unidad 2 - matemÁticas emsad 02 libertad · 1 unidad 2 objetivo: resolverá problemas o...

25
1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del lenguaje algebraico donde aplique las propiedades de igualdad, operaciones con polinomios de una variable, productos notables, factorización y simplificación de fracciones algebraicas, en un clima de creatividad y respeto

Upload: hoangthuy

Post on 27-Sep-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

1

UNIDAD 2

OBJETIVO:

Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del lenguaje algebraico donde aplique las propiedades de igualdad, operaciones con polinomios de una variable, productos notables, factorización y simplificación de fracciones algebraicas, en un clima de creatividad y respeto

Page 2: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

2

2.1. PROPIEDADES DE LA IGUALDAD

IGUALDAD: PROPIEDADES EJEMPLO PROPIEDAD REFLEXIVA: a = a siempre es cierto “Todo número es igual a si mismo”

4 = 4, xy = xy, -25 = -25 , 2x = 2x

Es la expresión de que dos cantidades o expresiones tienen el mismo valor. El signo utilizado es =

PROPIEDAD SIMÉTRICA: Si a = b, entonces b = a “Si un número es igual a otro, ést es igual al primero”

Si 2x = 10 entonces 10 = 2x; Si 10/2 = 5 entonces 5= 10/2

IMPORTANTE Toda igualdad se conserva siempre que se realice la misma operación y con los mismos números en ambos miembros de la misma, excepto la división entre cero

PROPIEDAD TRANSITIVA: Si a = b y b = c entonces a = c “Si un número es igual a otro y éste a su vez es igual a un tercero, entonces el primero es igual al tercero”.

ADITIVA SUSTRACTIVA MULTIPLICATIVA Para todo número real a, b, c Si a = b Entonces a + c = b + c

Para todo número real a, b, c Si: a = b Entonces: a - c = b - c

Para todo número real a, b, c Si a = b Entonces a ⋅⋅⋅⋅ c = b ⋅⋅⋅⋅ c

DIVISORA SUSTITUCIÓN Para todo número real Si a = b c≠≠≠≠ 0

Entonces c

b

c

a=

Para todo número real Si: a = b Entonces “a” puede sustituir a “b” en cualquier expresión algebráica, dando lugar a una expresión equivalente.

Page 3: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

3

2.2. PROBLEMAS GEOMÉTRICOS Y ALGEBRÁICOS CONOCIMIENTOS PREVIOS. BASE Y EXPONENTE PROPIEDAD DISTRIBUTIVA FORMATO El exponente es el pequeño número que se coloca en la parte superior derecha de un número o cantidad llamada base. Se expresa de la siguiente forma

na

¿Para qué sirve el exponente? Para indicar el número de veces que se toma la base como factor; ó, las veces que la base se multiplica por sí misma.

EJEMPLOS: 1).- 243)3)(3)(3)(3)(3(35 == 2) x5 = (x) (x) (x) (x) (x) 3) (2x)3 = (2x) (2x) (2x) = 8x3

POTENCIACIÓN POTENCIA Es el proceso mediante el cual se obtiene la potencia de un número

Es el resultado de desarrollar una potenciación

2.2.1. REGLAS DE LOS EXPONENTES LEYES DE LOS EXPONENTES

nmnm aaa +=))(( n

n

aa

1=−

nm

n

m

aa

a −= m > n n

m

n m aa =

mnn

m

aa

a−

=1 n > m

( ) mnnm aa =

10 === −aa

a

a mm

m

m

MULTIPLICACIÓN

En la multiplicación los exponentes se SUMAN, respetando los signos, si tienen la misma

base. nmnm aaa +=))((

Base

Exponente

Potenciación Potencia

Page 4: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

4

Ejemplo: Analiza los siguientes ejemplos; COMPRENDE el procedimiento para poder APRENDERLO, pues el objetivo en todos los casos es APRENDER. (27)(25) = 27+(5) = 27+5 = 212 = (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)= 4096 (45)(4-3) = 45+(-3) = 45-3 = 42 = (4) (4) = 16 3-2 • 36 = 3-2+(6) = 3-2+6 = 3 4 = ( 3 ) ( 3 ) ( 3 ) ( 3 )= 81 En forma algebraica, es decir utilizando letras: a2 (a6) = a2+6 = a8

xm (x5) = xm+(5) = xm+5

y4 (ym-2) = y4 + ( m -2) = y4+m -2 = ym+2

DIVISIÓN (2 literales máximo)

En la división los exponentes SE RESTAN, respetando sus signos, si tienen la misma base.

nm

n

m

aa

a −=

Ejemplos: Analiza y comprende:

66666

6 145)4(54

5

==== −−

347)4(74

7

9999

9=== −− = (9) (9) (9) = 729

27)3)(3)(3(3333

3 363)6(36

3

===== +−−−−−

En forma algebraica:

336)3(63

6

2222

4xxx

x

x=== −− En este, las bases iguales es “x”

235358)5(3)5(855

38

yxyxyxyx

yx=== +−−−−−−

En éste, las bases iguales son “x” e “y”.

2242)4(24

2

4)2)(2()2()2()2()2(

)2(xxxxxx

x

x===== +−−−−

En éste, las bases iguales es “2x”

EXPONENTE CERO.

El exponente CERO se origina al dividir dos cantidades iguales.

10 === − aaa

a mm

m

m

Note cómo se utiliza el exponente, es muy importante.

