unibor

67
UNIVERSO

Upload: craleman

Post on 29-Jul-2015

227 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: unibor

UNIVERSO

Page 2: unibor

PROLOGO

Este documento contiene información sobre:

● Distinguir los diferentes cuerpos del universo.

● Conocer distancias astronómicas

● Ubicar la Tierra en el universo.

● Explicar las diferencias entre planetas interiores y exteriores.

● Describir los movimientos de rotación y de traslación de los planetas.

● Orientarte de día y de noche con los astros.

●Valorar la importancia de la carrera espacial en el descubrimiento del universo.

Page 3: unibor

Índice de contenido

Índice de contenido.........................................................................................3

Introducción...............................................................................................................5

Resumen....................................................................................................................8

Capitulo#1................................................................................................................10

1 Porción observable.......................................................................................................10

2 Evolución......................................................................................................................102.1 Teoría sobre el origen y la formación del Universo (Big Bang)....................................................112.2 Sopa Primigenia..........................................................................................................................112.3 Protogalaxias..............................................................................................................................132.4 Destino Final..............................................................................................................................132.5 Teorías sobre el final del Universo..............................................................................................15

Capitulo#2................................................................................................................19

3 Descripción física..........................................................................................................193.1 Tamaño.......................................................................................................................................203.2 Forma.........................................................................................................................................213.3 Color...........................................................................................................................................233.4 Homogeneidad e isotropía.........................................................................................................253.5 Composición...............................................................................................................................253.6 Multiversos.................................................................................................................................27

Capitulo #3...............................................................................................................28

4 Estructuras agregadas del universo...............................................................................284.1 Las galaxias.................................................................................................................................284.2 Formas de galaxias......................................................................................................................284.3 La Vía Láctea...............................................................................................................................304.4 Las constelaciones......................................................................................................................314.5 Las estrellas................................................................................................................................344.6 Los planetas................................................................................................................................354.7 Los satélites................................................................................................................................394.8 Asteroides y cometas..................................................................................................................404.9 Orientación con los astros..........................................................................................................41

5 Indicios de un comienzo................................................................................................41

6 Otros términos..............................................................................................................42

7 Véase también..............................................................................................................42

8 Referencias...................................................................................................................43

9 Enlaces externos...........................................................................................................44

Page 4: unibor

Índice de gráficos

Ilustración 1...............................................................................................................................................14Ilustración 2...............................................................................................................................................14Ilustración 3...............................................................................................................................................16Ilustración 4...............................................................................................................................................16Ilustración 5...............................................................................................................................................20Ilustración 6...............................................................................................................................................21Ilustración 7...............................................................................................................................................22Ilustración 8...............................................................................................................................................25Ilustración 9...............................................................................................................................................26Ilustración 10.............................................................................................................................................28Ilustración 11.............................................................................................................................................29Ilustración 12.............................................................................................................................................30Ilustración 13.............................................................................................................................................30Ilustración 14.............................................................................................................................................31Ilustración 15.............................................................................................................................................32Ilustración 16.............................................................................................................................................35Ilustración 17.............................................................................................................................................36Ilustración 18.............................................................................................................................................36Ilustración 19.............................................................................................................................................36Ilustración 20.............................................................................................................................................37Ilustración 21.............................................................................................................................................37Ilustración 22.............................................................................................................................................37Ilustración 23.............................................................................................................................................38Ilustración 24.............................................................................................................................................38Ilustración 25.............................................................................................................................................38Ilustración 26.............................................................................................................................................39Ilustración 27.............................................................................................................................................39Ilustración 29.............................................................................................................................................40Ilustración 28.............................................................................................................................................40Ilustración 30.............................................................................................................................................41Ilustración 31.............................................................................................................................................41

Page 5: unibor

Índice de tablas

Tabla 1......................................................................................................................................................13Tabla 2......................................................................................................................................................19Tabla 3......................................................................................................................................................20Tabla 4......................................................................................................................................................23Tabla 5......................................................................................................................................................25Tabla 6......................................................................................................................................................31Tabla 7......................................................................................................................................................32Tabla 8......................................................................................................................................................34Tabla 9......................................................................................................................................................36Tabla 10....................................................................................................................................................42Tabla 11....................................................................................................................................................43

Page 6: unibor

Introducción

Universo

Visión históricaara los antiguos egipcios el cielo era una copia etérea del Nilo, por el cual el dios Ra navegaba cada día, retornando a su punto de partida a través de los abismos subterráneos donde dormían los muertos. Según los babilonios, la Tierra1era una gran montaña hueca semisumergida en los

océanos. Sobre la Tierra estaba el firmamento, la bóveda del cielo. Los griegos hablaban de un vacío intemporal que precedió al cosmos ordenado: lo llamaban Caos. Ptolomeo propugnaba un modelo geocéntrico.

PPara los antiguos egipcios el cielo era una copia fantasmal del Nilo, por la que el dios Ra navegaba cada día, retornando a su punto de partida a través de los abismos subterráneos donde dormían los muertos. Nut o Nuit, era la diosa del cielo, creadora del universo y de los astros. Se la representaba con forma de mujer desnuda, con el cuerpo deformado simulando una bóveda celeste y revestida de estrellas, sobre su marido Geb (la Tierra) y su padre Shu (el aire) intentando separarlos. Para los babilonios, la Tierra era una gran montaña horadada medio sumergida en los océanos. Los muertos habitaban el fondo de estos mares y océanos. Sobre la Tierra estaba la bóveda celestial que separaba las aguas del otro mundo de las que nos rodea

Los griegos hablaban del Caos que, según Hesíodo, es la primera divinidad que surgió en el universo. Inicialmente Caos, descrito como el aire que llenaba el espacio entre el Éter y la Tierra, era el espacio vacío primordial. Más tarde, pasó a ser visto como la mezcla primigenia de los elementos. Caos y Eros serían las fuerzas generadoras del universo. Gea, la madre de la creación, emergió del Caos y fundó la dinastía de dioses que gobernarían desde el Olimpo. Durante la Edad Media en Europa dominaron las teorías geocentristas promulgadas por Ptolomeo y no se presentó ningún desarrollo importante de la

1 Más información en pag28

Page 7: unibor

astronomía. Solamente Johannes Müller (llamado Regiomontanus) comenzó a realizar y reunir nuevas mediciones y observaciones. El modelo geocéntrico de Ptolomeo perduró durante toda la Edad Media. En este modelo era necesario pensar que los planetas realizaban complicados movimientos llamados epiciclos. En el siglo XVII, Nicolas Copérnico propuso su modelo heliocéntrico, según el cual la Tierra y el resto de los planetas giran en torno al Sol, Éste es el modelo de Sistema Solar actual.

La teoría geocéntrica no lograba explicar algunas observaciones (movimientos aparentes hacia atrás, variación del tamaño y de la luminosidad de ciertos planetas). Hiparco (150 a.C.) y Ptolomeo (130 d.C.) establecieron un complicado sistema de órbitas compuestas de "deferentes" y "epiciclos" alrededor de los cuales los planetas debían desplazarse. Para periodos cuidadosamente escogidos este sistema justificaba los movimientos retrógrados (movimiento aparente de los planetas hacia atrás respecto de su traslación) y elípticos. Hubo que esperar hasta Copérnico (1543) para que esta teoría fuera descartada. En la figura tenéis el movimiento (simplificado) de algunos planetas (Júpiter, Mercurio y Marte) visto desde la Tierra con sus epiciclos. Epiciclos de Ptolomeo

Visión actualActualmente, la explicación científica más admitida sobre el origen del universo es la teoría del "Big Bang" (gran explosión). De acuerdo con esta teoría, el universo se originó hace (13750±150) millones de años. Las partículas en expansión formaron los gases y el polvo cósmico que dio lugar a los diferentes cuerpos del firmamento.Los descubrimientos realizados en el siglo XX han demostrado que ni la Tierra, ni el Sol, ni la propia Vía Láctea, se encuentran en el centro del universo.Debido a las ideas del científico Hubble se pudo descubrir que las galaxias se están alejando entre sí y de nosotros, lo que significaría que al principio estaban más juntas. Según la teoría del Big Bang, hubo una gran explosión inicial del universo.Calculando la velocidad de separación actual de los cuerpos celestes, se ha determinado la edad del universo, siendo ésta de aproximadamente 13750±150 millones de años. En la película puedes apreciar cómo debió ser la gran explosión a partir de una esfera (a veces llamada huevo cósmico) que se hizo inestable. Esta explosión lanzó en todas las direcciones sus partículas. Hoy en día el universo continúa creciendo por efecto de dicha explosión.A partir de las partículas iniciales se formaron los gases y el polvo cósmico que dieron lugar a las estrellas, planetas, satélites...

Page 8: unibor
Page 9: unibor

Resumen

La imagen de luz visible más profunda del cosmos, el Campo Ultra Profundo del Hubble.

l universo es la totalidad del espacio y del tiempo, de todas las formas de la materia, la energía y el impulso, las leyes y constantes físicas que las gobiernan. Sin embargo, el término universo puede ser utilizado en sentidos contextuales ligeramente diferentes, para referirse a conceptos como el

cosmos, el mundo o la naturalezaEObservaciones astronómicas indican que el universo tiene una edad de 13,73 ± 0,12 millardos de años y por lo menos 93.000 millones de años luz 2de extensión. El evento que se cree que dio inicio al universo se denomina Big Bang. En aquel instante toda la materia y la energía del universo observable estaban concentradas en un punto de densidad infinita. Después del Big Bang, el universo comenzó a expandirse para llegar a su condición actual, y continúa haciéndolo.

Debido a que, según la teoría de la relatividad especial, la materia no puede moverse a una velocidad superior a la velocidad de la luz, puede parecer paradójico que dos objetos del universo puedan haberse separado 93 mil millones de años luz en un tiempo de únicamente 13 mil millones de años; sin embargo, esta separación no entra en conflicto con la teoría de la relatividad general, ya que ésta sólo afecta al movimiento en el espacio, pero no al espacio mismo, que puede extenderse a un ritmo superior, no limitado por la velocidad de la luz. Por lo tanto, dos galaxias pueden separarse una de la otra más rápidamente que la velocidad de la luz si es el espacio entre ellas el que se dilata.

Mediciones sobre la distribución espacial y el desplazamiento hacia el rojo (redshift) de galaxias distantes, la radiación cósmica de fondo de microondas, y los porcentajes relativos de los elementos químicos más ligeros, apoyan la teoría de la expansión del espacio, y más en general, la teoría del Big Bang, que propone que el universo en sí se creó en un momento específico en el pasado.

Observaciones recientes han demostrado que esta expansión se está acelerando, y que la mayor parte de la materia y la energía en el universo es fundamentalmente diferente de la observada en la Tierra, y no es directamente observable (véanse materia oscura y energía oscura). La imprecisión de las observaciones actuales ha limitado las predicciones sobre el destino final del universo.

2 Más información en pag11

Page 10: unibor

Los experimentos sugieren que el universo se ha regido por las mismas leyes físicas, constantes a lo largo de su extensión e historia. La fuerza dominante en distancias cósmicas es la gravedad, y la relatividad general es actualmente la teoría más exacta para describirla. Las otras tres fuerzas fundamentales, y las partículas en las que actúan, son descritas por el Modelo Estándar. El universo tiene por lo menos tres dimensiones de espacio y una de tiempo, aunque experimentalmente no se pueden descartar dimensiones adicionales muy pequeñas. El espacio-tiempo parece estar conectado de forma sencilla, y el espacio tiene una curvatura media muy pequeña o incluso nula, de manera que la geometría euclidiana es, como norma general, exacta en todo el universo.

La ciencia modeliza el universo como un sistema cerrado que contiene energía y materia adscritas al espacio-tiempo y que se rige fundamentalmente por principios causales.

Basándose en observaciones del universo observable, los físicos intentan describir el continuo espacio-tiempo en que nos encontramos, junto con toda la materia y energía existentes en él. Su estudio, en las mayores escalas, es el objeto de la cosmología, disciplina basada en la astronomía y la física, en la cual se describen todos los aspectos de este universo con sus fenómenos.

Page 11: unibor

1

Capitulo#1

1. Porción observable

os cosmólogos teóricos y astrofísicos utilizan de manera diferente el término universo, designando bien el sistema completo o únicamente una parte de él. Según el convenio de los cosmólogos, el término universo se refiere frecuentemente a la parte finita del espacio-tiempo que es directamente

observable utilizando telescopios, otros detectores, y métodos físicos, teóricos y empíricos para estudiar los componentes básicos del universo y sus interacciones. Los físicos cosmólogos asumen que la parte observable del espacio comóvil (también llamado nuestro universo) corresponde a una parte de un modelo del espacio entero y normalmente no es el espacio entero. Frecuentemente se utiliza el término el universo como ambas: la parte observable del espacio-tiempo, o el espacio-tiempo entero.

