

Conductividad térmica:

�� B 0.557 I 0.002198,� P 7.08\102^,�� 2.25

Viscosidad:

5� B 0.001 P 1\102e,� 2.26

Page 38: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

23

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

2.3 Balance de calor entre la placa absorbedora y la carcasa

El calor se transfiere por conducción hacia los lados de la carcasa y hacia el fondo utilizando como medio el aislante térmico que utiliza el colector.

Dividiremos el cálculo en dos partes, el calor cedido hacia el fondo de la caja del colector y el transferido hacia las paredes.

De tal manera que para el fondo del colector utilizaremos:

%) B -)���g,� P ,���K 2.27

-) B �������� 2.28

Donde: %): Calor cedido hacia el fondo de la carcasa -): Coeficiente de transferencia de calor hacia el fondo ���: Área del colector-aislante ,�: Temperatura de placa ,���: Temperatura del aislante ����: Conductividad térmica del aislante ����: Espesor del aislante

Para las pérdidas hacia las paredes tenemos que:

%� B -� ��g,� P ,���K 2.29

Donde -� es el coeficiente de transferencia de calor hacia los laterales (paredes) y se calcula de la siguiente manera:

Page 39: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

24

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

-� B ���� ��������� 2.30

Las distintas áreas a utilizar se obtienen de la siguiente manera, para �� que representa el área del aislante incluyendo los laterales se multiplica la altura del colector � por el perímetro $ del mismo.

�� B �$ 2.31

��� es el área del colector y el aislante y se obtiene multiplicando el largo del colector !� por el ancho �.

��� B !� i � 2.32

Por lo tanto el calor total hacia la carcasa es la suma del calor hacia el fondo y el calor hacia las paredes:

%������� B %) I %� 2.33

2.4 Eficiencia del colector térmico solar de placa plana

De la radiación total que incide sobre el colector, solo una fracción es aprovechada por el agua, ya que existen pérdidas hacia los alrededores por conducción, convección y radiación, otra se pierde por las características propias de reflexión de la cubierta y la placa de absorción cuyo valor para ambas lo representaremos como =0 y se asumirá de 0.9 [5] que es el producto de la transmitancia-absortancia del conjunto cubierta placa de absorción, y el resto puede ser almacenada en el colector mismo pero se toma como despreciable.

Page 40: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

25

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Se establece la eficiencia <� como, la relación entre el calor útil %#(�* en períodos de tiempo específicos sobre la energía solar incidente � en un área determinada �� en el mismo período.

<� B %#(�*��� 2.34

La eficiencia � se puede establecer de una manera más precisa tomando en cuenta el factor de transmitacia-absortancia =0, el factor de eficiencia del colector � y un coeficiente global de pérdidas de calor -:

� B � j=0 P - ,� P ,���� k 2.35

Para conocer el valor del coeficiente global de transferencia de calor - recurrimos a los coeficientes de transferencia de calor calculados anteriormente ���� y ���� además de agregar el coeficiente de pérdidas de calor por radiación

de la cubierta a la atmosfera ���� y el coeficiente convectivo del viento ��:

- B g���� I ����K23 I g���� I ��K23 I ���� 2.36

Para ���� y �� las ecuaciones son las siguientes utilizando la temperatura del vidrio externa ,�' y la temperatura de cielo ,�:

���� B 9��O,�'� I ,��Q i g,�' I ,�K 2.37

Page 41: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

26

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Donde:

,� B 0.0552 g,���K3.e 2.38

�� B "#���� 2.39

Para los números adimensionales de Prandlt, Rayleigh y Grashof, se calculan igual que en la sección anterior solo que esta vez con las temperaturas del vidrio externo ,�' y las del ambiente ,���.

�� B �1��g,�' P ,���K /7���

2.40

$� B ���5������

2.41

+� B ��$�

2.42

"# B 0.15+�3 /8 2.43

Page 42: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

METODOLOGÍA EXPERIMENTAL

Page 43: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

27

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

En este capítulo se describen las actividades realizadas de manera práctica para obtener la información experimental.

El colector se encuentra instalado en la parte trasera de la planta piloto de la carrera de ingeniería química en la Facultad de Estudios Superiores Zaragoza perteneciente a la Universidad Nacional Autónoma de México.

Dicho colector cuenta con once termómetros distribuidos estratégicamente a lo largo del colector con la finalidad de tener una mayor apreciación de las temperaturas en la placa absorbedora, a la entrada y salida del agua así como en el termotanque.

3.1 Materiales para la construcción del colector

El equipo que se utilizó tanto para la construcción del colector como para el registro de datos se enlista a continuación:

o Tubos de cobre o Accesorios de cobre o Manguera o Tanque de almacenamiento de 30 Litros o Lamina galvanizada o Soldadura o Remachadora neumática o Remaches o Taladro y brocas o Fibra de vidrio o Termómetros de vidrio o Termómetros metálicos o Anemómetro o Flexometro o Probeta de 100 ml o Cronómetro o Bitácora

Page 44: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

28

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

3.2 Metodología para el armado

Construcción de la placa absorbedora

Se cortaron 20 tubos metálicos de 30 cm de largo con un diámetro de media pulgada, para posteriormente soldarlos cuidando la inexistencia de fugas, de tal manera que el agua pueda fluir por el interior de los tubos.

Después de contar con la estructura de tubos lo siguiente fue pintarla con biomasa vegetal devolatilizada, dejándola secar perfectamente.

Construcción de la caja y armado del colector

Con la lámina galvanizada se formo una caja en la que se coloco fibra de vidrio en el fondo y los laterales para que soporte la placa absorbedora y evitar excesivas perdidas de calor.

Se instalaron los termómetros de tal manera que quedaran fijos a la placa para registrar las temperaturas, y se sello con el vidrio y silicón.