Page 5: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

5

Cualquier número elevado a la CERO es igual a 1. Por ejemplo:

En la división 17

7= el resultado obviamente es la unidad (1)

Viendo la misma operación utilizando la ley de los exponentes correspondiente (división), obtendremos lo

siguiente: 011

1

1

777

7

7

7=== − esto da origen al exponente CERO.

Dado que las operación es la misma, podemos afirmar lo siguiente:

170 = El cual es aplicable a cualquier cantidad, en forma general la expresión:

10 === − aaa

a mm

m

m

Ejemplos: a) 1200 = porque proviene de dividir 20 entre 20. b) 10 =x Porque cualquier valor que vaya a tener “x” se divide entre sí mismo.

c) 11144

4 00

3

3

=⋅== xx

x en este caso podemos hacer la siguiente eliminación, tal como estamos

acostumbrados a realizar: 14

43

3

=x

x

d) 51555 0 =⋅== xx

x ó lo que es lo mismo: 5

5=

x

x ( se eliminan las “x”)

Así, ya podemos aplicar esta ley, y donde se origine un exponente cero, poner en su lugar su equivalente que es el UNO.

EXPONENTE NEGATIVO (Máximo 2 literales)

El exponente negativo como resultado de alguna multiplicación o división.

n

n

aa

1=−

Ejemplo: Corrija la siguiente expresión x-4 Solución: Escriba el numero 1 y divídalo entre el numero del problema, pero cámbiele el signo al exponente.

=

Ejemplo: corrige 3

3 55

xx =−

notar que solo se cambia de

posición la expresión que tenga el exponente negativo

Page 6: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

6

Ejemplo 1: x-3y5z-6 =63

5

6

5

3

1

1

1

yx

y

z

y

x=⋅⋅

Ejemplo 2: -3x-7y9 = 7

9

7

99

7

33

1

1

1

3

x

y

x

yy

x−=

−=⋅⋅

Ejemplo 3: 533847)3(8)4(734

87

3333 −+−−−−−−

=== yxyxyxyx

yx

5

3

5

353

34

87 31

11

33

3

y

x

y

xyx

yx

yx=⋅⋅== −

Solución

EJERCICIO: Corrige el exponente negativo a) y-2 b) b-5 c) x-2y-2 d) k-4 e) a-4z-4 Ejemplo:

= = = 34322

11

yxyxx=

EJERCICIO

1.- 2.- 3.- 4.- 5.-

EXPONENTE FRACCIONARIO

El exponente fraccionario proviene de un radical ( Raíz ).

n

m

n m aa =

Cantidad subradical ó Radicando

Indice

Símbolo Radical

El índice “n” indica el tipo de raíz que se trata, si es n =3, es raíz cúbica, si es n = 5 es raíz quinta, si NO aparece es n = 2 y es raíz cuadrada, etc.

La “m” representa el exponente del radicando. Ahora, en la potencia fraccionaria, notar que el numerador siempre es “m” (exponente del radicando) y el denominador siempre es “n” (índice de la raíz). En caso que el exponente fraccionario resultante se puede dividir y da entero, se procede a efectuar la división.

Page 7: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

7

EJEMPLOS: Convierte las siguientes radicales a una potencia fraccionaria.

3

23 2 33 =

2

1

55 =

8

38 3 88 =

9)3)(3(333 24

84 8 ====

Algebraicamente:

4

1

44 )2()2(2 xxx ==

3

43 4 8585 ⋅=

443

12

3 12 81)3)(3)(3)(3()3()3()3( xxxxxxxx ====

POTENCIA ELEVADA A OTRA POTENCIA (Máximo 2 literales)

Es cuando una potencia, se eleva a otra potencia; los exponentes se MULTIPLICAN; y se expresa de la siguiente manera:

( ) mnnm aa = Ejemplos: Analiza y comprende los siguientes ejercicios:

a) 729)3)(3)(3)(3)(3)(3(33)3( 6)3)(2(32 ==== b) 625)5)(5)(5)(5(55)5( 4)2)(2(22 ==== Algebraicamente: a) 12)3)(4(34 )( xxx ==

b) [ ] [ ] [ ] [ ][ ][ ][ ][ ][ ] 66)3)(2(32 6422222222)2( xxxxxxxxxx ====

El 5 NO está afectado por la radical, por lo tanto no tendrá exponente fraccionario.

El radicando es (2x) y SU EXPONENTE es 1. El índice de la raíz es 4

El 5 es el radicando y su exponente es 1, No aparece ningún índice, entonces n =2.

En este caso, el exponente fraccionario SI se puede dividir 8/4 = 2, entonces se efectúa la división y se desarrolla la expresión resultante.

Page 8: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

8

2.2.2. OPERACIONES DE POLINOMIOS CON UNA VARIABLE.

ALGEBRA: Es la rama de las matemáticas que estudia la cantidad del modo mas general posible. Para ello, se basa en las letras, números, signos operativos, signos comparativos, signos de agrupación, etc.

TERMINO: Es la expresión que consta de símbolos no separados por los signos de + o de - . es decir se están multiplicando.

Ejemplos: a2 , x5 , 2

3

1x , 433 yx− , etc.