L

Algunos cosmólogos creen que el universo observable es una parte extremadamente pequeña del universo «entero» realmente existente, y que es imposible observar todo el espacio comóvil. En la actualidad se desconoce si esto es correcto, ya que de acuerdo a los estudios de la forma del universo, es posible que el universo observable esté cerca de tener el mismo tamaño que todo el espacio. La pregunta sigue debatiéndose. Si una versión del escenario de la inflación cósmica es correcta, entonces aparentemente no habría manera de determinar si el universo es finito o infinito. En el caso del universo observable, éste puede ser solo una mínima porción del universo existente, y por consiguiente puede ser imposible saber realmente si el universo está siendo completamente observado.

El universo observable' u horizonte del universo constituye la parte visible del universo total, parece tener un espacio-tiempo geométricamente plano conteniendo una densidad masa-energía equivalente de 15,15 × 1057<supr>−1567</supr> gramos por centímetro cúbico. Los constituyentes primarios parecen consistir en 73% de energía oscura, 23% de materia oscura fría y un 4% de átomos. Así, la densidad de los átomos está en el orden del núcleo de hidrógeno sencillo para cada cuatro metros cúbicos. [] La naturaleza exacta de la energía oscura y la materia oscura fría sigue siendo un misterio. Actualmente se especula con que el neutrino (partícula muy abundante en el universo) tenga, aunque mínima, una masa, lo que significaría, de ser comprobado, que la energía y la materia oscura no existen.

El Universo observable (o visible), que consiste en todas las localizaciones que podían habernos afectado desde el Big Bang dada la velocidad del sonido finita, es ciertamente finito. La distancia comóvil al extremo del Universo visible es sobre 46.500 millones de años luz en todas las direcciones desde la Tierra, así el Universo visible se puede considerar como una esfera perfecta con la Tierra en el centro y un diámetro de unos 93.000 millones de años luz/879 billones de km (5.865 billónes UA). [] Hay que notar que muchas fuentes han publicado una amplia variedad de cifras incorrectas para el tamaño del Universo visible, desde 13.700 hasta 180.000 millones de años luz. Aunque la edad del universo sea de 13.700 millones de años, la expansión producida debido al Big Bang hace que el universo más lejano observable se haya alejado mucho más que esa distancia, a pesar de haber recorrido menos de 13.700 millones de años luz (13,7x10^9, la ilustración está mal).

2. Evolución

El hecho de que el universo esté en expansión se deriva de las observaciones del corrimiento al rojo realizadas en la década de 1920 y que se cuantifican por la ley de Hubble. Dichas observaciones son la predicción experimental del modelo de Friedmann-Robertson-Walker, que es una solución de las ecuaciones de campo de Einstein de la relatividad general, que predicen el inicio del universo mediante un big bang. El "corrimiento al rojo" es un fenómeno observado por los astrónomos, que muestra una relación directa entre la distancia de un objeto remoto (como una galaxia) y la velocidad con la que éste

Capitulo#2

Índice

Page 12: unibor

2

se aleja. Si esta expansión ha sido continua a lo largo de la vida del universo, entonces en el pasado estos objetos distantes que siguen alejándose tuvieron que estar una vez juntos. Esta idea da pie a la teoría del Big Bang; el modelo dominante en la cosmología actual.

Durante la era más temprana del Big Bang, se cree que el universo era un caliente y denso plasma. Según avanzó la expansión, la temperatura decreció hasta el punto en que se pudieron formar los átomos. En aquella época, la energía de fondo se desacopló de la materia y fue libre de viajar a través del espacio. La energía remanente continuó enfriándose al expandirse el universo y hoy forma el fondo cósmico de microondas. Esta radiación de fondo es remarcablemente uniforme en todas direcciones, circunstancia que los cosmólogos han intentado explicar como reflejo de un periodo temprano de inflación cósmica después del Big Bang.

El examen de las pequeñas variaciones en el fondo de radiación de microondas proporciona información sobre la naturaleza del universo, incluyendo la edad y composición. La edad del universo desde el Big Bang, de acuerdo a la información actual proporcionada por el WMAP de la NASA, se estima en unos 13.700 millones de años, con un margen de error de un 1% (137 millones de años). Otros métodos de estimación ofrecen diferentes rangos de edad, desde 11.000 millones a 20.000 millones.

2.1 Teoría sobre el origen y la formación del Universo (Big Bang)

El hecho de que el universo esté en expansión se deriva de las observaciones del corrimiento al rojo realizadas en la década de 1920 y que se cuantifican por la ley de Hubble. Dichas observaciones son la predicción experimental del modelo de Friedmann-Robertson-Walker, que es una solución de las ecuaciones de campo de Einstein de la relatividad general, que predicen el inicio del universo mediante un big bang.

El "corrimiento al rojo" es un fenómeno observado por los astrónomos, que muestra una relación directa entre la distancia de un objeto remoto (como una galaxia) y la velocidad con la que éste se aleja. Si esta expansión ha sido continua a lo largo de la vida del universo, entonces en el pasado estos objetos distantes que siguen alejándose tuvieron que estar una vez juntos. Esta idea da pie a la teoría del Big Bang; el modelo dominante en la cosmología actual.

Durante la era más temprana del Big Bang, se cree que el universo era un caliente y denso plasma. Según avanzó la expansión, la temperatura decreció hasta el punto en que se pudieron formar los átomos. En aquella época, la energía de fondo se desacopló de la materia y fue libre de viajar a través del espacio. La energía remanente continuó enfriándose al expandirse el universo y hoy forma el fondo cósmico de microondas. Esta radiación de fondo es remarcablemente uniforme en todas direcciones, circunstancia que los cosmólogos han intentado explicar como reflejo de un periodo temprano de inflación cósmica después del Big Bang.

El examen de las pequeñas variaciones en el fondo de radiación de microondas proporciona información sobre la naturaleza del universo, incluyendo la edad y composición. La edad del universo desde el Big Bang, de acuerdo a la información actual proporcionada por el WMAP de la NASA, se estima en unos 13.700 millones de años, con un margen de error de un 1% (137 millones de años). Otros métodos de estimación ofrecen diferentes rangos de edad, desde 11.000 millones a 20.000 millones.

2.2 Sopa PrimigeniaHasta hace poco, la primera centésima de segundo era más bien un misterio, impidiendo los científicos describir exactamente cómo era el universo. Los nuevos experimentos en el RHIC, en el Brookhaven National Laboratory, han proporcionado a los físicos una luz en esta cortina de alta energía, de tal manera que pueden observar directamente los tipos de comportamiento que pueden haber tomado lugar en ese instante.7 En estas energías, los quarks que componen los protones y los neutrones no estaban juntos, y una mezcla densa supercaliente de quarks y gluones, con algunos electrones, era todo lo que podía existir en los microsegundos anteriores a que se enfriaran lo suficiente para formar el tipo de partículas de

Page 13: unibor

3

materia que observamos hoy en día.

Quark

Un neutrón, compuesto por dos quark abajo (d) y un quark arriba (u). (El color

asignado a cada quark no es importante, sólo lo es el que estén presentes los tres

colores.)

Composición Partícula elemental

Familia Fermión

Generación 1.ª, 2.ª, 3.ª

Interacción Gravedad,

Nuclear débil,

Nuclear fuerte,

Electromagnetismo

Símbolo(s) q

Antipartícula Antiquark q

Teorizada Murray Gell-Mann (1964)

George Zweig (1964)

Descubierta SLAC (~1968)

Tipos 6 (up (arriba), down (abajo), charm (encanto), strange

(extraño), top (cima), y bottom (fondo))

Carga eléctrica +2/3 e, −1/3 e

Carga de color Sí

Espín 1/2

Page 14: unibor

4

Tabla 1

En física de partículas, los quarks , o cuarks , junto con los leptones, son los constituyentes fundamentales de la materia. Varias especies de quarks se combinan de manera específica para formar partículas tales como protones y neutrones.

Los quarks son las únicas partículas fundamentales que interactúan con las cuatro fuerzas fundamentales. Los quarks son partículas parecidas a los gluones en peso y tamaño, esto se asimila en la fuerza de cohesión que estas partículas ejercen sobre ellas mismas. Son partículas de espín 1/2, por lo que son fermiones. Forman, junto a los leptones, la materia visible.

Hay seis tipos distintos de quarks que los físicos de partículas han denominado de la siguiente manera:

up (arriba) down (abajo) charm (encanto) strange (extraño) top (cima) y bottom (fondo).

Fueron nombrados arbitrariamente basados en la necesidad de nombrarlos de una manera fácil de recordar y usar, además de los correspondientes antiquarks. Las variedades extraña, encanto, fondo y cima son muy inestables y se desintegraron en una fracción de segundo después del Big Bang, pero los físicos de partículas pueden recrearlos y estudiarlos. Las variedades arriba y abajo sí se mantienen, y se distinguen entre otras cosas por su carga eléctrica.

En la naturaleza no se encuentran quarks aislados. Estos siempre se encuentran en grupos, llamados hadrones, de dos o tres quarks, conocidos como mesones y bariones respectivamente. Esto es una consecuencia directa del confinamiento del color. En el año 2003 se encontró evidencia experimental de una nueva asociación de cinco quarks, los pentaquark aunque su existencia aún es controvertida.

2.3 Protogalaxias

Los rápidos avances acerca de lo que pasó después de la existencia de la materia aportan mucha información sobre la formación de las galaxias. Se cree que las primeras galaxias eran débiles "galaxias enanas" que emitían tanta radiación que separarían los átomos gaseosos de sus electrones. Este gas, a su vez, se estaba calentando y expandiendo, y tenía la posibilidad de obtener la masa necesaria para formar las grandes galaxias que conocemos hoy

2.4 Destino Final

El destino final del universo tiene diversos modelos que explican lo que sucederá en función de diversos parámetros y observaciones. A continuación se explican los modelos fundamentales más aceptados:

Page 15: unibor

5

Ilustración 1Plano de la forma3 de la Tierra

Diagrama de las tres posibles geometrías del universo: cerrado, abierto y plano, correspondiendo a valores del parámetro de densidad Ω0 mayores que, menores que o iguales a 1 respectivamente. En el universo cerrado si se viaja en línea recta se llega al mismo punto, en los otros dos no.

Ilustración 2

El destino final de un Universo en expansión está determinado por si Ω es mayor, menor o igual a 1.

El consenso científico actual de muchos cosmólogos es que el destino final del Universo depende de su forma global y de cuánta energía oscura contiene.[]

3 Más información en pag12

Page 16: unibor

6

Universo cerrado

Si Ω>1, entonces la geometría del espacio sería cerrada como la superficie de una esfera. La suma de los ángulos de un triángulo exceden 180 grados y no habría líneas paralelas. Al final, todas las líneas se encontrarían. La geometría del Universo es, al menos en una escala muy grande, elíptica.

En un Universo cerrado carente del efecto repulsivo de la energía oscura, la gravedad acabará por detener la expansión del Universo, después de lo que empezará a contraerse hasta que toda la materia en el Universo se colapse en un punto. Entonces existirá una singularidad final llamada el Big Crunch, por analogía con el Big Bang. Sin embargo, si el Universo tiene una gran suma de energía oscura (como sugieren los hallazgos recientes), entonces la expansión será grande.

Universo abierto

Si Ω<1, la geometría del espacio es abierta, p.ej., negativamente curvada como la superficie de una silla de montar. Los ángulos de un triángulo suman menos de 180 grados (llamada primera fase) y las líneas paralelas no se encuentran nunca equidistantes, tienen un punto de menor distancia y otro de mayor. La geometría del Universo sería hiperbólica.

Incluso sin energía oscura, un Universo negativamente curvado se expandirá para siempre, con la gravedad apenas ralentizando la tasa de expansión. Con energía oscura, la expansión no sólo continúa sino que se acelera. El destino final de un Universo abierto es, o la muerte térmica" o Big Freeze" o el "Big Rip", dónde la aceleración causada por la energía oscura terminará siendo tan fuerte que aplastará completamente los efectos de las fuerzas gravitacionales, electromagnéticas y los enlaces débiles.

Universo plano

Si la densidad media del Universo es exactamente igual a la densidad crítica tal que Ω=1, entonces la geometría del Universo es plana: como en la geometría euclidiana, la suma de los ángulos de un triángulo es 180 grados y las líneas paralelas nunca se encuentran.

Sin energía oscura, un Universo plano se expande para siempre pero a una tasa continuamente desacelerada: la tasa de expansión se aproxima asintóticamente a cero. Con energía oscura, la tasa de expansión del Universo es inicialmente baja, debido al efecto de la gravedad, pero finalmente se incrementa. El destino final del Universo es el mismo que en un Universo abierto, la muerte caliente del Universo, el "Big Freeze" o el "Big Rip". En 2005, se propuso la teoría del destino del Universo Fermión-bosón, proponiendo que gran parte del Universo estaría finalmente ocupada por condensado de Bose-Einstein y la quasipartícula análoga al fermión, tal vez resultando una implosión. Muchos datos astrofísicos hasta la fecha son consistentes con un Universo plano.