Figura 3.1 Colector solar de placa plana armado

Page 45: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

29

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Termotanque

El tanque en el que se almacenará el agua calentada tiene una capacidad de 30 L y se encuentra aislado con fibra de vidrio cubierto con un envolvente de lámina galvanizada, y dos conexiones, una para la entrada del agua caliente proveniente del colector y la otra para la salida del agua fría que se encuentra en el tanque y que circula mediante el efecto termosifón por diferencia en las densidades del agua. Para la construcción del envolvente se utilizó lámina galvanizada fijada con remaches.

Figura 3.2 Termotanque experimental

Lo siguiente fue instalar el colector y el termotanque en un lugar óptimo para la captación de la radiación solar, para ello la base que soporta el colector debe tener una inclinación de 20° y la distancia entre el termotanque y el colector es de 30 cm para que se lleve acabo el efecto termosifón.

Otro aspecto que se cuidó a la hora de la instalación fue que las mangueras se encontraran de un tamaño tal que no quedarán “colgando” dificultando el flujo del agua.

Page 46: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

30

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Figura 3.3 Sistema colector instalado en FES Zaragoza Campo II

Una vez que se armo todo el sistema, se procedió a tomar datos experimentales, con el fin de recolectar información en diferentes días y así realizar cálculos posteriores.

3.3 Toma de datos experimentales

Registro de temperaturas

Los registros se tomaron en un lapso de tiempo comprendido entre los meses de febrero y junio en diferentes intervalos (desde 5, 10, 15 y 30 minutos entre cada lectura) anotando las temperaturas en una bitácora con el siguiente formato.

Día: Inicio: Fin: t

(min) T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Tamb

Page 47: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

31

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Donde:

T1 = Temperatura del agua a la entrada T2 = Temperatura de placa izq T3 = Temperatura de aire interno T4= Temperatura del aislante T5 = Temperatura de placa centro T6 = Temperatura externa del vidrio T7 = Temperatura interna del vidrio

T8 = Temperatura de placa derecha T9 = Temperatura del agua a la salida T10 = Temperatura superior del termotanque T11 = Temperatura inferior del termotanque Tamb = Temperatura ambiente

El colector cuenta con 9 termómetros de vidrio (T1 a T9) tres están situados en la placa absorbedora (T2, T5, T8), dos en la cubierta de vidrio uno para la parte interna T7 y uno para la externa T6, uno en nuestro aislante (fibra de vidrio) T4, uno en la capa de aire existente entre la placa absorbedora y la cubierta de vidrio T3, y dos en la entrada y salida del agua T1 y T9 respectivamente.

En el caso del termotanque los termómetros utilizados fueron metálicos con rosca para corregir y evitar futuras fugas.

Lectura de temperatura ambiente

Con ayuda del anemómetro se tomaba el registro de la temperatura ambiente pues con ella se realizara el cálculo de la temperatura de cielo al momento de calcular el coeficiente de intercambio de calor entre la cubierta y el ambiente.

Determinación del flujo volumétrico

El flujo volumétrico es una variable muy importante en nuestro sistema y varia con la temperatura, como el fluido se mueve por termosifón (es decir, por el cambio en la densidad del agua por efecto de la temperatura) en cada lectura lo conveniente seria medir también el flujo, sin embargo al no contar con el equipo necesario para hacerlo en cada registro lo que se procedió a hacer es que al alcanzar las temperaturas más altas en la placa y el termotanque, se desconectaba la manguera que conecta la salida del agua del colector y la entrada al termotanque, con ayuda de la probeta y el cronómetro se media el tiempo que tardaba en llenarse 100 ml y de esta forma conocer el flujo

Page 48: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

32

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

volumétrico con el que se trabajara posteriormente y que se tomara como un valor constante.

Con el flexómetro se midió la altura entre la salida del colector y la entrada al termotanque (figura 1.10) para que el efecto termosifón se lleve a cabo.

Después de recaudar todos los datos necesarios se procedió a realizar los cálculos que se muestran en el siguiente capítulo.

Page 49: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

RESULTADOS

Page 50: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

33

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

En este capítulo se muestran los resultados obtenidos con las ecuaciones descritas en el capitulo II y con los registros de temperatura tomados durante un determinado periodo de tiempo, de 9:30am a 6:00pm para el día soleado y de 10:30am a 5:30pm para el día nublado, presentando solo los cálculos para los días en los que se registraron las temperaturas mas altas y las mas bajas alcanzadas, así como los valores obtenidos al aplicar las ecuaciones.

Tabla 4.1 Registros experimentales de temperaturas en un día soleado.

Día 29-febrero-12 Inicio: 9:30 am Fin: 6:00 pm

t (min)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Tamb

0 12 24 20 12 16 11 29 25 30 30.0 19.0 20.0 15 19 31 24 14 26 26 36 26 30 30.0 19.0 25.1 30 21 45 38 26 38 33 42 38 30 30.0 20.0 25.1 45 25 54 47 27 46 32 44 44 38 35.0 29.0 25.7 60 29 58 49 28 52 38 39 52 39 36.0 31.0 30.4 75 30 61 58 30 57 42 43 60 39 39.0 33.0 30.4 90 31 66 55 31 60 45 45 62 40 40.0 34.0 32.8

105 32 69 59 32 63 47 48 66 41 41.0 36.0 32.8 120 33 73 61 33 67 48 50 70 42 42.0 37.0 33.3 150 36 78 65 36 72 52 54 75 44 42.5 40.0 30.0 180 40 85 71 38 78 55 58 82 48 46.0 38.0 32.0 210 42 86 72 39 86 56 59 83 50 49.0 38.5 33.0 240 45 90 76 42 83 59 62 87 51 50.0 44.5 37.9 270 48 91 78 41 84 59 64 90 52 51.0 46.0 36.1 300 50 93 79 40 85 59 64 92 56 55.0 47.0 32.8 330 53 95 81 43 87 62 66 94 58 56.0 46.5 34.2 360 54 94 80 43 86 62 65 95 58 56.0 47.0 34.0 390 57 91 77 42 84 60 64 91 59 57.0 48.0 35.0 420 56 79 70 41 76 52 57 84 58 57.0 48.0 33.8 450 52 75 62 38 61 48 50 69 58 57.0 47.0 31.6 480 47 63 55 34 59 42 46 64 55 56.0 46.0 28.0 510 42 49 42 29 49 33 31 56 55 55.0 43.0 27.5

T1 = Temperatura de entrada del agua al colector, T2 = Temperatura de placa izq, T3 = Temperatura de aire interno, T4= Temperatura del aislante, T5 = Temperatura de placa centro, T6 = Temperatura externa del vidrio, T7 = Temperatura interna del vidrio, T8 = Temperatura de placa derecha, T9 = Temperatura de salida del agua del colector, T10 = Temperatura superior del termotanque, T11 = Temperatura inferior del termotanque, Tamb = Temperatura ambiente.