ELEMENTOS DE UN TERMINO

TERMINOS SEMEJANTES Son aquellos términos que tienen la misma parte literal (mismas letras), afectada por los mismos exponentes. EJEMPLOS: A) 2a, 3a, ½ a, ... la letra “a” esta repetida en todos, y el exponente es 1 en todos los casos

B) -5a8b2, 3a8b2, ¾ a8b2 , ... la letra “a” y “b” estan repetida en todos, y el exponente es 8 y 2 respectivamente y en todos los terminos

A) -xm+1, 3xm+1, ½ xm+1a, ... la letra “x” esta repetida en todos, y el exponente es m+1 en todos los términos CLASIFICACION DE LAS EXPRESIONES ALGEBRAICAS MONOMIOS: Son aquellas expresiones algebraicas que constan de un solo término. 2x, ½ x3y4, -8x7, 3, xy3, etc. POLINOMIOS: Son aquellas expresiones algebraicas que constan de dos o más términos. 2x – 3 ; x3 - 3x6 – 5 ; 2 – x + y - 3x2 + 2xy3; etc. BINOMIOS: Son polinomios que constan de dos términos 2x –y, 5xy + ½ xy3; -8x3y –5y ; ½ -y ; etc.

- 8 x y3

SIGNO

COEFICIENTE NUMERICO

PARTE LITERAL

EXPONENTE Aquí se pueden observar claramente los elementos que todo término contiene. Notas importantes:

- Si el coeficiente numerico no se ve, es UNO. - Si el exponente no se ve, en este caso en la letra x,

el exponente es UNO. - Si el signo no se ve, es POSITIVO

Page 9: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

9

TRINOMIOS: Son polinomios que constan de tres términos x – y –5 ; 5x2 + 3x – 5; 8x3 – 3x + 6, 6x9 + 3x + 3 , etc. SUMA O ADICION Es una operación que tiene por objeto reunir dos o más expresiones algebráicas (sumandos) en una sola expresión algebraica (suma) CARÁCTER - En aritmética significa aumento. - El Álgebra es más general, puede significar aumento o disminución.

REGLA GENERAL Para sumar dos o más expresiones algebraicas, se escriben unas a continuación de otras con sus propios signos y se reducen los términos semejantes si los hay. SUMA DE POLINOMIOS Para realizar la suma de polinomios, se colocan los polinomios unos debajo de los otros de modo que los términos semejantes queden en columnas, se hace la reducción de éstos, separándolos unos de otros con sus propios signos. EJEMPLO: 1.- Sumar 5a, 6b y 8c Solución: 5a + 6b + 8c

2.- Sumar 3a2b, 4ab2, a2b,7ab2 y 6b3 Solución: se acomodan en terminos semejantes: 3a2b + a2b + 4ab2 + 7ab2 + 6b3 = = 4a2b + 11ab2 + 6b3 Solución

3.- Sumar 3a y -2b Solución: hay que cuidar el signo de los términos, para ello es conveniente utilizar los signos de agrupación: 3a + (-2b) = 3a - 2b 4.- Sumar 7a, -5b –15a, 9b, -4c, 8 Solución: 7a + (-15a ) + (-5b) + 9b + ( -4c) + 8 = Eliminando los signos de agrupación: = 7a –15a - 5b + 9b - 4c + 8 = -8a + 4b - 4c + 8

Page 10: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

10

SUMA DE POLINOMIOS EJEMPLOS: 1.- Sumar 5x – 7y + 8 y -y + 6 - 4x Solución: Se acomodan en columnas de términos semejantes, con su propio signo: 5x – 7y + 8 - 4x – y + 6 x - 8y +14 Solución EJERCICIO 11 1.- 3a +2b -c ; 2a + 3b + c 2.- 7a - 4b + 5c ; -7a + 4b – 6c 3.- m + n – p ; -m – n + p 4.- 7x – 4y + 6z; -5x + 24y + 2z 5.- x3 + 2x ; x2 + 4 6.- -3mn +4n2 ; -5m2 - 5n2 7.- -5x2y + x3-y3 ; 2x3 –4xy2 –5y3 2.3.2. RESTA O SUSTRACCIÓN Es la operación que tiene por objeto, dada una suma de dos sumandos (minuendo) y uno de ellos (sustraendo), hallar el otro sumando (resta o diferencia)

REGLA Escriba el minuendo con sus propios signos y a continuación el sustraendo con los signos cambiados y se reducen los términos semejantes, si los hay.

CARÁCTER GENERAL - En aritmética significa disminución - El álgebra es más general, puede significar disminución o aumento.

RESTA DE POLINOMIOS Se colocan en columnas de terminos semejantes, se coloca el minuendo y al sustraendo se le cambian los signos, y se resuelve la operación con los signos que resulten. EJEMPLOS 1.- De –4 restar 7 Solución: -4 - ( 7 ) = -4 –7 = -11 2.- Restar 4b de 2a Solución: 2a - 4b 3.- Restar 4a2b de –5a2b Solución: -5a2b – (4a2b )= -5a2b – 4a2b = -9a2b

Se realiza las operaciones que indiquen los signos de cada columna, en la primera columna es una resta (tiene signos diferentes), en la segunda es una suma, (tiene signos iguales) y en la tercera es una suma.