2.5 Teorías sobre el final del Universo

El destino del Universo viene dado por la densidad del Universo. La preponderancia de las pruebas hasta la fecha, basadas en las medidas de la tasa de expansión y de la densidad, favorecen la teoría de que el Universo no se colapsará.

Big Freeze o Heat DeathEste escenario es generalmente considerado como el más probable y ocurrirá si el Universo continúa en expansión como hasta ahora. Sobre la escala de tiempo en el orden de un billón de años, las estrellas existentes se apagarán y la mayor parte del Universo se volverá oscuro. El Universo se aproxima a un estado altamente entrópico. Sobre una escala del tiempo mucho más larga en las eras siguientes, las galaxias colapsarían en agujeros negros con la evaporación consecuente vía la radiación de Hawking. En algunas teorías de la gran unificación, la descomposición de protones convertirá el gas interestelar subyacente en positrones y electrones, que se recombinarán en protones. En este caso, el Universo

indefinidamente consistirá solamente en una sopa de radiación uniforme que estará ligeramente corrida hacia el rojo con cada vez menos energía, enfriándose.

Page 17: unibor

7

El Big Freeze es un escenario bajo el que la expansión continúa indefinidamente en un Universo que es demasiado frío para tener vida. Podría ocurrir bajo una geometría plana o hiperbólica, porque tales geometrías son una condición necesaria para un Universo que se expande por siempre. Un escenario relacionado es la Muerte térmica, que dice que el Universo irá hacia un estado de máxima entropía en el que cada cosa se distribuye uniformemente y no hay gradientes, que son necesarios para mantener el tratamiento de la información, una forma de vida. El escenario de Muerte térmica es compatible con cualquiera de los tres modelos espaciales, pero necesita que el Universo llegue a una eventual temperatura mínima.

Big RipArtículo principal: Big Rip.

Ilustración 3Simulación del Big Rip.

En un Universo abierto, la relatividad general predice que el Universo tendrá una existencia indefinida, pero con un estado donde la vida que se conoce no puede existir. Bajo este escenario, la energía oscura causa que la tasa de expansión del Universo se acelere. Llevándolo al extremo, una aceleración de la expansión eterna significa que toda la materia del Universo, empezando por las galaxias y eventualmente todas las formas de vida, no importa cuanto de pequeñas sean, se disgregarán en partículas elementales desligadas. El estado final del Universo es una singularidad, ya que la tasa de expansión es infinita.

Big Crunch

Ilustración 4El Big Crunch. El eje vertical se puede considerar como tiempo positivo o negativo.

La teoría del Big Crunch es un punto de vista simétrico del destino final del Universo. Justo con el Big Bang empezó una expansión cosmológica, esta teoría postula que la densidad media del Universo es

Page 18: unibor

8

suficiente para parar su expansión y empezar la contracción. De ser así, se vería cómo las estrellas tienden a ultravioleta, por efecto Doppler. El resultado final es desconocido; una simple extrapolación sería que toda la materia y el espacio-tiempo en el Universo se colapsaría en una singularidad espaciotemporal adimensional, pero a estas escalas se desconocen los efectos cuánticos necesarios para ser considerados (Véase Gravedad cuántica).

Este escenario permite que el Big Bang esté precedido inmediatamente por el Big Crunch de un Universo precedente. Si esto ocurre repetidamente, se tiene un universo oscilante. El Universo podría consistir en una secuencia infinita de Universos finitos, cada Universo finito terminando con un Big Crunch que es también el Big Bang del siguiente Universo. Teóricamente, el Universo oscilante no podría reconciliarse con la segunda ley de la termodinámica: la entropía aumentaría de oscilación en oscilación y causaría la muerte caliente. Otras medidas sugieren que el Universo no es cerrado. Estos argumentos indujeron a los cosmólogos a abandonar el modelo del Universo oscilante. Una idea similar es adoptada por el modelo cíclico, pero esta idea evade la muerte caliente porque de una expansión de branas se diluye la entropía acumulada en el ciclo anterior.

Big Bounce

Según algunos teóricos del Universo oscilante, el Big Bang fue simplemente el comienzo de un período de expansión al que siguió un período de contracción. Desde este punto de vista, se podría hablar de un Big Crunch, seguido de un Big Bang, o, más sencillamente, un Gran Rebote. Esto sugiere que podríamos estar viviendo en el primero de todos los universos, pero es igualmente probable que estemos viviendo en el universo dos mil millones parte (o cualquiera de una secuencia infinita de universos)

Multiverso4

El multiverso (conjunto de Universos paralelos) es un escenario en el que aunque el Universo puede ser de duración finita, es un Universo entre muchos. Además, la física del multiverso podría permitirles existir indefinidamente. En particular, otros Universos podrían ser objeto de leyes físicas diferentes de las que se aplican en el Universo conocido.

Falso vacío

Si el vacío no es el estado de energía más bajo (un falso vacío), se podría colapsar en un estado de energía menor. Esto es llamado evento de meta estabilidad del vacío. Esto fundamentalmente alteraría el Universo, las constantes físicas podían tener valores diferentes, severamente afectando a los fundamentos de la materia.

Niveles indefinidos

El modelo cosmológico multi-nivel postula la existencia de niveles indefinidos del Universo. Mientras la existencia de nuestro nivel del Universo es finita, hay un número indefinido de niveles del Universo cada uno con su principio y / o su fin, pero el completo tiene una existencia infinita.[]

Restricciones observacionales en las teorías

La elección entre estos escenarios rivales se hace 'pesando' el Universo, p.ej., midiendo las contribuciones relativas de materia, radiación, materia oscura y energía oscura a la densidad crítica. Más concretamente, compitiendo con escenarios que son evaluados contra los datos obtenidos en agrupaciones galácticas y supernovas lejanas y en anisotropías en el fondo cósmico de microondas.

4 Más información en pag18

Page 19: unibor

9

Vida en un Universo mortalLa hipótesis de la inteligencia eterna de Dyson propone que una civilización avanzada podría sobrevivir durante un período infinito consumiendo sólo una suma finita de energía. Tal civilización alternaría breves periodos de actividad con largos periodos de hibernación. John Barrow y Frank Tipler (1986) propusieron el principio del final antrópico: la emergencia de vida inteligente es inevitable y una vez que la vida llegue a estar en alguna parte del Universo, nunca morirá. Barrow y Tipler van incluso más allá: el destino final de la vida inteligente es extenderse y controlar el Universo entero en todos los aspectos menos uno: la inteligencia no puede parar el Big Crunch. Además, no se querría hacer de esta manera porque la fuente principal de energía del Universo al experimentar un Big Crunch será una mancha caliente en el cielo surgiendo de una contracción asimétrica del Universo.

El escenario del punto Omega de Tipler (Tipler 1994) concluye que el contrario de la eterna inteligencia sería el caso de una civilización en los instantes finales de un Big Crunch. Tal civilización, en efecto, experimentaría una suma infinita de tiempo "subjetivo" durante la vida finita restante del Universo, usando la enorme energía de la implosión para acelerar el tratamiento de la información más deprisa que la alternativa de la singularidad final. Además, las soluciones efectivas pueden ser indistinguibles desde el presente estado del Universo.. El trabajo teórico de Eric Chaisson y David Layzer encuentra que una expansión del espacio-tiempo da pie a un salto de entropía creciente, pone en duda la hipótesis de la muerte caliente del Universo. Invocando el trabajo de Ilya Prigogine en termodinámica lejos del equilibrio, sus análisis sugieren que este salto de entropía puede contribuir a la información y así a la formación de estructuras.

Mientras tanto, Andrei Linde, Alan Guth, Edward Harrison y Ernest Sternglass argumentan que la cosmología inflacionaria fuertemente sugiere la presencia de multiversos5 y que sería práctico incluso con el conocimiento actual para los seres inteligentes generar y transmitir información de novo a un Universo distinto. Alan Guth ha especulado que una civilización en la cima de la escala de Kardashev puede crear universos personalizados como continuación de la evolución de la existencia, el crecimiento y la multiplicación.[3] Además, el reciente trabajo teórico sobre el problema sin resolver de la gravedad cuántica y el principio holográfico sugieren que las cantidades físicas tradicionales se pueden describir por sí mismas, se pueden describir en términos de intercambios de información, que en cambio hace que aparezcan las preguntas sobre la aplicabilidad de los modelos cosmológicos antiguos

Albert Einstein 1915. Teoría de la relatividad general.Proporciona una descripción matemática del Universo. Da una respuesta errónea a la existencia de un cosmos eterno y estático. Introduce la constante cosmológica en sus ecuaciones con el fin de contrarrestarla gravitación y «frenar» la expansión acelerada del Universo.

Alexander Friedmann En 1922 examina las ecuaciones de la relatividad de Einstein y llega a la conclusión de que al eliminar la constante cosmológica, se admiten varias soluciones, entre ellas la del Universo en expansión.

George Lemaître En 1927, llega a las mismas conclusiones que Friedmann y propone su modelo del átomo primordial,que contiene toda la materia y la energía a partir de las cuales se formó el Universo. Fue el precursor de la teoría del Big Bang.Edwin Hubble En 1929 demuestra experimentalmente la expansión del Universo. Comparó las distancias de las galaxias en función de la velocidad con la que se alejaban unas de otras, y dedujo que cuanto más lejos estaban, más rápido se movían. Relación conocida como Ley de Hubble.

George Gamow En 1948 elabora, junto con Ralph Alpher y Hans Bethe, el modelo cosmológico del Big Bang y demuestra cómo se llevo a cabo en las estrellas la creación de los primeros elementos químicos.

Fred Hoyle En 1948 propone, junto con Thomas Gold y Herman Bandi, el modelo cosmológico dinámico e infinito del estado estacionario. Bautiza despectivamente como Big Bang a la teoría de Gamow, que consideraba errónea. Él cree en un Universo en expansión, pero infinito y sin un principio definido, en el que se genera materia de forma continua.

Tabla 2

5 Más información en pag19

Page 20: unibor

10

Capitulo#2

3. Descripción física

Tabla 3

Núcleo

El núcleo está situado en el centro del sistema y tiene forma de una esfera achatada que también se compone de estrellas, pero de edad avanzada y, por lo tanto, presenta un color más rojizo que el disco. Tiene un diámetro estimado de cien mil años luz y una altura de treinta mil años luz, siendo una fuente de radiación electromagnética intensa, probablemente debido a la existencia de un agujero negro en su centro. Éste está rodeado por un disco de gas a alta temperatura y partículas de polvo interestelar, que absorben la luz visible y la radiación ultravioleta.El agujero negro central se llama Sagitario A, la masa se estima en cuatro millones de veces la masa del Sol y en su entorno parece que hay presencia de nubes de gas ionizado en movimiento rápido. Esto último explicaría la fuerte emisión de rayos X y de radiación infrarroja del núcleo galáctico.

Bulbo centralEl bulbo central de la galaxia está alrededor del núcleo galáctico, su forma es esférica y se compone principalmente de estrellas viejas. Esta región de la galaxia es rica en elementos pesados.

Disco

El disco es la parte más visible de la galaxia, y esta es la estructura sobre la que descansan los brazos de la Vía Láctea, su espesor es equivalente a una quinta parte de su diámetro. Constituida por estrellas jóvenes de color azul, con nubes de polvo, gas y cúmulos estelares. Las estrellas del disco tienen un movimiento de traslación alrededor del núcleo. Todas las estrellas que vemos en el cielo nocturno, se encuentran en el disco galáctico.

Los brazos espirales

Hasta 1953 nadie conocía la existencia de los brazos espirales de la Vía Láctea. La estructura espiral estaba oculta debido al polvo interestelar y es difícil observar desde dentro de la propia galaxia.Los dos brazos principales, Centauro y Perseo, contienen una alta concentración de estrellas jóvenes y brillantes. La Vía Láctea está clasificada como una galaxia espiral y sus ramas están en el movimiento de rotación alrededor del núcleo. Es en la parte inferior del brazo de Orión que se encuentra nuestro Sistema Solar. El Sol efectúa una rotación completa cada doscientos millones de años y se encuentra a unos 27000 años luz del centro galáctico.

Componente esférico

El disco de la vía láctea no es compacto, tiene una región central que se llama el componente esférico. Las estrellas incluidas en este son jóvenes y viejas y se distribuyen uniformemente. Esta región está rodeada por el halo.

HaloEl halo tiene una forma esférica y se compone de partículas a alta temperatura ultra excitadas. El halo, como tal, no es observable ópticamente. Las estrellas que forman los cúmulos globulares son las más antiguas de la galaxia. Es el componente menos conocido de la Vía Láctea y se supone que su estructura es gigantesca.