Page 51: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

34

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Con el fin de comparar las eficiencias también se presenta el registro de un día nublado en el que las temperaturas que se alcanzaron en el termotanque no rebasan los 40 °C mientras que para el día soleado se registro de 57°C.

Tabla 4.2 Registros experimentales de temperaturas en un día nublado.

Día 29-marzo-12 Inicio: 10:30 am Fin: 5:30 pm

t (min)

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 Tamb

0 28 56 49 27 54 42 41 57 29 31 23 25.0 15 28 58 50 28 55 43 43 59 29 34 26 26.0 30 28 62 52 28 59 44 45 63 29 36 30 26.2 45 29 65 55 30 61 46 47 65 30 37 31 26.5 60 30 66 57 33 64 48 49 68 32 39 32 26.6 90 32 67 54 31 60 44 46 66 40 40 32 26.6

120 33 50 42 26 47 35 36 52 41 36 28 27.9 150 30 43 39 25 42 32 34 45 40 35 26 27.3 180 32 41 35 25 39 30 32 42 41 35 26 25.6 210 35 63 56 32 60 44 47 64 45 37 27 26.6 240 35 55 46 30 52 38 40 56 45 37 28 25.5 270 31 40 30 27 34 25 28 35 36 36 25 23.2 360 22 36 32 28 35 24 27 40 32 35 21 22.5 390 25 38 36 27 38 22 25 43 33 35 22 26.0 420 30 51 44 36 49 32 34 51 36 35 24 27.0

T1 = Temperatura de entrada del agua al colector, T2 = Temperatura de placa izq, T3 = Temperatura de aire interno, T4= Temperatura del aislante, T5 = Temperatura de placa centro, T6 = Temperatura externa del vidrio, T7 = Temperatura interna del vidrio, T8 = Temperatura de placa derecha, T9 = Temperatura de salida del agua del colector, T10 = Temperatura superior del termotanque, T11 = Temperatura inferior del termotanque, Tamb = Temperatura ambiente.

El sistema a analizar consta de una placa absorbedora de 20 tubos metálicos de media pulgada de diámetro, pintada con biomasa vegetal devolatilizada de 0.308 m2 de área de captación, utilizando como aislante fibra de vidrio y un tanque de almacenamiento de 30 L de capacidad. A continuación se presentan las características del colector de interés de manera más detallada para poder determinar su eficiencia así como los valores de las constantes a utilizar.

Page 52: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

35

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Tabla 4.3 características físicas del colector y algunos de sus componentes. Aceleración de la gravedad

9.81 �/�� Espesor del aislante

0.07 �

Altura aislante 0.1 � Espesor del vidrio

0.003 �

Ancho carcasa 0.45 � Factor de eficiencia

0.9

Área del colector

0.308 �� Flujo volumétrico

2.95x10-

5 �//�

Capacidad del termotanque

30 Irradiancia 800 �/��

Conductividad térmica de la fibra de vidrio

0.05 �/�� Longitud característica

0.25 �

Conductividad térmica del vidrio

0.8 �/�� Largo carcasa 1.08 �

Cte. Stefan Boltzman

5.67x10-8 �/���: Longitud de los tubos

0.3 �

Diámetro de los tubos

0.0127 � Número de tubos

20

Densidad del aire

1.1993 ��/�/ Perímetro 3.06 �

Emisividad de la placa

0.75 Transmitancia- absortancia

0.92

Emisividad del vidrio

0.95

4.1 Pérdidas de calor en el colector en un día soleado.

Tomaremos el registro más alto de temperaturas para sustituir en cada una de las ecuaciones y al final de cada parte se muestra la tabla con los resultados de todo ese día en base a las tablas 2.1 y 2.2.

La Temperatura de la placa a utilizar será el promedio de los tres termómetros colocados en el colector con la ecuación 2.2:

Page 53: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

36

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

,� B 364 I 357 I 3643 B 361.66 �

De la misma manera para la temperatura del agua el dato a utilizar será el promedio entre la entrada y la salida en el colector aplicando la ecuación 2.3:

,� B 330 I 3322 B 331 �

Las temperaturas restantes se tomarán directamente de las tablas de registro 2.1 y 2.2 únicamente haciendo la conversión a Kelvin al menos que se indique que se necesitan en grados Celsius.

Calor transferido de la placa a la cubierta de vidrio.

Para el coeficiente de pérdidas de calor por radicación la ecuación queda de la siguiente forma después de sustituir en 2.5:

���� B 5.67\102l ����: g361.66 �� I 337 ��Kg361.66� I 337�Km 10.75 I 10.95 P 1n B 6.98 ����

Usando la ec. 2.4, el calor transferido por radiación es:

%��� B 6.98 ���� g361.66 � P 337 �K0.308 �� B 53.06 �

Page 54: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

37

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Las propiedades físicas del aire en el interior del sistema son calculadas en

función de la temperatura y los valores son los siguientes:

Coeficiente de expansión volumétrica (ec. 2.10).

1�� B 1350 � B 0.0028 �23

Capacidad calorífica (ec. 2.11).