Page 11: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

11

RESTA DE POLINOMIOS 4.- De 4x –3y + z restar 2x + 5z – 6 Solución: 4x - 3y + z -2x - 5z + 6 2x -3y - 4z +6 EJERCICIO 12 1.- De: x2 - 3x restar: -5x + 6 2.- De: x + y - z restar: -x – y + z 3.- De x4 + 9xy3 – 11y4 restar: –8x3 –6x2y2 +20y4 4.- Restar: -5a + b de: –7a + 5 5.- Restar -x3 –x – 6 de: -8x2 + 5x - 4 6.- Restar xy2 – 6y3 + 4 de 6x3 –8x2y – 6xy2 7.- De: a3 restar: -8a2b + 6ab2 –b3 8.- De: x2 – 1 restar: xy +y2 9.- Restar: 5x3 –25x de: x4 + x2 + 50 10 Restar: m2n + 7mn2 – 3n3 de: m3 -1 2.3.3. SIGNOS DE AGRUPACION Los signos de agrupación son: ( ) Paréntesis ordinario o paréntesis circular [ ] Paréntesis angular o corchetes { } Llaves barra o vínculo

USOS DE LOS SIGNOS DE AGRUPACION - Se emplean para indicar que las cantidades encerradas en ellas deben

considerarse como un todo, es decir, como una sola cantidad. - Todos los signos de agrupación se suprimen o eliminan del mismo modo.

REGLA GENERAL PARA SUPRIMIR LOS SIGNOS DE AGRUPACION

1. Para suprimir signos de agrupación precedidos del signo + , se deja el mismo signo que tengan cada una de las cantidades que se hallan dentro de él.

2. Para suprimir signos de agrupación precedidas del signo - , se cambia el signo de cada una de las cantidades que se hallan dentro de él.

EJEMPLOS: Simplifique 1.- - (x2 - y2) + xy + (-2x2 + 3xy) - [-y2 + xy] = - x2 + y2 + xy -2x2 + 3xy + y2 - xy = - x2 - 2x2 + xy + 3xy - xy + y2 + y2 =

Se suprimen los signos de agrupación

Se juntan los términos semejantes

Se colocan en columnas de términos semejantes, pero al sustraendo se le cambian los signos a cada uno de sus términos. Se resuelve la operación que resulta con los signos que tienen al final.

Minuendo

Sustraendo, note que se le cambiaron los signos!!

Solución

Page 12: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

12

= - 3x2 + 3xy + 2y2

2.- 2b - {-x + b -1} - {b + x - 3} = 2b + x – b +1 - b – x + 3 = 2b – b – b + x – x + 1 + 3 = = 4 EJERCICIO13: Simplifica los siguientes: 3.- - (a+b) +(-a - b) – (-b+a) + (3a+b) = 4.- x2 + y2 – ( x2 + 2xy + y2) + [-x2 + y2] = 5.- a + b – (-2a + 3) = 6.- x – ( x - y) = 7.- 2a + [ a - (a + b ) ] = 2.3.4. MULTIPLICACION Los elementos se llaman Multiplicando y multiplicador. La operación consiste en hallar una tercera cantidad llamada PRODUCTO. El multiplicando y el multiplicador se llaman FACTORES del producto.

Ley de los exponentes: nmnm aaa +=))((

MONOMIO POR MONOMIO Ejemplo: 1.- ( -xy2) (-5mx4y3) = + 5 m x1+4 y2+3 = 5 m x5 y5 2.- ( -15 x4y3) (-16a2x3) = 240 a2x4+3y3 = 240 a2 x7y3 EJERCICIO 14 Multiplica los siguientes: 1.- (-5x3y) (xy2) = 2.- (a2b3) (3a2x) = 3.- (-x2y3) (- 4y3z4) = 4.- (3a2bx) (7b3x5) =

Ley de los signos

+ x + = +

+ x - = -

- x + = -

- x - = +

Expresión ya simplificada. Solución

El signo + es por la ley de los signos (-1)(-5) = +5

Las letras e escriben en orden alfabético

De acuerdo a la ley de los exponentes, los exponentes se suman respetando sus signos

Producto

Page 13: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

13

BINOMIO POR MONOMIO Ejemplo: Puede verse claramente el orden en que se está multiplicando.

- 2X3 ( 3X4 – 4XY3)= - 2X3 ( 3X4 – 4XY3) = - 6X7 + 8 X4Y3 EJERCICIO 15: Resuelve: 1.- (3x3 – x2) (-2x) = 2.- (8x2y – 2ax2) (2ax3) = 3.- (5a - 7b) (3b) = TRINOMIO POR MONOMIO Ejemplo: (-4m3x) (m4 – 3m2n2 +7n4) = -m7x + 12 m5n2x – 28 m3n4x EJERCICIO 16:

1.- (-2x) (x2 – 4x + 3)= 2.- (x5 – 6x3 –8x) (3a2x2) = 3.- (x3 -4x2y + 6xy2 ) (ax3y) = 4.- (a3 –5a2b – 8ab2) (-4a4m2) =

BINOMIO POR BINOMIO

Ahora se puede observar el resultado de la multiplicacion del binomio por binomio. Nuestro ultimo paso es acomodar los términos.