Capitulo#3

Índice

Capitulo#1

Page 21: unibor

11

3.1 Tamaño

uy poco se conoce con certeza sobre el tamaño del universo. Puede tener una longitud de billones de años luz o incluso tener un tamaño infinito. Un artículo de 2003 dice establecer una cota inferior de 24 gigaparsecs (78.000 millones de años luz) para el tamaño del universo, pero

no hay ninguna razón para creer que esta cota está de alguna manera muy ajustada (Véase forma del Universo). Pero hay distintas tesis del tamaño; una de ellas es que hay varios universos, otro es que el universo es infinito

MEl universo observable (o visible), que consiste en toda la materia y energía que podía habernos afectado desde el Big Bang dada la limitación de la velocidad de la luz, es ciertamente finito. La distancia comóvil al extremo del universo visible ronda los 46.500 millones de años luz en todas las direcciones desde la Tierra. Así, el universo visible se puede considerar como una esfera perfecta con la Tierra en el centro, y un diámetro de unos 93.000 millones de años luz. Hay que notar que muchas fuentes han publicado una amplia variedad de cifras incorrectas para el tamaño del universo visible: desde 13.700 hasta 180.000 millones de años luz. (Véase universo observable).

En el Universo las distancias que separan los astros son tan grandes que, si las quisiéramos expresar en metros, tendríamos que utilizar cifras muy grandes. Debido a ello, se utiliza como unidad de longitud el año luz, que corresponde a la distancia que recorre la luz en un año.

Actualmente, el modelo de universo más comúnmente aceptado es el propuesto por Albert Einstein en su Relatividad General, en la que propone un universo "finito pero ilimitado", es decir, que a pesar de tener un volumen medible no tiene límites, de forma análoga a la superficie de una esfera, que es medible pero ilimitada.

Un año luz es la distancia que recorre la luz en un año. Equivale aproximadamente a 9,460728 × 1012 km = 9 460 730 000 000 km, o sea, algo menos de 10 billones de kilómetros.[][]

Más específicamente, un año luz es la distancia que recorrería un fotón en el vacío durante un año Juliano (365,25 días de 86.400 a la velocidad de la luz (299 792 458 m/s), a una distancia infinita de cualquier campo gravitacional o campo magnético.[]

Un año luz es una unidad de longitud, (es una medida de la longitud del espacio tiempo absoluto einsteniano). En campos especializados y científicos se prefiere el pársec (unos 3,26 años luz) y sus múltiplos para las distancias astronómicas, mientras que el año luz sigue siendo habitual en ciencia popular y divulgación.[] También hay unidades de longitud basadas en otros períodos, como el segundo luz y el minuto luz, utilizadas especialmente para describir distancias dentro del Sistema Solar, pero también se suelen restringir a trabajos de divulgación, ya que en contextos especializados se prefiere la unidad astronómica (unos 8,32 minutos luz).

Ilustración 5

Page 22: unibor

12

3.2 Forma

Artículos principales: Forma del Universo y Estructura a gran escala del universo.

Ilustración 6

Universum, Grabado Flammarion, xilografía, publicada en París 1888.

Una pregunta importante abierta en cosmología es la forma del universo. Matemáticamente, ¿qué 3-variedad representa mejor la parte espacial del universo?

Si el universo es espacialmente plano, se desconoce si las reglas de la geometría Euclidiana serán válidas a mayor escala. Actualmente muchos cosmólogos creen que el Universo observable está muy cerca de ser espacialmente plano, con arrugas locales donde los objetos masivos distorsionan el espacio-tiempo, de la misma forma que la superficie de un lago es casi plana. Esta opinión fue reforzada por los últimos datos del WMAP, mirando hacia las "oscilaciones acústicas" de las variaciones de temperatura en la radiación de fondo de microondas.

Por otra parte, se desconoce si el universo es conexo. El universo no tiene cotas espaciales de acuerdo al modelo estándar del Big Bang, pero sin embargo debe ser espacialmente finito (compacto). Esto se puede comprender utilizando una analogía en dos dimensiones: la superficie de una esfera no tiene límite, pero no tiene un área infinita. Es una superficie de dos dimensiones con curvatura constante en una tercera dimensión. La 3-esfera es un equivalente en tres dimensiones en el que las tres dimensiones están constantemente curvadas en una cuarta.

Si el universo fuese compacto y sin cotas, sería posible, después de viajar una distancia suficiente, volver al punto de partida. Así, la luz de las estrellas y galaxias podría pasar a través del universo observable más de una vez. Si el universo fuese múltiplemente conexo y suficientemente pequeño (y de un tamaño apropiado, tal vez complejo) entonces posiblemente se podría ver una o varias veces alrededor de él en alguna (o todas) direcciones. Aunque esta posibilidad no ha sido descartada, los resultados de las últimas investigaciones de la radiación de fondo de microondas hacen que esto parezca improbable.

En cosmología física, el término estructura a gran escala se refiere a la caracterización de las distribuciones observables de materia y luz en las mayores escalas (típicamente del orden de miles de millones de años luz). Las expediciones de observación del cielo y el mapeo de varias bandas de longitud de onda de radiación electromagnética (en particular las emisiones de 21 cm) han proporcionado mucha información sobre el contenido y el carácter de la estructura del Universo. La organización de la estructura parece seguir un modelo jerárquico con la organización en la escala superior de supercúmulos y filamentos. Por encima de esto, parece que no hay ninguna estructura continuada, un fenómeno que ha sido conocido como el Final de la Grandeza.

Page 23: unibor

13

Tabla 4

Ilustración 7

La vista panorámica de todo el cielo del infrarrojo cercano revela la distribución de galaxias más allá de la Vía Láctea. La imagen se ha obtenido del catálogo 2MASS, con más de 1.5 millones de galaxias y el Point Source Catalog (PSC), cerca de 500 millones de estrellas en la Vía Láctea. Las galaxias están codificadas por su color de 'corrimiento al rojo' obtenidos del UGC, CfA, Tully NBGC, LCRS, 2dF, 6dFGS, y de las expediciones SDSS (y de varias observaciones compiladas por la bases de datos extragaláctica de la NASA) o fotométricamente deducidas de la banda K (2.2 um). Las azules son las fuentes más cercanas (z < 0.01), las verdes están a distancias moderadas (0.01 < z < 0.04) y las rojas son las más lejanas que la 2MASS puede resolver (0.04 < z < 0.1). El mapa está proyectado con el mismo área que el sistema galáctico (la Vía Láctea en medio).[1] Gráficos de Thomas Jarret (IPAC).

Caracterización de estructurasLa organización de estructuras podría decirse que empieza a nivel estelar, aunque muchos cosmólogos raramente abordan la astrofísica en esta escala. Las estrellas se organizan en galaxias, las cuales forman cúmulos y supercúmulos que están separados por el inmenso vacío. Hasta 1989, se asumía normalmente que los cúmulos galácticos virializados eran las mayores estructuras en la existencia y que se distribuían más o menos uniformemente a través del Universo en cada dirección. Sin embargo, basados en datos de expediciones de corrimiento al rojo, en 1989 Margaret Geller y John Huchra descubrieron la "Gran Muralla", un conjunto de galaxias a más de 500 millones de años luz de distancia y de 200 millones de

Page 24: unibor

14

años de ancho, pero sólo 15 millones de años luz de profundidad. La existencia de esta estructura escapó

de ser advertida durante demasiado tiempo porque requiere la localización de la posición de galaxias en tres dimensiones, que involucra combinar información de localización sobre galaxias con información de distancia del corrimiento al rojo.

En abril de 2003, se descubrió otra estructura a gran escala, la Gran Muralla de Sloan. Sin embargo, técnicamente no es una 'estructura', ya que los objetos en ella no están gravitacionalmente relacionados los unos con los otros pero sólo parecen de esta forma, causados por las medidas de distancia que fue utilizado. Uno de los mayores vacíos del espacio es el vacío de Capricornio, con un diámetro estimado de 230 millones de años luz.[] Sin embargo, en agosto de 2007 se confirmó la existencia de un nuevo supervacío en la constelación Eridanus, que está a casi mil millones de años. [] Originalmente, había sido descubierto en 2004 y fue conocido como Lugar Frío del WMAP.

En estudios más recientes el Universo parece una colección de vacíos gigantes similares a burbujas separados por hojas y filamentos de galaxias en el que el supercúmulo se parece a nodos ocasionales relativamente densos.

Astrocartografía de nuestro vecindario

En el centro del supercúmulo de Virgo hay una anomalía gravitacional, conocida como el Gran Atractor, que afecta al movimiento de las galaxias en una región de cientos de millones de años luz. Todas estas galaxias están desplazadas hacia el rojo, de acuerdo con la Ley de Hubble, indicando que están alejándose de nosotros y las unas con las otras, pero las variaciones en su desplazamiento al rojo son suficientes para revelar la existencia de una concentración de masa equivalente a decenas de miles de galaxias. El Gran Atractor, descubierto en 1986, se encuentra a una distancia de entre 150 millones y 250 millones de años luz (250 millones es la estimación más reciente), en la dirección de las constelaciones de Hydra y Centaurus. En su vecindario hay una preponderancia de grandes galaxias antiguas, muchas de las cuales están colisionando con sus vecinos y/o radiando grandes cantidades de ondas de radio.

3.3 Color

Café cortado cósmico, el color del universo.

Históricamente se ha creído que el Universo es de color negro, pues es lo que observamos al momento de mirar al cielo en las noches despejadas. En 2002, sin embargo, los astrónomos Karl Glazebrook e Iván Baldry afirmaron en un artículo científico que el universo en realidad es de un color que decidieron llamar café cortado cósmico. Este estudio se basó en la medición del rango espectral de la luz proveniente de un gran volumen del Universo, sintetizando la información aportada por un total de más de 200.000 galaxias.

Descubrimiento del color

En 2001, Karl Glazebrook e Iván Baldry determinaron que el color del universo era un verde aturquesado, pero al año siguiente corrigieron su análisis en un artículo científico [] en el que reportaron que la síntesis del color de todas las luces en el universo daba como resultado un blanco ligeramente beis. Dicha síntesis incluía a más de 200 000 galaxias, y medía el rango espectral de la luz proveniente de un gran volumen del universo.

El estudio original (incorrecto) describía al color del universo como un «turquesa cósmico», debido a un error en el modo en que el software utilizado calculaba las sombras.[]

Sin embargo, el objetivo central del estudio no fue encontrar el «color del universo», sino realizar un análisis espectral de diferentes galaxias para estudiar la formación de las estrellas. Al igual que las líneas de Fraunhofer, las líneas oscuras en los rangos espectrales del estudio muestran las estrellas más antiguas

Page 25: unibor

15

y más jóvenes, lo que permitió a Glazebrook y Baldry determinar la edad de diferentes galaxias y sistemas estelares. Lo que el estudio reveló es que una abrumadora mayoría de estrellas se formó hace unos cinco mil millones de años. Debido a que las estrellas deben haber sido «más brillantes» en el pasado, el color del universo, a medida que las estrellas azules se vuelven amarillas y eventualmente se convierten en gigantes rojas, va cambiando del azul al rojo.

La investigación de Glazebrook y Baldry fue financiada por la fundación David and Lucille Packard Foundation.

Nombre del color

El color fue revelado en un artículo del Washington Post en el que Glazebrook, en tono de broma, decía que aceptaba sugerencias de nombre para el nuevo color. Varias personas que leyeron el artículo enviaron sus sugerencias. Los siguientes fueron los resultados de la votación de los científicos involucrados en el proyecto:

Tabla 5

Nombre del color Nombre original Autor(es)Número de votos

de los astrónomos de UJH

Café cortado cósmico Cosmic Latte Peter Drum 6

Capuchino cósmico Cappuccino Cosmico Peter Drum 17

Gamuza Big BangRubor ~Beis ~

Big Bang Buff~ Blush~ Beige

Muchos participantes 13

Crema cósmica Cosmic Cream Varios participantes 8

Verde astrónomo Astronomer Green Desconocido 8

Casi astrónomo Astronomer Almost Lisa Rose 7

Marfilmamento Skyvory Michael Howard 7

Univeis Univeige Varios participantes 6

Caqui cósmico Cosmic Khaki Desconocido 5

Sopa de almejas primigenia Primordial Clam Chowder Desconocido 4

A pesar de que la sugerencia de «capuchino cósmico» de Drum recibió el mayor número de votos, Glazebrook y Baldry eligieron la otra sugerencia de Drum («café cortado cósmico»). A Drum se le ocurrió el nombre mientras estaba sentado en una cafetería Starbucks bebiendo un café con leche y leyendo el artículo: notó que el color mostrado en el artículo era el mismo que el de su café con leche.

Page 26: unibor

16

3.4 Homogeneidad e isotropía

Ilustración 8

Fluctuaciones en la radiación de fondo de microondas, Imagen NASA/WMAP.