��� B 1.03409 P 0.284887\102/ i 350 I 0.7816818\102^ i 350�P 0.4970786\102_ i 350/ I 0.1077024\1023� i 350:B 1010.43 ��� �

Viscosidad (ec. 2.12).

5�� B oP0.98601 I 9.080125\102� i 350 P 1.17635575\102: i 350� I 1.2349703\10P7i3503P 5.7971299\10P11i3504\10P6B2.08\10P5 ��� �

Conductividad térmica (ec. 2.13).

Page 55: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

38

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Viscosidad cinemática:

7 B 54 B 2.08\102e ��� � 1.1993 ���/

B 1.73\102e ���

Ahora que conocemos los valores de las propiedades podemos sustituir en la

ecuación del número de Grashof (ec. 2.8):

�� B 9.81 ��� i 0.0028 1� g361.66 � P 337 �Kg0.25� K/j1.73\102e ��� k� B 3.59\10b

Para el número de Prandlt (ec. 2.9):

$� B 1010.43 ��� � i 2.08\102e ��� � 0.029 �� � B 0.70

Después calculamos el número de Rayleigh (ec. 2.14):

+� B 3.59\10b i 0.70 B 2.55\10b

El coeficiente de transferencia de calor por convección de la placa a la cubierta

de vidrio es función del número de Nusselt (ec. 2.15), por lo tanto:

Page 56: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

39

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

"# B 0.15 i g2.55\10bK3 /8 B 44.12

Aplicando la ecuación 2.7:

���� B 44.12 i 0.029 �� � 0.25 � B 5.23 ��� �

El calor transferido por convección de la placa a la cubierta es (ec. 2.6):

%��� B 5.23 ��� � i g361.66 � P 337 �K i 0.308 �� B 39.74 �

Para el calor total transferido hacia la cubierta (ec. 2.16) se suman tanto el calor transferido mediante radiación como el calor transferido por convección, obteniendo:

%�#��'�(� B 53.06 � I 39.74 � B 92.81 �

Tabla 4.4 Resultados puntuales del calor transferido entre la placa absorbedora y la cubierta de vidrio en función de la temperatura. ,� ���� %��� $� �� +� "# ���� %��� %�#��'�(�

321.00 5.31 6.54 0.71 7.27E+06 5.19E+06 25.96 2.86 3.52 10.07 327.00 5.34 24.67 0.71 2.69E+07 1.91E+07 40.12 4.44 20.51 45.18 332.33 5.58 28.06 0.71 2.73E+07 1.94E+07 40.32 4.56 22.96 51.02

Page 57: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

40

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

335.67 5.72 31.11 0.71 3.02E+07 2.15E+07 41.71 4.69 25.50 56.61 339.00 5.89 32.63 0.71 2.99E+07 2.12E+07 41.54 4.71 26.14 58.77 343.00 6.05 37.26 0.71 3.27E+07 2.32E+07 42.81 4.88 30.08 67.33 348.00 6.30 40.73 0.71 3.33E+07 2.37E+07 43.07 4.96 32.09 72.82 354.67 6.60 48.12 0.71 3.59E+07 2.55E+07 44.16 5.16 37.62 85.75 358.00 6.73 53.89 0.71 3.92E+07 2.78E+07 45.45 5.33 42.65 96.53 359.67 6.87 52.16 0.71 3.61E+07 2.56E+07 44.23 5.23 39.75 91.91 361.33 6.97 52.27 0.71 3.51E+07 2.49E+07 43.82 5.21 39.03 91.30 363.00 7.03 56.26 0.71 3.73E+07 2.64E+07 44.69 5.32 42.63 98.89 365.00 7.15 57.23 0.71 3.68E+07 2.61E+07 44.48 5.32 42.62 99.86 364.67 7.11 58.37 0.71 3.80E+07 2.69E+07 44.96 5.37 44.09 102.46 361.67 6.98 53.07 0.71 3.59E+07 2.55E+07 44.12 5.23 39.74 92.81 352.67 6.51 45.48 0.71 3.47E+07 2.46E+07 43.64 5.09 35.52 81.00 341.33 6.00 33.89 0.71 2.97E+07 2.11E+07 41.48 4.74 26.78 60.67 335.00 5.73 28.21 0.71 2.74E+07 1.95E+07 40.35 4.53 22.35 50.56 324.33 5.08 31.81 0.71 3.85E+07 2.74E+07 45.25 4.92 30.78 62.60

En la siguiente gráfica se aprecian las variaciones de calor cedido por la placa absorbedora a la cubierta de vidrio a lo largo del día.

Gráfica 4.1 Calor transferido de la placa absorbedora a la cubierta de vidrio

Page 58: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

41

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Calor transferido de la placa al fluido de trabajo.

En primer lugar calculamos las propiedades físicas del agua utilizando las temperaturas de entrada y salida en °C.

Densidad (ec. 2.23):

4� B 1001 P 0.08832g58°K P 0.003417g58°K� B 984.38 ���/

Capacidad Calorífica (ec. 2.24):

�� B 4226 P 3.244g58°K I 0.0575g58°K� P 0.0002656g58°K/B 4.18 \ 10/ ��� �

Conductividad térmica (ec. 2.25):

�� B 0.557 I 0.002198g58°K P 7.08\102^g58°K� B 0.66 ���

Viscosidad (ec. 2.26):

5� B 0.001 P 1\102eg58°K B 4.2 \ 102: ����

Ahora sustituimos los valores obtenidos para calcular los números adimensionales de Prandtl, Reynolds y el Nusselt aplicando las ecuaciones del capitulo dos (ec. 2.21, 2.22, 2.20) respectivamente.