=

Page 14: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

14

EJERCICIO 17: 1.- (1 + x)(3 + 2x) 2.- (2 + 5x)(11 + 12x) 3.- (x - 3)(10x + -20) 4.- (x2 - 4)(x2 - 4) 5.- (x + y)(x + y) 6.- (x - y)(x + y) 2.3.5. DIVISIÓN Dado el producto de dos factores (dividendo) y uno de los factores (divisor) se halla el otro factor

Ley de los exponentes: nm

n

m

aa

a −=

MONOMIO ENTRE MONOMIO Ejemplo: a) Divide -8a2x3 entre -8a2x3

Solución: 1111118

8

8

8 0033223

3

2

2

32

32

−=⋅⋅−=⋅⋅−=⋅=⋅⋅−−

=−− −− xaxa

x

x

a

a

xa

xa

b) Divide 54x2y2z3 entre -6xy2z3

xxzxyzyxzxy

zyx91199

6

54

6

54 0033221232

322

−=⋅⋅−=−=⋅⋅⋅−

=−

−−−

c) Divide -81x4y2z5 entre 9x2y2z8

302852224)8(5)2(2)2(4822

524

999

81

9

81 −−−−−−− −=−=⋅⋅−

=−

zyxzyxzyxzyx

zyx

3

2

3

232302

822

524 91

11

9)1(99

9

81

z

x

z

xzxzyx

zyx

zyx−=⋅⋅

−=−=−=

− −−

POLINOMIO ENTRE MONOMIO Ejemplo: Divide 4x2 – 10x6 - 5x4 entre 2x3

Se puede expresar de la siguiente forma: 3

462

2

5104

x

xxx −−

Se resuelve de la siguiente forma: =−−3

4

3

6

3

2

2

5

2

10

2

4

x

x

x

x

x

x separando y dividiendo en forma individual.

Ley de los signos

+ ÷÷÷÷ + = +

+ ÷÷÷÷ - = -

- ÷÷÷÷ + = -

- ÷÷÷÷ - = +

Page 15: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

15

xxxxxxxxxx

x

x

x

x

x

2

552

2

552

2

552

2

5

2

10

2

4 31343632)3(4)3(6)3(2

3

4

3

6

3

2

−−=−−=−−=−− −−−−−−−

xxx

xxxx

x

x

x

x

x

2

55

2

2

55

1

1

2

2

5

2

10

2

4 33

3

4

3

6

3

2

−−=−−⋅=−−

EJERCICIO 18: a) Divide x3 – 4x2 +x entre x b) Divide 3a3 –5ab2-6a2b3 entre -2a c) Divide a2 - ab entre a TRINOMIO ENTRE BINOMIO Ejemplo: Divide: 3x2 – 8 +2x entre x + 2 Solución: Primero de acomoda el trinomio en forma descendente: 3x2 +2x – 8 Este trinomio es el que va a ser dividido, por lo tanto es el dividendo, y se coloca dentro de la “casita” que indica división. X+ 2 ya está acomodado en forma descendente, es el divisor, es el que divide, y va fuera de la “casita”.

Cociente: 3x - 4

Residuo: 0 EJERCICIO 19 DIVIDIR: 1.- a2 +2a - 3 entre a + 3 2.- a2 – 2a - 3 entre a + 1 3.- x2 – 20 + x entre x + 5 4.- m2 – 11m + 30 entre m – 6 5.- x2 + 15 – 8x entre 3 - x 6.- 6 + a2 + 5a entre a + 2 7.- 6x2 – xy – 2y2 entre y + 2x 8.- -15 x2 - 8y2 + 22xy entre 2y – 3x 9.- 14x2 –12 +22x entre 7x -3

3x2 + 2x - 8 x + 2

3x - 4

-3x2 - 6x

- 4x - 8

+ 4x + 8

0

Note que los productos que se van obteniendo, se cambian el signo al colocarlos, ¿porqué? Porque es el sustraendo, y por ello debe cambiarse de signo.

Primer cociente:

xxx

x33

3 122

== − Segundo cociente:

4)1(4444 011 −=−=−=−=

− − xxx

x

Page 16: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

16

2.2.3. PRODUCTOS NOTABLES Productos Notables

Se llaman productos notables a ciertos productos que cumplen reglas fijas y cuyo resultado puede ser escrito por simple inspección, es decir, sin verificar la multiplicación 2.4.1. BINOMIO AL CUADRADO

ALGORITMO:

1.- Identifique que sea un binomio. 2.- Obtenga el cuadrado del primer término, es positivo. 3.- Obtenga el duplo o doble del producto del primero por el segundo término; Si el binomio es suma póngale el signo positivo; Si el binomio fue resta póngale el signo negativo. 4.- Obtenga el cuadrado del segundo término, es positivo. El resultado se llama Trinomio Cuadrado Perfecto.

(a+b)2 = a2 + 2ab+b2 EJEMPLO: Desarrolla (3x2 - 2y3)2 = (3x2 + 2y3)2 = (3x2)2 + 2(3x2)(2y3) + (2y3)2 = 9x4 + 12x2y3 + 4y6 EJERCICIO 20

B) (a-b)2 = a2 - 2ab+b2 Ejemplo: (2x5 - 2y2)2 = (2x5)2 - 2(2x5)(2y2) + (2y2)2 = 4x10 - 8x5y2 + 4y4

Cuadrado de la primera cantidad

Doble del producto de la primera por la segunda cantidad

Cuadrado de la segunda cantidad

Binomio al cuadrado

Trinomio Cuadrado perfecto

Cuadrado de la primera cantidad

Doble del producto de la primera por la segunda cantidad

Cuadrado de la segunda cantidad

Binomio al cuadrado

Trinomio Cuadrado perfecto

Page 17: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

17

EJERCICIO 21

2.4.2. BINOMIOS CONJUGADOS O PRODUCTO DE LA SUMA POR LA DIFERENCIA DE DOS CANTIDADES

(a + b)(a - b) = a2 - b

2

ALGORITMO:

1.- Identifique que sean binomios conjugados, un par de ellos son iguales y el otro par son simétricos o de signos opuestos. 2.- Multiplique los términos que son iguales, el signo del resultado es positivo. 3.- Multiplique los términos simétricos ó de signos opuestos; el signo del resultado es negativo. El resultado se llama Diferencia de Cuadrados Perfectos. También algunos autores le indican que los hagan de la siguiente forma: La suma de dos cantidades multiplicada por su diferencia es igual al cuadrado del minuendo (en la diferencia) menos el cuadrado del sustraendo Ejemplo: Desarrolla (3x3 – 8) (3x3 + 8) = (3x3 – 8) (3x3 + 8) = Se identifica porque tiene dos términos iguales (3x3) y dos términos simétricos +8 y -8. Su desarrollo se muy simple:

(3x3 – 8) (3x3 + 8) = (3x3)(3x3) - (8)(8) = 9x6 - 64 EJERCICIO 22

Producto de los términos simétricos, siempre en segundo

lugar

Producto de los términos iguales, siempre en primer

lugar

Diferencia de cuadrados

Binomios conjugados

Page 18: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

18

2.4.3. BINOMIOS CON UN TÉRMINO COMUN (x + a) ( x + b) ALGORITMO: 1.- Identifique que sean producto de binomios con un término común. 2.- Multiplique los términos comunes, el signo será positivo. 3.- Haga la suma, respetando los signos, de los términos no comunes y multiplíquelo por el término común, el signo dependerá del resultado de la suma. 4.- Multiplique los términos no comunes. El resultado es un trinomio de la forma: cbxx ++2 ó cbxax ++2 Ejemplo: Desarrolla (x2 + 5)(x2 - 8) = Se identifica porque los factores contienen UN término común, en este caso: x2 Desarrollo:

(x2 + 5) (x2 - 8) = (x2)(x2) + (+5 – 8 )(x2) + (5) (-8) = x4 + (-3)x2 + (-40) = x4 –3x2 -40 EJERCICIO 23

Términos comunes

Términos NO comunes

Producto de los términos comunes

Suma o resta, de los términos no comunes, depende de los signos de los

terminos no comunes

Términos comun

Producto de los términos No comunes

Resultado: Trinomio de la forma

x2 + bx + c

Page 19: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

19

2.2.4. TRIANGULO DE PASCAL Y BINOMIO DE NEWTON El binomio de Newton nos es útil para determinar la potencia de un binomio a cualquier potencia Entera y positiva. El triángulo de Pascal nos sirve para determinar los coeficientes numéricos del desarrollo de los términos del binomio de Newton. TRIANGULO DE PASCAL Binomios Triángulo de Pascal Contiene los coeficientes del desarrollo de cada binomio

1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 1 8 28 56 70 56 28 8 1 …

ALGORITMO: 1.- Identifique que sea un binomio y que el exponente sea entero. 2.- Del Triángulo de Pascal, determine la fila que le corresponde de acuerdo al exponente del binomio 2.- El primer término elévelo a la potencia del binomio, su coeficiente numérico según el triángulo de Pascal, es 1. 3.- Si es una suma todos los términos son positivos, si es una resta los términos llevarán signos alternados, el primer término del resultado lleva el signo del primer término del binomio. 4.- Escriba el segundo coeficiente tomado del triángulo de Pascal, multiplique por los dos términos del binomio, el exponente del primero baja de uno en uno hasta cero, y el segundo empieza en segundo término hasta alcanza el exponente del binomio. 5.- Desarrolle cada término. EJEMPLO 1:

542322232425252 )3()3)(2(5)3()2(10)3()2(10)3()2(5)2()32( xxxxxxxxxxxx −+−+−=−

567891052 243810108072024032)32( xxxxxxxx −+−+−=−

0)( ba +1)( ba +2)( ba +

7)( ba +8)( ba +

3)( ba +4)( ba +5)( ba +6)( ba +

Page 20: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

20

2.2.5. FACTORIZACIÓN FACTORIZACION FACTORES La factorización consiste en buscar los factores que dan origen al polinomio original. DESCOMPONER EN FACTORES O FACTORAR una expresión algebraica es convertirla en el producto indicado de sus factores.

Se denominan FACTORES O DIVISORES de una expresión algebraica que multiplicadas entre sí dan como producto la primera expresión

2.2.5.1 FACTOR COMUN Factor común monomio

ALGORITMO 1.- Calcule el MCD ó Factor común monomio de todos los términos del polinomio. 2.- Escriba el factor común, abra un paréntesis y coloque en él los cocientes de dividir cada término del polinomio entre el Factor común. Ejemplo: Factoriza el polinomio 36x3y6 + 28 ax2y5 - 20 bx4y3.

Factor común polinomio

ALGORITMO 1.- Determine el MCD ó Factor común polinomio, observando cuál es el polinomio que está repetido en todos los términos. 2.- Escriba el factor común, abra un paréntesis y coloque en él los cocientes de dividir cada término del polinomio entre el Factor común polinomio.