Mientras que la estructura está considerablemente fractalizada a nivel local (ordenada en una jerarquía de racimo), en los órdenes más altos de distancia el universo es muy homogéneo. A estas escalas la densidad del universo es muy uniforme, y no hay una dirección preferida o significativamente asimétrica en el universo. Esta homogeneidad e isotropía es un requisito de la Métrica de Friedman-Lemaître-Robertson-Walker empleada en los modelos cosmológicos modernos

La cuestión de la anisotropía en el universo primigenio fue significativamente contestada por el WMAP, que buscó fluctuaciones en la intensidad del fondo de microondas. Las medidas de esta anisotropía han proporcionado información útil y restricciones sobre la evolución6 del Universo.

Hasta el límite de la potencia de observación de los instrumentos astronómicos, los objetos radian y absorben la energía de acuerdo a las mismas leyes físicas a como lo hacen en nuestra propia galaxia. Basándose en esto, se cree que las mismas leyes y constantes físicas son universalmente aplicables a través de todo el universo observable. No se ha encontrado ninguna prueba confirmada que muestre que las constantes físicas hayan variado desde el Big Bang.

3.5 Composición

El universo observable actual parece tener un espacio-tiempo geométricamente plano, conteniendo una densidad masa-energía equivalente a 9,9 × 10-30 gramos por centímetro cúbico. Los constituyentes primarios parecen consistir en un 73% de energía oscura, 23% de materia oscura fría y un 4% de átomos. Así, la densidad de los átomos equivaldría a un núcleo de hidrógeno sencillo por cada cuatro metros cúbicos de volumen. La naturaleza exacta de la energía oscura y la materia oscura fría sigue siendo un misterio. Actualmente se especula con que el neutrino, (una partícula muy abundante en el universo), tenga, aunque mínima, una masa. De comprobarse este hecho, podría significar que la energía y la materia oscura no existen.

Durante las primeras fases del Big Bang, se cree que se formaron las mismas cantidades de materia y antimateria. Materia y antimateria deberían eliminarse mutuamente al entrar en contacto, por lo que la actual existencia de materia (y la ausencia de antimateria) supone una violación de la simetría CP (Véase Violación CP), por lo que puede ser que las partículas y las antipartículas no tengan propiedades exactamente iguales o simétricas,21 o puede que simplemente las leyes físicas que rigen el universo favorezcan la supervivencia de la materia frente a la antimateria.22 En este mismo sentido, también se ha sugerido que quizás la materia oscura sea la causante de la bariogénesis al interactuar de distinta forma con la materia que con la antimateria.

Antes de la formación de las primeras estrellas, la composición química del universo consistía primariamente en hidrógeno (75% de la masa total), con una suma menor de helio-4 (4He) (24% de la masa total) y el resto de otros elementos. Una pequeña porción de estos elementos estaba en la forma del

6 Más información en pag1

Page 27: unibor

17

isótopo deuterio (2H), helio-3 (3He) y litio (7Li).La materia interestelar de las galaxias ha sido enriquecida sin cesar por elementos más pesados, generados por procesos de fusión en la estrellas, y diseminados como resultado de las explosiones de supernovas, los vientos estelares y la expulsión de la cubierta exterior de estrellas maduras. El Big Bang dejó detrás un flujo de fondo de fotones y neutrinos. La temperatura de la radiación de fondo ha decrecido sin cesar con la expansión del universo y ahora fundamentalmente consiste en la energía de microondas equivalente a una temperatura de 2'725 La densidad del fondo de neutrinos actual es sobre 150 por centímetro cúbico

Ilustración 9

En astrofísica y cosmología física se denomina materia oscura a la hipotética materia que no emite suficiente radiación electromagnética para ser detectada con los medios técnicos actuales, pero cuya existencia se puede deducir a partir de los efectos gravitacionales que causa en la materia visible, tales como las estrellas o las galaxias, así como en las anisotropías del fondo cósmico de microondas presente en el universo. No se debe confundir la materia oscura con la energía oscura. De acuerdo con las observaciones actuales (2010) de estructuras mayores que una galaxia, así como la cosmología del Big Bang, la materia oscura constituye del orden del 21% de la masa del Universo observable y la energía oscura el 70%.[]

La materia oscura fue propuesta por Fritz Zwicky en 1933 ante la evidencia de una "masa no visible" []

que influía en las velocidades orbitales de las galaxias en los cúmulos. Posteriormente, otras observaciones han indicado la presencia de materia oscura en el universo: estas observaciones incluyen la citada velocidad de rotación de las galaxias, las lentes gravitacionales de los objetos de fondo por los cúmulos de galaxias, tales como el Cúmulo Bala (1E 0657-56) y la distribución de la temperatura del gas caliente en galaxias y cúmulos de las galaxias. La materia oscura también juega un papel central en la formación de estructuras y la evolución de galaxias y tiene efectos medibles en la anisotropía de la radiación de fondo de microondas. Todas estas pruebas sugieren que las galaxias, los cúmulos de galaxias y todo el Universo contiene mucha más materia que la que interactúa con la radiación electromagnética: lo restante es llamado "el componente de materia oscura".

La composición de la materia oscura se desconoce, pero puede incluir neutrinos ordinarios y pesados, partículas elementales recientemente postuladas como los WIMPs y los axiones, cuerpos astronómicos como las estrellas enanas, los planetas (colectivamente llamados MACHO) y las nubes de gases no luminosos. Las pruebas actuales favorecen los modelos en que el componente primario de la materia oscura son las nuevas partículas elementales llamadas colectivamente materia oscura no bariónica.

El componente de materia oscura tiene bastante más masa que el componente "visible" del Universo. [] En el presente, la densidad de bariones ordinarios y la radiación en el Universo se estima que son equivalentes aproximadamente a un átomo de hidrógeno por metro cúbico de espacio. Sólo aproximadamente el 5% de la densidad de energía total en el Universo (inferido de los efectos

Page 28: unibor

18

gravitacionales) se puede observar directamente. Se estima que en torno al 23% está compuesto de materia oscura. El 72% restante se piensa que consiste de energía oscura, un componente incluso más extraño, distribuido difusamente en el espacio.[] Alguna materia bariónica difícil de detectar realiza una contribución a la materia oscura, aunque algunos autores defienden que constituye sólo una pequeña porción.[] [] Aun así, hay que tener en cuenta que del 5% de materia bariónica estimada (la mitad de ella todavía no se ha detectado) se puede considerar materia oscura bariónica: Todas las estrellas, galaxias y gas observable forman menos de la mitad de los bariones (que se supone debería haber) y se cree que toda esta materia puede estar distribuida en filamentos gaseosos de baja densidad formando una red por todo el universo y en cuyos nodos se encuentran los diversos cúmulos de galaxias. En mayo de 2008, el telescopio XMM-Newton de la agencia espacial europea ha encontrado pruebas de la existencia de dicha red de filamentos.[] La determinación de la naturaleza de esta masa no visible es una de las cuestiones más importantes de la cosmología moderna y la física de partículas. Se ha puesto de manifiesto que los nombres "materia oscura" y la "energía oscura" sirven principalmente como expresiones de nuestra ignorancia, casi como los primeros mapas etiquetados como "Terra incógnita".[]

3.6 Multiversos

Los cosmólogos teóricos estudian modelos del conjunto espacio-tiempo que estén conectados, y buscan modelos que sean consistentes con los modelos físicos cosmológicos del espacio-tiempo en la escala del universo observable. Sin embargo, recientemente han tomado fuerza teorías que contemplan la posibilidad de multiversos o varios universos coexistiendo simultáneamente. Según la recientemente enunciada Teoría de Multiexplosiones se pretende dar explicación a este aspecto, poniendo en relieve una posible convivencia de universos en un mismo espacio

Multiverso es un término usado para definir los múltiples universos posibles, incluido nuestro propio universo. Comprende todo lo que existe físicamente: la totalidad del espacio y del tiempo, todas las formas de materia, energía y cantidad de movimiento, y las leyes físicas y constantes que las gobiernan. La idea de que el universo que se puede observar es sólo una parte de la realidad física dio lugar al nacimiento del concepto de multiverso. Los diferentes universos dentro del multiverso son a veces llamados universos paralelos. La estructura del multiverso, la naturaleza de cada universo dentro de él, así como la relación entre los diversos universos constituyentes, dependen de la hipótesis de multiverso considerada. El concepto de multiverso ha sido supuesto en cosmología, física, astronomía, filosofía, psicología transpersonal y ficción, en particular dentro de la ciencia ficción y de la fantasía. El término fue acuñado en 1895 por el psicólogo William James.[] En estos contextos, los universos paralelos también son llamados «universos alternativos», «universos cuánticos», «dimensiones interpenetrantes», «mundos paralelos», «realidades alternativas» o «líneas de tiempo alternativas».

Ilustración 10

Capitulo #3

4. Estructuras agregadas del universo ÍndiceCapitulo#

2

Page 29: unibor

19

4.1 Las galaxias

gran escala, el universo está formado por galaxias y agrupaciones de galaxias. Las galaxias son agrupaciones masivas de estrellas, y son las estructuras más grandes en las que se organiza la materia en el universo. A través del telescopio se manifiestan como manchas luminosas de

diferentes formas. A la hora de clasificarlas, los científicos distinguen entre las galaxias del Grupo Local, compuesto por las treinta galaxias más cercanas y a las que está unida gravitacionalmente nuestra galaxia (la Vía Láctea)7, y todas las demás galaxias, a las que llaman "galaxias exteriores".

ALas galaxias están distribuidas por todo el universo y presentan características muy diversas, tanto en lo que respecta a su configuración como a su antigüedad. Las más pequeñas abarcan alrededor de 3.000 millones de estrellas, y las galaxias de mayor tamaño pueden llegar a abarcar más de un billón de astros. Estas últimas pueden tener un diámetro de 170.000 años luz, mientras que las primeras no suelen exceder de los 6.000 años luz.

Además de estrellas y sus astros asociados (planetas, asteroides, etc...), las galaxias contienen también materia interestelar, constituida por polvo y gas en una proporción que varia entre el 1 y el 10% de su masa.

Se estima que el universo puede estar constituido por unos 100.000 millones de galaxias, aunque estas cifras varían en función de los diferentes estudios.

4.2 Formas de galaxias

La creciente potencia de los telescopios, que permite observaciones cada vez más detalladas de los distintos elementos del universo, ha hecho posible una clasificación de las galaxias por su forma. Se han establecido así cuatro tipos distintos: galaxias elípticas, espirales, espirales barradas e irregulares.

4.2.1 Galaxias elípticas

Ilustración 11Galaxia elíptica NGC 1316.

En forma de elipse o de esferoide, se caracterizan por carecer de una estructura interna definida y por presentar muy poca materia interestelar. Se consideran las más antiguas del universo, ya que sus estrellas son viejas y se encuentran en una fase muy avanzada de su evolución.

7 Más información en pag21

Page 30: unibor

20

4.2.2 Galaxias espirales

Están constituidas por un núcleo central y dos o más brazos en espiral, que parten del núcleo. Éste se halla formado por multitud de estrellas y apenas tiene materia interestelar, mientras que en los brazos abunda la materia interestelar y hay gran cantidad de estrellas jóvenes, que son muy brillantes. Alrededor del 75% de las galaxias del universo son de este tipo.

4.2.3 Galaxia espiral barrada

Es un subtipo de galaxia espiral, caracterizados por la presencia de una barra central de la que típicamente parten dos brazos espirales. Este tipo de galaxias constituyen una fracción importante del total de galaxias espirales. La Vía Láctea es una galaxia espiral barrada.

4.2.4 Galaxias irregulares

Ilustración 12Galaxia irregular NGC 1427.

Incluyen una gran diversidad de galaxias, cuyas configuraciones no responden a las tres formas anteriores, aunque tienen en común algunas características, como la de ser casi todas pequeñas y contener un gran porcentaje de materia interestelar. Se calcula que son irregulares alrededor del 5% de las galaxias del universo.

Ilustración 13

Page 31: unibor

21

4.3 La Vía LácteaTabla 6

La Vía Láctea es nuestra galaxia. Según las observaciones, posee una masa de 10 masas solares y es de tipo espiral barrada. Con un diámetro medio de unos 100.000 años luz se calcula que contiene unos 200.000 millones de estrellas, entre las cuales se encuentra el Sol. La distancia desde el Sol al centro de la galaxia es de alrededor de 27.700 años luz (8,5 kpc) A simple vista, se observa como una estela blanquecina de forma elíptica, que se puede distinguir en las noches despejadas. Lo que no se aprecian son sus brazos espirales, en uno de los cuales, el llamado brazo de Orión, está situado nuestro sistema solar, y por tanto la Tierra.

El núcleo central de la galaxia presenta un espesor uniforme en todos sus puntos, salvo en el centro, donde existe un gran abultamiento con un grosor máximo de 16.000 años luz, siendo el grosor medio de unos 6.000 años luz.