Page 59: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

42

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

$� B 4.18 \ 10/ ��� � i 4.2 \ 102: ����0.66 ��� B 2.65

+' B 4 i 984.38 ���/ i 2.95\102e �/�3.1416 i 0.0127� i 4.2 \ 102: ���� B 6929.38

"# B 0.0015 g6929.38Kd.beg2.65K3 /8 B 1.57

El coeficiente para la transferencia de calor a los tubos está dado por la

ecuación 2.19:

�� B 1.57 i 0.66 ��� 0.0127 � B 82.08 ����

Obtenemos �� con la ecuación 2.18:

�� B 3.1416 i 20 i 0.0127 � i 0.3 � B 0.24 ��

Page 60: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

43

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Conociendo todos los valores, el calor transferido queda como, (ec. 2.17):

%�&#� B 82.08 ���� i 0.24 �� i g361.66 � P 331 �K B 602.59 �

Tabla 4.5 Resultados puntuales del calor transferido entre la placa absorbedora y el agua que fluye por los tubos en función de la temperatura de la placa y la del agua. ,�*��� ,�&#� +' $� "# �� %�&#�

22 21 3733.59 5.50 1.26 59.77 9.54 28 25 3903.33 5.20 1.28 61.29 46.46 40 26 3954.69 5.11 1.29 61.74 219.24 48 32 4293.76 4.62 1.32 64.59 255.13 54 34 4452.90 4.42 1.34 65.86 315.34 59 35 4486.17 4.38 1.34 66.12 393.09 63 36 4554.22 4.30 1.35 66.65 433.46 66 37 4624.38 4.22 1.36 67.19 474.50 70 38 4696.76 4.14 1.37 67.74 527.01 75 40 4888.11 3.95 1.39 69.15 579.42 82 44 5229.33 3.65 1.42 71.57 645.38 85 46 5418.67 3.50 1.44 72.86 680.26 87 48 5622.43 3.36 1.46 74.21 686.93 88 50 5842.32 3.21 1.48 75.62 693.98 90 53 6206.93 3.00 1.51 77.88 689.84 92 56 6548.00 2.83 1.54 79.91 698.22 92 56 6620.84 2.79 1.55 80.33 685.88 89 58 6929.39 2.66 1.58 82.08 602.60 80 57 6771.55 2.73 1.56 81.19 440.57 68 55 6476.78 2.86 1.54 79.49 253.73 62 51 5958.94 3.14 1.49 76.36 201.07 51 49 5675.81 3.32 1.46 74.56 50.57

Page 61: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

44

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Gráfica 4.2 Calor transferido entre la placa absorbedora y el agua

Calor transferido de la placa a la carcasa.

La transferencia de calor al igual que en los tubos sucede por conducción solo que en este caso el medio por el cual se transfiere el calor es por el aislante térmico, en nuestro caso fibra de vidrio con un espesor de 0.07 �.

Calculamos las dos áreas a utilizar en esta parte del colector, primero ��� (ec. 2.32):

��� B 1.08 � i 0.45 � B 0.486 ��

Ahora con la ecuación 2.31 ��:

�� B 0.1 � i 3.06 � B 0.306 ��

Page 62: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

45

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

El coeficiente de pérdidas hacia el fondo (ec. 2.28):

-) B 0.05 �� �0.07 � B 0.71 ����

Sustituyendo el valor del coeficiente de pérdidas que acabamos de obtener en la ecuación 2.27 del calor cedido al fondo mediante conducción por medio del aislante tenemos:

%) B 0.71 ���� i 0.486 �� i g361.66 � P 315 �K B 16.2 �

Para las paredes tenemos que el valor del coeficiente de pérdidas se calcula utilizando la ecuación. 2.30:

-� B 0.05 �� � i 0.306 ��0.07 � i 0.486 �� B 0.45 ����

Procediendo de la misma manera que en el caso anterior el calor hacia los laterales es (ec. 2. 29):

%� B 0.45 ���� i 0.306 �� i g361.66 � P 315 �K B 6.42 �

El calor total hacia la carcasa (ec. 2.33) resulta de sumar el calor del fondo con el calor perdido hacia las paredes:

%������� B 16.2 � I 6.42 � B 22.62 �

Page 63: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

46

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Tabla 4.6 Resultados puntuales del calor transferido entre la placa absorbedora y la carcasa mediante el aislante en función de la temperatura del aislante. ,��� � %) %� %������� ,��� � %) %� %�������

285 3.35 1.33 4.68 312 15.96 6.33 22.29 287 4.74 1.88 6.62 315 15.50 6.14 21.65 299 4.97 1.97 6.94 314 16.43 6.51 22.94 300 7.29 2.89 10.18 313 17.35 6.88 24.23 301 9.02 3.57 12.60 316 17.01 6.74 23.75 303 10.18 4.03 14.21 316 16.89 6.69 23.59 304 10.99 4.35 15.35 315 16.20 6.42 22.62 305 11.80 4.67 16.48 314 13.42 5.32 18.74 306 12.84 5.09 17.93 311 10.53 4.17 14.70 309 13.53 5.36 18.90 307 9.72 3.85 13.57 311 15.15 6.00 21.16 302 7.75 3.07 10.82

Gráfica 4.3 Calor transferido hacia el aislante

Page 64: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

47

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Calor transferido de la cubierta al ambiente.

Se tomará en cuenta el análisis de esta parte de manera general, ya que no es el fin del presente trabajo, pero si necesario.

Primero calculamos la temperatura de cielo (ec. 2.38) a partir de la temperatura ambiente:

,� B 0.0552 g308 �K3.e B 298.37 �

Para el coeficiente de transferencia de calor por radiación de la cubierta de vidrio al ambiente la sustitución es la siguiente (ec. 2.37):

���� B 5.67\102l ����: i 0.95 i gg333 �K� I g298.37 �K�K i g333 � I 298.37 �KB 6.79 ����

Debido a que la transferencia es en el ambiente, el viento es un factor importante y debemos conocer el valor del coeficiente convectivo que nuevamente es función de los números adimensionales, (ec. 2.40, 4.41, 2.42, 2.43) por lo tanto:

�� B 9.81 ��� i 0.0032 1� i g333 � P 308 �K i g0.25 �K/g1.57\102e ��� K� B 5.01 \ 10b

$� B 1006.94 ��� � i 1.89\102e ��� � 0.026 �� � B 0.71

Page 65: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

48

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

+� B 5.01 \ 10b i 0.71 B 3.58 \ 10b

"# B 0.15 i g3.58 \ 10bK3 /8 B 49.41

Conociendo el número de Nusselt determinamos el valor de �� con la ecuación 2.39:

�� B 49.41 i 0.026 �� � 0.25 � B 5.26 ����

En la siguiente tabla se muestran los diferentes valores de los coeficientes, en cada uno de los registros de las temperaturas tomadas durante el día.