1.- Primero se obtiene el MCD ó Factor Común de los términos. 36, 28, 20 2 18, 14, 10 2 El factor Comun o MCD es: 9, 7, 5 MCD = 2(2) x2y3

MCD = 4 x2 y3 letras repetidas con su menor exponente: x2 y3

2.- teniendo el factor comun o MCD de los términos, procede a factorizar. MCD = 4 x2 y3 Cada término se divide entre el Factor Comun 36x3y6 + 28 ax2y5 - 20 bx4y3 = 4 x2 y3 ( 9xy3 + 7ay2 - 5x2 )

332

63

94

36xy

yx

yx= 2

32

52

74

28ay

yx

yax= 2

32

34

54

20x

yx

ybx−=

Factor Comun ó MCD: 4 x2 y3

Expresión factorizada

Page 21: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

21

Ejemplo. Factorizar x(x – 1) + 5(x - 1) Solución: x(x – 1) + 5(x - 1) = (x - 1) (x + 5) Factor común por agrupamiento

La clave de esta factorización es la ley distributiva: ac + bc = (a + b)c donde a, b y c pueden ser cualesquier expresiones algebraicas. ALGORITMO 1.- Identifique que el polinomio no puede ser factorizado por factor comun monomio ni polinomio. 2.- Agrupe en forma arbitraria, si son 4 términos agrupe de dos en dos, si son 6 términos agrupe de tres en tres. 3.- Factorice cada grupo de términos por el método de Factor Común Monomio 4.- Factorice la expresión resultante por el método de Factor común polinomio. La expresión resultante es el resultado. EJEMPLO 1

)()( baybax

byaybxax

+++=

+++

iguales

))(( bayx ++= Comprobación

byaybxaxyxba +++=+×+ )()(

EJEMPLO 2

)2)(32(

)32(2)32(

6432 2

−−=

−−−

+−−

xyx

yxyxx

yxxyx

EJEMPLO 3

)43)(2(

)22(4)2(3

8463 2

+−=

−+−

−+−

mnm

nmnmm

nmmnm

Ejemplo 4

Page 22: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

22

¿CÓMO SE SABE CUANDO UN NÚMERO TIENE RAÍZ CUADRADA? Un número “a” tiene raíz cuadrada, si existe un número real, que elevado al cuadrado nos resulte en “a”.

Por ejemplo 9 La raíz cuadrada de 9 es 3, ya que al elevar 32 = 3(3) = 9

Otro ejemplo: 81 La raíz cuadrada de 81 es 9, ya que al elevar 92 = 9(9) = 81

EJERCICIO 24. RESUELVE:

Factoriza los siguientes trinomios:

a) a8 + 18a4 + 81 b) 9 - 6x + x2 c) x2 - 2x + 1 d) x2 + 2xy + y2

)1)(43(

)1(4)1(3

4433

−−=

+−−−

−+−

ayx

ayax

ayyxax

2.2.5.2 TRINOMIO CUADRADO PERFECTO (T.C.P.)

PROCEDIMIENTO: Identificación:

- Consta de tres términos - Dos de ellos tienen raíz cuadrad exacta - En caso de que todos tenga raíz cuadrada exacta , se toman los dos de mayor potencia. - Uno NO tiene raíz cuadrada exacta.

¿Cómo se factoriza? - Se obtiene la raíz cuadrada de los dos términos, queda uno que no se habrá utilizado. - Se comprueba que sea TCP; obteniendo el doble del producto de las dos raíces, y se compara con el

término no utilizado, sin considerar el signo, si son iguales Sí es TCP. - Una vez comprobado, se abre un paréntesis y se colocan las dos raíces, se separan con el signo que tiene

el término no utilizado y, el binomio obtenido se eleva al cuadrado. EJEMPLO: Factoriza 4x2 +9y2 –12xy ANÁLISIS: - Sí hay dos términos con raíz cuadrada exacta: 4x2 y 9y2

xx 24 2 = yy 39 2 =

- El término No utilizado es 12xy. - - Comprobación:

- El doble del producto de las raíces: xyyx 12)3)(2(2 = da 12xy, el cual al compararlo con el término

No utilizado, se ve que sí son iguales, sin importar el signo. Entonces sí es TCP.

Entonces la factorización es: ( )222 321294 yxxyyx −=−+

2.2.5.3. DIFERENCIA DE CUADRADOS

PROCEDIMIENTO: Identificación:

- Es una resta ó Diferencia, es decir son dos términos que tienen signos diferentes.

- Cada término tiene raíz cuadrada exacta. ALGORITMO:.

- Se obtiene la raíz cuadrada de cada término, no importa el signo. - Se abren dos paréntesis. ( ) ( ) - En cada paréntesis se pone en primer lugar la raíz cuadrada del

término positivo, éste es positivo; en segundo lugar la raíz cuadrada del término negativo, éste último va con signos opuestos, es decir uno es positivo y el otro es negativo.

- La factorización resultante se llama Binomios Conjugados.

Page 23: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

23

¿CÓMO SE SABE CUANDO UNA LITERAL(LETRA) TIENE RAÍZ CUADRADA?

Para saber si una literal o letra tiene raíz cuadrada, basta con que el exponente que tiene, sea divisible entre dos; en caso contrario, no tiene raíz cuadrada.

Por ejemplo: x14 el exponente es 14, y 14/2 = 7, es divisible entre dos,

Entonces 714 xx =

Es Diferencia de Cuadrados porque cumple con:

1.- Los términos son de signos diferentes.