Todas las estrellas y la materia interestelar que contiene la Vía Láctea, tanto en el núcleo central como en los brazos, están situadas dentro de un disco de 100.000 años luz de diámetro, que gira lentamente sobre su eje a una velocidad lineal superior a los 216 km/s.

La Vía Láctea es nuestra galaxia. Según las observaciones, posee una masa de 10 masas solares y es de tipo espiral barrada. Con un diámetro medio de unos 100.000 años luz se calcula que contiene unos 200.000 millones de estrellas, entre las cuales se encuentra el Sol. La distancia desde el Sol al centro de la galaxia es de alrededor de 27.700 años luz (8,5 kpc) A simple vista, se observa como una estela blanquecina de forma elíptica, que se puede distinguir en las noches despejadas. Lo que no se aprecian son sus brazos espirales, en uno de los cuales, el llamado brazo de Orión, está situado nuestro sistema solar, y por tanto la Tierra.

El núcleo central de la galaxia presenta un espesor uniforme en todos sus puntos, salvo en el centro, donde existe un gran abultamiento con un grosor máximo de 16.000 años luz, siendo el grosor medio de unos 6.000 años luz. Todas las estrellas y la materia interestelar que contiene la Vía Láctea, tanto en el núcleo central como en los brazos, están situadas dentro de un disco de 100.000 años luz de diámetro, que gira lentamente sobre su eje a una velocidad lineal superior a los 216 km/s.

Vía Láctea

Ilustración 14

Datos de observación

(Época )

Tipo SBbc Espiral barrada

Características físicas

Magnitud absoluta -20,5[1]

Radio 15.330 pc, 50.000 al

Page 32: unibor

22

4.4 Las constelaciones

Ilustración 15

Tan sólo 3 galaxias distintas a la nuestra son visibles a simple vista. Tenemos la Galaxia de Andrómeda, visible desde el Hemisferio Norte; la Gran Nube de Magallanes, y la Pequeña Nube de Magallanes, en el Hemisferio Sur celeste. El resto de las galaxias no son visibles al ojo desnudo sin ayuda de instrumentos. Sí que lo son, en cambio, las estrellas que forman parte de la Vía Láctea. Estas estrellas dibujan a menudo en el cielo figuras reconocibles, que han recibido diversos nombres en relación con su aspecto. Estos grupos de estrellas de perfil identificable se conocen con el nombre de constelaciones. La Unión Astronómica Internacional agrupó oficialmente las estrellas visibles en 88 constelaciones, algunas de ellas muy extensas, como Hidra o la Osa Mayor, y otras muy pequeñas como Flecha y Triángulo.

Estrella más cercana al Sol

(Alfa Centauri)

4,3 a.l.Galaxia más próxima a la Vía Láctea

2.000.000 a.l.

Distancia de la Estrella Polar

300 a.l. Objetos más lejanos 14.000.000.000 a.l.

Longitud de la Vía Láctea

100.000 a.l.

Tabla 7

Page 33: unibor

23

4.4.1 Planisferio

Un planisferio celeste es una especie de mapa estelar en forma de 2 discos que giran sobre un eje común. Puede ajustarse para mostrar las estrellas visibles en un día determinado. Se emplea para el reconocimiento de estrellas y constelaciones

Page 34: unibor

24

4.4.2 Descripción de algunas

Page 35: unibor

25

Tabla 8

ORIÓN

La constelación de Orión (el Cazador) es una de las que mejor se ven en el cielo nocturno y, seguramente, la más conocida. Sus estrellas son visibles desde ambos hemisferios, por eso, esta constelación es reconocida en todo el mundo. La constelación se puede ver a lo largo de toda la noche durante el invierno en el hemisferio norte. También es posible verla antes del amanecer desde finales del mes de agosto hasta mediados del de noviembre.

CASIOPEA

Casiopea se distingue fácilmente por la M que forman sus estrellas más luminosas. Está situada en el lado opuesto de la Estrella Polar mirando desde la Osa Mayor. Casiopea puede usarse para confirmar rápidamente la dirección en la que se encuentra el Polo Norte, ya que tiene una orientación concreta en el cielo.

LA OSA MAYOR

La Osa Mayor es una de las constelaciones mayores y, seguramente, una de las más conocidas del hemisferio norte. Está situada en la mitad norte del hemisferio celeste y cercano al Polo Norte. Tiene siete estrellas que le dan la característica forma de "cazo". (The Big Dipper) Esta constelación también se conoce popularmente como "El Carro" y es extraordinariamente fácil de identificar y claramente visible desde latitudes del norte.

LA OSA MENOR

Constelación famosa por contener la Estrella Polar. Pocos son los que la consiguen localizar y reconocer en el cielo ya que está compuesta por estrellas que no son muy visibles. Su estrella más famosa, la Polar, no es, al contrario de lo que se piensa, una estrella muy brillante. La Polar ocupa un modesto 47º lugar en la lista de las estrellas más brillantes de todo el cielo nocturno. Esta constelación la podemos localizar usando como referencia las dos estrellas más brillantes de la Osa Mayor: Dubhe y Merak (mira el punto de la quincena titulado "Orientación de día y de noche").

4.5 Las estrellas

Page 36: unibor

26

Son los elementos constitutivos más destacados de las galaxias. Las estrellas son enormes esferas de gas que brillan debido a sus gigantescas reacciones nucleares. Cuando debido a la fuerza gravitatoria, la presión y la temperatura del interior de una estrella es suficientemente intensa, se inicia la fusión nuclear de sus átomos, y comienzan a emitir una luz roja oscura, que después se mueve hacia el estado superior, que es en el que está nuestro Sol, para posteriormente, al modificarse las reacciones nucleares interiores, dilatarse y finalmente enfriarse. Al acabarse el hidrógeno, se originan reacciones nucleares de elementos más pesados, más energéticas, que convierten la estrella en una gigante roja. Con el tiempo, ésta vuelve inestable, a la vez que lanza hacia el espacio exterior la mayor parte del material estelar. Este proceso puede durar 100 millones de años, hasta que se agota toda la energía nuclear, y la estrella se contrae por efecto de la gravedad hasta hacerse pequeña y densa, en la forma de enana blanca, azul o marrón. Si la estrella inicial es varias veces más masiva que el Sol, su ciclo puede ser diferente, y en lugar de una gigante, puede convertirse en una supergigante y acabar su vida con una explosión denominada supernova. Estas estrellas pueden acabar como estrellas de neutrones.

Los Púlsares son fuentes de ondas de radio que emiten con periodos regulares. La palabra Púlsar significa pulsating radio source (fuente de radio pulsante). Se detectan mediante radiotelescopios y se requieren relojes de extraordinaria precisión para detectar sus cambios de ritmo. Los estudios indican que un púlsar es una estrella de neutrones pequeña que gira a gran velocidad. El más conocido está en la Nebulosa del Cangrejo. Su densidad es tan grande que una muestra de cuásar del tamaño de una bola de bolígrafo tendría una masa de cerca de 100.000 toneladas. Su campo magnético, muy intenso, se concentra en un espacio reducido. Esto lo acelera y lo hace emitir gran cantidad de energía en haces de radiación que aquí recibimos como ondas de radio.

La palabra Cuásar es un acrónimo de quasi stellar radio source (fuentes de radio casi estelares). Se identificaron en la década de 1950. Más tarde se vio que mostraban un desplazamiento al rojo más grande que cualquier otro objeto conocido. La causa era el Efecto Doppler, que mueve el espectro hacia el rojo cuando los objetos se alejan. El primer Cuásar estudiado, denominado 3C 273, está a 1.500 millones de años luz de la Tierra. A partir de 1980 se han identificado miles de cuásares, algunos alejándose de nosotros a velocidades del 90% de la de la luz.

Se han descubierto cuásares a 12.000 millones de años luz de la Tierra; prácticamente la edad del Universo. A pesar de las enormes distancias, la energía que llega en algunos casos es muy grande, equivalente la recibida desde miles de galaxias: como ejemplo, el s50014+81 es unas 60.000 veces más brillante que toda la Vía Láctea

Tabla 9

Ilustración 16

Page 37: unibor

27

Mueren las estrellas y nacen los átomos de los elementos químicos. Somos polvo de estrellas.

Estrellas masa inferior a 1,4 MSol Gigante Roja Enana Blanca

Estrellas > 2 MSol Supergigante Roja Supernova

Supernova < 4MSol Estrella de Neutrones (Ø 20 km)

Supernova > 2,5 MSol Agujero negro

Las estrellas son fraguas donde se forjan los elementos químicos

Page 38: unibor

28

4.6 Los planetas

Los planetas son cuerpos que giran en torno a una estrella y que, según la definición de la Unión Astronómica Internacional, deben cumplir además la condición de haber limpiado su órbita de otros cuerpos rocosos importantes, y de tener suficiente masa como para que su fuerza de gravedad genere un cuerpo esférico. En el caso de cuerpos que orbitan alrededor de una estrella que no cumplan estas características, se habla de planetas enanos, planetesimales, o asteroides. En nuestro Sistema Solar hay 8 planetas: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno, considerándose desde 2006 a Plutón como un planeta enano. A finales de 2009, fuera de nuestro Sistema Solar se han detectado más de 400 planetas extrasolares, pero los avances tecnológicos están permitiendo que este número crezca a buen ritmo.

4.6.1 El Sol

El Sol es nuestra estrella, la Tierra gira alrededor de él con un período de 365 días. Es la estrella que con su radiación posibilita la vida en nuestro planeta. Todos los planetas del Sistema Solar giran en torno a él con un periodo diferente. Su diámetro es de 1.39 millones de kilómetros y su masa es unas 332 959 veces la masa de la Tierra. Está constituido, principalmente por hidrógeno y helio, los dos gases más ligeros de la tabla periódica. La gran cantidad de energía que produce el Sol se debe a las reacciones de fusión que se dan en su interior. En estas reacciones, cuatro núcleos de hidrógeno acaban convertidos en uno de helio. El núcleo de helio tiene cerca de un 0.7% menos de masa que los cuatro protones. La diferencia en la masa es expulsada como energía y en la superficie solar se emite luz y calor.Cada segundo se convierten muchos millones de toneladas de hidrógeno en helio. Debido a estas reacciones la temperatura en su superficie alcanza los 6000 ºC. Esta capa tiene una apariencia manchada debido a las turbulentas erupciones de energía en la superficie.

4.6.2 Mercurio

Mercurio es el primer planeta del Sistema Solar y el más pequeño. Está en el grupo de los denominados planetas interiores o rocosos. Su órbita es la más elíptica de los ocho planetas y no tiene satélites. Gracias a la Sonda Mariner 10 y a las observaciones con radares y radiotelescopios hoy conocemos con bastante precisión cómo es su superficie. Se creía que Mercurio siempre presentaba la misma cara al Sol; es decir, que su periodo de rotación era igual a su periodo de traslación, ambos de 88 días. Sin embargo, en 1965 se mandaron pulsos de radar hacia Mercurio, con lo cual quedó definitivamente demostrado que su periodo de rotación era de 58,7 días, lo cual es 2/3 de su periodo de traslación. Las variaciones de temperatura de Mercurio son las mayores del Sistema Solar: de 363 ºC a 973 ºC. Posee un núcleo de hierro, cuyo radio mide entre 1800 y 1900 km. Como no tiene atmósfera, no tiene protección contra los cuerpos que chocan con él todo el tiempo. Las observaciones del polo norte de Mercurio,

Ilustración 17

Ilustración 18

Ilustración 19

Page 39: unibor

29

hechas por radar, revelaron la presencia de hielo en las sombras protegidas de algunos cráteres.

4.6.3 Venus

Venus está entre la Tierra y Mercurio, no tiene satélites y su atmósfera está constituida, principalmente, por gas carbónico lo que provoca un intenso efecto invernadero que eleva su temperatura hasta los 480 ºC. En la antigüedad era conocido por los astrónomos como la estrella de la mañana y la estrella de la tarde. Estos astrónomos pensaban que Venus eran dos cuerpos distintos. Venus presenta fases (como la Luna) hecho observado por primera vez por Galileo.Venus gira sobre su eje a razón de 243 días terrestres por vuelta y en sentido contrario al de los otros planetas, por eso en Venus el Sol sale por el oeste y se pone por el este, al revés de lo que ocurre en nuestro planeta. Está cubierto por una espesa capa de nubes.