Tabla 4.7 Resultados puntuales de los coeficientes de transferencia de calor por radiación y convección del viento en función de la temperatura ambiente. ,���� ���� $� �� +� "# �� %qr(�*

293 5.34 0.72 1957082.23 1400834.30 16.78 1.74 26.01 298.1 5.54 0.72 17178832.92 12296212.20 34.62 3.59 3.22 298.1 5.54 0.72 13629964.59 9754809.88 32.05 3.33 21.25 298.7 5.90 0.72 15805638.44 11301179.67 33.66 3.54 33.74 303.4 6.02 0.72 24124395.51 17249168.97 38.76 4.08 37.38 303.4 6.22 0.71 24872254.06 17775484.59 39.15 4.15 46.73 305.8 6.28 0.71 28949672.76 20689498.46 41.18 4.36 49.42 305.8 6.33 0.71 29845701.35 21327783.54 41.60 4.41 55.83 306.3 6.32 0.72 45905981.71 32825820.37 48.03 5.05 62.90 303 6.50 0.71 47201469.97 33738822.78 48.47 5.12 78.98 305 6.58 0.71 46812992.45 33454592.37 48.33 5.12 89.70 306 6.90 0.71 41259751.50 29458294.73 46.33 4.98 95.05

Page 66: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

49

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

310.9 6.82 0.71 45439408.82 32453538.14 47.85 5.12 91.12 309.1 6.67 0.71 53414184.94 38173581.67 50.51 5.35 97.65 305.8 6.83 0.71 56026582.65 40029685.30 51.31 5.46 106.84 307.2 6.82 0.71 56522440.45 40385528.58 51.46 5.47 109.84 307 6.80 0.71 50054199.24 35757034.90 49.42 5.27 109.51 308 6.48 0.71 36800043.41 26294810.48 44.60 4.74 100.59

306.8 6.26 0.71 33768437.45 24139015.70 43.35 4.58 81.81 304.6 5.92 0.72 29706291.22 21250495.13 41.55 4.34 62.33 301 5.64 0.72 11719530.38 8384453.96 30.47 3.18 55.22

Gráfica 4.4 Calor transferido de la cubierta de vidrio hacia el ambiente

Page 67: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

50

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

La grafica siguiente nos muestra todos los calores involucrados en el colector a lo largo de un día soleado.

Gráfica 4.5 Calores involucrados en el colector

4.2 Pérdidas de calor en el colector en un día nublado.

Las ecuaciones utilizadas son las mismas lo único que difiere son las temperaturas con las que se trabaja, en este caso son las de la tabla 4.2. Debido a esto solo se presentan las tablas con los resultados obtenidos a dichas temperaturas.

Page 68: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

51

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Calor transferido de la placa a la cubierta de vidrio.

Tabla 4.8 Resultados puntuales para un día nublado entre la placa y la cubierta en función de la temperatura de placa. ,� ���� %��� $� �� +� "# ���� %��� %�#��'�(� 328.67 5.43 24.54 0.71 2.63E+07 1.87E+07 39.82 4.41 19.91 44.44 330.33 5.53 24.39 0.71 2.55E+07 1.81E+07 39.41 4.37 19.30 43.70 334.33 5.68 28.58 0.71 2.86E+07 2.03E+07 40.95 4.57 22.97 51.56 336.67 5.80 29.75 0.71 2.85E+07 2.03E+07 40.91 4.60 23.60 53.35 339.00 5.91 30.95 0.71 2.86E+07 2.04E+07 40.97 4.63 24.22 55.18 337.33 5.79 32.68 0.71 3.16E+07 2.25E+07 42.34 4.75 26.79 59.48 322.67 5.16 21.71 0.71 2.59E+07 1.84E+07 39.63 4.31 18.12 39.84 316.33 4.96 14.24 0.71 1.81E+07 1.29E+07 35.19 3.79 10.90 25.15 313.67 4.84 12.93 0.71 1.74E+07 1.24E+07 34.71 3.70 9.88 22.81 335.33 5.76 27.20 0.71 2.60E+07 1.85E+07 39.68 4.47 21.11 48.31 327.33 5.37 23.72 0.71 2.63E+07 1.87E+07 39.84 4.37 19.31 43.03 309.33 4.65 11.94 0.72 1.74E+07 1.24E+07 34.75 3.65 9.38 21.32 310.00 4.64 14.30 0.71 2.05E+07 1.47E+07 36.72 3.88 11.96 26.26 312.67 4.66 21.05 0.71 2.91E+07 2.08E+07 41.25 4.41 19.92 40.98 323.33 5.13 25.79 0.71 3.04E+07 2.17E+07 41.83 4.57 22.98 48.77

Gráfica 4.6 Calor transferido de la placa absorbedora a la cubierta de vidrio en un día nublado

Page 69: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

52

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Calor transferido de la placa al fluido de trabajo.