2.- cada término tiene raíz cuadrada exacta

24 525 xx = y 4386 636 yxyx =

3.- Se abren dos paréntesis, y se colocan las raíces, en primer lugar se coloca la raíz del término positivo y en segundo lugar la raíz del término negativo:

Ejemplo: Obtenga la factorización de:

=− 162

1625

4y

x

Factoriza: -25 x4 + 36 x6y8

EJERCICIO 25. Factoriza: a) =− 62 4yx

b) =− 1046 259 yxx

c) =− 10622 499

4yx

d) =− 84 2525

1yx

2.2.5.4 TRINOMIO DE LA FORMA x

2 + bx + c

PROCEDIMIENTO: ¿Cómo se factoriza?

- Se abren dos paréntesis. - Se obtiene la raíz cuadrada del término cuadrático y se coloca en primer lugar en cada paréntesis. - En el primer Paréntesis se coloca el signo del segundo término, y en el segundo paréntesis se coloca el

signo del producto del segundo por el tercer término. - Se buscan dos números que multiplicados, respetando sus signos, den el tercer término y sumados,

respetando sus signos, den el coeficiente del segundo término. - El número mayor se coloca en el primer paréntesis y el menor en el segundo; si los números son iguales

el orden es indistinto.

Número positivo

Número Negativo

Signos diferentes

Binomios conjugados

+=− 8816

2

45

24

5

216

25

4y

xy

xy

x

Page 24: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

24

EJERCICIO 26 RESUELVE:

Factoriza los siguientes trinomios:

a) x2 + 5x + 4 b) x2 - x - 6 c) x2 - 11x + 28 d) x2 - 11x + 30

EJERCICIO 27 RESUELVE:

Factoriza los siguientes trinomios:

a) 6x2 + 7x + 2 b) 6x2 - 6 - 5x c) 4a2 +15a + 9 d) 2x2 + 5x + 2

Ejemplo: factoriza el siguiente trinomio 5x + x2 – 24.

2.2.5.5. TRINOMIO DE LA FORMA ax2 + bx + c

PROCEDIMIENTO: ¿Cómo se factoriza?

- Se multiplica todo el trinomio por el coeficiente “a” de x2 . - En el segundo término, solo se indica el producto, no se lleva a cabo, b queda afuera y ax quedan dentro

del paréntesis.. - Se abren dos paréntesis. - Se obtiene la raíz cuadrada del término cuadrático y se coloca en primer lugar en cada paréntesis. En el

primer Paréntesis se coloca el signo del segundo término, y en el segundo paréntesis se coloca el signo del producto del segundo por el tercer término.

- Se buscan dos números que multiplicados, respetando sus signos, den el tercer término y sumados, respetando sus signos, den el coeficiente del segundo término.

- El número mayor se coloca en el primer paréntesis y el menor en el segundo; si los números son iguales el orden es indistinto.

- Se divide la factorización obtenida, entre el valor de “a” o entre la factorización de “a” - El producto resultante es la factorización solicitada.

Ejemplo: factoriza el siguiente trinomio -7x +6x2 – 3.

El trinomio se debe ordenar y colocarlo en la forma x2 + bx + c ; entonces el trinomio 5x + x2 – 24 queda de la forma x2 + 5x – 24 y aplicamos el procedimiento:

x2 + 5x – 24 = ( ) ( ) (+8)(-3) = 24 x2 + 5x – 24 = (x ) (x ) (+8)+( – 3) = 8 - 3 = 5 x2 + 5x – 24 = (x + ) (x - )

x2 + 5x – 24 = (x + 8 ) (x - 3 )

El trinomio se debe ordenar y colocarlo en la forma ax2 + bx + c ; entonces el trinomio -7x + 6x2 – 3 queda de la forma 6x2 - 7x – 3 y aplicamos el procedimiento:

( ) 18)6(7363766376 222 −−=−−=−− xxxxxx

( )( )269618)6(736 2 +−=−− xxxx

( )( ) ( )( ))3)(2(

2696

6

2696 +−=

+− xxxx

( )( ) ( )( )1332

)2)(3(

2696+−=

+−xx

xx

( )( )1332376 2 +−=−− xxxx

Page 25: unidad 2 - MATEMÁTICAS EMSaD 02 LIBERTAD · 1 UNIDAD 2 OBJETIVO: Resolverá problemas o situaciones a partir de su representación geométrica y enfatizando el rigor lógico del

25

2.2.6. SIMPLIFICACIÓN DE FRACCIONES ALGEBRÁICAS En este tema se deberá utilizar los casos de factorización, es necesario observar que las operaciones son divisiones y que hay que atender las leyes de los signos que correspondan. ALGORITMO 1.- Verifique qué tipo de factorización puede hacerse en cada polinomio. 2.- Realice la factorización correspondiente y escríbalo en la posición correspondiente. 3.- Elimine por división de factores iguales en numerador y denominador. 4.- Los factores sobrantes o que quedan es la solución simplificada. Es un proceso similar a lo que tiene que hacerse con los resultados fraccionarios. Ejemplo:

1) 4

1

)3)(4(

)3(

12

32 −

=−+

−=

−+−

xxx

x

xx

x

2) 3

5

)1)(3(

)1)(5(

32

542

2

−+

=−+−+

=−+−+

x

x

xx

xx

xx

xx

3) x

xxx

x

x

x

xx

xx

x

xx 222)2(2 222

2

3

−=−=−

=⋅−

=−

EJERCICIO SIMPLIFIQUE:

A) xy

yyx

4

26 2 − sol:

x

x

2

13 2 −

B) 103

252

2

−−−xx

x sol:

2

5

++

−x

x