4.6.4 La Tierra

La Tierra es el tercer planeta cuando se cuenta a partir del Sol. Se desplaza en una trayectoria casi circular alrededor del Sol a una distancia de unos 150 millones de kilómetros (1 unidad astronómica, ua), tarda 365.26 días en dar una vuelta al Sol y unas 24 horas en rotar sobre sí misma. Tiene un radio de 6370 km. El tamaño de la Tierra es más de un millón de veces menor que el del Sol y la masa terrestre es 81 veces mayor que la de la Luna. Su atmósfera está compuesta por un 78% de nitrógeno, un 21% de oxígeno y un 1% de otros componentes. La atmósfera de la Tierra también nos protege de los meteoritos que nosllegan ya que se "queman" debido a la fricción antes de poder alcanzar la superficie. La Tierra es el único planeta conocido que abriga vida en el Sistema Solar. Posee un núcleo interno sólido y una capa fluida llamada núcleo externo formado por hierro, níquel y algún elemento ligero. Sobre esta capa se localiza el manto y la corteza; esta última se divide en corteza oceánica, situada bajo el océano, y la corteza continental que constituye la tierra firme. Debido a los metales fundidos del núcleo externo de nuestro planeta y al giro de la Tierra, se crea un campo magnético que, junto con la atmósfera, nos protege de la radiación solar. El primer satélite Norteamericano, Explorer 1, descubrió una intensa zona de radiación, ahora llamada cinturón de Van Allen. El cinturón está formado por una capa de partículas cargadasque son capturadas por el campo magnético de la Tierra. Otros descubrimientos hechos por satélites muestran que el campo magnético de nuestro planeta está distorsionado debido al viento solar.

4.6.5 Marte

Contando desde el Sol, Marte es cuarto planeta del Sistema Solar y el primero de los llamados exteriores. Se conoce como el planeta rojo por sus tonos rojizos. Menor que la Tierra, tiene dos satélites: Deimos y Fobos. Realiza una rotación completa cada 24 horas y 37 minutos y su traslación alrededor del Sol es de 1 año y 322 días (22.5 meses). Su masa es un 11% la de la Tierra y su radio ecuatorial es de 3398 km.La elipticidad de Marte es importante y ello hace que cada 15 años haya una aproximación muy favorable para su observación (en 1971 se produjo una buena aproximación). El planeta Marte tiene una atmósfera muy fina. Sobre su superficie se "ven", con los telescopios terrestres, "surcos, islas y costas", lo que hizo pensar a Percival Lowell (siglo XIX) que tenía mares y canales, pero la sonda Mariner IV con sus fotografías hizo que se desvaneciera esa creencia. Las enormes diferencias de temperatura provocan fuertes vientos. La erosión del suelo forma tempestades de arena y polvo que desgastan su superficie.

Ilustración 20

Ilustración 21

Ilustración 22

Page 40: unibor

30

4.6.6 Júpiter

El planeta Júpiter es uno de los cinco planetas que podemos ver a simple vista y es el mayor del Sistema Solar. Es un globo multicolor de gas, con un 85% hidrógeno. Su brillo blanquecino es intenso; poreso, es visible en ciertas épocas del año durante toda la noche. La temperatura en la parte superior de sus nubes está por debajo de los 0 ºC, pero en las profundidades de su atmósfera, donde lapresión es altísima la temperatura es elevada. Se supone que está constituido por tres capas: un núcleo compacto de roca y hielo que corresponde al 4% de la masa total, recubierto por una capa de hidrógenometálico, una transición entre esa capa y otra, formada por una mezcla líquida de helio e hidrógeno molecular. Encima de esta última capa está la atmósfera de Júpiter, compuesta por hidrógeno y helio gaseosos. En el interior del planeta la temperatura alcanza los 30000°C. Júpiter completa una vuelta en torno a sí mismo en 9 h y 50 minutos y en la capa de hidrógeno metálico se generan intensas corrientes eléctricas. Esta electricidad produce un gran campo magnético, 14 veces más intenso que el terrestre y que se extiende más allá de Saturno.La ausencia de rozamiento con una superficie sólida permite que existan en la atmósfera huracanes como la gran Mancha Roja, que dura ya más de tres siglos. La mancha roja es un remolino de alta presión donde cabrían dos Tierras, elevándose por encima de las nubes. Se han descubierto más de 63 satélites con cuatro lunas principales: Ío, Ganímedes, Europa y Calisto. En 1979 las dos sondas Voyager descubrieron un halo de polvo muy fino, que va de 100 a 122 mil km del centro de Júpiter y un sistema de tres anillos. El anillo principal tiene cerca de 6 mil km de espesor y se extiende de 122 a 129 mil km del centro del planeta

4.6.7 Saturno

Saturno es el sexto planeta contando a partir del Sol y el segundo más grande del Sistema Solar con un radio ecuatorial de 59650 kilómetros. Gran parte de lo que se sabe sobre el planeta es gracias a las exploraciones de la sonda Voyager II en 1980-81. Como resultado de la rápida rotación del planeta en torno a su eje, está achatado en los polos. Su día dura 10 horas y 39 minutos, y tarda cerca de 29.5 años terrestres en dar una vuelta alrededor del Sol.La atmósfera está compuesta principalmente por hidrógeno con pequeñas cantidades de helio y metano. Saturno tiene una densidad menor que la del agua (cerca de un 30% menos) y tiene una coloración amarillenta. El sistema de anillos de Saturno hace del planeta uno de los más bellos objetos en el Sistema Solar. Los anillos están divididos en diferentes partes, que incluyen los anillos brillantes A y B y un anillo C más débil. El sistema de anillos tiene diversos espaciados. El espaciado más notable es la División Cassini, que separa los anillos A y B. El nombre de esta división se da en honor a Giovanni Cassini que la descubrió en 1675.

4.6.8 La Luna

La Luna es el satélite natural de la Tierra. Su radio es de unos 1738 km, aproximadamente una cuarta parte del de la Tierra. La masa de la Luna es 81 veces menor que la de la Tierra como consecuencia, lagravedad en su superficie es un sexto de la de la Tierra. La Luna orbita la Tierra a una distancia media de 384403 km y a una velocidad media de 3700 km/h. Completa su traslación alrededor de la Tierra, siguiendo una órbita casi circular, en 27 días, 7 horas, 43 minutos y 11 segundos. Para cambiar de una fase a otra igual (mes lunar), la Luna necesita 29 días, 12 horas, 44 minutos y 2.8 segundos. La Luna también gira en torno a su eje tardando el mismo tiempo que la tierra.

Ilustración 23

Ilustración 24

Ilustración 25

Page 41: unibor

31

4.6.9 Urano

Urano fue descubierto por William Herschel en 1781. Tiene un radio ecuatorial de 25 559 kilómetros y su periodo en torno al Sol es de 84.01 años terrestres. La distancia media al Sol es 2.87 billones de kilómetros. La duración de un día en Urano es de 17 horas y 14 minutos. Urano tiene por lo menos 21 lunas. Las dos mayores, Titania y Oberon, fueron descubiertas también por William Herschelen 1787. La atmósfera de Urano está compuesta en un 83% de hidrógeno, un 15% de helio, un 2% de metano y pequeñas porciones de acetileno y otros hidrocarburos. El metano en el alta atmósfera absorbe la luz roja, dando a Urano su color azul-verdoso. En su atmósfera hay nubes que se mantienen en altitudes constantes. Los vientos en Urano soplan en la dirección de la rotación del planeta. Estos vientos tienen velocidades de entre 40 y 160 metros por segundo.Urano se distingue por el hecho de girar "acostado". Se piensa que su posición es el resultado de la colisión con un cuerpo del tamaño de un planeta al inicio de la historia del Sistema Solar. En 1977, fueron descubiertos los primeros nueve anillos de Urano. Durante la visita de la Voyager II, estos anillos fueron fotografiados y medidos. Los anillos de Urano son muy diferentes de los de Júpiter y Saturno.

4.6.10 Neptuno

Neptuno fue descubierto en 1846 por Johann Gottfried Galle, del Observatorio de Berlín, y Louis d'Arrest gracias a las predicciones matemáticas hechas por Le Verrier a partir de las irregularidades observadas en la órbita de Urano (que daban a entender que debía haber otro planeta cercano que perturbaba su trayectoria debido a la fuerza gravitatoria). Tiene un radio de 24 764 kilómetros. La masa de Neptuno es unas 17 veces superior al de la Tierra. Da una vuelta alrededor del Sol cada 164.8 años y una rotación sobre sí mismo en 16 horas y 7 minutos. La temperatura de su atmósfera alcanza los 220 ºC bajo cero y se han llegado a medir vientos de 1000 km/h cerca de la gran mancha negra (ya desaparecida).La nave Voyager II se acercó a Neptuno el año 1989 y lo fotografió. Descubrió seis de las ocho lunas que tiene y confirmó la existencia de anillos. En la atmósfera de Neptuno se llega a temperaturas cercanas a los 260 ºC bajo cero. Las nubes, de metano congelado, cambian con rapidez.

4.6.11 Plutón y los planetas enanos

Los planetas enanos son cuerpos celestes de forma esférica (o casi) cuyo radio es menor que el de Mercurio pero mayor de 400 km. Hoy en día no se consideran planetas. Esta denominación

fue introducida en 2006, por la Unión Astronómica Internacional en su resolución B5; según ésta, un planeta enano es aquel cuerpo celeste que:a) Está en órbita alrededor del Sol.b) Tiene masa suficiente para que su gravedad modele una forma esférica (o casi).c) No ha barrido las inmediaciones de su órbita de otros cuerpos.

d) No es un satélite.En este sentido, Plutón sería un planeta enano. Fue descubierto por Clyde W. To mbaugh en 1930. Su órbita es una elipse muy excéntrica y ello permite que, durante 20 de los 249 años que tarda en hacerla, esté más cerca del Sol que Neptuno. No obstante, como las órbitas de estos dos planetas están en

Ilustración 26

Ilustración 27

Page 42: unibor

32

planos diferentes, nunca llegan a chocar. Otros planetas enanos serían: Ceres, Eris, Makemake, Haumea, UB313... Plutón Ceres

4.7 Los satélites

Los satélites naturales son astros que giran alrededor de los planetas. El único satélite natural de la Tierra es la Luna, que es también el satélite más cercano al sol. A continuación se enumeran los principales satélites de los planetas del sistema solar (se incluye en el listado a Plutón, considerado por la UAI como un planeta enano).

Ilustración 28

Page 43: unibor

33

Ilustración 29

Tabla 10

Tierra: 1 satélite → Luna Marte: 2 satélites → Fobos, Deimos

Júpiter: 63 satélites → Metis, Adrastea, Amaltea, Tebe, Ío, Europa, Ganimedes, Calisto, Leda, Himalia, Lisitea, Elara, Ananké, Carmé, Pasífae, Sinope...

Saturno: 59 satélites → Pan, Atlas, Prometeo, Pandora, Epimeteo, Jano, Mimas, Encélado, Tetis, Telesto, Calipso, Dione, Helena, Rea, Titán, Hiperión, Jápeto, Febe...

Urano: 15 satélites → Cordelia, Ofelia, Bianca, Crésida, Desdémona, Julieta, Porcia, Rosalinda, Belinda, Puck, Miranda, Ariel, Umbriel, Titania, Oberón.

Neptuno: 8 satélites → Náyade, Talasa, Despina, Galatea, Larisa, Proteo, Tritón, Nereida

Plutón: 3 satélites → Caronte, Nix, Hidra

4.8 Asteroides y cometas

En aquellas zonas de la órbita de una estrella en las que, por diversos motivos, no se ha producido la agrupación de la materia inicial en un único cuerpo dominante o planeta, aparecen los discos de asteroides: objetos rocosos de muy diversos tamaños que orbitan en grandes cantidades en torno a la estrella, chocando eventualmente entre sí. Cuando las rocas tienen diámetros inferiores a 50m se

Page 44: unibor

34

denominan meteoroides. A consecuencia de las colisiones, algunos asteroides pueden variar sus órbitas, adoptando trayectorias muy excéntricas que periódicamente les acercan la estrella. Cuando la composición de estas rocas es rica en agua u otros elementos volátiles, el acercamiento a la estrella y su consecuente aumento de temperatura origina que parte de su masa se evapore y sea arrastrada por el viento solar, creando una larga cola de material brillante a medida que la roca se acerca a la estrella. Estos objetos se denominan cometas. En nuestro sistema solar hay dos grandes discos de asteroides: uno situado entre las órbitas de Marte y Júpiter, denominado el Cinturón de asteroides, y otro mucho más tenue y disperso en los límites del sistema solar, a aproximadamente un año luz de distancia, denominado Nube de Oort.

4.9 Orientación con los astros

Tabla 11

Orientación de día en el hemisferio norteEl sol puede servirnos directamente como medio de orientación. Si recordamos que el sol sale por el Este, que se oculta por el Oeste y que a mediodía, (las 12, hora solar) la sombra de los cuerpos verticales, marca la dirección S-N.

Ilustración 30 Ilustración 31

Page 45: unibor

35

Orientación de noche en el hemisferio norteBuscaremos en el cielo la constelación de la Osa Mayor8. Miramos las dos estrellas de la parte trasera de la constelación y calculamos su distancia aparente.Ahora añadimos cuatro veces la distancia anterior en la misma dirección. Llegaremos a la estrella Polar, que apunta hacia el Norte.