Tabla 4.9 Resultados puntuales para un día nublado entre la placa y el agua en función de la temperatura de la placa y la del agua. ,�*��� ,�&#� +' $� "# �� %�&#�

48 28.5 4117.2369 4.8616 1.3061 63.1335 289.6758 49 28.5 4117.2369 4.8616 1.3061 63.1335 314.8650 53 28.5 4117.2369 4.8616 1.3061 63.1335 375.3191 56 29.5 4174.4359 4.7790 1.3122 63.6116 398.4654 58 31 4263.2882 4.6564 1.3216 64.3433 415.8845 56 36 4589.0296 4.2582 1.3556 66.9196 325.7374 42 37 4660.2863 4.1803 1.3629 67.4627 75.3662 35 35 4519.9344 4.3366 1.3484 66.3862 5.2974 33 36.5 4888.1056 3.9501 1.3862 69.1547 237.2874 54 40 4888.1056 3.9501 1.3862 69.1547 104.8479 46 40 4034.3248 4.9867 1.2973 62.4301 29.8903 28 33.5 4145.6386 4.8202 1.3091 63.3716 40.4547 29 27 4387.8411 4.4953 1.3346 65.3473 146.0059

Gráfica 4.7 Calor transferido de la placa absorbedora al agua en un día nublado

Page 70: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

53

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Calor transferido de la placa a la carcasa.

Tabla 4.10 Resultados puntuales del calor transferido entre la placa y el aislante en un día nublado. ,��� � %) %� %�������

300 9.9514 3.9451 13.8965 301 10.1829 4.0368 14.2197 301 11.5714 4.5873 16.1587 303 11.6871 4.6332 16.3203 306 11.4557 4.5414 15.9971 304 11.5714 4.5873 16.1587 299 8.2157 3.2570 11.4727 298 6.3643 2.5230 8.8873 298 5.4386 2.1560 7.5946 305 10.5300 4.1744 14.7044 303 8.4471 3.3487 11.7959 300 3.2400 1.2844 4.5244 273 12.8443 5.0919 17.9362 300 4.3971 1.7432 6.1403 309 4.9757 1.9725 6.9483

Gráfica 4.8 Calor transferido de la placa absorbedora al aislante en un día nublado.

Page 71: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

54

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Calor transferido de la cubierta al ambiente.

Tabla 4.11 Resultados puntuales para un día nublado entre la placa y el ambiente en función de la temperatura ambiente. ,��� � ���� $� �� +� "# �� %qr(�*

298 5.8029 0.7158 36998550.8679 26483255 44.7111 4.6357 48.69 299 5.8733 0.7156 36685869.7276 26254042 44.5817 4.6354 50.19

299.2 5.9117 0.7156 38347267.2901 27441888 45.2442 4.7069 57.36 299.5 5.9850 0.7156 41903168.9443 29984707 46.6006 4.8522 61.70 299.6 6.0507 0.7156 45947186.6192 32877819 48.0536 5.0049 66.53 299.6 5.9279 0.7156 37358927.4381 26732432 44.8509 4.6713 62.15 300.9 5.7116 0.7154 15078005.3363 10786319 33.1423 3.4645 33.37 300.3 5.6001 0.7155 10031761.6194 7177271 28.9342 3.0195 23.91 298.6 5.4756 0.7157 9527418.2485 6818804 28.4442 2.9541 21.99 299.6 5.9279 0.7156 37358927.4381 26732432 44.8509 4.6713 58.50 298.5 5.7038 0.7157 27089506.0130 19388446 40.2970 4.1840 44.80 296.2 5.2427 0.7161 3978128.9378 2848575 21.2635 2.1933 19.51

Gráfica 4.9 Calor transferido de la cubierta de vidrio hacia el ambiente en un día nublado

Page 72: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

55

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

La grafica siguiente (4.10) nos muestra todos los calores involucrados en el colector a lo largo de un día nublado.

Gráfica 4.10 Calores involucrados en el colector en un día nublado

4.3 Eficiencia del colector.

Coeficiente global de pérdidas de calor (ec. 2.36):

- B g6.98 ���� I 5.23 ��� �K23 I g6.79 ���� I 5.26 ����K23 I 0.003 �0.8 �� �B 5.93 ����

Page 73: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

56

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

Eficiencia del colector en función del coeficiente global (ec. 2.35):

� B 0.9 s0.92 P 5.93 ���� i 331 � P 308 �800 ��� t B 0.67

La siguiente tabla muestra el valor de las eficiencias en el colector en dos días diferentes uno soleado y otro nublado.

Tabla 4.12 Eficiencias en el colector

Eficiencia puntual día

soleado

Eficiencia puntual día

nublado 0.80 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.80 0.80 0.77 0.77 0.78 0.75 0.79 0.74 0.78 0.76 0.75 0.74 0.75 0.69 0.78 0.68 0.81 0.68 0.82 0.67 0.80

Como se observa en la tabla anterior las eficiencias son parecidas, cambian en el momento en que se empieza a enfriar la placa absorbedora y conforme aumenta el tiempo, en el día nublado las eficiencias aumentan nuevamente debido a que el día de los registros después de nublarse un momento volvió a salir el sol.

Page 74: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

57

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

CONCLUSIONES

� La energía solar térmica es la solución más barata y limpia para el

abastecimiento de agua caliente para uso doméstico, provocando el ahorro de grandes cantidades de petróleo, gas, electricidad y biomasa.

� Los procesos de transferencia de calor; Conducción, Convección y Radiación, juegan un papel muy importante ya que son la base de la captación de la energía solar y hacen posible el estudio y desarrollo de sistemas de energía solar.

� La eficiencia que alcanza el colector es aceptable, ya que se alcanzan temperaturas en el agua almacenada en el termotanque de 57°C en promedio y es suficiente para el uso doméstico que necesita sea de 60°C aproximadamente.

� Cuanto más aumenta la temperatura de la placa absorbedora más rápido es el transito del agua por los tubos por lo tanto se calienta aun más.

� Para lograr el efecto termosifón la altura entre el colector y el termotanque debe ser de 30 cm en cualquier latitud y altitud y un ángulo de 20° [5] en la ciudad de México.

� Se debe buscar un mejor aislamiento en el termotanque para que se mantenga caliente el agua durante más tiempo, usando otro aislante por ejemplo el poliuretano y de esta manera evitar perder el calor almacenado.

� El colector no debe estar sin agua circulando por los tubos porque puede causar el desprendimiento de la mezcla que recubre la placa absorbedora.

� Aun cuando el día se encuentra nublado la temperatura alcanzada en el termotanque fue de 40°C la cual resulta aceptable para el uso doméstico.

� El panorama de las energías renovables es amplio pero falta una mayor inversión.

Page 75: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

58

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

REFERENCIAS

1 Soteris A. Kalogirou, “Solar thermal collectors and applications”, Progress in Energy and Combustion Science 30 (2004) pág. 231–295

2 IEA, Agencia Intenacional de la energía (programa fotovoltaica).

3 P.T. Tsilingiris, “Thermophysical and transport properties of humid air at temperature range between 0 and 100 °C”, Department of Energy Engineering, Technological Education Institution (TEI) of Athens, (2007) pág. 39

4 P.M.E. Koffia, H.Y. Andoh et al, “Theoretical and experimental study of solar water heater with internal exchanger using thermosiphon system”, Energy Conversion and Management, (2008), pág. 2283

5 Bo-Ren Chen, Yu-Wei Chang, Wen-Shing Lee, Sih-Li Chen. “Long-term thermal performance of a two-phase thermosyphon solar water heater”. Solar Energy 83 (2009), pág. 1048–1055.

FUENTES ELECTRÓNICAS

• Elsevier B.V 2012, recuperado de http://www.sciencedirect.com • Comisión Nacional para el uso Eficiente de la Energía 2012, recuperado

de http://www.conae.gob.mx • Hipermart 2012, recuperado de http://www.wleto.hypermart.net/datos • REN21 (Renewable Energy Policy Network for the 21st Century), 2012.

Renewables Global Status Report. 2012 Update. Recuperado de, http://www.tinyurl.com/gsr2012

Page 76: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

59

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

BIBLIOGRAFÍA

• Duffie J. A. & Beckman W. A. Solar Engineering of thermal processes, Third edition, 2006. John Wiley & Sons, Inc. New Jersey, USA.

• A.M. Abu-Zour, S. B. Riffat and M. Guillot. New design of solar collector integrated into solar louvers for efficient heat transfer. Applied Thermar engineering 26 (2006) 1876-1882.

• Akhtar N. and Mullick C†.Approximate method for computation of glass cover temperature and top heat- loss coefficient of solar collectors with single glazing.Solar Energy Vol. 66, No. 5, pp. 349–354, 1999.

• Almanza Salgado Rafael, Ingeniería de la enrgía solar” Editado por el Colegio Nacional, 1994, México.

• D. Rojas, J. Beermann, S.A. Klein *, D.T. Reindl. Thermal performance testing of flat-plate collectors.Solar Energy 82 (2008) 746–757.

• E. Zambolin, D. Del Col. Experimental analysis of thermal performance of flat plate and evacuated tube solar collectors in stationary standard and daily conditions. Solar Energy 84 (2010) 1382–1396

• Gonzalez Velasco Jaime. Energías Renovables. Reverte, Barcelona 2009.

• H. Taherian y A. Rezania, Experimental validation of dynamic simulation of the flat plate collector in a closed thermosyphon solar water heater. Energy Conversion and Management 52 (2011) 301–307.

• Holman J. P. Transferencia de calor, México. Cecsa, 1986. • Ibañez Plana M, jr Rosell Polo. Tecnología solar (Universidad de Lleida).

2005. • J. Cadafalch. A detailed numerical model for flat-plate solar thermal

devices. Solar Energy 83 (2009) 2157–2164. • J. Glynn Henry, Gary W. Ingenieria Ambiental, Prentice Hall México

1999. • Johan, Vestlund, Jan, OlofDalenbäck, Mats Rönnelid. Thermal and

mechanical performance of sealed, gas-filled, flat plate solar collectors. Solar Energy 86 (2012) 13–25

• Madrid Vicente Antonio. Curso de energía solar. AMV ediciones 2009 pag.15

• Matrawy K. K. and Farkas I.Comparisson study for three types of solar collectors for water heating.Energy Convers.MgmtVol. 38, No. 9, pp. 861-869, 1997.

Page 77: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO€¦ · a dios, por permitirme ser parte de este mundo y darme la fuerza necesaria para siempre luchar por mis objetivos y nunca perder la

60

Determinación de la eficiencia térmica global de un colector térmico solar de placa plana

• Meinel B Aden, Marjorie Pettit. Aplicaciones de la energía solar, Reverte 1982.

• P.M.E. Koffia, H.Y. Andoh,Theoretical and experimental study of solar water heater with internal exchanger using thermosiphon system. Energy Conversion and Management 49 (2008) 2279–2290

• Rakesh Kumar, MarcA.Rosen. Thermal performance of integrated collector storage solar water heater with corrugated absorber surface.AppliedThermalEngineering 30(2010)1764-1768.

• Razavi J., Riazi M. R., Mahmoodi M. Rate of heat transfer in polypropilene tubes in solar wáter heaters. Solar Energy 74 (2003) 441-445.

• Roberts D. E. and Forbes A.An analytical expression for the instantaneous efficiency of flat plate solar water heater and the influence of absorber plate absorptance and emittance.Solar Energy 86 (2012) 1416–1427

• Romero Tous Marcelo. Energía solar térmica de baja temperatura. Ceac. Barcelona, 2009.

• Samir Kumar Saha and D. K. Mahanta. Thermodynamic optimization of solar flat plate collector. Renewable energy 23 (2001) 181-193.

• Soteris A. Kalogirou. Solar Energy Engineering Processes and Systems.2009 Elsevier Inc.

• Tsilingiris, P. T. Heat transfer analysis of low termal conductivity solar energy absorbers. Applied Thermal Engineering 20 (2000) 1297-1314.

• Tsilingiris, P. T. Thermophysical and transport properties of humid air at temperature range between 0 and 100 °C. Energy Conversion and Management 49 (2008) 1098–1110.