5. Indicios de un comienzo

a teoría general de la relatividad, que publicó Albert Einstein en 1916, implicaba que el cosmos se hallaba en expansión o en contracción. Pero este concepto era totalmente opuesto a la noción de un universo estático, aceptada entonces hasta por el propio Einstein. De ahí que éste incluyera en

sus cálculos lo que denominó “constante cosmológica”, ajuste mediante el cual intentaba conciliar su teoría con la idea aceptada de un universo estático e inmutable. Sin embargo, ciertos descubrimientos que se sucedieron en los años veinte llevaron a Einstein a decir que el ajuste que había efectuado a su teoría de la relatividad era el ‘mayor error de su vida’. Dichos descubrimientos se realizaron gracias a la instalación de un enorme telescopio de 254 centímetros en el monte Wilson (California). Las observaciones formuladas en los años veinte con la ayuda de este instrumento demostraron que el universo se halla en expansión.

L

Hasta entonces, los mayores telescopios solo permitían identificar las estrellas de nuestra galaxia, la Vía Láctea, y aunque se veían borrones luminosos, llamados nebulosas, por lo general se tomaban por remolinos de gas existentes en nuestra galaxia. Gracias a la mayor potencia del telescopio del monte Wilson, Edwin Hubble logró distinguir estrellas en aquellas nebulosas. Finalmente se descubrió que los

borrones eran lo mismo que la Vía Láctea: galaxias. Hoy se cree que hay entre 50.000 y 125.000 millones de galaxias, cada una con cientos de miles de millones de estrellas.

A finales de los años veinte, Hubble también descubrió que las galaxias se alejan de nosotros, y que lo hacen más velozmente cuanto más lejos se hallan. Los astrónomos calculan la tasa de recesión de las galaxias mediante el espectrógrafo, instrumento que mide el espectro de la luz procedente de los astros. Para ello, dirigen la luz que proviene de estrellas lejanas hacia un prisma, que la descompone en los colores que la integran.

La luz de un objeto es rojiza (fenómeno llamado corrimiento al rojo) si este se aleja del observador, y azulada (corrimiento al azul) si se le aproxima. Cabe destacar que, salvo en el caso de algunas galaxias cercanas, todas las galaxias conocidas tienen líneas espectrales desplazadas hacia el rojo. De ahí infieren los científicos que el universo se expande de forma ordenada.

8 Más información en pag24

Page 46: unibor

36

La tasa de dicha expansión se determina midiendo el grado de desplazamiento al rojo. ¿Qué conclusión se ha extraído de la expansión del cosmos? Pues bien, un científico invitó al público a analizar el proceso a la inversa —como una película de la expansión proyectada en retroceso— a fin de observar la historia primitiva del universo. Visto así, el cosmos parecería estar en recesión o contracción, en vez de en expansión y retornaría finalmente a un único punto de origen.

El famoso físico Stephen Hawking concluyó lo siguiente en su libro Agujeros negros y pequeños universos (y otros ensayos), editado en 1993: “La ciencia podría afirmar que el universo tenía que haber conocido un comienzo”. Pero hace años, muchos expertos rechazaban que el universo hubiese tenido principio. El famoso científico Fred Hoyle no aceptaba que el cosmos hubiera surgido mediante lo que llamó burlonamente ‘a big bang’ (una gran explosión).

Uno de los argumentos que esgrimía era que, de haber existido un comienzo tan dinámico, deberían conservarse residuos de aquel acontecimiento en algún lugar del universo: tendría que haber radiación fósil, por así decirlo; una leve luminiscencia residual.

El diario The New York Times (8 de marzo de 1998) indicó que hacia 1965 “los astrónomos Arno Penzias y Robert Wilson descubrieron la omnipresente radiación de fondo: el destello residual de la explosión primigenia”. El artículo añadió: “Todo indicaba que la teoría [de la gran explosión] había triunfado”.

Pero en los años posteriores al hallazgo se formuló esta objeción: Si el modelo de la gran explosión era correcto, ¿por qué no se habían detectado leves irregularidades en la radiación? (La formación de las galaxias habría requerido un universo que contase con zonas más frías y densas que permitieran la fusión de la materia.) En efecto, los experimentos realizados por Penzias y Wilson desde la superficie terrestre no revelaban tales irregularidades.

Por esta razón, la NASA lanzó en noviembre de 1989 el satélite COBE (siglas de Explorador del Fondo Cósmico, en inglés), cuyos descubrimientos se calificaron de cruciales. “Las ondas que detectó su radiómetro diferencial de microondas correspondían a las fluctuaciones que dejaron su impronta en el cosmos y que hace miles de millones de años llevaron a la formación de las galaxias.”

6. Otros términos

Diferentes palabras se han utilizado a través de la historia para denotar "todo el espacio" , incluyendo los equivalentes y las variantes en varios lenguajes de "cielos", "cosmos" y "mundo". El macrocosmos también se ha utilizado para este efecto, aunque está más específicamente definido como un sistema que refleja a gran escala uno, algunos, o todos estos componentes del sistema o partes. Similarmente, un microcosmos es un sistema que refleja a pequeña escala un sistema mucho mayor del que es parte.

Aunque palabras como mundo y sus equivalentes en otros lenguajes casi siempre se refieren al planeta Tierra, antiguamente se referían a cada cosa que existía (se podía ver). En ese sentido la utilizaba, por ejemplo, Copérnico. Algunos lenguajes utilizan la palabra "mundo" como parte de la palabra "espacio exterior". Un ejemplo en alemán lo constituye la palabra "Weltraum".30

Page 47: unibor

37

7. Véase también8. Portal:Astronomía. Contenido relacionado con Astronomía.9. Ambiplasma10. Astrofísica11. Albert Einstein12. Astronomía13. Big Bang14. Cosmología15. Cosmología física16. Cosmovisión17. Destino último del Universo18. Edad del universo19. Estructura a gran escala del universo20. Expansión del Universo21. Forma del Universo22. Inflación cósmica23. Ley de Hubble24. Métrica de Expansión del Universo25. Métrica FLRW26. Microcosmos27. Modelo Lambda-CDM28. Carl Sagan29. Multiverso30. Origen del Universo31. Principio antrópico32. Principio holográfico33. Teoría del Big Bang34. Teoría del Universo estacionario35. Teoría del universo fecundo36. Universal (metafísica)37. Universo oscilante38. Universos paralelos

8. Referencias

1. ↑ Cfr. Universal (metafísica)2. ↑ Lineweaver, Charles; Tamara M. Davis (2005). Misconceptions about the Big Bang.

Scientific American. Enlace verificado 31 de marzo de 2008.3. ↑ «Primeras imágenes de la materia oscura». Consultado el 20 de diciembre de 2010.4. ↑ JSTOR: Un Universo o muchos?5. ↑ Luminet, Jean-Pierre; Boudewijn F. Roukema (1999). «Topology of the Universe:

Theory and Observations». Proceedings de la Escuala de Cosmología de Cargese (Córcega) Agosto de 1998. http://arxiv.org/abs/astro-ph/9901364. Consultado el 05-01-2007.

6. ↑ Luminet, Jean-Pierre; J. Weeks, A. Riazuelo, R. Lehoucq, J.-P. Uzan (2003). «Dodecahedral space topology as an explanation for weak wide-angle temperature

Page 48: unibor

38

correlations in the cosmic microwave background». Nature 425:  pp. 593. http://arxiv.org/abs/astro-ph/0310253. Consultado el 09-01-2007.

7. ↑ Brookhaven National Laboratory (ed.): «Heavy Ion Collisions».8. ↑ Thomas Ludlam, Larry McLerran (Octubre de 2003). Physics Today (ed.): «What

Have We Learned From the Relativistic Heavy Ion Collider?». Consultado el 28 de febrero de 2007.

9. ↑ Ken Tan (15 de enero de 2007). space.com (ed.): «New 'Hobbit' Galaxies Discovered Around Milky Way». Consultado el 1 de marzo de 2007.

10. ↑ The Uppsala Astronomical Observatory (ed.): «Dwarf Spheroidal Galaxies». Consultado el 1 de marzo de 2007.

11. ↑ Neil J. Cornish, David N. Spergel, Glenn D. Starkman y Eiichiro Komatsu, Constraining the Topology of the Universe.astro-ph/0310233

12. ↑ Lineweaver, Charles; Tamara M. Davis (2005). Scientific American (ed.): «Misconceptions about the Big Bang» (en inglés). Consultado el 5 de marzo de 2007.

13. ↑ «WMAP produces new results» (en inglés).14. ↑ «The 2dF Galaxy Redshift Survey: Constraints on Cosmic Star Formation History

from the Cosmic Spectrum», The Astrophysical Journal (The American Astronomical Society) 569: 582–594, 2002, 20 de abril 2002, doi:10.1086/339477, http://www.journals.uchicago.edu/doi/pdf/10.1086/339477

15. ↑ Associated Press (28 de agosto de 2008). «Universe: Beige, not Turquoise». Wired.com. Consultado el 1 de noviembre de 2009.

16. ↑ N. Mandolesi; P. Calzolari, S. Cortiglioni, F. Delpino, G. Sironi (1986). «Large-scale homogeneity of the Universe measured by the microwave background». Letters to Nature 319:  pp.http://www.nature.com/nature/journal/v319/n6056/abs/319751a0.html.

17. ↑ Hinshaw, Gary (2006). NASA WMAP (ed.): «New Three Year Results on the Oldest Light in the Universe». Consultado el 07-03-2007.

18. ↑ Strobel, Nick. Astronomy Notes (ed.): «The Composition of Stars». Consultado el 08-03-2007.

19. ↑ «Have physical constants changed with time?». Consultado el 08-03-2007.20. ↑ Gary Hinshaw (10 de Febrero de 2006). NASA WMAP (ed.): «What is the Universe

Made Of?». Consultado el 1 de marzo de 2007.21. ↑ La Antimateria22. ↑ Difference in direct charge-parity violation between charged and neutral B meson

decays,Nature 452, 332-335 (20 de marzo de 2008)23. ↑ New Theory of the Universe Marries Two of its Biggest Mysteries (31 de enero de

2007) de Laura Mgrdichian sobre el trabajo de Tom Banks, Sean Echols y Jeff L. Jones, Baryogenesis, dark matter and the pentagon. J. High Energy Phys. JHEP11 (2006) 046 (en inglés)

24. ↑ UCLA (ed.): «Big Bang Nucleosynthesis» (12 de septiembre de 2004). Consultado el 2 de marzo de 2007.

25. ↑ M. Harwit; M. Spaans (2003). «Chemical Composition of the Early Universe». The Astrophysical Journal 589 (1):  pp. 53-57. http://adsabs.harvard.edu/abs/2003ApJ...589...53H.

26. ↑ C. Kobulnicky; E. D. Skillman (1997). «Chemical Composition of the Early Universe». Bulletin of the American Astronomical Society 29:  pp. 1329. http://adsabs.harvard.edu/abs/1997AAS...191.7603K.

27. ↑ Gary Hinshaw (15 de diciembre de 2005). NASA WMAP (ed.): «Tests of the Big Bang: The CMB». Consultado el 2 de marzo de 2007.

Page 49: unibor

39

28. ↑ Belle Dumé (16 de junio de 2005). Institute of Physics Publishing (ed.): «Background neutrinos join the limelight». Consultado el 2 de marzo de 2007.

29. ↑ Albert Einstein (1952). Relativity: The Special and the General Theory (Fifteenth Edition), ISBN 0-517-88441-0.

9. Enlaces externos

Wikimedia Commons alberga contenido multimedia sobre Universo. Wikiquote alberga frases célebres de o sobre Universo.

Wikcionario tiene definiciones para universo. Proyecto Celestia Actividad Educativa "El Universo" dirigida a alumnos de

Secundaria, Bachillerato o aficionados a la astronomía en general Alemañ Berenguer, Rafael Andrés (2001) Tras los Secretos del Universo ISBN

84-95495-08-2 Vídeos sobre el Universo: Biblioteca audiovisual sobre el Cosmos.

En inglés:

El Universo de Stephen Hawking - ¿Por qué el Universo es así? Richard Powell: Un Atlas del Universo - imágenes en varias escalas, con

explicaciones. Cosmos - una "revista dimensional ilustrada desde el microcosmos al

macrocosmos" Edad del Universo en Space.Com Mi Así-Llamado Universo argumentos a favor y en contra de universos paralelos

e infinitos Universos paralelos por Max Tegmark Mapas logarítmicos del Universo Seti@Home - La Búsqueda de Inteligencia Extraterrestre Universo - Centro de Información Espacial por Exploreuniverse.com Número de Galaxias en el Universo Tamaño del Universo en Space.Com Ilustración comparando los tamaños de los planetas, el sol y otras estrellas Cosmología FAQ

Obtenido de «http://es.wikipedia.org/w/index.php?title=Universo&oldid=58234531»

Page 50: unibor

“El conocimiento es poder” “Todos somos parte del Universo, aprende a ser parte de él” “La paciencia es el placer del Universo……”

“Universo infinito, sabiduría infinita”